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This short tutorial is a first approach to discrete Masterdfign manipulation. Only the simplest cases are
considered, mostly when moment closure is exaet,moments of ordek only depend on moments of lower
order.

. INTRODUCTION.

It is not easy to solve a discrete Master Equation (ME), eeettfe simplest cases. It is however possible to extracbuari
moments from the ME, and write directly a differential eqoas for them. We are mostly interested in first and second emtsn
( variance and correlations). We’'ll show here, through fesaneples, how this is done, going from simple, zero dimeradion
systems to fully spatial ones.

1. 1-COMPONENT SYSTEM.

Suppose we have a system which can be found in various statésnet with probabilitiesP(n,t). What we know about this
system is the jump probabilitiese. therate of transitionsbetween different states, which we denotesNby(n) andw(n).
We will suppose, for simplicity, that these jumps are indefent of time, but this constraint can be relaxed easily. fibaning
of these rates is the following : If we prepa¥g( think one billion, or one million billion, a big number) iegpendent system in
the staten, after a (short timejit, we'll find that a proportioW=* (n)dt of them have jump into state+ 1. Again, for the sake
of simplicity, we suppose that there is no jump to statesrdtrenn+ 1.

Now, we are in the position of formulating a master equatipdunting the proportion of systems coming to statnd the
proportion leaving it :

dP(n,t)
dt

= W (n—1)P(n—1) —W"(n)P(n) + (1)
W™ (n+ 1)P(n+ 1) — W~ (n)P(n)

The above equation is in fact an (enumerable) infinite nurabeoupled equations, one for each

A. zero-thmoment: 3,

Now, suppose that we sum all these equations. We'll alteelgitsay that we apply th§,, operator to eq.(1). On the left
hand side, we can change the ordeFgénd(d/dt) operators, ané being a probability, we get

(d/dt) S P(nt) = di/dt
-0

On the right hand side, let us look at the first term, contajiren — 1 :

nim W (n—1)P(n—1)= nim W (n)P(n) 2

N=—oo N=—o0

To get this equality, we have changed our summation varifabfe nton— 1 (i.e. replaced alh’s by n+ 1). The sum being
between minus and plus infinity, the domain of summation dagschange. This is just to say that for examgign and
Yn(n—1) are the same thing, because both are short hand notation(fe2) 4+ (—1) +0+ 1+ 2. Thus, the right hand side of
eq.(1) is also zero. We have got, by applying Jheoperator, 0= 0, which we already knew.



C \Variance y,n? 2

B. first-moment: S,n

This exercise of index summation can be pushed forward torgare information about the dynamic of the system. Suppose
that before summing all the equations, we multiply each $ynitlex,n and then sum them up, thus applying hien operator.
For the |hs of eq.(1), we get

dy,nP(nt) d(n)

dt T 3)

where(n)denotes “averagr’. In fact, you should, whenever you see a symbol likef (n) >, think of replacing it with the
words “average of functiofi(n)”, or with the mathematical operatidn, f(n)P(n). If E(n) is the energy of a hydrogen atom in
quantum state, andP(n) the probability of finding an atom in state then(E(n)) is the average energy of the hydrogen atom
present in our cavity.

What about the right hand side ? Repeating the operation.(®)dqr the first term, we get

nim nWt(n—-1)P(n—-1) = nim (n+ )W (n)P(n)

N=-—oo N=—oo

and when adding the second term, what remains isjy¥¥ " (n)P(n) which, as we said, we denof&/* (n)). Applying the
same trick to the third and forth term gives 4sW—(n)), so finally, we get a full equation for the evolution of the mage :

d(n) _ ;
Sk = W) =W () @

a. Example 1 : brownian movementConsider a particle on a 1d lattice , hopping to the left ohtrigide with the same rai@,
independent of its position on the lattice. TherV(n) = W~ (n) and thus(d/dt)(n) = 0. Thus, the average position of the
particle remains constant.

b. Example 2 : birth-death. Consider an ecosystem composedgdrganism at timeg. Birth and death events are random
phenomena which occur by ratésand p: the probability for one birth(death) to occur at timeduring a short intervatt,

if there aren individuals present at this time %ndt. Thus, in our notation(W* (n)) = An and(W~(n)) = un. The average
number of the system is thus given by

d(n)

gt = An—Hn) = (A —n)

This is just a first order differential equation for the awy@awhich has the following solution :
<n> — noe(Afu)t

