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The purpose of this short note is to develop the concept of goodness of �t and
specially, how to compare the relative value of two models with di�erent number of
parameters. These concepts of statistics are based on the concept of probabilities
and a short introduction to the necessary tools of probability is given. It is however
assumed that the reader is familiar with the basic concepts of probabilities.

1 Introduction.

On of the basic tasks of any researcher is to measure some data and compare it to a given
model. This is called �tting, and many questions might arise :

1. Are my data and model compatible ?

2. Having a choice between two alternating models, which one better describes my data ?

The last question seems to many people the hardest one when di�erent models have di�erent
number of parameters. Obviously, the model with more parameters would better �t the data,
but how many more parameters can be accepted as reasonable1 ?
Many people have been traumatized by their courses in statistics and �nd these questions

di�cult. However, they are not harder than the question �I have rolled a dice 100 times and the
average I get is 4.23; should I be suspicious of this dice ?� In the following, we'll try to answer
this kind of question, but let us note that the answer will depend on the two key parameters :
�100 times� and the value 4.23.

2 The di�erence between probability and statistics.

The main assumption behind probabilities is the following : you have a random variable (say a
dice, or you're partner attitude before dinner) and you make an in�nite number2 of measure-
ments (realizations). Based on these measurements, you establish the probability Pi, or the
probability density p(x) that your random variable would produce the value i or fall between
x and x + dx. Of course, no �nite being can make an in�nite number of measurements3, but
mathematicians don't really care. An other way of �nding the probability law of a random

1As the famous saying goes : �give me �ve parameters, I'll �t an elephant ; give me 10, I'll make it dance� .
2I mean it : not a large number, an in�nite one.
3We can get close, as any macroscopic thermodynamic system at equilibrium will con�rm that all microscopic
states follow the Gibbs law.
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process is, instead of making measurements, making assumptions. Assuming that the dice is
unbiased, I deduce that the probability of getting 5 is 1/6. Assuming that the number of in-
coming calls now is independent of incoming calls in the past will give you a Poisson process,
and so on and so forth.
Now comes the hard work of the statistician : by making a �nite number of measurements

(realizations), he has to make an assumption about the validity of the hypothesis : outright
reject it or not reject it ( it will always be hard to make him accept something).
So here the fundamental rift between these peoples : tell me how many measurement you do

and I'll tell you who you are.

3 A little probabilities.

3.1 Means.

Let us suppose that we have a random variables X, described by a probability density p(x).
What is its expectation 〈X〉 ? To answer this question exactly, we should measure this variable
an in�nite number of time, sum up them and divide them by the number of measurements4. As
we had done the in�nite measurement in order to establish p(x), we can skip the measurements
and use directly our knowledge of p(x):

〈X〉 =

ˆ
I
xp(x)dx

What we are doing mathematically is to collect all measurements which fall between x and
x + dx (this step was already done when establishing p(x) ) , multiply them by x and sum
them up. A french teacher measuring the average grades of his students does the same thing :
collect all term papers which have grade 0, 1, 2, ... 20 ; multiply each grade by the proportion
of term papers and sum them up.
Of course, the usual mean is nothing exceptional, we could have measured other kind of

means, like 〈f(X)〉 : again, make in�nite measurements, add a column to your table and for
each measurement x in your table, compute f(x). Then sum up this last column and divide by
the number of measurements :

〈f(X)〉 =

ˆ
I
f(x)p(x)dx

There are two widely other kind of means used by mathematicians : the Variance
〈

(X − 〈X〉)2
〉

=〈
X2
〉
− 〈X〉2 and the characteristic function

φ(s) =
〈
eisX

〉
or some other variants such as the probability generating function φ(z) =

〈
zX
〉
. Basically, the

characteristic function is another name for the Fourier (or Laplace) transform of probability
densities.

4dividing in�nities is done through a limit process limN→∞
∑N

i=1
xi/N
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Examples.

