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1 Introduction.
As it is well known, the foundation of the theory was laid out by Darwin
and Wallace in the mid XIXth century, when people had no idea of how
inheritance worked. However, the basic principles which were enunciated at
this time constitute our basic understanding of how evolution works. These
principles are:

1. For any trait z considered (production of β-Gal enzyme by the bac-
teria E.Coli, the top speed reached by the tiger, and anything in be-
tween), a population of individuals will show variations. We can de-
scribe/measure the distribution of this trait in the population which
we call p(z).

2. Some trait are under selective pressure : individuals having their trait
around some specific value zm are more apt to pass their progeny to
the next generation. The aptitude of some individuals compared to
others (or the mean of the population) is called their fitness.

3. Offspring resemble their parents, which means that the progeny of
parents with trait z1 will have a value of the trait close to z1. If we
think in terms of sexual reproduction, the progeny of parents with
traits z1 and z2 will have a trait value distributed according to some
function L(z; z1, z2), where the function L measure the closeness to
their parent.

4. As a consequence of the above principles, fitter individuals will increase
their proportion in the population as time flows and new generations
replace older ones.

Point 4 is the essence of Darwinian evolution. However, as we will see,
these principles stated above are still vague enough to let a lot of space
for interpretations. Let us discuss some of these issues before getting any
further.
First of all, what is the origin of variations ? We can think that variations

happen in random and preexist any selection, or they happen because of
selection, individuals changing their trait (with more or less success) in order
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1 Introduction.

to be fitter. The second idea is nowadays attributed to Lamarck1, the first
to Darwin. Darwinism won the day and Lamarckism was discarded as one of
the big error of science2. The first experimental proof however that variations
preexist selection was provided by Luria & Delbruck in 19433, and even this
point was still contested by Cairn in 19884.
The above discussions concerned the genes. But are all the traits controlled

solely by genes ? The answer is no and there are some behavior (think
gene expression level) that vary between isogenic individuals and can be
transmitted to the next generation. The first striking proof was provided in
the production level of the βGal enzyme in E.Coli by Novick and Weiner5

in 1957 and the discipline now called epigenetics6 is a fast developing field.
We will limit however this lecture to the classical view : traits are controlled
only by genes and variations happen because of random mutations. These
terms will of course be defined precisely when we get to the heart of the
matter.
The second point constitute another dogma of the evolutionary theory :

selection happens at the individual level. Let me repeat this point: SELEC-
TION HAPPENS AT THE INDIVIDUAL LEVEL7. What we mean by that
is that in a more or less stable environment, when the total number of indi-
viduals is more or less constant, the only way for an individual to increase its
proportion (the number of its progeny in further generations) is by produc-
ing more viable offspring than its neighbors. This a very strong assumption.
First of all, what is an individual ? If you think of multicellular organism,
then why not apply the same rule to the cells constituting the organism8 ?
And then, at the level of each cell, you have many genes in a genome, why
not applying the rule to individual genes competing against each other9 ? At

1Jean-Baptiste Lamarck, 1744-1829 ; Charles Robert Darwin,1809-1882.
2The Godwin point in Evolution literature is reached when one scientist calls the other
Lamarkian.

3Luria, S. E.; Delbrück, M. (1943). "Mutations of Bacteria from Virus Sensitivity to
Virus Resistance". Genetics 28 (6): 491–511.

4Cairns, J.; Overbaugh, J.; Miller, S. (1988). "The Origin of Mutants". Nature 335
(6186): 142–145

5Novick, A. & Weiner, M. (1957) ENZYME INDUCTION AS AN ALL-OR-NONE PHE-
NOMENON, Proc. Natl. Acad. Sci. USA 43, 553–566

6They should in all honesty call the field Lamarckism, but the term is too negatively
loaded.

7Two people are trying to escape a tiger. The first one realizes the futility of their trial
and inform the second one than there is no chance they could outrun the tiger. The
second runner informs the first one that he has no intention of outrunning the tiger,
but only outrunning his companion.

8This will bring us for example to look at cancer from an evolutionary point of view.
9The human genome for example contains 50% of repeating elements called LIN and
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higher scale, some individuals associate to form tribes and hordes. Shouldn’t
we take tribes competing against each other as the level of selection ? To
these days, the level of selection is one the hottest topics debated10 among
evolutionist and we will hit part of these debates in this lecture.

Beside the level of selection, what do we mean by more or less stable en-
vironment ? What if the behavior of the individual under selection modifies
the environment ? We will see that this last part will bring us to coop-
erative behaviors which are forbidden in the fundamentalist formulation of
evolution11. We will also see that maybe the first and second point are not
independent and the rate of mutation itself can be a trait under selection
which can depend on the variability of the environment. This will also be
discussed here.

Another vague term in point two was “more apt to pass their progeny to
the next generation”. The pre-modern scientists interpreted this sentence in
a very deterministic way : if you run faster (than your neighbors escaping
the tiger), you will have more progeny. The deterministic approach is still
widespread, even if it became clear early (around ~1920) that this should
be interpreted in a probabilistic way : more apt mean that you will have a
higher probability to have more progeny, but bad stuff happens : even if you
run 0.01m/s faster than your neighbor, you still have a chance to fell prey
to the tiger and your neighbor being spared. The probabilist approach will
be the core of this lecture.

Point three provoked the first major crisis in the theory of evolution. As we
mentioned, at the time of formulation of the theory by Darwin and Wallace,
the exact mechanism of heredity was unknown and the dominant model
was the blending model : we are the average of our parents12. Jenkin13

noted that this point is in contradiction with the first point : variations will
disappear extremely fast in the population. To see this, consider the trait in
the progeny Z as the average of the parent (X + Y )/2. Then the Variance
in the second generation will be

Var(Z) = 1/4(Var(X) + Var(Y )) = 1/2Var(X)

SIN, which are believed to arise just by such phenomena. Genes in conflict constitute
another field of study which we will not get into in these lectures. See for example
“Genes in Conflict: The Biology of Selfish Genetic Elements” by Austin Burt.

10scuffled is maybe a more appropriate description
11Thomas Henry Huxley (1825-1895), also called Darwin’s bulldog, is a fine first example

of fundamentalist evolutionist
12Even though the major form of life on earth is bacterial, most of early thinkers were

concerned by sexually reproducing multicellular organisms.
13Henry Charles Fleeming Jenkin, 1833–1885
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1 Introduction.

so at each generation, we will lose half of the variability of the population.
In order to maintain the variability observed in natural population, a huge
amount of mutations will be needed at each generation, in which case off-
spring will not resemble their parent. We know today that the weak point of
the argument is not evolution but the blending theory. This was discovered
by Mendel14 and saved the day : the heredity information is not continu-
ous, but quantified. We now call the unit of hereditary information a gene.
The work of Mendel was rediscovered around 1900, at the same time that
physicists healed their ultraviolet crisis by another quantification trick. The
fusion of Mendelian and Darwinian models took some time, but by around
1920 it was achieved and the modern evolutionary theory took the name of
“new synthesis”. We will discuss the matter in some detail below.
So in the following, we will discuss all these matters and many more in

some details. The field is extremely vast and we will have to make choices
and speak about some selected topics. But the framework will be similar for
many other topics for which countless books exists. So let us get started.

14Gregor Johann Mendel 1822-1884.
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2 Biological foundations and
lexicology.

The genetic information, for most organisms, is stocked into a linear polymer
called DNA. The reader knows that for most organisms, DNA is present in a
double stranded form (the famous double helix of Watson and Crick) which
we call chromosome. The chromosome is like a book made of letters and
words (the ATCG alphabet), divided into chapters, each chapter containing
informations about making a particular protein1. Each chapter is called a
gene. A simple bacteria such as E.Coli has around 2000 genes, a fruit fly
around 10000 genes and a human around 25000 genes. During replications,
in some genes, some letters are modified, an ’A’ being replaced by a ’C’ for
example. These are called mutations. Therefore, different individuals will
carry slightly modified version of the original gene. The various flavors of
a given gene are called its allele. So, for example, for three genes A,B,C,
one individual of a given species will have genotype A1B1C2 and an other of
the same species will have genotype A2B1C3 and so on, where gene A has
for example three allele A1,A2and A3. Genes are organized linearly on the
chromosome, and the physical position of a gene on the chromosome is called
its locus.

Some genes produce a protein which is put directly in use. For example, a
gene call β−Gal produces a protein called beta-galactosidase which is used by
E.Coli to digest a sugar called Lactose. Some other genes produce proteins
which will regulate the production of protein by other genes. These proteins
are called transcription factors. In general, a mutation in a transcription
factor has much wider effect than a mutation in a ‘worker’ protein.

Living organisms and computers are both information processing ma-
chines2. The way they execute their program has striking similarities and

1This view has been much extended. Some chapters of the chromosome contain infor-
mation only about making RNA which is not going to be translated into protein, but
plays directly a regulating role. On the other hand, part of the information is contained
outside of the book (chromosome) in the form of methylation/acetylation of the DNA
or the histone core.

2The smart name should be Turing machines.
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2 Biological foundations and lexicology.

differences (Figure 2.1). In a computer hard disk, which is a linear storage
device, there is a small table at the beginning called the File Allocation Ta-
ble (FAT). It stores the position of each file and its length. When the CPU
is asked to execute the ooffice program, the CPU look up the table, find the
position of the oofice file, move the pointer to this position, and from this
position, load up the given amount of bytes into memory where it can get
executed. In a living organism, the executable programs are called genes on
the linear storage device called DNA and executing a program means produc-
ing the corresponding RNA3 and eventually the protein4. The is however no
FAT and the position of the gene along the chromosome has no importance5;
instead, each gene has a tag (called a promoter) inducing the polymerase to
begin producing mRNA at this position. Moreover, the tag are more or
less powerfull, attracting weakly or strongly the polymerase and therefore
producing more or less number of copies of the mRNA. Finally, product of
some genes can attach around the promoter of another gene and modulate
its force.
We see that by this mechanism, a mutation on one gene can have large

effect on the organism if the targeted gene was for example an important
transcription factor regulating many genes. Going from mouse to humans
needs few mutations on the genes controlling the developmental program.
A haploid organism transmits its chromosomes nearly perfectly to its

progeny. Some mutations are introduced during the DNA duplicating pro-
cess because after all, the machinery is governed by the law of statistical
physics and errors have probabilities of around exp(∆E/kT ), where ∆E is
the energy difference between incorporating a wrong A for example instead
of a T , which is few hydrogen bounds6.
In a diploid mechanism, two copies of each chromosome are present in each

cells. each one is provided by one parent, and the two copies are slightly
different, carrying some different alleles of the genes. Before transmitting
the one copy of the chromosome to its progeny, the two copies are reshuffled

3By a machinery called RNA polymerase
4Some genes produce only RNA which is used in itself as a piece of information to
modulates other genes activity.