The average number in the ecosystem grow or decrease exjadiyedepending on the relative value of birth and death.ra

C. Variance : y,n?

The above game generalizes to moment of oiderto get the evolution ofn¥), apply the operatoF , nk to the master
equation. We seldom go beyond the second moment in the eagriyfe, but this quantity is of prime importance. Playingth
index game for the second moment thus gives us

(")

L = 2(n(W () —W () + (W (1) + W () ()

What is even more interesting is the centered second mowcalgd the variance = <n2> — <n>2. Using eqs.(4,5), one get

av d<n2>
ot - a2
— 2((n— (M) (W (1) =W~ () + (W () + W~ ()




D The characteristic functiony , exp(ins) 3

c. Example 1 : brownian movement\We get

d(n?)
dt

=2

and thus,<n2> = 2f3t (assuming the particle is at= 0 at time 0). This is a well known result of brownian motion. idover, if
we call/ the lattice size, the position= /¢n and<x2> = 2B¢%t. The coefficienD = 2/ is called the diffusion coefficient.

d. Example 2 : birth-death. Let us suppose that the birth and death rate are egual ) (if not, the variance will also grow or
decrease exponentially). There is no change in the avenage {n) = ng. The second moment reads,
d(n?)
dt

The variance thus grows (linearly) in time, even though therage remains constant ! This is a particular case where the
variance can become much larger than the square of the averag

= (A + p)not +ng

e. Exercise 1. For the chemical equation

A

Kott

obtain the mean and variance of spedesupposing that all molecules akeatt = 0.

D. The characteristic function: S ,exp(ins)

Instead of painfully computing the moments one after theptthere is way to compute them all together at once. At least
formally. Consider a functiomp(s,t) defined on the interva0, 271, of which P(n,t) are the Fourier coefficients at tinhe

o(st) = +Zw P(n,t) exp(ins)

n=—oo

If @is known, it is straight forward to gét:

P(n,t) = %T/Ozn(p(s,t)exp(fins)ds

Even without computing the above integral, we can get alhtbenents by differentiating. For example, the first two moments
are given by

199
i ds

—~
=)
=2
Il

ZnP(n,t) =

n

s=0
%@
2 _ —
> nP(nt) = 32|,

n

(n”)

and so on : th&-th moment is equal to theth derivative ofp at points = 0, scaled by(1/i)X.
Now, let us apply the operatgr, exp(ins) to the master equation (1). Playing the dummy index gamenaayal exchanging
summation and derivation when ought to bring us

99 _ (@ 1) (MW () + (e 1) (W (n) ©)

This doesn’t seem very helpful until we notice that the tenside the()’s can, sometimes, be related to the functipand its
derivatives.



E Generalization. 4

f. Example 1 : brownian motion. There, the jump probabilities are constant and indeperafent W+ (n) = W~ (n) = 3. Thus,
each bracket of eq.(6) gives back exactly the functgand

99 _p(e+ e 2)p=2B(coss) - o @)

As the particle was at= 0 at timet = 0, P(n,0) = &, 0 and¢(s,0) =1. The solution of eq.(7) is thus
@(s;t) = exp[2B(cog(s) — 1)t]

We can now take the various derivatives and obtain the quoreting moments. We can do a little more here and get the
probabilities, because the integration of the above fonds well known :

P(n,t) = e #n(2Bt) ty
wherel, is the Bessel function of ordem. For long timesi.e. 2t > n?/4, a very good approximation of the above function is

1 2
P(nt) = 1 __eP/2R
(1) \/2m(2pt)

The density probability of finding a particle betwees ¢n andx = ¢(n+ 1) is P(x,t)¢ = P(n,t) and therefore,
1 2
P(x,t) = ———g X/ 9
oet) V2nDt ©

where we have defined the diffusion coefficiént 2B8¢2. This is the usual gaussian of brownian motion.

g. Example 2 : birth-death. We will again take the special case of equal birth and deaéWwa= y = 1. ThereforeW"(n) =
W~ (n) = n, and({exp(ins)n) = —ids¢. The characteristic differential equation reads :

o =2(cogs)—1)dsp
which can be solved :

[—1es-t]™
st = [teiS —(t+1) (10)
Forng = 1 (exactly one organism at the initial time)

POt) = t/(141)
P(nt) = t"1/(1+t)™ n>0

E. Generalization.

What we said above about three specific cases can obviousiktéeded to any functiof(n) :

d({f(n)
dt

= ((f(n+2) = F(M)W* () = ((F(m) = f(n=1))W~(n))

Note that for the momenti(n) = nk, f(n) — f(n— 1) is a polynomial of ordek — 1; if the jump rates are no more than linear
in n, both sides of the above rate equation will be polynomiathefsame degree. For many realistic situations, this wilbeo
the case and some kind of approximation and cutting will belired. The various scheme for moments closure approximsti
are beyond the scope of this documeénto

1 The great majority of them lack mathematical rigor ; the diffi task of estimating the errors introduced by such sclsemeften done through numerical
simulations.