• For a binary, equiprobable process with values ±1,

φ(s) =
1

2
eis +

1

2
e−is = cos(s)

• For a discrete Poisson process p(n;λ) = e−λλn/n!,

φ(z) = eλ(z−1)

• For a Normal distribution

p(x;µ, σ) =
1√
2πσ

e−
(x−µ)2

2σ2

The characteristic function is
φ(s) = e−iµse−s

2σ2/2

This is one reason for the love a�air between probabilists and the Normal distribution :
the characteristic function is also a Gaussian, which plays the role of a stable function for
the FT.

3.2 Sum and product of random variables.

Having two independent5 RVX and Y , we can make new RVs such as Z = X+Y and Z ′ = XY .
Each time we make a measure of X and Y , we sum up (or multiply ) these values and call it a
measurement for Z (or Z ′ ). It comes to adding a new column to our measurements table. Its
fairly easy to show that

〈X + Y 〉 = 〈X〉+ 〈Y 〉
〈XY 〉 = 〈X〉 〈Y 〉

We can fairly easily compute the probability density for Z or Z ′. For example,

pZ(z) =

ˆ
I
pX(x)pY (z − x)dx

which is just a convolution product. What is nice about the convolution product is that in the
Fourier space, it transforms into a normal product.
Here we had in mind two di�erent RVs. What about the sum Z = X + X ? Again, from

a measurement point of view, this consists of making a measurement for X, then another
measurement for X and then summing them. Obviously, this is very di�erent from measuring
X and then multiplying it by 2. We can generalize that to multiple addition:

ZN =
N∑
i=1

Xi

where Xi are the same RVs. Let us set µ = 〈X〉 and σ2 =
〈
X2
〉
− 〈X〉2. It is straightforward

to show that

〈ZN 〉 = N 〈X〉
5The independence is not necessary for the sum.
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On the other hand,

〈
Z2
N

〉
=

N∑
i=1

〈Xi〉2 +
N∑

i,j=1,i 6=j
〈Xi〉 〈Xj〉

= N
(
σ2 + µ2

)
+N(N − 1)µ2

= Nσ2 +N2µ2

So for the variance we have
Var(ZN ) = NVar(X)

The very important result is that when grouping the results of a RV by packets of N elements,
both the mean and the variance are multiplied by N : they grow linearly as the packet size !
We need one more elementary concept : the RVs X + a and aX, where a is a constant.

〈X + a〉 = 〈X〉+ a

〈aX〉 = a 〈X〉

So let us de�ne Z = aX. Obviously, we have〈
Z2
〉

= a2
〈
X2
〉

Now having all that in hand, we can look at the average of a packet of N identical independent
random variables :

Z̄N =
1

N

N∑
i=1

Xi

from what we said, we easily get the fact that〈
Z̄N
〉

= 〈X〉 (1)

Var(Z̄N ) =
1

N
Var(X) (2)

We see the crucial fact here : the variance of the packet average is reduced by the size of the
packet. This is why when we have imperfect measure apparatus, we make N measurements
and average them.

The Normal distribution. Usually, computing the real probability distribution of a sum of
random variables is cumbersome. An exception is the Normal distribution. We now that the
convolution product of two Gaussian is again a Gaussian, so if X = N (µ, σ2), based on what
we said above

Z̄N =
1

N

N∑
i=1

Xi = N (µ, σ2/N)

As we will often sum RVs, this is another reason for our love of this function. As the Gaussian
is the �xed point of addition, it is not hard to show that whatever a reasonable RV X, Z̄N
becomes a Normal distribution when N is large. This most celebrated result is called the central
limit theorem.
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Figure 1: The e�ect of packet size. In the left panel, 1000 measurements of a random variable
have been made and their value duly plotted. On the right panel, 10000 measures
have been made ; these data have been grouped in packet of size N = 10 (1000
packets), and the average of each packet is reported on the plot. Note the decrease
in the spread.

3.3 Change of variable.

Let us again consider a RV X. Each time we make a measurement, we report the value xi of
X for this measure, and then in a new column, the value yi = f(xi). We have made a new
random variable Y = f(X). knowing the probability density pX(x) of the original variable,
what is the probability density pY (y) of the new variable ? The answer is straightforward:

pX(x)dx = P (x < X < x+ dx)

= P (f(x) < Y < f(x+ dx))

= P (f(x) < Y < f(x) + f ′(x)dx)

= pY (f(x))f ′(x)dx

Keeping in mind that y = f(x), we have

pX(x)dx = pY (y)dy (3)

Or in a slightly more complicated notation

pY (y) = pX
(
f−1(y)

) dx
dy

(4)

Of course, some care should be taken when

• f ′(x) < 0. Looking back at our derivation, we see that we have to use |f ′(x)|

• The function f−1(x) is multivalued. As usual, we have to cut the space into parts where
f−1(.) is univaluate and add the results.

