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1 Introduction.

Given a set of data (xi,yi), a major task of the experimentalist is to fit them into a model, i.e.
find parameters a,b,c, ... such that f (x;a,b,c...) best describes the data. Of course, to do this,
he has to have in mind a model. The first task of the experimentalist is to be reasonably sure that
this model is good. We will not go so much in this direction and we will assume that the model
is sound, even though what we’ll say later can be extended to assess the goodness of fit. The
second task is, once the model is assumed, to find the best set of parameters which minimize the
difference between the model and the data. The third task is to estimate the uncertainties ∆a,
∆b, ... of these parameters. We are concerned here with the second and third task. This last one
is often either neglected or made unnesserily difficult to understand.

What we’ll say here will be mostly focused on linear regression, i.e. when parameters a,b, ...
appears linearly in the function ; for example y = ax+b or y = asin(x2/2)+bΓ(

√
x) are linear

in their parameters a,b. The extension to non-linear fit, such as y = sin(ax2/2) will be treated
only approximately, but estimating their uncertainties follows the same rule.

2 A short reminder of quadratic functions.

Finding the best fit is mostly the art of manipulating quadratic forms, i.e. functions of the form
y = Ax2 +2Bx+C. A small complication arises because we may have more than one dimension
; the general quadratic function read

y =
n

∑
i, j=1

ai jxix j +2
n

∑
i=1

bixi + c (1)

Let us massage a little our one dimensional quadratic form f (x) = Ax2 +2Bx+C. Obviously,
it can be put under the canonical form (see Fig. 1)

f (x) = A(x− x∗)2 + f (x∗) (2)
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Figure 1: a simple quadratic function. Displacement ∆x∗ is such that it doubles the value of the
function at its minimum.

where x∗ is the minimum of the function f (we suppose a > 0). As f ′(x∗) = 0,

x∗ =−A−1B. (3)

Coefficient A is (twice) the curvature at x∗. Now, in order to get a better feeling of our quadratic
form, we could ask : how much do we have to move away from x∗ in order to multiply the value
of our function by an (1+ ε) factor, compared to its minimum value ? The answer obviously is

∆x2 = εA−1 f (x∗) (4)

Note that the answer combines both the curvature and the minimum value of the function.
Now, all these concepts generalize to higher dimension. All we have to do is to use nice

notations. Instead of manipulating one by one each coordinate, we’ll pack them into a vector x
with component xi . Our quadratic form (1) can now be written

f (x) = xT Ax+2xT B+ c (5)

The T exponent denotes the transposition operation (line vectors become colon ones and vice
versa) ; A is the matrix of component ai j ; B the vector with component bi. We assume matrix A
to be symmetric (why?). We can now repeat the same operations and put the quadratic function
in its canonical form (Fig ??)

f (x) = (x− x∗)T A(x− x∗)+ f (x∗)

As before, the function f reaches its minimum for the vector x∗; this is equivalent to say that
∂ f/∂xi = 0 for all i. In matrix notation, we’ll say ∂ f/∂x = 01, i.e.

2Ax∗+2B = 0
1The notion of derivation is not limited to scalars, and can be extended to much more complex objects. Let say
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or, equivalently
x∗ =−A−1B

where A−1 is the reverse of matrix A (curvature at the minimum). You see how nicely matrix
notations extend our knowledge of simple quadratic forms. Again, we can ask how much do we
have to move away from x∗ to multiply f by (1+ ε) ? The answer is not a scalar, because we
have the choice of the direction : we can move only in the x1direction, or first in x1and then x2,
... If we form the matrix ∆x∆xT (which is square , n× n and whose elements are ∆xi∆x j), the
equation (x− x∗)T A(x− x∗)+ f (x∗) = (1+ ε) f (x∗) solves into

∆x∆xT = εA−1 f (x∗) (6)

(recall that f (x∗) is a scalar).
OK, we are know well equipped to do serious business and fit our data.