5This is a big approximation. The position of many genes relative to each other is
important and the effect is known as neighborhood effects. In bacteria for example,
tightly related genes are packed into an “operon” and genes functioning together are
spatially related.

6In fact, the nake energy difference will give an error rate of 10−4 per copied base. The
actual error rate is much lower, in the range of 10−9, as the DNA duplication implies
many proofreading mechanism. Highly mutable viruses, in particular RNA viruses
such as AIDS, have an error rate close to the 10−4.
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Figure 2.1 – Comparison of a computer (a) and living organism (b) infor-
mation processing.

in a process called recombination.

Time lines for various discoveries.
1860’s: The existence of genes as discrete entity was postulated by Mendel.

1900: Mendel was rediscovered by de Vries, Correns and Tschermak around
1900 AD.

1902: Chromosomes, discovered in the 1880’s by Boveri, were postulated to
be the carriers of genes.

1920: Morgan postulated that genes were physically separated along the
chromose and were mapped from statistical observations of linked traits.

1943: Mitotic chromosomes observed under microscope are a mixture of
DNA and proteins. Proteins were supposed to be the carrying of hered-
ity information, until Avery transformed bacteria by DNA injection and
showed this latter molecule to be genes carrier.

1953: The race to discover the structure of DNA was won by Crick and
Watson, who benefited from the work of Rosalind Franklin.
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2 Biological foundations and lexicology.

1960: Jacob et Monod discovered the principle of genetic regulation.

1960: Jacob et Monod discovered the existence of temporary molecule mRNA
as the intermediary between DNA and protein. Jacob formulated the
“Dogma”.

1962: In a series of theoretical thinking and experiments involving Gamov
(and NSA cryptographers), Crick and Benner and finally Nirenberg,
the genetic code was unravelled.

1960-1980: The cut and past tools of molecular biology (restriction en-
zymes, polymerase, ligase, ...) were discovered and the first recom-
binant DNA made.

1983: Mullis developed the PCR technique. Molecular Biology entered its
explosive development phase (which continues).
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3 A short introduction to
stochastic processes.
• concept of probability (counting), the mean and the variance.

• transition rates, master equation, equations of the mean, variance, ...

• Solve explicitly the multiplicative noise of growth.
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4 Phenotypes and genotypes.
To the people of XIXth century, all organisms were sexual. This in turn,
made the field of evolution much more complicated and made it necessary to
introduce two level of information organization : genotype and phenotype.
The dogma of the new synthesis then was stated as “phenotype is selected,
genotype is inherited”. The origin of this problem is as follow. We will tackle
again this problem in much more detail in chapter 11.

Let us move back to 1870 and forget about genotype. Individuals have
traits quantified by the variable z (height, speed, ...) and the traits is dis-
tributed in the population according to the function q(z) : q(z) is the pro-
portion of the population possessing a trait value in [z, z + dz[.

- 4 - 2 2 4

0.2

0.4

0.6

0.8

1.0

Figure 4.1 – Distribution qi(z)
for 4 successive generations, ac-
cording to the blending theory.

Let us now suppose the validity of the
blending theory of heredity which states
that progenies are the average of their par-
ents. If q0(z) is the distribution of the trait
in the parental population, then q1z), the
distribution of the trait in the progeny is

q1(z) = 2
ˆ
I

q0(z1)q0(2z − z1)dz1 (4.1)

which is just another way of saying that the
father, mother and child random variables
X,Y, Z are related through

Z = (X + Y )/2 (4.2)

Eq. (4.1) implies that qn(z) → δ(z − z̄), where z̄ =
´
zq0(z)dz is the mean

in the initial generation. This is easily demonstrated by observing that in
Fourier space, q̃n(k) = q̃2n

0 (k/2n). Even more straightforward is to look at
the variance

V ar(Z) = V ar(X)/2

which again shows that we loose half of the variance at each generation. So
a population cannot maintain variability, which is the fuel for the Darwinian
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4 Phenotypes and genotypes.

Sexual 
Mating

Germ line
production

Germ line

Somatic cells

Germ line

Figure 4.2 – Particulate inheritance. The allele of a given gene are repre-
sented by colors. In a somatic cells, two genes are paired and the phenotype
of the individual is the result of this pairing.

evolution. This also implies that all mutations are lost after the first mating
round.
The above assertion is contrary to all observation and experimental tests

conducted. The most elegant experiments was conducted by Mendel and led
to the particulate inheritance theory for sexual organisms. In these frame-
work, genes are discrete elements having different alleles. Individuals are
carriers of haploid germ cells. During sexual mating, germ cells pair to-
gether to form somatic, diploid cells which then proliferate to form a whole
individuals. These individuals then produce germ lines by the fission and
un-pairing of chromosomes of the somatic cells, and so on. The diploid form
of life can be seen as a temporary period between two haploid life cycle. As
sexual reproduction provokes only changes in the way alleles are paired, the
allele frequency is not changed and no variation is lost from one generation
to the other.
The phenotype of an individual however depends on how two different

alleles have been paired together. But even the phenotype variability can
be shown to be constant in the absence of selection, a fact known as Hardy-
Weinberg equilibrium.
For the sake of simplicity, let us suppose that the gene under investigation

has only two alleles A and a, and let us call f(AA),f(Aa) and f(aa) the
frequency of the different possible genotypes1. The allele frequency is the

p = f(A) = f(AA) + (1/2)f(Aa)

1For the moment, we assume that to each genotype a unique phenotype is associated,
so genotype and phenotype frequency are similar. We will have more to say on this
subject in the quantitative genetic chapter.

16



q = f(a) = f(aa) + (1/2)f(Aa)

and of course, p + q = 1. Under random mating assumption, the genotype
frequency in the next generation is

f ′(AA) = p2 (4.3)
f ′(Aa) = 2pq (4.4)
f ′(aa) = q2 (4.5)

and allele frequency in the next generation is obviously

p′ = f ′(AA) + (1/2)f ′(Aa)
= p2 + pq = p

We see that obviously, the allele frequency is conserved, which is trivially due
to the model. Less obviously however, we see that after the first generation,
phenotype frequencies are also conserved and reach the equilibrium value
(4.3-4.5).

The crisis provoked by Jenkins and the contradiction between evolution
and blending theory was thus solved by introducing the particulate theory
of inheritance and the distinction between phenotype and genotype. The
particulate theory wouldn’t have been discovered as easily if we were haploid,
non-sexual organism2.

2Asimov wrote an SF novel on a world with 3 stars : gravitation is so complicated there
that biology and genetic engineering were much more advanced than physics.
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5 Are mutations random ?
Around 1940, the main points of evolutionary theory were clarified : sci-
entists knew about genes, chromosomes and Mendelian (quantified) inheri-
tance. They even had a visual representation of the gene. In drosophila for
example, in some cells, the chromosomes undergo many round of duplication
and all these chromosomes stay sticked to each other and perfectly aligned,
making them visible under the microscope. Treating them with some agent,
one could stain them differentially and see bands, and therefore make a
physical map of where different genes are located. Genes were known to
have different alleles1, the origin of which was attributed to mutations. The
chemical structure of the gene (the DNA) was still to come, but the crucial,
unknown point was how the mutations occurred. Was the organism inducing
specific mutation on its DNA in order to better adapt to various stresses or
where these mutations random ? This is the question to which Luria and
Delbruck2 answered brilliantly and set the modern evolutionary theory on
firm basis. The crucial point was to design an experiment which could with-
out doubt address the question. The experiment consisted of looking at the
number of bacteria surviving a virus infection.

Let us suppose first that organisms can induce mutation in their genes,
with some efficiency. Take M batches, each containing N individuals (N �
1). Expose all the batches to a deadly agent. If each individual has a (very
low) probability, say λ to induce the “resistance” mutation in its genes3,
then the probability of observing n survivors in a given batch is a Poisson
distribution4

p(n) = e−λN (λN)n/n! (5.1)
1Again thanks to Drosophila and works of Morgan (1866-1945, Nobel 1933) on this or-
ganism. Morgan was the first to induce mutations in drosophila by the use of chemical
agents and showed that they are heritable.

2Luria, S. E.; Delbrück, M. (1943). "Mutations of Bacteria from Virus Sensitivity to
Virus Resistance". Genetics 28 (6): 491–511.

3The mutation is in the gene, because all the progeny of the resistant ancestor are also
resistant.

4The Poisson distribution is a limiting form of the binomial distribution. The probability
to observe n survivors among N individual is

p(n) = C(N,n)λn(1− λ)N−n

19



5 Are mutations random ?

Figure 5.1 – Salivary Gland stained polytene chromo-
somes and their comparison to mitotic ones. (Image from
http://www.msg.ucsf.edu/sedat/polytene_chrom.html. )

In principle, it would be easy to check the validity of this expression. Con-
stitute M test tubes each containing N bacteria, expose each test tube to a
deadly virus, plate the medium of each test tube after some times on petri
dishes5 and count the number of colonies, and hence the number of survivors.
From the number of survivor in test tubes, we can recover the probability
distribution : if m test tubes have n survivors, then p(n) = m/M .
In practice, we will need a huge number of test tubes to recover the dis-

tribution6 which was out of the reach of researchers. However, if we want
only to check that the distribution is Poissonian, we can use a small number
of test tubes (say, around 100 for each set of experimental parameters) and
compute only the average survivors per test tube 〈n〉 and its variance V .
The distinctive property of Poisson distribution is that

V = 〈n〉 (5.2)

Therefore, if for each set of parameters, we find the variance to mean ratio
(VMR) V/ 〈n〉 ≈ 1, we can be fairly sure that the distribution is a Poisson
one.

where C(N,n) is the binomial coefficient. It is not hard to show that the above
distribution converges to (5.1) when λ� 1, N � 1 and Nλ ∼ 1.