Example 1. Let Y = 2X. Here, y = f(x) = 2x and x = f−1(y) = (1/2)y. So

pY (y) =
1

2
pX(y/2)

If for example X = N (µ, σ2), then Y = N (2µ, (2σ)2).
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Example 2. Consider the continuous Poisson process T , which for example gives the proba-
bility density for the time t ∈ [0,∞[ between two successive incoming call :

pT (t) = µe−µt

Consider now the change of variable Y = eT or equivalently T = log(Y ). Note that Y ∈ [1,∞[.
Then

pY (y) = pT (log y)/y

=
µ

yµ+1

We see here something dangerous. As µ > 0, this is indeed a probability density because

ˆ ∞
1

pY (y)dy = 1

But this is a long tail kind of probability which decrease very slowly. In particular, moments
〈Y n〉 don't exist if n > µ. We see that how we measure a RV can induces biases and philo-
sophical problems.

Example 3 : χ2. Consider a Normal RVX = N (0, 1) and the variable Y = X2 orX = ±
√
Y .

We have here a multivalued inverse function so we have to considerX > 0 andX < 0 separately.
Let us �rst look at positive X :

pY (y) = pX(
√
y)

1

2
√
y

=
1√
2π
e−y/2

1

2
√
y

doing the same thing for the other half of the space and adding these we have

pY (y) =
1√
2π

1
√
y
e−y/2

This is a most important RV for statistics and it is called the χ2 distribution with one degree
of freedom.

3.4 The χ2 and Student's distribution.

The χ2 distribution plays such an important role in statistics that we must spend a little time
developing it. Consider a Normal RV X = N (0, 1) and the new RV

YN =
N∑
i=1

X2
i

Which is called the χ2 with N degree of freedom. As we have shown above, the probability
density of Y1 is given by

p1(y) =
1√
2π

1
√
y
e−y/2 (5)
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from which we can compute6 the mean and variance of Y1:

〈Y1〉 = 1 ; Var(Y1) = 2

A small amount of computation7 shows that its characteristic function is

φ1(s) =
〈
eisy

〉
= (1− 2is)−1/2

0 2 4 6 8 10 12

0.2

0.4

0.6

0.8

The characteristic function of YN is therefore

φN (s) = (1− 2is)−N/2

and taking the inverse Fourier transform thus gives us

pN (y) = ANy
N/2−1e−y/2 (6)

AN is a normalization constant which is8

AN =
1

2N/2Γ(N/2)

The �gure shows the distribution for N = 1, 2, 4, 8.
Finally, from what we know from the addition of random variables we get

〈YN 〉 = N ; Var(YN ) = 2N

We will see the χ2 distribution popping up at at many places. If N is large, we can even
drop the exact expression (6) and use a Normal distribution N (N, 2N), as we know that the
central limit theorem
One more distribution we will also encounter is the Student's distribution. Let's X = N (0, 1)

and YN a χ2 RV with N degree of freedom. Then the Student's RV Z is de�ned by

Z =
X√
Y/N

and its probability density given by

pN (z) = BN

(
1 +

z2

N

)−N+1
2

(7)

where BN is a normalization constant

BN =
1√
πN

Γ ((N + 1)/2)

Γ (N/2)

6It is not hard to show that ˆ ∞
0

ynp1(y)dy =
1√
π

2nΓ(n+ 1/2)

by the very de�nition of the function Γ(x).
7This involves only integration of Gaussians, when a correct change of variable has been made.
8The continuous function Γ(x) generalizes the factorial : Γ(n+ 1) = nΓ(n) = n!. The two particular values of
interest are Γ(1) = 1 and Γ(1/2) =

√
π.
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4 A little basic statistics.