3 Linear Regression.

Suppose we have a set of data (xi,yi) and we want to model them with the function y= f (x;a,b,c, ...).
As we said before, we are interested in linear regression, i.e. when parameters a,b,c, ... enter
the function linearly. For example, y = ax+b or y = ax2 +bx+ c, or y = asinx+bcosx. In all
these examples, the function is linear for the parameters, even though it can be non-linear for the
independent variable x. From here on, we will use the straight line y = ax+b as the model, but
all other linear regressions are similar and can be deduced from it.

Estimating the parameters.

Our desire is to get the line y = ax+b as close to the data as possible, by wisely choosing a and
b (Fig 2). For each point, the difference between the data yi and where we expected the data
axi+b is ei = axi+b−yi. In order to minimize the gap between data and model, we can choose
to minimize

χ2(a,b) =
N

∑
i=1

(axi +b− yi)
2 (7)

The function χ2 is the sum of the square of residual2. We could have used an other evaluation
function, like the sum of the absolute value of the residuals, or the maximum residual or ... But

we have a function f (x), where x can be a scalar, vector, matrix, and so on (it can even be a function) and same
thing for f itself. If we can compute small variation of the function as a linear functions of small variations of
the variable, then we say we have a derivative :

f (x+dx) = f (x)+L.dx+O(dx2)

Obviously, we suppose that in the space in which x is defined, we possess operations such as additions and
multiplications and we can define the distance between two points. Now, it is not difficult, by writing f (x+dx)
in expression (5) and extracting the linear terms in dx to see that the derivative is the one we have given.

2Why N − 2 and not N ? Normally, you have many data points, and the difference between N and N − 2 is very
small. We will see however that there is a small advantage at using N − 2. For practical purpose of evaluating
a,b, the prefactor has no importance.
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Figure 2: Example of data fitted to a line.

χ2 has very good analytical behavior and is the most popular metric. As you see, χ2 is a function
of the parameters of the straight line a,b ; choosing wisely a,b means finding the point (a∗,b∗)
which minimizes χ2. Expanding the parentheses of (7), we get

χ2(a,b) =

(
N

∑
i=1

x2
i

)
a2 +Nb2 +2

(
N

∑
i=1

xi

)
ab

− 2

(
N

∑
i=1

xiyi

)
a−2

(
N

∑
i=1

yi

)
b+

(
N

∑
i=1

y2
i

)
All the expressions we have written between parentheses are computed by summing various
combination of our data point and therefore are known. Let us rename them : Sxx = ∑n

i=1 x2
i ;

Sx = ∑n
i=1 xi ; Sxy = ∑n

i=1 xiyi ; Sy = ∑n
i=1 yi ; Syy = ∑n

i=1 y2
i . Rewriting in these new notation,

χ2(a,b) = Sxxa2 +Nb2 +2Sxab−2Sxya−2Syb+Syy (8)

which is a quadratic form in a and b. Noting u = (a,b)T ,

A =

(
Sxx Sx

Sx N

)
(9)

and
BT =−(Sxy,Sy) (10)

We can use the matrix notation

χ2(u) = uT Au+2uT B+Syy (11)

The best fit (the vector u which minimizes χ2 is therefore given by solving the linear system
Au∗ =−B. For a linear regression, the inverse matrix computation is trivial

A−1 =
1
∆

(
N −Sx

−Sx Sxx

)
(12)
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where ∆ = NSxx − (Sx)
2 is the determinant of the matrix A. The explicit solution is

a∗ =
NSxy −SxSy

∆
(13)

b∗ =
SxxSy −SxSxy

∆
(14)

If you have more parameters, say (a1,a2, ...an), matrix A and vector B get bigger (n×n matrix
and n vector), and the computation of their elements get longer ; but the derivation process
follows exactly the same rules and by the end, you have to solve a linear system Au∗ = −B
where the vector u∗ = (a∗1, ...a

∗
n) is the best estimator of your parameters. Big (n > 2) linear

systems are not solved by computing A−1 and then multiplying it by B, this would be too costly.
They are instead directly solved by using such methods as the Gaussian elimination or other
means. Any basic mathematics’s package on your computer will perform such a task3

What is an average and its uncertainty ?