5This is called counting Colony Forming Unit : the technique was invented by R. Koch
(and his wife, who knew the basics of cooking food) around 1880.

6At these times, researchers did not have an army of Ph.D. students to perform such
analysis.
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This is what Luria was doing around 1940, and to his surprise, he was find-
ing VMRs of order 1000, 3 orders of magnitude superior to a Poisson predic-
tion. Clearly, something was wrong with directed mutations hypothesis, but
would it be compatible with a random mutation one ? The experiment was
performed by inoculating each test tube containing nutriment with a small
number of bacteria and let them grow to their saturation value Ns, and then
expose them to the deadly virus. It is crucial to note that during growth
and before reaching saturation limit, bacteria were not exposed to the virus,
so any mutation which happened during this stage is purely random. The
alternative to directed hypothesis is to suppose that a small proportion of
these random mutants confer resistance to the deadly virus, when and if the
exposition happens.

The initial number of bacteria in each test tube was estimated to be around
N0 = 1000 ; This is a large number and we can therefore treat their growth
as deterministic :

N(t) = N0e
αt

until some saturation is reached7. α is the growth rate of bacteria, around 30
min−1. Suppose now that mutants happen by purely random mutations and
they pre-exist before exposure to the virus. We can suppose that at each
bacterial duplication, one of them transform to a resistant mutant with a
(very) small probability a. Let us more over suppose that the mutants have
the same growth rate than the wildtype. Now, the number m of mutants is
very small and we have to treat it stochastically. The rate transition for the
mutants to increase their number by one unit is

W+(m) = αm+ aN

the first term is the growth rate of the mutants, the second one transforma-
tion of WT into mutant. There is no death, so W−(m) = 0. From these two
very simple rate, we get the evolution of the mean and variance of mutant
populations :

d 〈m〉
dt

=
〈
W+(m)

〉
= α 〈m〉+ aN

which solution is
〈m〉 = atN0e

αt = atN(t)

It is interesting to note that the average number of mutants grows faster than
7The exact curve would a logistic one, but we don’t need a precise treatment of N(t)
at this stage. To be more precise, the growth is given by the equation dN/dt =
αN(1−N/Ns) whose solution is κNs exp(αt)/ (κ exp(αt) + 1) with κ = N0/Ns −N0.
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5 Are mutations random ?

the WTs. However, it seems impossible to design an experiment to measure
this increased growth speed, as the number of mutants is always very small.
The equation for the second moment is given by

d
〈
m2〉
dt

= 2
〈
mW+(m)

〉
+
〈
W+(m)

〉
= 2α

〈
m2〉+ (2aN + α) 〈m〉+ aN

whose solution is〈
m2〉 = a2t2N2

0 e
2αt + 2 a

α
N0e

αt
(
eαt − 1− αt/2

)
this seems a little complicated. But note that the first term on the rhs is just
〈m〉2. In the second term, for long time αt � 1, we can neglect the linear
term, so the variance V =

〈
m2〉− 〈m〉2 is simply

V = 2 a
α

N2

N0

and the VMR reads

V

〈m〉
= 2 N

N0αt
= 2(N/N0)

log(N/N0)

We see here that the VMR is amplified by a factor of order N/N0, which in
simple growth can be ∈ [103 − 109] and in principle is orders of magnitude
higher than a simple Poisson process. The origin of this variability can be
understood as the following : a mutation can occur at any time, but the
one who occur at the beginning of the growth will yield a huge number of
resistants, hence the variability. The argument however should be taken
with care, as the probability density of mutation is lower at the beginning.
The net effect however is as we computed above. I found few years ago a
very general solution of the Luria-Delbrück experiment where many of the
simplifying assumptions can be relaxed8.
When Luria & Delbruck plugged the experimental numbers, they found

that the measured variability is even higher that what is expected from the
above expression. Part of the additional variability comes from experimental
errors : for example the initial number of bacteria is ill measured and can

8Houchmandzadeh, B. (2015). General formulation of Luria-Delbrück distribution of
the number of mutants. Phys. Rev. E, 92(1), 12719.
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vary by a factor of 10. There are also simplifying hypothesis, such as not
using the full logistic growth. Note however that we treated the number of
bacteria as a deterministic variable. If the experiment had began with very
few bacteria (say ~1), we should have also treated the bacterial growth as
stochastic and would expect even higher variability.

The story is not yet finished. In 1988, Cairns et al.9 published a pa-
per going against the Luria and Delbruck experiment. They showed that
if mutations are not resistance to lethality, then maybe some mutations are
directed. In their experiment, they used Lac− bacteria plated on agar which
contained Lactose as the sole source of energy and then counted the distri-
bution of Lac+ mutants. The distribution is somewhere between the Pois-
son and the Delbruck distribution. I don’t intend to go into the detail of
the Cairns experiment, as there were many counter experiments and a big
amount of controversy, and many many models for the interpretation of their
result.

9Cairns, J.; Overbaugh, J.; Miller, S. (1988). "The Origin of Mutants". Nature 335
(6186): 142–145
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6 Fundamentals of population
genetics.

[0-dimentional model (well mixed population). Fisher-Wright model. Mean
field treatment and Hardy-Weinberg equilibrium. Moran model. Neutral
case. full treatment. Kimura equation. Hint at spatially extended.]

Around 1920’s, ideas of genes as “quantum” of inheritance information and
Darwinian evolution began to merge to form the basis of the new synthesis.
Around this time, the idea of a gene having multiple alleles was clear. Each
allele of the gene modifying in certain way a trait, it was a short step to
go one step further : the fitness of the individual depending on its traits
(called its phenotype), an allele of a gene can cause the individual carrying
it a higher fitness than the base population. Mendelian genetics had cured
the inconsistencies of the blending theory of inheritance, so the question was
now to write a coherent mathematical model describing the propagation (or
disappearance) of an allele in the population taken as a whole. This field is
now called population genetics.

6.1 The Fisher-Wright model, deterministic
approach.

The first model of population genetic was introduced by Fisher and Wright
in the 1930’s and bear their name. We’ll suppose from now on that the pop-
ulations reproduce asexually, sex being a small mathematical complication1.
Let us suppose that the population consist of two types, identical but for
one gene, which has two different alleles A and B. We’ll refer to individual
carrying the allele A as A−individual. We also suppose that A individuals
have fitness r, compared to fitness 1 for the B individual.

Figure 6.1

But wait ... I used the term fitness, what does
it mean ? The fitness implies some idea of “well
adapted” to the environment, but of course, this

1in these lectures
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6 Fundamentals of population genetics.

cannot be measured. When we think about
measurement of fitness, there is only one quan-
tity which can be measured : the number of
surviving progeny, capable of reproducing.

This is exactly what we mean by fitness and
the only thing we mean. In order to measure
it, select all parents of type A (B), measure the
mean number of adult progeny of each individ-
ual of each type nA and nB . The fitness of A
individual (relative to B ones) is r = nA/nB (Figure 6.1).

Figure 6.2

The FW model can be formulated as fol-
low : in a population of fixed size N , each
individual produces progeny proportional
to its fitness. Among the N ′ progeny, N
individuals are selected at random to form
the next generation (Fig. 6.2). This scheme
keep the number of individuals always at
precisely N . Let us call p0 the proportion
(the term frequency is used in most books)

of A−individual in generation 0. According to the above scheme, the num-
ber of their progeny is αrNp0 where the number of the progeny of type B is
αN(1− p0), therefore the frequency of A individuals in the next generation
is

p1 = rp0

rp0 + (1− p0)
and the change in frequency is

∆p = p1 − p0 = (r − 1)p0(1− p0)
1 + (r − 1)p0

which, for small selective advantage s = r− 1� 1, can be approximated by

∆p = sp(1− p) (6.1)

This is the deterministic Fisher equation, and shows that at small frequency,
a mutant spread exponentially and begin to saturate when it becomes domi-
nant. Measuring time in generation unit, the above equation can be written
as

dp

dt
= sp(1− p) (6.2)
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6.2 The Fisher-Wright model : stochastic approach.

with the solution
p(t) = Cest

1 + Cest

So at small frequency, a beneficial mutant will increase exponentially the size
of its population. Very often, specially in bacterial studies, the fitness and
the rate of exponential growth are used as synonymous.

6.2 The Fisher-Wright model : stochastic
approach.

The FW model contains a key ingredient of evolutionary thinking : the
importance of mere luck (which we may call stochasticity in order to look
serious). One great aberration of early evolutionary thinking was its deter-
ministic approach : if you are fitter (than your neighbor), you are going, for
sure, to dominate it through generations2. This opinion had its reverse way
of thinking which was even more dangerous : if you are dominating today
(compared to your neighbor), it is because you are/were superior to him3.
Another formulation of the same opinion is that if a trait is observed in an
organism, it is because it is beneficial and has been selected for.

The value of excess relative fitness s had no importance in this framework.
But what if s = 10−3 or 10−9 ? Clearly the domination fate should take this
value into account ? Suppose, to take the image of the two runners on the
cover of this book, that one runner runs at v = 5m/s and the other at
5.01m/s. Which one is going to be eaten by the tiger ? Well, if you do the
experiment by taking 106 pairs of runners you would see that the faster one
survive in average slightly more than the other (by less than a 0.2% margin),
but is this relevant ? Again, suppose that among Wild type humans running
at 5m/s, a mutant with running speed of 5.01m/s appears. It is very possible
that before he is able to spread his genes, because of mere bad luck, he is
going to be eaten way and its beneficial mutation will disappear with him.
On the other hand, it is possible that both you and your neighbor had a
speed of 5m/s, but because of bad luck, he got eaten and you did the gene
spreading business.

2In terms of number of gene copies, which again, is the only measure of evolution
3For old Greeks, success was a sign of blessing by gods and a winning general could
be considered somehow a god himself. For example, Octavius, after defeating Marc-
Anthony, accepted to be deified in Greece, even though he had only contempt for this
tradition back at home. It is amusing to observe that this tradition found its way into
evolutionary thinking much later.
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6 Fundamentals of population genetics.

Evolution should therefore be seen as a play between two forces : the de-
terministic one due to the value of fitness and the stochastic one due to all
the random processes which can happen. For physicist, trained in statistical
physics in his young age, this is an obvious framework : particles sediments
only if gravitation dominates over thermal noise. For evolutionary biolo-
gist, this approach took a little longer and unfortunately the adaptationist
program, as Gould called it, is still widespread.
The beauty of the FW model was to introduce the stochasticity into evo-

lution in a very elegant and generic way. The criteria for the importance of
luck, as we shall see below, is very simple:

Ns < 1

where s is the excess relative fitness and N the population size.