F. Problem.

Suppose that we have a large pool of individuals formeSdifferent species, equally represented. We chdbselividuals
from the pool, what is the probabili§(s,N) of obtainings different specie®(s,N) ? [Help : imagine a process by which you
pick individuals one by one. ThelW(s — s) = s/SandW(s— s+ 1) = 1—s/S, wheres s the number of different speices
already present in your bag. Form the master equation auad srhctly forP(s,N). You can also extract the moments and show
that

(s(N)) =S(1- (1-1/9")
Push the computation to the variances, and evaluated théamuoh species missed after 10 picking if you have obtained 4

species.

Ill. 2-COMPONENTS SYSTEM.

What we'll do here is merely a repetition of the above exexidHowever, as we’ll encounter for the first time correlagio
we’'ll do it in some details. It is also a good first step befoerking the spatially extended systems. Suppose now that ou
system has a probabili§(n,m;t) to be in staté€n, m) at timet. The master equation reads

PO W (- Lm)P(n— 1.m) Wy (nmP(nm) + (11)
W, (n+1,mP(n+1,m) —W (n,m)P(n,m)+
W, (n,m—1)P(n,m— 1) —W,"(n,m)P(n,m) +
W, (n,m+1)P(n,m+1) =W, (n,m)P(n,m)

Applying 3, mn will give the evolution of(n)(note that the third and forth lines of eq.(11) do not condéoto this sum) :
d(n) /dt = (W;"(n,m) =W, (n,m)). We would get a similar result fqm) if we had appliedy , ,m.

The next step is to compute the evolution<0f’—> by applyingznymnz. The formal expression we get is similar to the one of
the last section. The main difference is thatf(n,m) containgm explicitly ( as it often does, we'll see a basic example bgjow
thend <n2> /dtwill depend on correlationéim). We can get an equation for this latter by applyifig, nmto the ME :

d(nm)
dt

So the task will be to solve two coupled differential equasio

= (MW" (n,m) =Wy (n.m)) + (n (W, (0. m) =W, (n,m))) (12)

h. Example 1 : brownian motion again MVe suppose this time that our brownian particle jumps ar@ufdilattice, and the jump
rate is, as before3 : the probability for the particle to jump, in the short intakdt, to one of its neighbor igdt, and hence,
its probability to leave the cell is@dt. As all jumps probabilities are equal, we'll ggt{n) /dt = d(m) /dt =0 . The second
moments do not contain correlations and as befbte?) /dt = d (nm?) /dt = 2. By puttingx = n/, y = m¢ andr? = x* +y?,
we obtain(r?)= 4B¢?t = Dt. In general, diffusion coefficient aidimension is defined @34 = 2dB¢? and(r?) = Dt.

i. Example 2 : protein production from a non-regulated gen€Ehis is a two step process : first, RNA is produced from DNA dreht
RNA is read by ribosomes to produce proteins. Both RNA andgimare subject to degradation (with rafgsandpp). Let's

call r and p the number of RNAs and proteins inside the cell. RNA produrcfrom the gene is a poissonian stochastic process
with rateA; and thus,

W (rp) = A (13)
W (r,p) = wr (14)

As you notice, none of the above equations conpaso we can treat RNA as a one component chemical reactférro ™. R+1

dir)

dt =Ar — Hr (1)



and the stationary level is given §y) = A,/ ;. For the second moment,

d(r?
iit ) =2A(r) — 2y <r2> + A+ e (r)
A short massage of this expression will show that the statipwmariance i8/ar(r) = (r): the probability distribution of RNAs
is thus poissonian.