Let us forget for a moment all the fitting buiseness and come back to a much simpler question.
Suppose you have a collection of N data yi ; for example, you have made many measurments of
your weight in the morning, but your brand new scale gives you each time a slightly different
result. What is the best estimation of the true value ? Well, obviously, you would use the average
ȳ of your measurements as a good estimator of the true value µ :

ȳ =
1
N

N

∑
i=1

yi (15)

In fact, you could have asked the follwing : how can I choose y in order to minimize

χ2(y) =
N

∑
i=1

(y− yi)
2 (16)

Of course, minimizing χ2 with respect to y would give you y = ȳ, the result (15). As you see,
the numerical average (15) is precisely the value which minimizes the residual errors. Finding
the average is a fit with an horzontal line.

Now, what confidence could you have in your estimation ? Is it 75±5kg or 75.3±0.1 ? You
can see the scale as a random variable generator : each time you measure youre weight, the scale
produces the number µ +δi. µ is the true value and δi is a random variable with average 0 and
variance σ2 (which for the moment you ignore). How can you estimate σ2 by just looking at
your data ? As you may know from probability lectures, the best estimator for σ2 is the variance
of data : once you have determined the best estimation of the true value µ from eq.(15), the best
estimation of the true variance σ2 is

V =
1

N −1

N

∑
i=1

(yi − ȳ)2 (17)

3a very (very) good numerical math package is the open source julia.
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But we are not finished about the confidence in ȳ. How does the variance of ȳ relates to the
variance of the scale ? The answer is4

∆ȳ2 =
1
N

σ2 =
1

N(N −1)

N

∑
i=1

(yi − ȳ)2 (18)

The more data point you have, the smaller the uncertainties of your average.
We can formulate the confidence problem still another way. Expanding the parenthesis of

eq.(16), we can write
χ2(y) = Ay2 +2By+C

where A = N, B = −∑iyi and C = ∑i y2
i . The y-value which minimizes χ2(y) is ȳ = −A−1B as

we said in eq.(3) and is just the average given by eq.(15). Now we can ask : How much ∆y do
we have to move away from ȳ in order to multiply the minimum χ2 by (1+ 1/(N − 1)) . In
other words, how can we choose ∆y to get a relative 1/(N −1) increase in χ2 ?

χ2(ȳ+∆y)−χ2(ȳ)
χ2(ȳ)

=
1

N −1

The answer, from what we said in the introduction (eq. 4) is

(∆y)2 =
1

N −1
A−1χ2(ȳ) =

1
N(N −1)

N

∑
i=1

(yi − ȳ)2 (19)

which is exactly the uncertainty of the average as we saw in eq.(18). Let us reformulate that :
N−1 is the degree of freedom of our sample ; we have N data points, but have already computed
the average from them, so we are let with N − 1 effective data points. The uncertainty in the
estimation of the fit parameter ȳ is a ∆y which make a relative increase of 1/(N − 1) in the
minimum χ2.

Estimating the uncertainties of the parameters.