4.1 The main question.

As we said at the beginning, the statistics, in contrast to probability, is concerned with a �nite
number of measures. From example, I suppose that a RV follows a given law, I make one

measurements x and then ask �what is the probability of obtaining x� ? The answer to this
question, if the RV is continuous, is ... zero of course. The probability of getting 0.1265398753
from a normal distribution is zero.
A better formulated question is �supposing that I know the RV, what is the probability of

getting a value as large as the one I observe ?�. If the probability density is given by p(u) and
I measure a value x, then the probability of observing a value that large (or larger) is

P (> x) =

ˆ ∞
x

p(u)du

Suppose that we suppose a N (µ, σ2) random variable, and then measure a value x > µ. Then
the probability for a value that large is

P (> x) =

ˆ ∞
x

1√
2πσ

e−(u−µ)
2/2σ2

du

=

ˆ ∞
(x−µ)/σ

1√
2π
e−u

2/2du (8)

We see that the answer to this question is pretty simple and depends only on how relatively
far we are from µ. For a normal distribution, being 1σ larger9 than the average is about 0.15
(0.30 if we disregard the sign), 2σ is 0.02 (about 5% without the sign) and 10−3 for larger than
3σ. If we have measured something at 5σ, then we can have a serious doubt about the validity
of our hypothesis. 5σ is the gold standard in particle physics and this is how many particles
such as Z0 and W were discovered, by discarding the hypothesis that the observed trajectories
could be explained by the known particle of this time.

2 4 6 8
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0.5

The integral in (8) is so often used that it
has received a name and its values have been
tabulated:ˆ ∞

z

1√
2π
e−u

2/2du =
1

2
erfc(z/

√
2)

Many questions we will ask in the follow-
ing would be of this kind. The crucial thing
about statistics is to formulate the question
correctly, and then reject the hypothesis if the
measurements is far out of our acceptable range for these hypothesis.

4.2 Measuring.

A typical question for the experimentalist is : �I have measured this value for my physical
variables ; is it compatible with my hypothesis� ?

9For RVs having positive and negative values, the question to be evaluated is more often �what is the probability
of getting a value outside the region ](µ− δ)/σ, (µ+ δ)/σ[.
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Let us make this question more precise. Let us suppose that each measurements gives me
back a value blurred with the precision of my measurements. If the �true� value is x, the value
I measure is

y = x+ η

where η is called the noise (or uncertainties) of the measure. We suppose �rst that the random
variable η is centered, or else there is something very wrong with the measurement apparatus.
Next we will suppose that (Hypothesis H1) η is a Normal variable, i.e. η = N (0, σ2). Because
we know the apparatus, we suppose that we know the value of σ. The random variable Y is
obviously N (x, σ2).
Supposing that the measurement noise follows a Normal law is widespread. There are many

reasons behind it. Very often, an apparatus is a sum of di�erent parts, each having its own noise,
and we know that the sum of many independent variables converges to a Normal distribution.
The other reason is the fact that we know how to handle normal law, so we stick to it. This
hypothesis can be revised without too much hassle if we know very well the noise of our
apparatus.
Let us �rst calibrate our instruments by measuring a known quantity x. We make N mea-

surements y1, ...,yN . If our hypotheses are correct, we know that the random variable

ȲN =
1

N

N∑
i=1

Yi

should behave as N (x, σ2/N).
Therefore, we average our N measures

ȳ =
1

N

N∑
i=1

yi

and evaluate how probable it is to obtain a value that large, given the fact that ȳ is drawn from
a distribution N (x, σ2/N).
The quantity σ/

√
N is called the standard error (σ itself is called as you know the standard

deviation). Therefore, if our ȳ is at 5 standard error, we can be pretty sure that something is
�shy in our hypothesis : (i) the real quantity is not x as we had supposed ; (ii) the standard
deviation of our apparatus in not σ, but something bigger ; (iii) the noise of the apparatus is
not normally distributed. Statistics cannot answer these questions.