6.2.1 Genetic drift.

Figure 6.3

The best way to illustrate the importance
of stochasticity (or noise, as we call it in
physics), is to consider the neutral case
where all individuals have the same fitness.
In a deterministic approach (eq. 6.1), if the
proportion of individual A is p at generation
zero, then its proportion will be p at gener-
ation 100. But if we play the Fisher-Wright
game, selectingN individuals at each gener-
ation among theN ′ progeny, we will observe
that after some generation, all individuals
are the descendant of a single individual in
generation 0 ! This phenomenon is called
the genetic drift (Figure 6.3) and when all

individuals are descendants of single one, we say that the ancestor has been
fixed.
The mathematical problem of the fixation of a neutral allele is best treated

using the coefficient of co-ancestry. We suppose that each individual pro-
duces exactly g progeny, and among all the progeny, exactly N individuals
are selected to make up the next generation.Let us pick at random to indi-
vidual at generation n and call fn the probability that they have a common
ancestor. Obviously, at generation 0 where we consider all individuals differ-
ent, f0 = 0. Let us now pick up two individuals at generation n at work it
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6.2 The Fisher-Wright model : stochastic approach.

backward4. The event E that these two to have a common ancestor is either
E1 that they have the same parent or E2 that they have different parents
(E2,1) which are co-ancestor (E2,2). As the logical AND (for independent
events) and OR (for exclusive events) are translated into multiplication and
addition in probabilities,

P (E) = fn

P (E1) = 1/N
P (E2) = (1− 1/N)× fn−1

Which gives us the simple recurrence relation

fn = 1
N

+ (1− 1
N

)fn−1

We can very easily solve the above recurrence equation. But before doing
so, note that we can rewrite this equation as

fn − fn−1 = −(1/N)fn + 1/N (6.3)

which is equivalent to the differential equation df/dt = −(1/N)f + 1/N
which converges exponentially, over a time scale of N , toward 1. We have
two important information here : even when all parents have the exact same
fitness, the population becomes homogeneous with a co-ancestry coefficient
of 1 ; this homogenization occurs overs time scale of N and is very fast in
small communities.

If we wanted to solve exactly the recurrence equation (6.3), it is enough to
note that we can rewrite it as fn−1 = (1−1/N)(fn−1−1) and as f1 = 1/N ,
we would get

fn = 1− (1− 1/N)n

6.2.2 FW Transition rates with selection.

Let us now relax the neutrality hypothesis and suppose that a mutant has
a higher fitness than wild type individuals : WT and mutants produce g
and gr progeny respectively. Let us suppose that we have at some point we
have n mutants (and N − n WT). What is probability P (m|n) of having m

4A more elaborate way of this kind of computation is called coalescent theory
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6 Fundamentals of population genetics.

mutants in the next generation ? Well, this is the plain binomial distribution

P (m|n) = CmN q
m(1− q)N−m

where q is the probability of picking a mutant among the progeny and CmN
is the binomial coefficient. For the probability q we have

q = nrg

nrg + (N − n)g = nr

N + n(r − 1)

We could therefore, from any given initial state P0(m), compute by recur-
rence the probability Pk(m) of having m mutants at generation 0 :

Pk(m) =
∑
n

P (m|n)Pk−1(n) (6.4)

This is very easily done by computer simulations. The analytical solution
however is much harder to obtain5. Equation (6.4) is an example of a Mas-
ter equation, and indeed, there are hard to solve, specially when they are
multi steps.6 The problem can be tackled in the diffusion approximation of
Kimura, which is given in §6.4.

6.3 The Moran Model.
In 1962, Moran introduced a simple model, equivalent to FW one but much
easier to tackle mathematically. In this model, birth and death occur con-
tinuously. When one individual dies, it is immediately followed by another
one duplicating.

6.4 Kimura’s diffusion equation.
Master equation of these types however can be approximated by a continuous
Fokker-Planck equation for large population size. Calling x = n/N and
Nu(x) = P (n), we have

∂p(x, t)
∂t

= −∂ [a(x)p(x, t)]
∂x

+ ∂ [b(x)p(x, t)]
∂x2

5In fact, nobody has done it
6A one step stochastic process is one where P (m|n) = 0 if |m− n| > 1.
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7 The dynamics of mutation
spread.

7.1 The Fisher Wave.

Mutants appear in a small region of space and spread to adjacent position.
The simplest equation used to capture this dynamics is to complement the
deterministic Fisher equation (6.1) with a diffusion term in order to account
for the spread :

∂u

∂t
= D

∂2u

∂x2 + su(1− u) (7.1)

where s is the excess relative fitness and u ∈ [0, 1] is the mutant relative
density. This equation was proposed simultaneously by Fisher1 and Kol-
mogorov2 in 1937, and it is known as the FKPP equation.

The FKPP in now widely used in many different field outside population
genetics. It has the grace of having traveling wave solution whose speed and
width can be exactly computed3 which we are going to investigate now.
We look for solutions in a 1 dimensional infi-

nite space where u(−∞) = 1 and u(+∞) = 0,
i.e. with the mutants fixed at the left side space
and (still) absent at the right side space. The
part of the space connecting this two regions is
called the front. A good metric to measure the
width of this front is W =

´
R u(1 − u)dx: only

region where u 6= 0, 1 contributes to the width
and the contribution is proportional to the deviation from these two values.

1Fisher, R. A. (1937). The wave of advance of advantageous genes. Annals of Eugenics,
7, 355–369.

2Kolmogorov, A. N. (1991). A study of diffusion equation with increase in the amount
of substance. In Selected work of N.A. Kolmogorov (pp. 242–271).

3For a review, see Vansaarloos (2003), Front propagation into unstable states, Physics
Reports , 29–222.
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7 The dynamics of mutation spread.

We are looking for traveling wave solution
u(x, t) = u(x − ct) which transforms eq.(7.1)
into an ordinary (non-linear) second order so-
lution Du′′+ cu′+ su(1−u) = 0. We note that
the equation does not depends explicitly on the
space variable x, so let us set p = −du/dx and

rewrite everything in terms of p and u :

d2u

dx2 = −dp
dx

= p
dp

du

which finally get us to the equation

Dpp′ − cp+ su(1− u) = 0 (7.2)

where p = p(u) and p′ = dp/du. If we can solve this equation, we can get
back to u(x) by integrating dx = −du/p(u). But even if we cannot get the
exact solution of (7.2), we can extract useful information on the speed and
width of the front. Let us suppose that when p′(0) = λ 6= 0,∞, i.e. at the
origin, the slope of p(u) is finite. Then dividing eq.(7.2) by u and letting
u→ 0, we have

Dλ2 − cλ+ s = 0

which is a second order algebraic equation and has a solution for

c ≥ cmin = 2
√
Ds. (7.3)

The above condition means indeed that FKPP equation does not have a
unique solution : for each c ≥ cmin, there is a front propagating with this
speed. This does not seem to be a realistic answer to a well defined problem.
If however we go one step further and perform a stability analysis, we will see
that all these solution, except the one corresponding to cmin are unstable and
the front, after a transitory period, will indeed propagate at speed cmin and
take the shape corresponding to this speed. We omit the stability analysis
here, which can be found in the cited review.
The Width of the propagating front can be extracted as easily as its speed

:

W =
ˆ
R
u(1− u)dx

= −1
s

ˆ
R

(Du′′ + cu′) dx
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7.2 The Spatial Moran process.

= c

s

and therefore, the stable front has the width

Wmin = 2
√
D/s (7.4)

The two main results of the Fisher Wave equations are then that the speeds
scales as

√
s and the width as

√
1/s. The relevant range of evolutionary

biology is however when s � 1, which is exactly, as we saw earlier, when
the deterministic approach breaks down. In particular, the divergence of the
width for small s does not seem very realistic.
The small s limit is where the demographic noise becomes important. In

order to take this noise into account, Doering et al.4 added a phenomeno-
logical noise term to the FKPP equation :

∂u

∂t
= D∇2u+ su(1− u) +

√
bu(1− u)η(x, t)

where η(x, t) is a white noise. The addition of the noise term corrects for
many of the insufficiency of the FKPP equation at small s. We can however
do a more rigorous approach by directly solving an individual based model
such as the spatial Moran model. This is the intent of the next section.

7.2 The Spatial Moran process.

4Doering, Charles R. and Mueller, Carl and Smereka, Peter, Interacting particles, the
stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation, and duality, Physica A:
Statistical Mechanics and its Applications (2003), 243–259.
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8 Neutral speciation.
Observation of the stunning biodiversity in various ecosystems is one of the
factors that led Darwin and Wallace to formulate the theory of evolution.
The finches of Galapagos (Figure 8.1) are the standard example cited in any
textbook of the field. Even at a single trophic level, i.e. considering species
which use the same resources, the biodiversity is always large. In spite of
many competing theories the question of the causes of biodiversity is still
unanswered today.

The most dominant view is the adaptationist one: each species is adapted
to its local environment and biodiversity is just a reflection of the heterogene-
ity of available resources. In this view, neutral biodiversity (species using
the same resources and being similar in fitness) can exist only because of ge-
ographical barriers between close ecotypes. The possibility of having specia-
tion at the same trophic level at the same geographical location (sympatry)
has been ruled out by Ernst Mayr in his famous book1, with far-reaching
consequences on evolutionary thinking.

The reason behind this “outlawing” of neutral biodiversity is called the
“exclusion principle”2. In a series of beautiful experiments conducted at the

1Mayr, E. (1942). Systematics and the Origin of Species: From the Viewpoint of a
Zoologist. Harvard University Press.

2Hardin, G. (1960). The Competitive Exclusion Principle. science, 131:1292–1297.

Figure 8.1 – The finches of Galapagos. [Lomolino et al., Biogeography, 2006]
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8 Neutral speciation.

