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This short tutorial is a first approach to discrete Master Equation manipulation. Only the simplest cases are
considered, mostly when moment closure is exact,i.e. moments of orderk only depend on moments of lower
order.

I. INTRODUCTION.

It is not easy to solve a discrete Master Equation (ME), even for the simplest cases. It is however possible to extract various
moments from the ME, and write directly a differential equations for them. We are mostly interested in first and second moments
( variance and correlations). We’ll show here, through few examples, how this is done, going from simple, zero dimensional
systems to fully spatial ones.

II. 1-COMPONENT SYSTEM.

Suppose we have a system which can be found in various statesn at timet with probabilitiesP(n,t). What we know about this
system is the jump probabilities,i.e. the rate of transitionsbetween different states, which we denotes byW+(n) andW−(n).
We will suppose, for simplicity, that these jumps are independent of time, but this constraint can be relaxed easily. Themeaning
of these rates is the following : If we prepareN ( think one billion, or one million billion, a big number) independent system in
the staten, after a (short time)dt, we’ll find that a proportionW±(n)dt of them have jump into staten±1. Again, for the sake
of simplicity, we suppose that there is no jump to states other thann±1.

Now, we are in the position of formulating a master equation by counting the proportion of systems coming to staten and the
proportion leaving it :

dP(n, t)
dt

= W+(n−1)P(n−1)−W+(n)P(n) + (1)

W−(n+1)P(n+1)−W−(n)P(n)

The above equation is in fact an (enumerable) infinite numberof coupled equations, one for eachn.

A. zero-th moment : ∑n

Now, suppose that we sum all these equations. We’ll alternatively say that we apply the∑n operator to eq.(1). On the left
hand side, we can change the order of∑nand(d/dt) operators, andP being a probability, we get

(d/dt)∑
n

P(n,t) = d1/dt

= 0

On the right hand side, let us look at the first term, containing then−1 :

n=∞

∑
n=−∞

W+(n−1)P(n−1)=
n=∞

∑
n=−∞

W+(n)P(n) (2)

To get this equality, we have changed our summation variablefrom n to n−1 ( i.e. replaced alln’s by n+ 1). The sum being
between minus and plus infinity, the domain of summation doesnot change. This is just to say that for example,∑nn and
∑n(n−1) are the same thing, because both are short hand notation for...(−2)+ (−1)+0+1+2. Thus, the right hand side of
eq.(1) is also zero. We have got, by applying the∑n operator, 0= 0, which we already knew.
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B. first-moment : ∑n n

This exercise of index summation can be pushed forward to gain more information about the dynamic of the system. Suppose
that before summing all the equations, we multiply each by its index,n and then sum them up, thus applying the∑nn operator.
For the lhs of eq.(1), we get

d∑n nP(n,t)
dt

=
d 〈n〉
dt

(3)

where〈n〉denotes “averagen”. In fact, you should, whenever you see a symbol like< f (n) >, think of replacing it with the
words “average of functionf (n)”, or with the mathematical operation∑n f (n)P(n). If E(n) is the energy of a hydrogen atom in
quantum staten, andP(n) the probability of finding an atom in staten, then〈E(n)〉 is the average energy of the hydrogen atom
present in our cavity.

What about the right hand side ? Repeating the operation of eq.(2) for the first term, we get

n=∞

∑
n=−∞

nW+(n−1)P(n−1) =
n=∞

∑
n=−∞

(n+1)W+(n)P(n)

and when adding the second term, what remains is just∑nW+(n)P(n) which, as we said, we denote〈W+(n)〉. Applying the
same trick to the third and forth term gives us〈−W−(n)〉, so finally, we get a full equation for the evolution of the average :

d 〈n〉
dt

= 〈W+(n)−W−(n)〉 (4)

a. Example 1 : brownian movement.Consider a particle on a 1d lattice , hopping to the left or right side with the same rateβ ,
independent of its positionn on the lattice. Then,W+(n) = W−(n) and thus,(d/dt)〈n〉= 0. Thus, the average position of the
particle remains constant.

b. Example 2 : birth-death. Consider an ecosystem composed ofn0organism at timet0. Birth and death events are random
phenomena which occur by ratesλ andµ : the probability for one birth(death) to occur at timet, during a short intervaldt,
if there aren individuals present at this time isλndt. Thus, in our notation,〈W+(n)〉 = λn and〈W−(n)〉 = µn. The average
number of the system is thus given by

d 〈n〉
dt

= 〈λn− µn〉= (λ − µ)〈n〉

This is just a first order differential equation for the average, which has the following solution :

〈n〉= n0e(λ−µ)t

The average number in the ecosystem grow or decrease exponentially, depending on the relative value of birth and death rate.