The production of proteins depends on the amount of availRbDIAs and the efficiency of this reactidg:

W' (r,p) = Apr (15)
W, (r,p) = Hpp (16)

The stationary average number of proteins is easy to congmateeadsp) = Apr /1. The second moment however contains
correlations :

d(p®) >
ar = e{rP) = 2p(P%) +Ap(r) + Hp (P)
So we have to write them down :
d{r
UPL (o — ) + (1 (Aot — D))

= —(Hr+ Hp) (rp) + Ar (P) +Ap(r?)

As(r), <r2> and(p) are known, the above coupled equations are easily solveaifgh care is taken of not loosing a parameter
along the road. The interested reader can show that theysstae variance is given byar(p)/(p) = 1+ b whereb is the
average number of proteins produced per RNA. Protein Higidn is therefore non-poissonian.

j. Example 3. RNA burst. In a beautifull paper, Goldingt al. 2measured the RNA production in single cells and in real time.
They came with the (apparently) strange result that for &relom variable RNAY / (r) = 4. The RNA production seems
simili-poissonian, but with a ratio of 4 instead of one betwéhe variance and the average. In order to explain thistyésey
imagined the RNA production as a two step process : a geneedurfied ON or OFF. During the ON period, the gene can
transcribe RNA.
Let us calln the state of the gene (0 or 1) anthe number of RNA molecule. The state of the gene is a binopnéadess
Wi (n) = k(1-n)
W, (n) = Kn

wherek k' are ON-OFF switch rates. the equilibrium state is given by

k
=

wherert is the fraction of time spent by the gene in the ON state and

(n) =1
As an honorable binomial process, the varianceisfgiven byt(1— 7). Production of RNA can only take place during the ON
state of the gene, grAn R+1:

W,H(n,r) = An
W, (n,r) = pr

whereA is the synthesis rate of RNA andits degradation as before. Processing these rates as bgtoget

(r)=@A/wrt

2 Golding, Paulsson, Zawilski & Cox, Cell23:1025(2005)



the actual number of RNA is as before the ratio of productieer @legradatin, but this time multiplied by the fraction iofi¢
when the gene is ON. After processing the correlations, we ge

() = (A /wT(1+a)

where
__Ak+p)
p(k+Kk+p)
First, note that ift < 1, then(r)? < (r?) and thus,
Vv
— =~ (1+a)

r)

More over, ifk,k' < y, then an increase in will increase(r), but will not affect noticeably the ratig/(r). This is what is
observed.

IV. SPATIALLY EXTENDED SYSTEM.

We could also have called this section “infinite componepstesn”. The smart term for this, used in quantum mechanics,
is “second quantification”. As an example, suppose that yenetplacedy particle oneachcell of an array (which we’ll
suppose d for the moment) ; particles are subject to stochastic eimiusuch as diffusion. It will be useless to track the
spatial probability distribution of each particle, spdlgias they are indistinguishable. A much more useful infation is the
probability of havingn; particles on cell.

This will be our task below. Notations however will becomanhersome very soon, so we should spend some time on
them. The state of the system will be referred to by the vatter(...,n;,ni;1,...) andP(n; t) will be the probability of being
in staten at timet, i.e. havingn; particles on site. We will frequently have to manipulate the stdten;_;,n; +1,nj;1,...),

i.e. the staten’ where one particle has been added (or removed) at sitstaten. We will note these sates kg n andan.
The a’s are often referred to as creation and annihilation operdhen one particle jumps from sitdo sitei + 1, the state
n becomes the stamtrlam. Let us not forget that this is just a short hand notation ftstate (..., nj_1, N, Ni+1,...) becomes
(onizg, =L N +1,..0)"

We will also need a notation for “number of particle on $iteWhen there is no possible confusion on the sgtee will just
usen; ; if there is a risk, we will us&\;(n). N; is the counting operator of site

Fundamental example : diffusion.

As for before, the jump (to a neighboring site ) probabiliby & given particle is, independent of all othgBs,What is then
the probability foroneparticle migrating from sitéto sitei + 1 during a short intervalt ? Of course, it is proportional to how
many particles are already thereion

W(i —i+1;n)=BNi(n) = pBn; (17)

To write a master equationg. write an evolution equation fdP(n; t), we have to count all the possibilities of coming to and
leaving the stata. Leaving staten is easy : it is enough to be in this state and have one partioiping from site to sitei +1
(whateveri). On the other hand, to come to this state, it is enough to tiesirstatea,a;.1n and have one particle on sit¢o
migrate to sité + 1. Summing up all these possibilities

dPEjr:; t = 5 W(i —i+1;a"a1n)P(a aan;t) —W(i —i+1;n)P(n;t) (18)
+ W(i —i—1;a"a_1n)P(a a_1n;t) —W(i —i—1;n)P(n;t) (19)

You could think that we have forgotten some events, like pé@nstatea;’, ;ain and having one particle leavirig+- 1 for
i. But because we are summing on all sitethis event is indeed accounted for in the above master iequafs we said,
notations are a little cumbersome, but nothing is really jgiicated. For exampleN(i — i+ 1;&a"a;1n) = B(ni + 1) and
W(i —i+1;n)=pn.