Moscow’s zoological institute during the 1930’s3, Gause observed that when
two close species of Paramecia (an amoeba) are cultured together in a test
tube, one will always drive the other to extinction. As the years passed,
this observation became a dogma : “no two species can survive on the same
resources at the same place”. On the other hand, it was believed that in the
absence of geographical barrier, each species will diffuse in order to occupy
the whole available space4. The combination of these two believes led Mayr
to rule out sympatry
The generalization of the Gause rule however is very fragile. First of

all, the exclusion principle has never been observed in nature (footnote 2).
People loved so much the exclusion principle that failing to observe it in
nature, they invented resource differentiation everywhere (this birds loves
lower leaves, the other higher ones) or asserted that observed species re-
sources only partially coincide. But even if the exclusion principle were true,
would it forbid sympatry ? The first question mark is the time to extinction
: how long does it take for a neutral species to go extinct ? If this time in
the order of geological times, the exclusion principle has no value. Second,
does “everything everywhere” belief true ? We will see that this is not the
case, and species, in the neutral case, tends to segregate and form bound-
aries, in the absence . When these fact are weighted, we will see that there
is no case against sympatry. The prejudice against sympatry was caused
by people thinking about evolution only by words, and not weighting the
mathematical consequences of the causes they were proposing.

The need for an alternate/complimentary model arose as Ecologists began
to gather large data on biodiversity and observed general patterns every-
where. The adaptionist program is specific to each species and each habitat.
Observing general patterns could seem at first at odd with this view and
this is the reason many researcher tried to look at generic models of resource
distribution and their uptake, before the advent of neutral models shook up
this general view. Let us first review some of the generic data gathered by
ecologists.

One of the most striking observed “law” is the species-area relationship
which states that the number of species S in an area exhibits a power law
dependence on the size A of the area considered: S = kAz with z in the
[0.2,0.3] range for most habitats (Figure 8.2). It has to be noted however

3G.F. Gause (1935), Vérifications expérimentale de la théorie Mathématique de la lutte
pour la vie, Herman et Cie Editeur, Paris .

4This is called the rule of “everything is everywhere”. For a review of this “theory”,
see O’Malley, M. (2007). The nineteenth century roots of “everything is everywhere”.
Nature reviews. Microbiology, 5:647–51.
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Figure 8.2 – Species-Areas relationship for Vascular plant (left panen)
and Land birds (right pannel). [Willamson et al., J. Biogeography, 28, 827-830
(2001)].

that this “law” is not engraved in stone. As it can be observed, the data
are very noisy ( Figure 8.2 displays only the best selected cases) and even
though, they can often be fitted as well by other curves.

An alternative and more precise measure of biodiversity for a fixed area is
the abundance curve: collecting species in a given area and measuring the
abundance of each species leads to the abundance curve φ(n), which is the
histogram of the number of species having abundance n. Abundance curves
taken from very different habitats began to show very similar patterns 5 and
it became more and more obvious that they can be unified through a single
parameter (Figure 8.3).

The third observation came from measurements of biodiversity in islands
close to a continent. It was observed that the number of species in islands
decreased as a function of its distance from the continent and increased
with the size of the island (Figure 8.4). To explain the third observation,
MacArthur and Wilson6 took a bold approach. They supposed that (i)
all species at the same trophic level are equivalent ; (ii) species migrate
from continent to islands, with the rate of migration a decreasing function
of the distance ; (iii) due to random sampling from one generation to the
other, species become extinct in islands, with the extinction rate a decreasing
function of the size of the island. The number of species present on the island
is then a dynamic equilibrium between migration and extinction (Figure 8.4).

MacArthur and Wilson’s article, considered as a cornerstone of biogeog-
5for a review, see Hubbell, S. P. (2011). The Unified Neutral Theory of Biodiversity and
Biogeography, Princeton University Press.

6MacArthur, R. H., & Wilson, E. O. (1963). An equilibrium theory of island zoogeogra-
phy. Evolution, 17: 373–387.
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8 Neutral speciation.

Figure 8.3 – The abundance curve collected in various type of forests. [
From Hubbell’s book].

Figure 8.4 – Left panel : A typical example of islands used to gather
biodiversity Data [Cartens, JBI 2012]. Right Panel: The MacArthur and
Wilson phenomenological explanation .
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8.1 The neutral model.

raphy, was a radical departure from Mayr and the adaptationist program,
and proved extremely successful. The next radical step then was taken by
Hubbell who applied the same idea to the whole continent : all species at
a given trophic level are equivalent, new species appear by mutation and
become extinct by genetic drift. The biodiversity curve is then a function
of a single number that takes into account the mutation rate and the size of
the community. Hubbell’s book founded what is called the neutral theory
of biodiversity and provoked an incredibly wide and heated debate in the
ecological community, which is still ongoing.

8.1 The neutral model.
In retrospect, it seems strange that the idea of neutrality, considered very
early by population geneticists such as Malecot (1948) and Kimura (1985),
took so much time to permeate the ecological/evolutionary thinking; I believe
that this is partly due to the influence of Mayr’s book7and the prevalence of
the competitive exclusion principle. The main idea however is very simple
: neutral macroecology is similar to neutral population genetics. The latter
deals with alleles of a gene, their frequency and its change because of genetic
drift and (neutral) mutations, where the former deals with the equivalent
concepts of species, their abundance and its change because of ecological
drift and neutral speciation (presumably because of the accumulation of
many mutations at the individual levels) and so on. New species emerge
with a rate ν . It takes some times τa for a new species to become abundant
by pure genetic drift. If the arrival time of new species τe is much shorter than
τa, many equivalent species will coexist at the same geographical location
and their abundance will be a dynamic interplay between emergence of new
species and extinction of existing one. To investigate these assessment, we
again use the Moran model to which we add the mutations.

Consider a community consisting of N individuals and S species, with
species i having ni individuals (Figure 8.5a). All individuals, regardless
of their species, are equivalent in their reproductive/death rate. When an
individual dies, it is immediately replaced by the progeny of another one. Be-
cause of mutations, the progeny can differ from its parent with probability
ν, thus forming a new species appearing with abundance 1. After its appear-
ance, the species abundance is a stochastic function of time ; if an individual

7Butlin, R. K., Galindo, J., & Grahame, J. W. (2008). Sympatric, parapatric or al-
lopatric: the most important way to classify speciation? Phil. trans. Royal Soc.
London. Series B, 363:2997–3007.
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8 Neutral speciation.

Figure 8.5 – (a) The Moran model of a neutral community composed of
various species (distinguished here by their colors), where an individual is
replaced upon its death by the progeny of another regardless of its species.
(b) Each new species appears with abundance 1 by mutation at some time
t0; Stochastic dynamics of the number of individuals n(t) of few species
appeared at time t0. .

is the sole representative of a species and dies, then this species disappears.
As in the previous section, the probability P (n, t|1, t0) for species i to have
n individuals at time t, knowing the species appeared at time t0, obeys a
Master equation where the transition rates are:

W+(n) = µ(N − n)n(1− ν)/N (8.1)
W−(n) = µn (N − n+ ν(n− 1)) /N (8.2)

The increase rate W+(n) is the probability density of death of an individual
that does not belong to the considered species µ(N − n) multiplied by the
probability of birth of an individual that belongs to the considered species
n/N , times the probability of no mutation (1 − ν). The decrease rate is
similar, but takes also into account the probability of an individual dying
and being replaced by the progeny of a member of its own species with a
mutation.
Let us set the origin of time at t0 = 0. The master equation gives the

fate of one particular species. 〈φ(n)〉, the average number of species having
population size n at time t is the sum of all those who have been generated
at an earlier time τ and have reached abundance n at time t :

〈φ(n)〉 =
ˆ t

0
f(τ)P (n, t|1, τ)dτ
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8.1 The neutral model.

= ν

ˆ t

0
P (n, t− τ |1, 0)dτ

= ν

ˆ t

0
P (n, τ |1, 0)dτ

where f(τ) is the probability per unit of time of generating a mutant and
is equal to ν (time is measured in units of generations 1/µ). Defining the
mutation pressure as θ = Nν, the quantity φ can be obtained at the limit of
large times and shows that an equilibrium is reached.

[include detailed calculation here].
For large communities, using proportions ω = n/N and abundances g(ω) =

N 〈φ(n)〉, the result takes a simple form

g(ω) = θω−1(1− ω)θ−1 (8.3)

The above computations ignore spatial distances: an individual can be re-
placed only by the progeny of its neighbor rather than by everyone in the
community. A self consistent model of geographical dispersal is incredibly
difficult. We can however go one step further and apply the above model to
the case of island biogeography, where a small island of size M is close to a
continent of size N (M � N). The population of the island is affected by
migration from the continent, but given the large size of the continent, the
reverse is not true. We can also neglect mutation inside the island as the
mutation pressure is small. So the transition rates in the island are similar
to eqs (8.1,8.2) except that a local individual can be replaced by a migrant
from the continent with probability m, where the abundances are given by
expression (8.3). Defining the migration pressure as ξ = Mm, in the limit of
large sizes of both the island and the continent, we can compute the relative
abundance gI(ω) inside the island as8

gI(ω) = ξθ

ˆ 1

0
(1− ω)ξu−1ωξ(1−u)−1uθdu (8.4)

This expression may seem cumbersome, but it can be easily plotted and
depends on only two parameters : θ which itself can be seen as a function of
biodiversity on the continent and ξ which is a simple decreasing function of
the distance between the continent and the island. Expression (8.4) is the
mathematical expression of the original MacArthur and Wilson model and

8Vallade, M., & Houchmandzadeh, B. (2003). Analytical solution of a neutral model of
biodiversity. Phys Rev E 68:61902.
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8 Neutral speciation.

can be put to experimental verification.
Improving the above model by taking fully into account the spatial dimen-

sion seems mathematically intractable. We have been able to slightly improve
the continent-island model by treating both communities on an equal footing
but going further seems beyond the reach of the mathematical tools we used.
Nevertheless, the neutral theory of biodiversity is a falsifiable theory of bio-
diversity. It has been put to intense test and has been proved successful at
interpreting quantitatively available data in island biogeography9. As in the
previous section, the merit of this model is to provide a first approximation
for biodiversity which will always be present, even though many data will
necessitate the addition of more ingredients, such as for example, density
dependence of replacement rates[?, ?] to explain deviation from this theory.

9Rosindell, J., Hubbell, S. P., & Etienne, R. S. (2011). The unified neutral theory of
biodiversity and biogeography at age ten. Trends in ecology & evolution, 26:340–8.
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9 Predator induced speciation.
dynamic landscape (l’enfer c’est les autres), phage induced diversification of
bacteria (Williams paper, BMC Evobio 2013:13:17).