C. Variance : ∑nn2

The above game generalizes to moment of orderk : to get the evolution of〈nk〉, apply the operator∑nnk to the master
equation. We seldom go beyond the second moment in the every day life, but this quantity is of prime importance. Playing the
index game for the second moment thus gives us

d
〈

n2
〉

dt
= 2〈n(W+(n)−W−(n))〉+ 〈W+(n)+W−(n)〉 (5)

What is even more interesting is the centered second moment,called the varianceV =
〈

n2
〉

−〈n〉2. Using eqs.(4,5), one get

dV
dt

=
d
〈

n2
〉

dt
−2〈n〉 d 〈n〉

dt
= 2〈(n−〈n〉)(W+(n)−W−(n))〉+ 〈W+(n)+W−(n)〉
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c. Example 1 : brownian movement.We get

d
〈

n2
〉

dt
= 2β

and thus,
〈

n2
〉

= 2β t (assuming the particle is atn = 0 at time 0). This is a well known result of brownian motion. Moreover, if
we callℓ the lattice size, the positionx = ℓn and

〈

x2
〉

= 2β ℓ2t. The coefficientD = 2β ℓ is called the diffusion coefficient.

d. Example 2 : birth-death. Let us suppose that the birth and death rate are equal (λ = µ) (if not, the variance will also grow or
decrease exponentially). There is no change in the average then :〈n〉= n0. The second moment reads,

d
〈

n2
〉

dt
= (λ + µ)n0t +n2

0

The variance thus grows (linearly) in time, even though the average remains constant ! This is a particular case where the
variance can become much larger than the square of the average.

e. Exercise 1. For the chemical equation

A
kon−−⇀↽−−
ko f f

B

obtain the mean and variance of speciesA, supposing that all molecules areA at t = 0.

D. The characteristic function : ∑nexp(ins)

Instead of painfully computing the moments one after the other, there is way to compute them all together at once. At least
formally. Consider a functionφ(s, t) defined on the interval[0,2π ], of whichP(n,t) are the Fourier coefficients at timet :

φ(s,t) =
+∞

∑
n=−∞

P(n,t)exp(ins)

If φ is known, it is straight forward to getP :

P(n, t) =
1

2π

∫ 2π

0
φ(s,t)exp(−ins)ds

Even without computing the above integral, we can get all themoments by differentiatingφ . For example, the first two moments
are given by

〈n〉 = ∑
n

nP(n,t) =
1
i

∂φ
∂s

∣

∣

∣

∣

s=0

〈

n2〉 = ∑
n

n2P(n,t) =− ∂ 2φ
∂s2

∣

∣

∣

∣

s=0

and so on : thek-th moment is equal to thek-th derivative ofφ at points= 0, scaled by(1/i)k.
Now, let us apply the operator∑nexp(ins) to the master equation (1). Playing the dummy index game again and exchanging

summation and derivation when ought to bring us

∂φ
∂ t

= (eis−1)
〈

einsW+(n)
〉

+(e−is−1)
〈

einsW−(n)
〉

(6)

This doesn’t seem very helpful until we notice that the term inside the〈〉’s can, sometimes, be related to the functionφ and its
derivatives.
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f. Example 1 : brownian motion. There, the jump probabilities are constant and independentof n : W+(n) = W−(n) = β . Thus,
each bracket of eq.(6) gives back exactly the functionφand

∂φ
∂ t

= β (eis +e−is−2)φ = 2β (cos(s)−1)φ (7)

As the particle was atn = 0 at timet = 0, P(n,0) = δn,0 andφ(s,0) =1. The solution of eq.(7) is thus

φ(s,t) = exp[2β (cos(s)−1)t]

We can now take the various derivatives and obtain the corresponding moments. We can do a little more here and get the
probabilities, because the integration of the above function is well known :

P(n,t) = e−2β t In(2β t) (8)

whereIn is the BesselI function of ordern. For long times,i.e. 2β t > n2/4, a very good approximation of the above function is

P(n,t) =
1

√

2π(2β t)
e−n2/2(2β t)

The density probability of finding a particle betweenx = ℓn andx = ℓ(n+1) is P(x,t)ℓ = P(n,t) and therefore,

P(x,t) =
1√

2πDt
e−x2/2Dt (9)

where we have defined the diffusion coefficientD = 2β ℓ2. This is the usual gaussian of brownian motion.

g. Example 2 : birth-death. We will again take the special case of equal birth and death rate λ = µ = 1. Therefore,W+(n) =
W−(n) = n, and〈exp(ins)n〉=−i∂sφ . The characteristic differential equation reads :

∂tφ = 2(cos(s)−1)∂sφ

which can be solved :

φ(s,t) =

[

(t−1)eis− t
teis− (t +1)

]n0

(10)

Forn0 = 1 (exactly one organism at the initial time)