Let us just recall now the definition of various moments. Therage number of particle at skas

(N = > nkP(n)
{ni}
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which is just a generalisation of what we have seen at sedilio\ll other moments are computed alike. For example, the
correlation between siteand site/ is

(nng) = (Z ngnP(n)

Evolution of the average.

Following the same lines of arguments developed above ttthgeverage number of particle at diteve apply thez{nj} N
to the master equation (18). The left hand side will give,ssalid (ny) /dt.

For the right hand side, little care should be taken as we twperform a double surfi(n, N« 3i{...}. Note that terms in
the second summation which do not contairexplicitly will vanish after the summation. The only site#lwnon-vanishing
contributions are then=k+ 1 andi = k.

k. (i) Letuslookat =k—1in full details. The are four terms in the summation. We hameerform first

> nW(k—1—k; & an)P(a_ an;t) (20)
{nj}

We will play again the “dummy index” game. Performing vategchangey — ng+ 1andng_; — ng_1 — 1 will transform state
a, ,axn into staten. The boundaries of summation being minus and plus infinityaéiqn (20) is then rewritten :

(Z‘(nkqt DYW(k—1— k; n)P(n; t)

nj

The second term is justB 3 n nW(k—1 — k; n)P(n; t) . The next two terms do not contaip explicitly in their transition
rates (which involve sitek— 1 andk — 1) and their contribution is zero. Therefore, the contiitnubf the sitel = k— 1 to the
average evolution is

(W(k—-1—k;n))

By the same token, the contribution of site k+ 1 to the average evolution will b@V(k+ 1 — k; n)).

I. (i) It remainsto compute the contribution of site: k. For

(Z‘ MW (k — k=+1;a) as1n)P(a) aks1n; t)

nj
Changing variablesy — ng — 1 andng;.1 — Ng+1 + 1, the sum transforms into

(Z‘(nkf DW(k — k+1;n)P(n;t)

and therefore, the total contribution of site- k to the average evolution is (W(k — k—1;n)) — (W(k— k+1;n)). The
evolution equation takes the symmetric form

d {n)
dt

= W(k-1—k;n))—Wk—-k-1;n)) (21)
+ W(k+1—k;n))—W(k—k+1;n))
Remembering the definition of transition rates (17),

d (nk)
dt

=B ((Mk—1) + (Nky1) —2(Nk)) (22)

which will become the usual diffusion equatigrt = Ddxzc when we will take the continuous limit. More on this later.



Evolution of second moments.

Let us recall what we did in the last section. We saw that tritmution of sitei = k+ 1 to the average evolution is
([(nk+1) —nW(k+1—k;n))
The contribution of sité =k is
([((nk—1) = nW(k — k=£1;n))

A little exercise will show that this generalises naturadlynoments of ordep, when operatoy (n nl’(J is applied to the diffusion
master equation. The contribution of these sites to theutieol of the second moment of sikewill be respectively

{[(ne+1)2 =] W(k£1— k;n)) = ((2ne+ 1W(k£ 1 — k; n))
and
{[(nc=1)2 =] W(k — k+1;n)) = ((—2nc+ 1)W(k — k£ 1;n))

We therefore get a nice symmetric form for the second monseheéore

d{ng)
T = (2nkW(k—|— 1—k; n)) - (2nkW(k —k+1; n)>
+ (2nW(k—1—k;n))— 2nW(k— k—1;n))
+ (Wk+1—-k;n)+Wk—-1—k;n)+2W(k— k—1;n))
There is however a small problem here if we recall the definitif transition rates (17)
1d <n2>

B dt —4(Ng) + 2(MeNiy 1) + 2 (MM _1) (23)
+ 2(nk) + (Mkg1) + (Nk—1)

The evolution of the second moment at ditdepends on the correlations between this site and its neighfn...1), which are
unknown quantities.