Neutral speciation gives a minimum background for the biodiversity. There
is however a very important fact of the life we have not spoken about yet
: we (living organisms) all belong to a food chain; we do have resources
(organisms below in the food web) and predators (organisms above in the
same graph). As our predators are specialized to us, a good way of escaping
them would be to commit speciation.
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10 The paradox (?) of altruism
and cooperative behavior.

10.1 The Price equation.
The price equation has become a famous one in some evolutionary circle,
although why a trivial mathematical concepts can be so much sanctified
elude the author of these lines1.

Consider, at generation G0, N individu-
als spread among M group, The number of
individual composing group i noted as ni.
Let us associate a phenotypic variable zi to
each group (we don’t precise what z is: at
this stage it can be anything, from the color
of the eye to the proportion of altruists in
this group); let us moreover, suppose that the group i has fitness fi. Now,
after reproduction, in generation G1, the number of individuals in group i
become n′i, and the variable zi changes to zi + δzi. Again, at this stage, we
don’t need to be to precise about what δzi is. If groups are ranked by the
color of the eye for example and reproduction is perfect, then δzi = 0. If zi
is the proportion of altruists, then we can have δzi < 0. For the moment,
δzi is a given parameter, which we can link to other variables when we have
a precise model in mind.
by the very definition of the fitness fi we have n′i = fini. Now let us

compute some averages.〈
z0〉 =

∑
i

nizi/N =
∑
i

wizi

where
〈
z0〉 is the average phenotype in G0 and wi = ni/N is the weight of

1Like Galois, one the few mathematicians known to the public at large, Price also has
had a tragic end.
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10 The paradox (?) of altruism and cooperative behavior.

group i. By the same token, we get〈
z1〉 =

∑
i

n′i(zi + δzi)/N ′ (10.1)

where
N ′ =

∑
i

n′i =
∑
i

fini = N
∑
i

fiwi

defining the average fitness in G0 as

〈f〉 =
∑
i

fiwi = N ′/N.

so we can write eq. (10.1) as〈
z1〉 = 1

〈f〉
∑
i

wifi(zi + δzi)

The change in the average phenotype is

∆ 〈z〉 =
〈
z1〉− 〈z0〉

=
∑
i

wi

(
fi
〈f〉
− 1
)
zi +

∑
i

wi
fi
〈f〉

δzi

so the change in the average is the sum of two terms : the first term contains
only the phenotype, the second only the change in the phenotype. We can
repackage this slightly more

〈f〉∆ 〈z〉 =
∑
i

wi (fi − 〈f〉) (zi − 〈z〉) +
∑
i

wifiδzi

where we have used the fact that
∑
wi(fi − 〈f〉) 〈z〉 = 0. Note that in the

above expression, all the 〈〉 on the right hand side are averages taken in G0.
The above equation is called the price equation and is usually written as

〈f〉∆ 〈z〉 = Cov(f, z) + 〈fδz〉

What is interesting in this equation is that even if δzi < 0 in all groups, the
shift in average ∆ 〈z〉 can be > 0. This is just a demographic effect, first
noted by Simpson in the 50’s2.

2Simpson, Edward H. (1951). The Interpretation of Interaction in Contingency Tables.
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10.1 The Price equation.

Now suppose that the phenotypic trait zi is the proportion of altruists
in each group. Suppose that groups with a high number of altruist grow
faster, i.e. Cov(f, z) > 0. We see that if there are some range of parameters
where even when altruists have a smaller fitness than non-altruists, i.e. their
proportion in each group decreases (δzi < 0 ) , the proportion of altruists in
the whole population can increase. This demographic twist seems strange to
us when we mix absolute numbers and proportions.

Of course, this effect cannot be sustained in the long term. In the extreme
case when from example only one group subsists, then altruists are doomed.
In order to maintain the altruists, every m generation, some mixing and
redistribution into new groups is needed. This mechanism, called haystack,
can be observed in some virus. We’ll come to that a little later.

Price equation applicability is however very restricted. It is not predictive
if the fitness depends not only on the proportion of type A, but also on
other parameters (such as the group size). Then the quantities Cov(f, p)
and 〈fδp〉 cannot be computed without knowing the distribution of these
other parameters.

Give a numerical example.
introduce the first version of Fisher Fund. Theor.
Let us suppose that w(z) designates the absolute fitness (the mean number

of surviving progeny).
Huxley and Kropotkin, Hamilton and Price, kin selection, group selection

and the common good.

Journal of the Royal Statistical Society, Series B 13: 238–241.
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11 Quantitative genetics :
selection of continuous traits.

11.1 General concept of heritability.
Until the end of the XIX, how we inherit a trait was unknown. The most
shared belief (including Darwin and Wallace) was the blending theory, where
we are the average of our parents. This theory is not (mathematically)
compatible with evolution and natural selection, as pointed out by Jenkins.
Then in 1901, the Mendelian theory of heritability was rediscovered and
things were put into order by the founding fathers of population genetics.

The Mendelian theory however was too simple for most of the trait. Mendel
was looking at traits which are governed by one or two genes ; the number
of possible traits were few, in the range of two or four : is the pea yellow
or green ? round or elongated ? Most of the trait are controlled by many
genes and therefore, the value of the trait becomes continuous1. Body height
and weight, cows milk production, rice yields, ... are but a few examples.
Suppose thatM genes (g1, g2, ...gM ) control a trait; each gene i has ni alleles
and we call the genotype of an organism the particular combination it has :
gk = (gk1

1 , gk2
2 , ...gkM

M ). We call z the value of the trait and suppose that it
is entirely determined by its genotype:

z = F (g) (11.1)

Note that this is entirely theoretical thinking. It is very rare that we know all
the genes involved and the function which relates the genotype to phenotype.

A parent transmits exactly, without error, its genome to its progeny.
Therefore, if we believe equation (11.1), we will expect to find identical
phenotypes in parents and child. As we all know, this is not the case. The
phenotype is a function of the parent’s genotype and other factors such as

1And its distribution in the population very often Gaussian. Suppose that M genes
control the trait Z ; each geneXi has many different alleles and their effect are additive,
then Z =

∑
Xi and so the distribution of Z is normal ifM is big enough, by the virtue

of central limit theorem. It the effects are multiplicative, then Z is log-normal.
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11 Quantitative genetics : selection of continuous traits.

the environment : even if you have a dutch genotype, not eating enough in
your childhood will keep you below 180cm in height. Let us denote y = F (g)
and call it, broadly speaking, the genotype. Then

z = y + ξ

where ξ is a random variable. The randomness of ξ is partly due to the
randomness of the environment, partly to the intrinsic noise of cellular pro-
cesses2, and any other variability we don’t know about. In order to char-
acterize ξ, we should be able to measure the probability density f(z|y), the
probability of observing the trait z knowing the genotype y. Such a measure
is not totally out of reach : take one individual, make N copies of it, let
them grow in the wild, collect the adults and measure the distribution. Do
that for all available genotypes. Even if this thought experiment seems too
complicated, farmers and agro-engineers use similar but less complete data
analysis.
Now, consider a real population. A real population is not iso-genic3, but

different genotypes are represented in the population with different frequen-
cies. Let us note Y and Z the random variables of genotypes and phenotypes
due to this distribution. We can write very generally

Z = Y + Ξ

and if the response to environment is independent of the genetic background
(you grow shorter than average if you eat less than average, whatever your
genetic background), we’ll have

V ar(Z) = V ar(Y ) + V ar(Ξ)

11.2 The selection process.
Now, here’s the problem : we (or mother Nature) can only select for what we
see, i.e. the phenotype. When we select for phenotypes in a given interval
[z, z + h], some individuals with genomes we are not interested in will get
into the pool: because of the noise ξ, their phenotype will be in the good
interval. If the noise is small, this is not a big issue; but if the noise is large,

2The noise at the cell level, also called “non-genetic individuality”, has seen a huge
experimental and theoretical development during the end of 90’s and begining of 00’s.
See Raj & Van Oudenaarden[?] for a review.

3Well, may be soon we’ll have cloned cows, but for the moment we don’t
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11.2 The selection process.
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Figure 11.1 – phenotype as a function of genotype at: (a) no noise ;
(b) moderate noise ; (c) high noise. Vertical arrow denotes the selection
pressure: here we select for phenotype ∈ [0.4, 0.6] ; Horizontal arrows show
the selected genotype.
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Figure 11.2 – The scheme of the selection process.

everybody will get into the pool and selection is worthless : you are not
going to increase the yield of your rice crop. The amount of noise, which
hinders our selection process, is related to a quantity called heritability. Let
us precise a little more what are its consequences (fig.11.2).

Suppose that the genotype of the population follows the distribution4

p0(y). The phenotype distribution q0(z) is given by

q0(z) =
ˆ
y∈I

p0(y)f(z|y)dy (11.2)

4the probability density
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11 Quantitative genetics : selection of continuous traits.

We now select a subpopulation according to some criterion5 W (z). The
selection function W (z) is the proportion of individuals in phenotypic class
[z, z + dz[ which are used to produce the next generation. The phenotype
distribution after selection becomes

qw(z) = 1
W̄
q0(z)W (z) (11.3)

where W̄ =
´
z∈I′ q0(z)W (z)dz is the normalization constant.

The selected phenotype distribution qw(z) has a genotype distribution
pw(y). The relative numbers of individual in genotype class [y, y + dy[ that
are selected is the number of individual in this class developing the phenotype
z, multiplied by the selection function of the class [z, z + dz[ :

pw(y) = 1
W̄ †

p0(y)
ˆ
z∈I′

f(z|y)W (z)dz (11.4)

= 1
W̄ †

p0(y)W †(y) (11.5)

where W̄ † =
´
z∈I′ p0(z)W †(z)dz is the normalization constant. Note that

equations (11.4) and (11.2) look similar, but in the latter case, the integration
is over the variable z.
We let the selected population to produce the next generation. The geno-

type is reproduced exactly6

p1(y) = pw(y) (11.6)

As before, because of the noise, the phenotypic distribution of the new gen-
eration is

q1(z) =
ˆ
y∈I

pw(y)f(z|y)dy (11.7)

The result we are interested in is the relation between the distributions p1,q1
of generation 1, and p0,q0 of generation 0, knowing the selection function W
and the noise f .
The function W †(y) is the key to our computations and allows to write

the evolution of the genotype as a recurrence relation : pn+1(y) = L(pn(y)).
Let us note that the normalization constants W̄ and W̄ † are equal, which

5For example, in figure 11.1, W (z) = 1 if z ∈ [0.4, 0.6], 0 if z /∈ [0.4, 0.6].
6Recall that we have neglected the finite size of the population and the mutations. Both
effects can have major consequences on the fidelity of reproduction.