Well, now we can come back to the fit our data {xi,yi} by a straight line y = ax+b and ask the
question of the confidence we can have in their estimation. What we said above can be repeated
word by word. Once we have determined u∗ = (a∗,b∗) which minimzes the χ2, how much do
we have to move away in order to make a relative increase of 1/(N − 2) in χ2 ? We already
know, from eq.(6) that the answer is

∆u∆uT =
1

N −2
χ2(a∗,b∗)A−1 (20)

4This result can be obtained easily without a call to the central limit theorem. Note that for independent random
variables X ,Y , Var(aX)= a2Var(X)and Var(X+Y )= var(X)+Var(Y ). thus, if a random variable Y has variance
σ2, its average over N realisation

ȲN =
1
N ∑Yi

has a variance of σ2/N.
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or, explicitly,

∆a2 = (N/∆)χ2(a∗,b∗)/(N −2)

∆b2 = (Sxx/∆)χ2(a∗,b∗)/(N −2)

∆a∆b = −(Sx/∆)χ2(a∗,b∗)/(N −2)

It is not hard to show that as computed above, the uncertainties are good estimator of the vari-
ances and covariances of the parameters (see appendix 4.2).Well, that’s it, we are done ! Note
that ∆ ∼ N2 and thus ∆a2 ∼ 1/N : the more data you have, the better your fit, and the variance
decreases as 1/N as it should (remember central limit theorem ?).

The principle of this example can be easily extended to any other linear regression. The more
parameters you get, the more cumbersome is it to solve the system Au =−B. For the computer
however, this is no burden except if you have more than 1000 parameters, and in this case, you
should really worry about the relevance of your model.5

4 Important notes.

4.1 Goodness of fit.

We did not say anything about the goodness of fit : Is it reasonable to use the function f (x;a,b,c, ...)
to fit the data ? And how good is the fit anyway ? A first answer is, well, look at the ∆a/a. If it
is much smaller than unity, you can have some confidence in your model. If not, you may think
of something else , but don’t throw your model quickly, (see below).

Many experimentalists use this answer ; even better, and this a well kept secret, many even
don’t look at the uncertainties, but at the plot of the data and the model : if they stick reasonably
well, OK, the fit is not bad.

This answer will shock serious experimentalists. By serious experimentalists I mean people
who don’t have tons of data and have to assess their goodness of fit (GoF) very seriously.

The first thing you must have in order to evaluate the GoF is to know the source of uncertain-
ties in your measurements and be able to reliably note yi ±∆yi. The knowledge of ∆yi gives you
the scale against which evaluate the fit.

Now, because we are dealing with probabilities, nothing is sure, we can just give a probability
for an event to occur. If you play National Lottery and win the big prize twice in a row, other
people may assume that something was wrong. There is some probability for you to win twice
in a row ; other people however won’t accept such rare event, because they have put their accep-
tance threshold for “not suspicious” at say, 10−3: the probability for somebody to win is around
1 (one person in average wins the lottery each week), the probability for a specific individual to
win is around 10−6 −10−8.

The acceptance threshold is human affair. Let us put it in more probabilistic terms. Suppose
you suspect your random variable X (your measurements) to have a normal distribution of width

5In fact, you should not wait for 1000 and begin to worry if you have more than, say, 4. As the saying goes, give
me 10 parameters and I fit an elephant ; give me 12 and I make it dance !
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σ , i.e. to have a distribution law

f (x) =
1√

2πσ
exp
(
− x2

2σ2

)
.

Now, you make one realization (one measurement) and measure x= 10.1σ . Is it valid to suppose
that your random variable X follow a normal distribution ? The probability for one measurement
to fall outside the [−10σ ,10σ ] window is 10−23; if you had made 1023 measurements, it would
not seem suspicious to have one data point so far. But making just one measurement and find it
so far ? May be it is wiser to revise our supposition that X follow the above normal law.

Evaluating the goodness of fit is just that. Knowing the uncertainties of your measurements,
what is the probability to obtain χ2(a∗,b∗) in the range you measure ? Obviously, if χ2(a∗,b∗)
is much higher than ∑i(∆yi)

2, something is wrong6. How much wrong ? The answer is not more
difficult than what we wrote above. It will take us however farther that this short paper intended
to, and we will have to visit some probability law such as, surprise surprise, the χ2

k law. So, we
refer the reader to more advanced text on that.