We had already encountered this problem when handling twmoponent systems. To compuf®ng.1), we just have to
applyz{nj} NkNk+1to the master equation (18). Sites k—1,...,k+ 2 will contribute to the sum. We will drop writing the state
n in transition rate§V.

e Contribution of sitd = k— 1 is ([(nk + 1) N1 — NkNk-1] W(k— 1 — K)).

e Contribution of sitd = kiis ([(nk — 1) (Nk+1 + 1) — NNk ] W(k — K4+ 1)) +([(nk — ) N1 — N1 ] W(K — k— 1))

e Contribution of sité = k+ 1 is([Nk(Nk+1 — 1) — Nk ] W(K+ 1 — K+ 2)) +([(Nk + 1) (N1 — 1) — M1 ] W(k+ 1 — K)).
e Contribution of sitd = k+ 2 is ([nk(Nk+1 + 1) — Mk ] W(K+ 2 — k+ 1))

The dummy index game is clear : when writing an expressiotedongW (i — j), the prefactor which contain theindex (the
receiving end) will get-1 and the one containirigthe giving end) will get-1. Simplifying and summing the above expression,

% = (M1 W(k—1— k) —W(k — k—1)])

+ (M= Nkg1) Wk = k+1) =W(k+1—K)])
+ (M [~W(K+1— k+2) + W(k+2 — k+1)])
(W(k — k+1)) — (W(k+1— k))

And replacing with the actual transition rates

1d (M)

5 dr —4 (M 1) + (M- 1My 1) + (N 2) + () + (M 1) — (k) — (M) (24)
It will not consume to much energy to show that this formulagyalizes to(n. > forli—j|>1:
1d{nn;
—M = —4(ninj) + (Nizan) + (Minj+1) (25)

B dt
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Figure 1 functiongtIn(t) forn=0,1,2 4.

Solving the moment equations for homogeneous initial conditions.

To solve egs(25-23) we need to precise the initial conditiofhe condition in which we are interested here is one having
translational symmetry. For example, having exanglyarticle on each site &at= 0. As time flows, particles will jump around
and destroy the initial condition ; moreover, each redbsawill do that in a different way. What we can expect howeiger
that averagequantities will keep the symmetry of initial conditions,dagise the master equation we use is just an ordinary
differential equations oprobabilities We will thus assume thah;) = <nj> = uvi, j. Eq. (22) reads :

du

—_ _2 =

gt p+u+u=0

The average number of particles per site remains congtdit= ng. For the correlation, translation symmetry imposes that
(ninj) = (ni;kNj4k) Vi, j, k : correlations between two sites then can only depend ondrstancei — j|. Callingun = (Nini-n),

egs (25-23) read (normalizing time by thg factor) :

d

"0 - ouwt2u+2u

dt

dUl

— = —2U1+Up+Uz—

at 1+Up+Ux— U

dun

at = —2Un+Up—1+Uns1

It will be wiser to usevy = Ug — U, Vh = Up Which will give a more symmetric pictures of the above equai:

dv

S = 2t Vo1t Ve (26)

with the initial conditions/o = ng —n andv, = n2. It would have been even wiser to defire= g — 42 — 1, Vn = Un — u?which
does not change the form of equation (26) but only the initialditions :vp = —ng andv, = 0. We will come back to why it is
necessary to subtract average from the variance in difysiocesses.

Bessel functions, have a nice property, linking derivative of thth order to adjacent ones :

dln(t 1
D) 2 (lnealt) + a0
and therefore, the natural solution of eqs.(26) is
Va(t) = —noe 21n(2t) (27)

. The asymptotic behavior of modified Bessel functiot,i$) ~ (1/v/t) exp(t), so all correlations will die out eventually. To
get to the continuum limit, we use the approximation of eqk8eping in mind that; = ¢c(x) (wherex =i/¢) and(nin;.x) =
(2 {c(y)e(y+x))

(ninipk) = —noe *P1n(4Bt) + g+ Nodo

Co X2 5
{e(y)ely+x)) = _\/ﬁeXp(_Z(ZDt))+C°+C°6(X)

m. What is the spatial correlation function 2Vhat do we mean by (k) = (ninj,x) ? This is just a histogram of particles distance

: if we find two particles at distandeof each other, they will contribute one unit fgk). Now, if we haven;particles in celi
andn;_ particles in celi + k, we will haven; x n;_ particles with distanck. Of course, the distance between each particle and
itself ; therefore, each particle contributes one unifr$), whatever the size of cell array . This is the reason behimdgsuch
asnpdy o Or Cod(X).
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V. GENERALIZATION OF JUMP PROCESSES.