52



11.3 Response to Selection : Breeder’s equation.

will slightly simplify are computations :

W̄ †(y) =
ˆ
y

p0(y)
ˆ
z

W (z)f(z|y)dzdy

=
ˆ
z

W (z)
ˆ
y

p0(y)f(z|y)dydz

=
ˆ
z

W (z)q0(z)dz = W̄

11.3 Response to Selection : Breeder’s equation.
Operations such as (11.2) and (11.4) are called convolution with kernel f ;
symbolically, we’ll note it by q = p ∗ f and W ∗ = W ∗ f . In the following,
we can suppose that the noise and genetic background are independent, so

f(z|y) = f(z − y) (11.8)

We will also suppose that the noise is symmetric f(−x) = f(x) which implies
that
´
x
xf(x)dx = 0. Finally, because f is a probability density,

´
x
f(x)dx =

1. It is obvious that such a noise does not induce any difference between
the mean phenotype and the mean genotype7 〈z〉 = 〈y〉, but increases the
variance

V ar(z) = V ar(y) + V ar(ξ)

Broadly speaking, the convolution operation widens and smoothens. Note
that the genotype response to selection pw(y) is smoothened through the
noise :

W̄ .qw(z) = q(z).W (z) = [(p0 ∗ f) .W ] (z) (11.9)
W̄ .pw(y) = p0(y).W †(y) = [p0. (f ∗W )] (y) (11.10)

The consequence of the above relation is the following : If we apply a selection
function to move the average phenotype by S, the average genotype will move
to a lesser extent R. Of course, the average genotype is not measurable, but
R is also the shift in the phenotype of the next generation. More precisely,

7The mean 〈u〉 of the distribution p(u) is defined by 〈u〉 =
´

I up(u)du. The variance is
defined by

V ar(u) =
ˆ

I
u2p(u)du− 〈u〉2
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11 Quantitative genetics : selection of continuous traits.

if we define

S = 〈zw〉 − 〈z0〉
R = 〈z1〉 − 〈z0〉

Then R < S. We can write this inequality as

R = Sh2 (11.11)

where h2 < 1 is called heritability.
The above equation is the central equation of quantitative genetics and of

prime importance to farmers. A farmer selects the top 50% of its cows for
reproduction ; this selected pool has an increase in milk production of say
5%. Next generation of these cows however will only show a 2% improvement
in milk production. The heritability in this case is h2 = 0.4.
Equation (11.11) should however be used with care : h2 is not a constant,

it depends of course on S itself and on the initial distribution p0 and on
the selection function W . In some special case, h2 can be simply related to
V ar(ξ), but we have to keep in mind that this simplicity does not extend to
the general case.

11.4 Response to selection: general results.
We saw in the last subsection that the important quantity called heritability.
We set the origin at the mean of generation 0, i.e. 〈z0〉 = 0, then h2 =
〈yw〉 / 〈zw〉. Forgetting about the normalization constant8 W̄ , we have

〈zw〉 =
¨

z,y

zW (z)p0(y)f(z − y)dydz (11.12)

〈yw〉 =
¨

z,y

yW (z)p0(y)f(z − y)dydz (11.13)

To go further, Fourier transforms can be very handy. A function f(x) is
related to its Fourier transform f̃(q) through

f̃(q) =
ˆ
x

exp(−iqx)f(x)dx

8which will be eliminated in the ratio
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11.4 Response to selection: general results.

f(x) = (2π)−1
ˆ
q

exp(iqx)f̃(q)dq

Fourier transforms have useful properties : if f(x) is real, then9 f̃(−q) =
f̃∗(q) ;

´
x
x exp(iqx)f(x)dx = if̃ ′(q). Using the Fourier transforms then

leads us to

〈zw〉 = i

2π

ˆ
q

W̃ ∗(q)
(
f̃(q)p̃′0(q) + f̃ ′(q)p̃0(q)

)
dq (11.14)

〈yw〉 = i

2π

ˆ
q

W̃ ∗(q)f̃(q)p̃′0(q)dq (11.15)

and the inverse of the heritability is

〈zw〉
〈yw〉

= 1 +
´
q
W̃ ∗(q)f̃ ′(q)p̃0(q)dq´
q
W̃ ∗(q)f̃(q)p̃′0(q)dq

(11.16)

We see here all the complexity encoded into the heritability, which depends
on the selection function, the noise and the initial distribution of genotype.
There is however one important case where expression (11.16) can be greatly
simplified, and this is when both function f and p0 are gaussian.

Consider the function n(x) = (2π)−1/2 exp(−x2/2) and

p0(x) = σ−1n(x/σ) ; f(x) = s−1n(x/s)

The Fourier transform reads p̃0(q) = n(σq) and p̃′0(q) = −σ2qn(σq). The
expression for heritability reads then:

h2 = σ2

σ2 + s2 = Var(y)
Var(z) (11.17)

The above expression is what is classically found in the literature and is often
called the “breeder’s equation”.

9a∗ is used here for the complex conjugate of a. r′(u) is used for dr/du.
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11 Quantitative genetics : selection of continuous traits.

11.5 Non-gaussian genotype distribution and
noise.

Expression (11.17) is not general and depends on the gaussian nature of the
noise and genotype distribution. It shows however that there are particular
cases where the shape of selection function does not enter the heritability. We
can look for all such cases, by noting that one necessary condition would be
for the noise and the genotype distribution to have the same shape, p0(x) =
a−1f(x/a), which implies that p̃0(q) = f̃(aq). More over, let us look for
functions such that

f̃ ′(q)f̃(aq) = bf̃(q)f̃ ′(aq)

where b is a constant. It is easy to check that stretched exponentials

f̃(q) = exp(− |q|α)

belong to this class of function10 if b = a1−α . For this case, we have

h = aα

1 + aα

The gaussian case corresponds to α = 2 and a = σ/s. Let us define

n(x) = A

ˆ ∞
0

exp(−qα) cos(qx)dq

where A is a normalization constant ; the Fourier Transform of n(x) is a
stretched exponential. Let us as in the previous section, define

p0(x) = σ−1n(x/σ) ; f(x) = s−1n(x/s)

then

Var(y) = σ2I

V ar(ξ) = s2I

10It can be shown that this is the only class having such a property.
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11.6 Gaussian selection and noise.
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Figure 11.3 – Selection over non-gaussian genotype : p0(y) = 1/4Π(y/2)
(uniform distribution over [−2, 2]); W (z) = H(z − z0) (step selection) ;
f(x) = n(x, 0, 1). Symbols : numerical simulation over 106 individuals.
Solid curves : theoretical expressions. Left scale for R,S ; right scale for
h2. We see that the value of h2 can be markedly different from the classical
prediction (dash line).

where I =
´
x
x2n(x)dx. The scaling parameter a = σ/s can be written as

the ratio of the two variances and

h2 = [Var(y)]α/2

[Var(ξ)]α/2 + [Var(y)]α/2 (11.18)

Expression (11.18) generalizes the heritability expression (11.17) often seen
in the literature.

Note however that for general form of the noise and genotype distribution,
the selection function enters the expression of the heritability. The problem
is, even if the genotype distribution is gaussian in generation 0, it ceases to be
so after the first round of selection, because as we saw, p1(y) = p0(y)W ∗(y)
and this product has no particular reason to be gaussian.

11.6 Gaussian selection and noise.

When the genotype and the noise are gaussian, heritability takes a simple
form. If the genotype distribution is not gaussian, the classical expression
of h2(eq. 11.17) can be markedly wrong, specially at weak selection limit
(fig. 11.3). However, we can derive another exact and simple form for the
heritability if the selection function and the noise are gaussians, regardless
of the exact form of p0(y). Note that, in Fourier space, expression (...) can
be written :
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11 Quantitative genetics : selection of continuous traits.

Figure 11.4 – breeder’s equation. If the genotype and the noise are gaus-
sian, then R = h2S. If the selection and the noise are gaussian, then
R′ = j2S′.

〈yw〉 = i

2π

ˆ
q

p̃∗0(q)
(
f̃(q)W̃ ′(q) + f̃ ′(q)W̃ (q)

)
dq (11.19)

〈zw〉 = i

2π

ˆ
q

p̃∗0(q)f̃(q)W̃ ′(q)dq (11.20)

Let us suppose now that both f and W are gaussians of width s and c cen-
tered on zero, then their Fourier Transforms are also gaussians and therefore

〈yw〉 =
(
c2 + s2) I

〈zw〉 = c2I

And the new breeder’s equation reads

R′ = c2 + s2

c2 S′ (11.21)

We will use j2 to denote the new heritability relation. Note that j2 > 1 as
both 〈yw〉 and 〈zw〉 are negative, because the origin of phenotype is set at
the average of the selection function (Fig. 11.4).

11.7 Adding sex.
As in life, sex complicates the matter under investigation. The main effect
of sex here is the modification of inheritance we have considered above. The
sexual organisms we consider 11 are now diploid, i.e. each gene is present
at two copies per cell. One copies is provided by the father, one by the
mother. For continuous trait controlled by many genes, the phenotype of
11microbes also have a sexual life.
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11.7 Adding sex.

the progeny can be markedly different from those if its parent. Consider for
example 4 genes each having two Alleles. Let us suppose that the genotype
of the two parents are ABCD/abcd (the slash separetes copies originating
from mother and father). We see that a progeny can have a genotype of
ABCD/ABCD, having inherited only the capital alleles from each parent.
Now suppose that each capital letter allele contributes +1 to the phenotype
z, and each lower case allele -1. Both parent have z = 0, where the progeny
displays an extreme phenotype z = 4.

Figure 11.5

To make the matter more complicated, some
genes are linked, i.e. are found on the same
chromosome. As we inherit whole chromo-
somes, all combination are not possible. For
example, if both parent are Ab/aB, and the
genes are on the same chromosome, then the
progeny cannot be AB/AB.

