
Kolmogorov, forward,backward, �xation probability and time.

A discrete stochastic system is one where an observation(measure) of the system results in an
integer (or a vector of integers). Some examples are number of neutrons in a nuclear reaction,
number of microbes moving around and duplicating, number of molecules in a chemical reaction.
Many concepts in stochastic systems are very simple when formulated for discrete processes and
give rise to systems of ordinary di�erential equations (ODE). Very often, when these concepts are
stated, the continuous limit is taken for large systems and the system of ODE transforms then into
a single partial di�erential equations (PDE). The continuous limit may be problematic and should
be derived carefully: often, the boundary conditions are naturally stated for discrete processes but
have to be adjusted for continuous systems.

I. TRANSITION RATES.

Consider a one step stochastic process (extension to
multi- step is trivial) with time independent transition
probabilities

W (n→ n± 1) = W±(n)

This is the probability density at which the system jumps
from sate n to state n ± 1 during a short (in�nitesimal)
time interval dt. Experimentally, it can be measured by
observing a large number of time jumps from state n to
state n±1. The jump times are exponentially distributed
with parameter

τn =
(
W+(n) +W−(n)

)−1
(1)

Once a jump has occurred, the probability to be a n →
n± 1 event is

P±(n) = P (n→ n± 1) = W±(n)
(
W+(n) +W−(n)

)−1
(2)

Gillespie Algorithm.

This is indeed how the stochastic systems are simu-
lated. The computer simulates one trajectory at a time.
Beginning the system in state n at time t = 0, the sys-
tem draw an exponential random variable to determine
the time to the next transition:

t = t+ Poisson(τn)

and a uniform random variable x ∈ [0, 1] to determine
the direction of the transition

x = Uniform(0, 1);

if(x < P−(n)) then n = n− 1;

else n = n+ 1;

The computer then loops the above algorithm to generate
a trajectory, and then loop some more to generate many

trajectories for a given time interval or until absorption
has occurred (on this, more later).

Figure 1: Forward equation.

II. FORWARD AND BACKWARD MASTER

EQUATIONS.

Beginning with di�erent states, the system will follow
di�erent stochastic paths and reach di�erent states at the
time t. Let us call P (n,m; t) the probability density to
reach state n beginning with state m at time t. This can
be measured by observing (or simulating) a large num-
ber of trajectories during a time interval t, and selecting
the ones which begin in m and ends in n ; P (n,m; t)
will be the relative number of these paths. We can re-
late this probability to adjacent probabilities, either at
the �nal point or at the initial one. These will give rise
to two di�erent equations called forward and backward
Kolmogorov equations.

A. Forward.

We will �x the initial state m. Let us decompose
P (n,m; t) into �and�s and �or�s. The probability to be
in n at time t is (�g. 1)

• ( the probability to be at n−1 at time t−dt ) AND
(jumping to n during dt) OR

• ( the probability to be at n+1 at time t−dt ) AND
(jumping to n during dt ) OR

• ( the probability to be at n at time t − dt ) AND
(staying in n during dt ):
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Figure 2: Backward equation.

P (n,m; t) = P (n− 1,m; t− dt)W+(n− 1)dt

+ P (n+ 1,m; t− dt)W−(n+ 1)dt

+ P (n,m; t− dt)W 0(n) (3)

where W 0(n) is the probability of staying in state n dur-
ing the short interval dt:

W 0(n) = 1−
(
W+(n) +W−(n)

)
dt

We can now develop equation (3) into power series of dt
. Note that the �rst two lines don't have terms in (dt)0.
The 0-order term of the third lines cancels the left hand
side of the equation and therefore

dP (n,m; t)

dt
= W+(n− 1)P (n− 1,m; t)−W+(n)P (n,m; t)

+ W−(n+ 1)P (n+ 1,m; t)−W−(n)P (n,m; t)(4)

The interpretation of this Master equation is simple : the
change in state n is the balance of upward and downward
�ux into it.