Lets get back to 1-component systems. Until now, we have comgidered jump processes of the tygé — i +£1). From
a practical point of view, this means the following : considg a small time intervatit, the probability for one event.€.
jump, birth, death,...) to occur in this interval is somthiike adt, wherea is a caracteristic constant of the system under
consideration. The probability fdwo events to occur is proportional t#2, so for smalldt, we can just neglect these processes.
Of course, bysmall dt, we mean time interval small enough to setlt < 1.

Now, what if the time resolution of our measurement apparatnot good enough to be in this approximation ? Suppose for
exemple that we are observing GFP-proteins under fluoresagpearing in avergage every 10 seconds, but our cameaa has
low sensitivity and we have to integrate for 30" to see an imakthen, the probability for 3 proteins to appear during tine
interval is not anymore negligeable.

We can easily generalize our master equation describingéithan one” jumps by taking into account terms Méén — n+
k) ; such a term means that, being in the statiéie probability to jump to the state+ k during an intervatlt is W(n — n+k)dt.

This is a function of two variables, k. We can measure it experimentzally by making a histogranti pfraps observed.
% = Z W(n—k— n)P(n—k) —W(n— n+Kk)P(n)

k=—00

Note that this equation does not conthis 0, which is automatically removed in the substraction.

A. The average.

Again, playing the dummy index game, multipying byand summing over al’s, changing the variable of summation from
nto n+ kwhen needed, we get

9 ()

o = Z <ZkW(n—> n+k)> P(n)

The inner sum ovek's is just the “average” jump size when the system is in statehich we can noté, or (k|n). The second
summation is the summation of this quantity omts; weighted by the probabilities of being in stateTherefore,

a({n

20 _ (g, (28)
where the inner bracket (subscript 1) is the average ovguthps and the outer one is the average over the states ofstersy
n's.

n. trivial example. Let us reconsider the simplest birth-date process coresidarsection I, wher&/(n — n+1) = An,W(n —
n+k)=0ifk>1,Wh—-n—-1)=punandW(n — n+k)=0if k< —1. Thenk, =1 x An+(—1) x un= (A — y)nand

a(n)
= (A —=p)(n) (29)

which is what we had. It is of course obvious that from (29) &e ecover the simpler case (4).

0. RNA or Protein burst. This is a problem we had fully treated in two component systebut we can simplify it through
generalized jumps. Suppose that during a small time, spéc{be it RNA or protein or whatever) arrive packed in bags of
random size, so th&/(n — n+k) = f(k) for k > 0 (independent ofi). On the other hand, we still continue to consider the
degradation process #fs as a simple poisson oWé(n — n—1) = —un. Then,

kn = z kf(k)—un
k>0
= E—pun
whereE is the average size of the bags. Then
o _

So after a given time$ 1/u), the average reaches the stationnary value
(n)=E/u
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burst degradation

.
/4

3 3 4
t

Figure 2 Specief appears in (temporally poissonian) bursts of randomlsered degrades with raje.

B. The second moment.

We can continue and multiply by the master equation, and then sum ovensll We are now used to this game and we get

%@ = ;<ZznkW(n_>n+k)+ZkZW(n_>n+k)) P(n)

2(n(kn)),+ <<k2|n>1>2

p. trivial example : birth-death. We have already computél|n), = (A — )n, so the first term reads
2(n{kn)1), =2(A —p) <n2>
For the second term, we ha(/le2|n>l = (A + u)n; putting all terms together, we have
9 (n?)

or = 20 =) (n*)+ (A + ) m)

Wich we already knew.

g. RNA or Protein burst. Let us call

F :kész(k)

Computing all the terms accordingly, we have

o(n?
% = 2(n(E— pn))+ (F 4+ un)
= —2u{n?)+ (2E+p)(n)+F
Again, we can compute the stattionary solutiod)
o 2E+4u F
B E_F
M2 2u 2u

or the more interersing quantity VMR, the variante- <n2> — (n)2 over the mear(n)

vV _1+E F- E2

(ny 2 2E

Note that the term term is just the VMR of the bursts. Becausang considering only non-empty bags of spegieppearing,
E > 1. Soin general, for this process

V
—=14a

(n)

where the term has one contribution from the average size of the bags andamtabution from the variance to mean of the
size of the bags. For bags of sizeVIyIR= 1.
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Appendix A: Alternative formulations of the brownian motio n.