The standard error. The standard error is one of the most crucial parameters when doing
statistics, and one can often bypass more serious computations such as the χ2 or the Student's
t−or f− test by having a fast evaluation of how plausible a hypothesis is. Of course, when you
are writing a paper, you have to show that you have done these more serious tests and have a
nice p−values. However, most often than not, people don't understand these p−values (we'll
come to that later) and are con�dent that the black box program which produced it can be
trusted.
As a practical example, consider that you have two classes, each composed of N students.

The average grades in your �rst class is ȳ1 (say 11/20) and in your second class is ȳ2 (9/20). Is
something very di�erent between these classes (quality of the teacher or students, severity of
the exams, some cheating, ...) or is this just random ? A fast estimation would be the following
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: We make the hypothesis that (H1) these classes are similar, (H2) a student's grade follow a
normal distribution.
We then mix all the data to get an estimation of the mean and the variance

µ =
1

2N

2N∑
i=1

yi ; σ2 =
1

2N − 1

2N∑
i=1

(yi − µ)2

We now compute the average of each classes

ȳ1 =
1

N

N∑
i=1

yi ; ȳ2 =
1

N

2N∑
i=N+1

yi

If our hypotheses are correct, ȳ1 and ȳ2 are drawn from N (µ, σ2/N), so their di�erence ȳ1− ȳ2
is drawn from N (0, 2σ2/N).
Suppose that we have measured σ = 5 and the two classes are composed of 10 students. The

standard error for the di�erence is
√

25/
√

10 = 5/
√

5 ≈ 2.2 ; on the other hand, the di�erence
between the average of the two classes 11 − 9 = 2, which is around one standard error. We
cannot reject the hypothesis that this di�erence is just random.
On the other hand, if the two classes were composed of 100 students, the standard error of

the di�erence would be
√

25/
√

100≈0.7 and this time the di�erence is at 3 standard errors,
which should grab our attention. We can then do much �ner analysis of the situation.

4.3 Measuring II.

Let us suppose that we have calibrated our preceding apparatus in the lab and we are now
making real measurements. We have measured N data yi and wonder if these measurements
are sound and can be trusted, based on what we know from our apparatus. This time, we don't
know the real value of the quantity we are measuring, so we make an estimate for it

x =
1

N

N∑
i=1

yi

We can know for example make an estimate of the variance of the data and compare it to the
value σ of our apparatus. This �rst estimation however is not very good as it will crucially
depend on the number of measurements we have made. Let us go one step further and compute

V =
N∑
i=1

(yi − x)2

σ2

If our hypotheses are correct, V is drawn from a χ2 distribution with N − 1 degree of freedom.
The reason behind N − 1 instead of N is that we have already used the data once to estimate
the mean10. Now we can ask this more precise question : �what is the probability that we could
have obtained a value that large (or larger) :

P (≥ V ) =

ˆ ∞
V

pN−1(u)du

where pN−1(u) is the p.d. of the χ2 distribution with N −1 degree of freedom given by relation
(6).

10We can make this argument much more sound mathematically.
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Example. Consider that our apparatus inN (0, 1) and we have measured �ve values 5, 8, 12, 9, 9.
Here we have x = 8.6 and V = 25.2. Looking up a table for the cumulative distribution of χ2

distribution or performing an integration by a computer, we �nd that

P (≥ 25.2) = 4× 10−5

which is a pretty low value. So we can reject the hypothesis that these data our compatible with
our apparatus measurements. Something has happened, for example there is environmental
noise added to the noise of apparatus. We note that if σ = 2, then

P (≥ 25.2) = 0.18

which cannot be used to reject the hypothesis: we can have some trust in our measures. Note
that the standard deviation of our data is 2.5, which is much higher than 1 (in the �rst case),
but not much di�erent from 2 (in the second case). Computing the p−values allows us to
estimate how much this di�erence is relevant.

5 Fitting : goodness of �t.

Let us now consider that the signal x we measure by our apparatus depends on some parameter
t : x = x(t). We make di�erent measurements for di�erent value of our parameter yi = x(ti)+η.
For the moment, let us suppose that our apparatus has the same noise σ for all value of t.
We have a nice theory which gives us the exact form of the function x1(t; a, b) where a, b are

some parameters of the model. We want �rst estimate a, b and second estimate if the theory
has any credibility. As before, we compute

V (a, b) =
N∑
i=1

(yi − x1(ti; a, b))2

σ2

and �nd a, b by minimizing V (a, b),i.e.