B. Backward.

In a manner analog to the forward equation, we can
relate P (n,m; t) to adjacent probabilities at the initial
point(�g. 2):

P (n,m; t) = P (n,m+ 1; t− dt)W+(m)dt

+ P (n,m− 1; t− dt)W−(m)dt

+ P (n,m; t− dt)W 0(m) (5)

Note that, in contrast to eq.(3) each line contains the
factor W i(m): this is because we know the initial state,
contrary to the previous case where the state at time
t − dt was not known. Developing again in power of dt
up to the �rst order, we get

dP (n,m; t)

dt
= W+(m) [P (n,m+ 1; t)− P (n,m; t)]

+ W−(m) [P (n,m− 1; t)− P (n,m; t)](6)

Note, in contrast to the forward equation, how the tran-
sition rates appear in the backward equation.

C. Bounded systems.

From know on, we consider only bounded stochastic
systems, i.e. the system will remain always between two
boundary states which we will call 0 and N (N > 0).
This statement, in terms of transition rates means that

W+(N) = W−(0) = 0 (7)

These conditions modify slightly the boundary conditions
for forward and backward Kolmogorov equation. For the
forward equation and the �ux into state n = N (n = 0)
, there is no upper (lower) path (�g.1) and we have

dP (N,m; t)

dt
= W+(N − 1)P (N − 1,m; t)−W−(N)P (N,m; t)(8)

dP (0,m; t)

dt
= W−(1)P (1,m; t)−W+(0)P (0,m; t) (9)

Of course because of the condition (7), we don't have to
write these boundary conditions explicitly, but it is more
clear to state them anyway. The same considerations
apply to the backward equation:

dP (n,N ; t)

dt
= W−(N) [P (n,N − 1; t)− P (n,N ; t)](10)

dP (n, 0; t)

dt
= W+(0) [P (n, 1; t)− P (n, 0; t)] (11)

III. FIXATION PROBABILITIES.

Suppose now that both boundary states n = N and
n = 0 are absorbing : once the system has reached one of
these states, it will remain there. If we think for example,
in terms of two competing microbial species, once one
species has gone extinct, it will never come back. Making
these states absorbing means that

W−(N) = W+(0) = 0

Such a system will eventually absorb into either n = 0 or
n = N state:

lim
t→∞

P (0,m; t) + P (N,m; t) = 1

An important question is: beginning in state m, what
it the probability

πN (m) = P (N,m;∞)

of being eventually adsorb into state N ? In other terms,
which proportion of trajectories will reach n = N instead
of n = 0.
Obviously, if we know this quantity, we also know

π0(m) = 1 − πN (m). To answer this question, we
again decompose the probability with �and�s and �or�s
and then, will use the backward Kolmogorov to �nd a
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useful relation. Let us �rst note that πN (0) = 0 and
πN (N) = 1. We therefore look for other cases m 6= 0, N .
In order to get to state N , we have to get out of state m
(and into m±1) and then to N . The probability that the
transition is into m± 1 is given by eq(2) and therefore

πN (m) =
W−(m)

W−(m) +W+(m)
πN (m− 1)

+
W+(m)

W−(m) +W+(m)
πN (m+ 1)

calling w±(m) the (normalized) rates in the above equa-

tion, we get a tri-diagonal linear system:

−w−mπm−1 + πm − w+
mπm+1 = 0 (12)

m = 1, 2, ...N − 1 (13)

The more rigorous way of arriving at the above equa-
tion is to use the backward Kolmogorov equation (6) and
let t → ∞. In, this limit, dP (N,m)/dt → 0 and the
remaining of the equation reduces to eq.(12). We have
N −1 unknown and equation, which we can write in ma-
tricial notation AX = B as



1 −w+
1

−w−2 1 −w+
2

. . .
. . .

. . .

−w−N−2 1 −w+
N−2

−w−N−1 1





π1
π2
...

πN−2
πN−1


=



0
0
...