1. Basic facts.

Brownian motion plays a central role in physics and therefoany alternative formulations of it coexist ; their usagpehds
on the taste of the user and the experimental/theoretiocdlggm at hand. In the above section, we used continuous time a
discrete lattice approach. On the other hand, an experatigntecording a brownian motion will take successive ynies at
fixedtime intervals. At each time staphe will record the displacemedi : to him d;’s arethe (continuous) random variables
and he can construct all the above concept of brownian mbtyomsing a “discrete time, continuous space” formulatiori. O
course, it would be also possible to develop a full “contunsitime, continuous space” theory, but we will focus herey aml
the former formulation.

Let us suppose a one dimensional world where at each time,dtepparticle under our microscope makes a random jump
di. Space and time being homogeneous, we assume the samleutistrifor alld’s ; in particular,(d;) = 0 and(d?) = 0%
Moreover we assume that the jumps at stepd stepj (i # j) are independent(did;) = (d;) (dj) = 0.

The distance from origin aftéM time interval is the random variable

N

Obviously, (Xy) = 0 and(Xg) = No?. Calling T the duration of time intervals artdthe total time of recording{X?(t)) =

(a?/1)t= Dt where the diffusion coefficierd is defined as it should.
The central limit theorem informs us that if random variatgleare well behavingi(e. possess at least a second order moment
0?) then for largeN, Xy is a gaussian random variable :

P(x) = ;ex (X—2>
= Vo P\ 22
wheres= v/No. UsingN =t /1 andD = 0?/T, we get

1 X2
P(xt) = 5t exp ~ 20t

which is the same as eq.(9).

2. The problem of persistence.

As we mentioned above, for large times, the distribution igaussian. But how large is large ? Or how should we chose
the time interval between two pictures ? The main assumitalrind our computation above was that successive steps are
independent. This is obviously inaccurate if the time wmaébetween successive pictures is too short : becauseingit$a, a
1 micron latex particle in water will (approximately) comge its direction and speed during one nano-second ; an aamoetl
keep moving in the same direction for some time ; a polymdrvait bend over a picometer distance. In all these examples, w
see that thé step conserve some information from 1 step. The simplest way of modeling this process is to asshate

di=pd_1++/1—p25 (A1)

p (€ [0,1]) is the amount of conserved information from the last steyl & is the random modification brought to the step
i — 1. Again, we assume translation invariance in time and spaoanoment should depend on the inde><6,k> = <6jk> and

(dF) = <d§‘> Moreover, we suppos@ ) = 0 and(4?) = 2. We then have
(&) = PP(d20)+(1-P?) (&%) +2pV1- p?(di8)
= p*(d?y)+(1—pPo?

becausa; and$ are independent. Therefor(eif—) = 02 . Now, what about correlation ? Multiplying eq.(A1) by 1and taking
the average,

<didi,1> = pGZ
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More generally,
(didi_y) = p*o?

So correlations decrease exponentially and become nelgligitern: = —1/logp steps, or equivalently, aftés = —1/logp.
Sampling the particle at tc, the movement appears truly brownian, while samplingat, the movement appears ballistic.
The quantity measured by the experimentalist is the distémoen origin afteN stepsXy = Z? d;. Its fluctuations are given

by

z
z

XG) = 2 1<didj>

N(6Z)+2 S (N—K) (do
k=1

N-1 " )
N+2 S (N—K
< + k;( )p>0

the second term is just a geometric series, so we get

1+p 1-pN
2 2 2
=——0°N-2 g
a 1-p P2

Or, in time unit,

(X3(t)) = Dt — A(1— e V/t)

where
2
b_1tpo’
l1-prt
is the diffusion coefficient and
tc=—1/logp

is the persistence time. Note that the amplitéde —2pa?/(1— p)? can be expressed as a functionDaft; and T and is not
an independent parameter. Experimentally, it is easy tmastD andA from a linear regression of the data (if long times and
diffusive regime prevail) and estimafethroughA/D = 21p/(1— p?) which then give access tg. It is also possible to use a
non linear curve fitting to estima#gD andt. and check then their compatibility.

r. History :  Part of this lecture was given in 2006 at Ecole Doctorale desiglue, Grenoble University, as an introduction to
fluctuations in biological systems.