∂V

∂a
= 0 ;

∂V

∂b
= 0

OK, well done, this is what we do all the time. But how good is our �t ? How much can we
trust it ? Is it enough for the �t to be graphically sound ?
Well, we know the answer : V is drawn from a χ2 distribution with N − 2 degree of freedom,

so it is straightforward to estimate the goodness of �t and give it a p−value.
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Example. Consider the plot of our 101 mea-
surements, when the apparatus noise ampli-
tude is σ = 1. We can suspect that the data
can be described by the model

x1(t) = a+ bt

Following the preceding steps, we �nd that
a = 0.38 and b = 1.48. Pushing the evalua-
tion, we �nd that V = 123.2. Comparing it
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to a χ2 with 99 degree of freedom, its p−value
is

P (≥ V ) = 0.05

This not exceptionally good or bad, we cannot reject it out of hand. For a Normal distribution,
this is the probability of being at 2σ.

Varying amplitude of the noise. We have supposed that the amplitude of the noise is constant
for all values of the parameter t. This may not be the case and we could have σ = σ(t). This
is not a serious problem, as the quantity

V (a, b) =
N∑
i=1

(yi − x1(ti; a, b))2

σ(ti)2

generalizes our discussion.

6 Fitting II : best model.

More often than not, we are faced with the question of deciding between two alternative models
x1(t) and x2(t) to describe our data. If the data have the same parameters, we can estimate
which one signi�cantly enhance the p−value. But very often, the choice is between models with
di�erent number of parameters. For example, we want to compare x1(t; a, b) with x2(t; a, b, c).
Obviously, the model with 3 parameters �t better, but it does that at the cost of adding one
more parameter. Is the cost worth it ?
We have all the tools now to answer this question : Evaluate the p−values of the �rst model

with N −2 degree of freedom and the second model with N −3 degree of freedom and compare
these p−values now.
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Let us come back to our preceding example
and use now a quadratic model :

x2(t) = a+ bt+ ct2

where we get this time a = 1.1, b = 1.1 and
c = 0.04. Graphically, it seems to be slightly
nicer. Pushing the computations, we get V =
112.4. So the value is obviously reduced. Is
it worth it ? Comparing that to a χ2 with 98
degree of freedom, its p−value is

P (≥ V ) = 0.16

Indeed, we have enhanced the goodness of �t.
Consider now a third model

x3(t) = a+ bt+ ct2 + dt3

Doing all the optimization, we �nd that the value V doesn't change and stays at 112 and we
decrease our p−values with this model to 0.14. So, there is no need to use 4 parameters and
three is enough.
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Now full disclosure : the data was generated by the formula y = 1 + t+ 0.05t2 +N (0, 1).
Did we however really had to go to all these computations ? For large degree of freedom N ,

V is a Normal random variable with mean N and standard deviation
√

2N . In the �rst case,
with N = 99, this gives a standard deviation of 14, while the value we obtained for V was 123,
so we were at 24/14σ= 1.7σ. In the second case, N = 98 and σ = 14, V = 112 so we were
precisely at 1σ.

7 E�ect of noise amplitude.

Very often, the amplitude of the experimental noise σ is not known by the experimentalist. All
the discussion we had before crucially depended on knowing this parameter, so what can be
salvaged ?
Let us come back to our preceding section where we had supposed σ = 1. What if, given the

same data, we had supposed σ = a ? Obviously, the χ2 realization V we had measured become
V ′ = V/a2. If a � 1, both models have to be rejected and if a � 1, both model become
acceptable.
To �x the Idea, let us �rst suppose a = 2. For the �rst model with 99 degree of freedom, we

would have V ′1 = 30.8 and for the second one with 98 degree of freedom, V ′2 = 28. For both
these values, the p−value becomes practically 1 and they are as plausible.
On the other hand, if we had a = 1/2, both p−values become nearly zero and both model

have to be rejected.
So what to do ? There is no way of getting around this problem, except estimating somehow

the noise before �tting. We can for example make many measures at each value of t and use
these spread to estimated the noise.

13