0
w+

N−1



Numerically of course, any linear package solver will
handle this very easily. We can also solved it analytically:
equation (12) may seem to be a two term recurrence equa-
tion ; it can however be trivially reduced to a one term
recurrence equation by noting that w+(m)+w−(m) = 1.
Setting yk = πN (k + 1) − πN (k), equation (12) can be
rewritten as

w+(m)ym − w−(m)ym−1 = 0 m = 1, ..., N − 1

which is easily solved into

ym = f(m)y0 m = 1, ..., N − 1

The coe�cient y0 itself is determined by summing over
all indexes ans noting that

N−1∑
m=1

ym = πN (N)− πN (0) = 1

and therefore

ym =
f(m)∑N−1

m=1 f(m)

which leads to

πN (m) =

∑m−1
i=1 f(i)∑N−1
i=1 f(i)

IV. ABSORPTION MEAN TIME.

A. Bounded system, one absorbing states.

An other important concept is the �xation time, i.e.
�mean time to �xation� or ��rst passage time�. Let us
again consider the bounded system (between n = 0 and
n = N). Let us moreover suppose that state n = N is
absorbing:W−(N) = 0. Each trajectory i beginning at
state m will eventually reach the state N at some time
ti and remain there. We want to compute T (m), the
average over all these absorption times ti (�gure 3). The
short answer is

T (m) =

ˆ ∞
0

(1− P (N,m; t)) dt (14)

The reason is the following : let p(t;m) be the probability
density of beginning at statem and getting absorb during

Figure 3: mean time to �xation
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[t, t+ dt[. Using again the tricks of �and�s, we have

p(t,m) = P (N − 1,m; t)W+(N − 1)

As W−(N) = 0, a short look at the boundary condition
(8) shows that the right hand side of this equation is just
dP (N,m; t)/dt so the mean time to absorption is

T (m) =

ˆ ∞
0

tp(t,m)dt

=

ˆ ∞
0

t (dP (N,m; t)/dt) dt

= [t(1− P (N,m; t)]
∞
0 +

ˆ ∞
0

(1− P (N,m; t)) dt

=

ˆ ∞
0

(1− P (N,m; t)) dt

Note that the condition T (N) = 0 is automatically sat-
is�ed. We can now use equation (14) to compute, with

the help of the backward Kolmogorov equation (6) the
quantity

W−(m)[T (m− 1)− T (m)] +W+(m)[T (m+ 1)− T (m)] =ˆ ∞
0

−dP (N,m; t)

dt
dt

Which leads to the equation for mean absorption time

W−(m)[T (m− 1)− T (m)] +W+(m)[T (m+ 1)− T (m)] = −1

m = 0, 1, ...N − 1 (15)

In principle, care should be taken with the state m = 0
(see discussion on the boundary condition), but with
bounded states, W−(0) = 0 so we can use the above
equation without writing explicitly the boundary condi-
tion. Again, the above equation can be solved numeri-
cally by resolving the matricial system



W+
0 −W+

0

−W−1 ΣW1 −W+
1

. . .
. . .

. . .

−W−N−2 ΣWN−2 −W+
N−2

−W−N−1 ΣWN−1





T0
T1
...

TN−2
TN−1


=



1
1
...

1
1



Note the di�erence between the �rst and last line and
compare them to the analog matrix for �xation probabil-
ities.
We can also use the same argument as in the previ-

ous section to solve the system exactly. The solution is
slightly more complicated because the recurrence equa-
tion is this time

W+(m)ym −W−(m)ym−1 = −1

which is a non-homogeneous recurrence equation. Theo-
retically however, the solutions are obtained in the same
way. Solving the equation for ym = Tm+1 − Tm leads to

y0 = −1/W+(0)

ym = f(m)y0 + g(m)

and T0 for example is obtained by summing up the above
equation.

B. Bounded system, two absorbing states.

Nothing really changes if the two states n = 0, n = N
are absorbing. Following the same line of arguments leads

to

T (m) =

ˆ ∞
0

(1− P (N,m; t)− P (0,m; t) dt

which checks automatically T (0) = T (N) = 0. Using
the backward Kolmogorov equation, we �nd again the
same equation for the mean �xation time, except that
the index varies from m = 1, 2, ...N − 1.

C. Unbounded systems.

Many stochastic systems are unbounded, or semi-
unbounded. The question is how long the system stays
between two bounds, say n = 0 and n = N . This problem
can be brought back to the previous problem by arti�-
cially setting W±(N) = 0 and W±(0) = 0, i.e. as soon
as the system reaches one bound, we record the time at
start again from the same initial state m.