Let us come back to the case of large ∆a/a. Can that rule out your model ? Not necessarily. If
the uncertainties of your data point are large, even if your model were good, you’ll obtain large
∆a/a. But look the other way around : if ∆a/a ≪ 1, then you can have some confidence that
your model stick well to your data.

4.2 Estimating Uncertainties.

Giving the uncertainties of the parameters as we did in eq.(20) is like providing a recipe for
cooking. Let us see here why this is indeed a good estimator. Suppose the random variable Y is
related to X by

Y = aX +b+δ (21)

where δ is a centered random variable : ⟨δ ⟩ = 0 ,
⟨
δ 2
⟩
= σ2. We do not suppose that X is

random, this can be added at a small cost by the reader.
Now, we have a set of measurements {xi,yi} and we are convinced that they follow the model

(21). How do we best estimate parameters p = (a,b)T ? Let us call u = (α,β )T our estimation
of p and define

u = A−1B

where A,B are the same matrix and vector as we defined in the preceding section of the text.
Note that A is given only in term of Sxx, Sx and N, so there is nothing random in it. On the other
hand,

Sxy = ∑xiyi

6We are supposing here that all points have the same uncertainties. If this is not the case, we have to add the
uncertainties as weights in the evaluation function

χ2 = ∑
i
( f (xi;a,b,c, ...)− yi)

2 /∆y2
i

when looking for the best set of parameters.
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= ∑xi(axi +b+δi)

= aSxx +bSx +∑xiδi

so the only random part of Sxy is ∑xiδi. By the same token,

Sy = ∑yi

= ∑(axi +b+δi)

= aSx +Nb+∑δi

Therefore, B can be written as

B =

(
aSxx +bSx +∑xiδi

aSx +Nb+∑δi

)
= Ap+Z

where all the randomness is captured in the vector Z = (∑xiδi,∑δi)
T . Therefore, our estimation

u is simply
u = A−1B = p+A−1Z.

Note that ⟨Z⟩= 0, so the expectation for u is

⟨u⟩= p

This was expected. What is now the variance of u ?

Var(u) =
⟨
uuT⟩−⟨u⟩

⟨
uT⟩

=
(
A−1)2 ⟨

ZZT⟩
It is very easy to show that

⟨
ZZT

⟩
= σ2A : for example,

⟨
(∑xiδi)

2
⟩
=∑x2

i σ2 = σ2Sxx and so on.
As we said, a good estimator of σ2 is χ2(u)/(N−2) and hence our formula for the uncertainties

Var(u) =
1

N −2
χ2(a∗,b∗)A−1

Don’t be mystified by all these matrix vector multiplications. This formula is just a generaliza-
tion of the “average random variable” : if Y = (1/N)∑Xi, then its variance is just the variance
of the original variable X divided by N

Var(Y ) =
1
N

Var(X)

Here, A−1 plays the role of (1/N), where χ2(u)/(N −2) is the best estimation we have for the
variance of original data.
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4.3 Non-linear curve fitting.

The principle of non-linear curve fitting is not different from what we said above. As an example,
think of the exponential function f (x)= a+bexp(x/c). Given the data set (xi,yi) (1≤ i≤N) and
the function f (x;ak) we want to find the best set of parameters a∗k (1 ≤ k ≤ K) which minimizes
the evaluation function

χ2(ak) =
N

∑
i=1

( f (xi; ak)− yi)
2

As before, χ2 is a function of K variables, but this time, it is not quadratic anymore. The task
of finding the minimum is therefore slightly more complicated and is carried out numerically
by iterative methods ; there are a number of methods to do that, the most widely used is called
Levenberg-Marquardt.

What we said above generalizes to the computation of uncertainties. Their matrix is given as
before by

A−1χ2(a∗k)

where A is the curvature matrix at the minimum :

Ai j =
∂ 2χ2

∂aia j

Usually, the same program that find the minimum also compute numerically the curvature matrix
and its inverse.

10