And to really muddle the matter, there is re-
combination. This means that even when two
alleles of two genes are on the same chromosome
in one parent, they may not be on the same
chromosome in the child : there is a cut&paste
process which in the germ line, can exchange
the place of two alleles on the two chromosome
during a process called meiosis. The probabil-
ity that two alleles of two genes remain on the same chromosome decreases
as a function of physical distance between the genes. This was indeed used
in the beginning of genetics as a tool to order the genes on the chromosome.

Therefore, the inheritance of a trait looses its general character and now
depends on how many genes control the trait and how they are linked. Fortu-
nately, some general assertions remains valid. Indeed, in §11.2, we postulated
the inheritance process between selected parent and the progeny (eq. 11.6)
as

p1(y) = pw(y)

which is valid only for haploid organism. This is the only expression we
have to generalize. Let us introduce the function L(y|ya, yb), the probability
density for the progeny to have breeding value equal to y given that his
parents have ya and yb. The exact form of this function will depend on the
trait, as we argued above. For a large number of unlinked genes for example,
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11 Quantitative genetics : selection of continuous traits.

Fisher postulated that the probability should be normal

L(y|ya, yb) = exp
(
−(y − ȳ)2/2σ2

g

)
where ȳ = (ya+yb)/2 is the mean parental value. This postulate is called the
infinitesimal model. For our purpose, we don’t have to explicit the function
L. We only need to state that, in the absence of non-linear effect, the
breeding value of the progeny is symmetrically distributed around the mean
of its parents :

L(y|ya, yb) = L(|y − ȳ|)

Now, having the distribution pw(y) among the parent, the distribution of
genotype among the progeny is

p1(y) =
¨

R2
pw(ya)pw(yb)L (y − (ya + yb)/2) dyadyb (11.22)

Therefore, the mean phenotype of the progeny is

R = E(Z1) = E(Y1)

=
ˆ
R
yp1(y)dy

= (1/2)
¨

R2
(ya + yb)pw(ya)pw(yb)dyadyb

=
ˆ
R
ypw(y)dy (11.23)

= 1
W̄

¨
R2
yp0(y)W (z)f(z − y)dydz (11.24)

Note that this is exactly what we had in the case of the haploid organisms
(eq. 11.13), so the breeder equation and its alternative form remain valid.

11.8 Selection of multiple traits: the G matrix.
It often happens that the same set of genes have influence on multiple traits,
for example weight and height. The above computations extend without
difficulty to this general case. It is important to have in mind that heritability
can be different for different traits; for example, variability on weight is higher
than variability on height. The consequence of variable heritability is that in
artificial selection, it could be more efficient on a trait a in order to increase
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11.8 Selection of multiple traits: the G matrix.

the trait b, instead of selecting directly on the trait b, if heritability on a is
higher and if a and b are highly correlated.
Let us note by Gi the set of genes responsible for the trait under consid-

eration Yk, where
Yk =

∑
i

akiGi

For simplicity, we have assumed additivity of the genes. The same genes
contributes differently to different traits, which is reflected in coefficients aki .
We are going to have many indexes to manipulate, so it will be useful to
pack them all into a vector and note, for example, y = (y1, y2, ...yM ), where
M is the number of traits under consideration.
We will note p(y) the probability density of genotype12 y, which relates

to phenotype through
z = y + ξ

the distribution probability of the noise ξ being given by the function f(z|y).
W (z) is the selection function and should be understood as follow : the
proportion W (z) of individuals with traits 1 in class [z1, z1 + dz1][, trait 2 in
class [z2, z2 +dz2[, ... will be selected for reproduction in the next generation,
where z = (z1, ...zM ).

Everything we said can now be repeated, replacing scalars everywhere
by vectors. Let us the genotype of generation 0 be p0(y), and q0(z) its
phenotype13:

q0(z) =
ˆ

y
p0(y).f(z|y)dMy

after selection, the distribution of phenotypes become

qw(z) = W̄−1 q0(z)W (z)

where W̄ is the usual normalization constant. The genotype background of
the selected individuals is

pw(y) = W̄−1 p0(y).
ˆ
z
f(z|y)W (z)dMz

= p0(y).W †(y)

12of course, the term genotype is abusif. The exact term would be the phenotype in the
absence of noise.

13of course,
´

y d
M y is just a multiple integral and means

´
y1

´
y2
...
´

yM
dy1dy2...dyM .
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the genotype of generation 1 is duplicated

p1(y) = pw(y)

and results in the phenotype

q1(z) =
ˆ

y
p1(y).f(z|y)dy

By assuming independence of noise from genotype, we can write f(z|y) =
f(z− y). The Fourier transform of course generalizes to vectors

f̃(q) =
ˆ

x
f(x) exp(−iq.x)dMx

where q.x =
∑
xiqi is the scalar product of these two vectors. We can pack

the partial derivatives of f̃(q) into a vector called gradient

∇f̃(q) =
(
∂f̃/∂q1, ..., ∂f̃/∂qM

)
= −i

ˆ
x

xf(x) exp(−iq.x)dMx

following exactly our footsteps of the previous chapter, we get

〈zw〉 = 〈yw〉+ i

2π

ˆ
q
W̃ ∗(q)∇f̃(q)p̃(q)dMq (11.25)

〈yw〉 = i

2π

ˆ
q
W̃ ∗(q)f̃(q)∇p̃(q)dMq (11.26)

To go further, we should introduce a little tensorial notations. Of course,
we could do the same computations by considering directly the components
of our vectors such as yi or zk, but it is much more efficient to pack these
coefficients into vectors and tensors. We use here the term tensor as tensors
of rank 2, i.e. matrices.
Given two vectors u = (u1, ...uM ) and v = (v1, ...vM ), their scalar product

is a scalar
u.v =

∑
i

uivi

and their tensorial product is the tensor

(u⊗ v)ij = uivj
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If we imagine vectors as column vectors, the u.v = u†v and u ⊗ v = uv†.
Now, if the probability density of y is p(y), then its average is given by

〈y〉 =
ˆ

y
yp(y)dMy

and it is a vector. It’s variance is given by the tensor

Var(y) =
ˆ

y
y⊗ yp(y)dMy− 〈y〉 ⊗ 〈y〉 (11.27)

Usually, the diagonal elements of Var(y) are called variances and its off-
diagonal elements covariances. For example, in simple scalar notation, we
will write

Cov(yi, yj) =
ˆ

y
yiyjp(y)dMy−

(ˆ
y
yip(y)dMy

)(ˆ
y
yip(y)dMy

)
Notation (11.27) is just a more efficient way of writing the same thing. Now,
let us suppose that the distribution p(y) is, broadly speaking, gaussian :

p(y) = A. exp
(

(−1/2)(y− µ).Ĝ−1(y− µ)
)

where A is the normalization constant and Ĝ−1 a second rank tensor. Then,
a small amount of computation shows that

〈y〉 = µ

Var(y) = Ĝ

Let us suppose that p0(y) is a normal distribution with mean µ = 014. Its
Fourier transform reads

p̃0(q) = A exp
(

(−1/2)q.Ĝq
)

∇p̃0(q) = A
(
Ĝq
)

exp
(

(−1/2)q.Ĝq
)

Let us moreover suppose that the noise also is a centered gaussian

f̃(q) = A exp
(

(−1/2)q.N̂q
)

14As we have set the mean of generation 0 genotype at as the origin.
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∇f̃(q) = A
(
N̂q
)

exp
(

(−1/2)q.N̂q
)

If we note P̂ = Ĝ+ N̂ , we see that the averages (11.25,11.26) simply read :

〈yw〉 = ĜP̂−1 〈zw〉 (11.28)

The above expression generalizes the heritability to multiple traits, where
the scalar h2 is replaced by the tensor ĜP̂−1. The tensor Ĝ is often called
the genotype variance matrix or simply the G matrix. P̂ is referred to as the
matrix of phenotype variance.
Let us again stress that the generalized breeder’s equation (11.28) applies

only when genotype and phenotype distributions are normal.

11.9 Fisher’s ‘fundamental theorem’
It has been said about the Fisher’s fundamental theorem that is neither
fundamental nor a theorem. Many still wonder what really Fisher meant
when he wrote

"The rate of increase in fitness of any organism at any time is
equal to its genetic variance in fitness at that time."

In terms of what we developed in the previous chapters, this statement is
a triviality. Let us set heritability h2 = 1, in which case we don’t have to
make any distinction between genotype and phenotype. Beginning with the
distribution p0(y), the selected population distribution is

pw(y) = W̄−1p0(y)W (y)

and the next generation inherits this distribution p1(y) = p0(y). The mean
fitness of the population is the average of the selection function :

〈W 〉i =
ˆ
y

W (y)pi(y)dy

and we observe that 〈W 〉0, the mean fitness of Generation 0 is just the
normalization coefficient W̄ we use. The change in the mean fitness is

∆W = 〈W1〉 − 〈W0〉

= 1
W̄

ˆ
y

W 2(y)p0(y)dy −
ˆ
y

W (y)p0(y)dy (11.29)
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The ‘genetic variance in fitness ’ is

σ2
W =

ˆ
y

W 2(y)p0(y)dy −
(ˆ

y

W (y)p0(y)dy
)2

so we can write expression (11.29) as

∆W = σ2
W

W̄
(11.30)

If the fitness of generation 0 is taken as the reference ( 〈W 〉0 = 1 ) Fisher’s
theorem is exact (for this round of selection). More generally, the relative
rate of increase in fitness is just the square of the coefficient of variation :

∆W
W̄

=
(
σW

W̄

)2
(11.31)

Let us stress that the above equation as such is useless to describe the long
term evolutionary dynamics because the variance σ2

W also varies (decreases)
from one round of selection to the next. Following the same arguments,
we will find that the variation of the second moment depends on the third
moment and so on. We can build a whole hierarchy of moments, where
variation of the k−th moment depends on the k + 1-th moment. It is not
obvious however that this approach has any advantage over writing directly
the distribution of the k−the generation as

pk(y) = 1
Z
p0(y)W k(y)

We can follow the argument of previous chapter and develop a multidi-
mensional version of the above statement. The more fruitful development
however is to study the inclusion of heritability into the above computation,
which is the subject of the next chapter.

Central framework, additive genes, environment noise (stochastic gene ex-
pression). The breeder’s equation. Fisher’s fundamental Theorem.
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12 Sexual selection and the Fisher
Divergence.
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