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1 Introduction.

One of the most powefull tool to invetigate stochastic processes is
through the diffusion equation for the probabiliy density p(x, t)

∂p

∂t
=

∂ap

∂x
+

∂2bp

∂x2

This equation is called the forward one. Very soon, the student also
encounters the backward diffusion equation :

∂p

∂t
= −a

∂p

∂x
+ b

∂2p

∂x2

which is equivalent to the forward one, and is very useful to com-
pute first passage times and absorption to boundaries probabilities.
These two equations have however a profound assymetry : in the
forward one, the drift and diffusion terms a(x)and b(x) are part of
the derivations, whether in the backward one, they are out of it.
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In the following, we will revisit the derivation of the diffusion equa-
tion from a microscopic perspective and investigate the origin of this
assymetry. ()

2 Kolmogorov equations (forward and backward).

Let us call P (n, n0, t) the probability of being in state n at time
t, knowing that we have been at n0 at time 0. This probability
is the sum of all trajectories probabilities K(n, n0, t), beginning at
(0, n0) and finishing at (t, n) (Fig.2.1left). . Of course, computing
the weight of a given path is not easy. However, we can state the
trajectory probabilities when the duration dt is infinitesimal. Let
us for the moment concentrate on transitions between neighboring
states (Fig.2.1right):

K(n → n+ 1, dt) = W+(n)dt (2.1)

K(n → n− 1, dt) = W−(n)dt

K(n → n, dt) = 1−
(

W+(n)−W−(n)
)

dt

K(n → n+ k) = 0 if |k| > 1

knowing the infinitesimal rates, we can relate probabilities for two
close times t and t+ dt : go from n0 to a state m during t, and from

Fig. 2.1: left : P (n, n0, t) =
∑

path K(n, n0, t) ; right : infinitesimal
paths of equation (2.1).
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this state, transfer into the state n during dt(Fig.2.2).

P (n, n0, t+ dt) = P (n+ 1, n0, t)W
−(n+ 1)dt

+ P (n, n0, t)
(

1−
(

W+(n)−W−(n)
)

dt
)

+ P (n− 1, n0, t)W
+(n− 1)dt

Now, it is trivial to develop the left hand side

P (n, n0, t+ dt) = P (n, n0, t) +
∂P (n, n0, t)

∂t
dt

And deduce the differential equations governing the probabilities :

∂P (n, n0, t)

∂t
= W+(n− 1)P (n− 1, n0)−W+(n)P (n, n0)(2.2)

+ W−(n+ 1)P (n+ 1, n0)−W−(n)P (n, n0)

This is a nice system of first order differential equation, which we
could formally write

d ~Pt

dt
= Ā ~Pt

where the matrix Ā is tridiagonal. It is called a forward equation,
because we did the decomposition trick near the end point.

It is not hard to guess the backward equation : instead of decom-
posing near the end point, we’ll do it near the starting point(Fig.
2.3) and write :

Fig. 2.2: Decomposition of the travel near the end state.
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P (n, n0, t+ dt) = P (n, n0 + 1, t)W+(n0)dt

+ P (n, n0, t)
(

1−
(

W+(n0)−W−(n0)
)

dt
)

+ P (n, n0 − 1, t)W−(n0)dt

Again, developping the left hand side, we find

∂P (n, n0, t)

∂t
= W+(n0) (P (n, n0 + 1, t)− P (n, n0, t))

+ W−(n0) (P (n, n0 − 1, t)− P (n, n0, t))

We see here appearing the assymetry between the forward and back-
ward equation in the way the transition rates are displayed in the
equations. This assymetric behaviour is due to the fundamental as-
sumption that time has a direction, and therefore n0 is the emmiting
end, whether n is the receiving end. Note that to further illustrate
this assymetry, we have just flipped figure 2.2 to get figure 2.3, but
the direction of time has not changed.

3 Diffusion equation.

Let us now suppose that the number of discrete states N is very
large. Instead of tracking the states by the discrete variable n, we
will introduce the continuous variable x = n/N . We also introduce
the probability densities p(x, x0, t)dxdx0 = P (n, n0, t) where we have

Fig. 2.3: Decomposition of the travel near the start state.
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introduced dx = 1/N . This passage to continuum allows us to use
standard tools of calculus. The rhs of first line of equation 2.2 for
example reads

w+(x− dx)p(x − dx, x0, t)− w+(x)p(x, x0, t)

developping such expressions in powers of dx up to the second order,
we get the forward diffusion equation :

∂p(x, x0, t)

∂t
= −

∂a(x)p(x, x0, t)

∂x
+

∂b(x)p(x, x0, t)

∂x2

where

a(x) =
1

N

(

w+(x) − w−(x)
)

b(x) =
1

2N2

(

w+(x) + w−(x)
)

a(x) is called the drift term, b(x) the diffusion coefficient. By apply-
ing the same procedure to the backward Kolmogorov equation, we
get

∂p(x, x0, t)

∂t
= a(x)

∂p(x, x0, t)

∂x0

+ b(x)
∂p(x, x0, t)

∂x2
0

Of course, the same assymetry we had observed appears here be-
tween the forward and backward equations.

4 Generalisation.

In the above sections, we only considered transitions between neigh-
bouring states n → n± 1. We don’t have to make such restrictions.
Let us consider transitions from states n to n+ i with rate W (n, i).
Then, the same decomposition near the end point will bring us the
general Kolmogorov equation

∂P (n, n0, t)

∂t
=

∑

i

(W (n+ i, i)P (n+ i, n0, t)−W (n, i)P (n, n0, t))
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Taking the conitnuum limit x = n/N , P (n, n0, t) is replaced by
p(x, x0, t) and W (n − i, i) by w(x − y, y), where w(x − y, y)dy =
W (n− i, i) Developing to the first order in y = idy = i/N , the term
inside the rhs sum becomes

∑

i

∂

∂x
y w(x, y)dy p(x, x0, t)

and exchanging the summation over i and derivation over x :

∂

∂x
p(x, x0, t)

∑

i

y w(x, y)dy

Here we recognize the term inside the sum which is the average of
w(x, y), taken at a fix x, which we will denote again by a(x):

a(x) = 〈y〉x =

ˆ

I

yw(x, y)dy

which is the average jump size from state x. The development to
the second order will give us a term of the form

b(x) =

ˆ

I

y2w(x, y)dy =
〈

y2
〉

x

which is the second moment of the jumps originating at x.
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Fig. 4.1: Drift and diffusion coefficients for the general process, given
jump rates w(x, y).


