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1 Introduction.

One of the most powefull tool to invetigate stochastic processes is
through the diffusion equation for the probabiliy density p(x,t)
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This equation is called the forward one. Very soon, the student also
encounters the backward diffusion equation :
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which is equivalent to the forward one, and is very useful to com-
pute first passage times and absorption to boundaries probabilities.
These two equations have however a profound assymetry : in the
forward one, the drift and diffusion terms a(x)and b(z) are part of
the derivations, whether in the backward one, they are out of it.
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In the following, we will revisit the derivation of the diffusion equa-
tion from a microscopic perspective and investigate the origin of this
assymetry. ()

2 Kolmogorov equations (forward and backward).

Let us call P(n,ng,t) the probability of being in state n at time
t, knowing that we have been at ng at time 0. This probability
is the sum of all trajectories probabilities K (n,ng,t), beginning at
(0,m0) and finishing at (¢,n) (Fig.2.1left). . Of course, computing
the weight of a given path is not easy. However, we can state the
trajectory probabilities when the duration dt is infinitesimal. Let
us for the moment concentrate on transitions between neighboring
states (Fig.2.1right):

Kn—n+1,dt) = Wt(n)dt (2.1)
Kn—=n-1,dt) = W~ (n)dt
Kn—n,dt) = 1— (W% (n)—-W~(n))dt
Kn—=n+k) = 0if k| >1

knowing the infinitesimal rates, we can relate probabilities for two
close times t and t 4 dt : go from ng to a state m during ¢, and from

n+1 n+1
n n

no n—1 n—1
0 t 0 dt

Fig. 2.1: left : P(n,ng,t) = ZpathK(n,no,t) ; right : infinitesimal
paths of equation (2.1).
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this state, transfer into the state n during dt(Fig.2.2).
P(n,ng,t+dt) = P(n+1,n0,t)W (n+1)dt
+ P(n,no,t) (1— (W (n)— W~ (n))dt)
+ P(n—1,n0,t)WT(n—1)dt
Now, it is trivial to develop the left hand side
OP(n,n0,t)
ot
And deduce the differential equations governing the probabilities :
OP(n,np,t)
ot

P(n,ng,t +dt) = P(n,no,t) + dt

= WT(n—-1)P(n—1,n9) — WH(n)P(n,nol2.2)
+ W (n+1)P(n+1,n9) — W~ (n)P(n,ng)

This is a nice system of first order differential equation, which we
could formally write .
dP; S

where the matrix A is tridiagonal. It is called a forward equation,
because we did the decomposition trick near the end point.

It is not hard to guess the backward equation : instead of decom-
posing near the end point, we’ll do it near the starting point(Fig.
2.3) and write :

no n—1

0 t t+dt

Fig. 2.2: Decomposition of the travel near the end state.
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P(n,ng,t+dt) = P(n,ng+1,t)W7(ng)dt
+  P(n,ng,t) (1= (W (ng) — W (ng)) dt)
+ P(n,ng—1,6)W~ (ng)dt

Again, developping the left hand side, we find

W = W*(no) (P(n,no +1,t) — P(n,no,t))
+ W™ (no) (P(n,no — 1,t) — P(n,no, t))

We see here appearing the assymetry between the forward and back-
ward equation in the way the transition rates are displayed in the
equations. This assymetric behaviour is due to the fundamental as-
sumption that time has a direction, and therefore ng is the emmiting
end, whether n is the receiving end. Note that to further illustrate
this assymetry, we have just flipped figure 2.2 to get figure 2.3, but
the direction of time has not changed.

3 Diffusion equation.

Let us now suppose that the number of discrete states N is very
large. Instead of tracking the states by the discrete variable n, we
will introduce the continuous variable z = n/N. We also introduce
the probability densities p(z, zo, t)dzdzy = P(n,ng,t) where we have

ng+ 1 n
no
ng — 1

0 ;Zt t4dt

Fig. 2.3: Decomposition of the travel near the start state.
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introduced dz = 1/N. This passage to continuum allows us to use
standard tools of calculus. The rhs of first line of equation 2.2 for
example reads

!

wt(z — do)p(x — dz, zo,t) — wh (2)p(x, 29, 1)

developping such expressions in powers of dx up to the second order,
we get the forward diffusion equation :

op(x,xo,t)  Oa(x)p(w,x0,t) . Ob(x)p(x, xo,t)

ot Ox Ox?
where
1 _
a(z) = N(w*(x)—w (2))
b(z) — 2—Zlvz(w+(x)+w*(x))

a(x) is called the drift term, b(z) the diffusion coefficient. By apply-
ing the same procedure to the backward Kolmogorov equation, we
get
ap(xaant) ap(xaxmt) 8p(x,x0,t)
—— =ax) ————= ——
ot Oxo oz

Of course, the same assymetry we had observed appears here be-
tween the forward and backward equations.

+ b(x)

4 Generalisation.

In the above sections, we only considered transitions between neigh-
bouring states n — n 4+ 1. We don’t have to make such restrictions.
Let us consider transitions from states n to n + ¢ with rate W(n,1).
Then, the same decomposition near the end point will bring us the
general Kolmogorov equation

OP(n,ng,t)

5 = Z(W(n—l—i,i)P(n—l—i,no,t) — W(n,i)P(n,no,t))

i
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Taking the conitnuum limit * = n/N, P(n,ng,t) is replaced by
p(z,zo,t) and W(n — i,i) by w(z — y,y), where w(z — y,y)dy =
W (n —1,1) Developing to the first order in y = idy = i/N, the term
inside the rhs sum becomes

Z—yw (z,y)dy p(, z0, 1)

and exchanging the summation over ¢ and derivation over z :

——p(w,70,t) > yw(w,y)dy

Here we recognize the term inside the sum which is the average of
w(zx,y), taken at a fix z, which we will denote again by a(z):

a(e) = (), = / yw(z,y)dy

which is the average jump size from state x. The development to
the second order will give us a term of the form

which is the second moment of the jumps originating at x.
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Fig. 4.1: Drift and diffusion coefficients for the general process, given
jump rates w(x, y).