P(0,t) = t/(1+ t)

P(n,t) = tn−1/(1+ t)n+1 n > 0

E. Generalization.

What we said above about three specific cases can obviously beextended to any functionf (n) :

d 〈 f (n)〉
dt

=
〈

( f (n+1)− f (n))W+(n)
〉

−
〈

( f (n)− f (n−1))W−(n)
〉

Note that for the momentsf (n) = nk, f (n)− f (n−1) is a polynomial of orderk−1; if the jump rates are no more than linear
in n, both sides of the above rate equation will be polynomials ofthe same degree. For many realistic situations, this will not be
the case and some kind of approximation and cutting will be involved. The various scheme for moments closure approximations
are beyond the scope of this documento1.

1 The great majority of them lack mathematical rigor ; the difficult task of estimating the errors introduced by such schemes is often done through numerical
simulations.
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F. Problem.

Suppose that we have a large pool of individuals formes ofSdifferent species, equally represented. We chooseN individuals
from the pool, what is the probabilityP(s,N) of obtainings different speciesP(s,N) ? [Help : imagine a process by which you
pick individuals one by one. Then,W(s→ s) = s/S andW(s→ s+ 1) = 1− s/S, wheres is the number of different speices
already present in your bag. Form the master equation and solve exactly forP(s,N). You can also extract the moments and show
that

〈s(N)〉 = S
(

1− (1−1/S)N)

Push the computation to the variances, and evaluated the number of species missed after 10 picking if you have obtained 4
species.

III. 2-COMPONENTS SYSTEM.

What we’ll do here is merely a repetition of the above exercises. However, as we’ll encounter for the first time correlations,
we’ll do it in some details. It is also a good first step before tracking the spatially extended systems. Suppose now that our
system has a probabilityP(n,m; t) to be in state(n,m) at timet. The master equation reads

dP(n,m)

dt
= W+

1 (n−1,m)P(n−1,m)−W+
1 (n,m)P(n,m)+ (11)

W−1 (n+1,m)P(n+1,m)−W−1 (n,m)P(n,m)+

W+
2 (n,m−1)P(n,m−1)−W+

2 (n,m)P(n,m)+

W−2 (n,m+1)P(n,m+1)−W−2 (n,m)P(n,m)

Applying ∑n,mn will give the evolution of〈n〉(note that the third and forth lines of eq.(11) do not contribute to this sum) :
d 〈n〉/dt =

〈

W+
1 (n,m)−W−1 (n,m)

〉

. We would get a similar result for〈m〉 if we had applied∑n,mm.
The next step is to compute the evolution of

〈

n2
〉

by applying∑n,mn2. The formal expression we get is similar to the one of
the last section. The main difference is that ifW1(n,m) containsmexplicitly ( as it often does, we’ll see a basic example below),
thend

〈

n2
〉

/dt will depend on correlations〈nm〉. We can get an equation for this latter by applying∑n,mnmto the ME :

d 〈nm〉
dt

=
〈

m
(

W+
1 (n,m)−W−1 (n,m)

)〉

+
〈

n
(

W+
2 (n,m)−W−2 (n,m)

)〉

(12)

So the task will be to solve two coupled differential equations.

h. Example 1 : brownian motion again !We suppose this time that our brownian particle jumps arounda 2d-lattice, and the jump
rate is, as before,β : the probability for the particle to jump, in the short interval dt, to one of its neighbor isβdt, and hence,
its probability to leave the cell is 4βdt. As all jumps probabilities are equal, we’ll getd 〈n〉/dt = d 〈m〉/dt = 0 . The second
moments do not contain correlations and as before,d

〈

n2
〉

/dt = d
〈

m2
〉

/dt = 2β . By puttingx = nℓ, y = mℓ andr2 = x2 +y2,
we obtain

〈

r2
〉

= 4β ℓ2t = Dt. In general, diffusion coefficient atddimension is defined asDd = 2dβ ℓ2 and
〈

r2
〉

= Dt.

i. Example 2 : protein production from a non-regulated gene.This is a two step process : first, RNA is produced from DNA and then
RNA is read by ribosomes to produce proteins. Both RNA and protein are subject to degradation (with ratesµr andµp). Let’s
call r andp the number of RNAs and proteins inside the cell. RNA production from the gene is a poissonian stochastic process
with rateλr and thus,

W+
1 (r, p) = λr (13)

W−1 (r, p) = µr r (14)

As you notice, none of the above equations containp, so we can treat RNA as a one component chemical reaction /0
µr←−R

λr−→R+1
:

d 〈r〉
dt

= λr − µr 〈r〉
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and the stationary level is given by〈r〉= λr/µr . For the second moment,

d
〈

r2
〉

dt
= 2λr 〈r〉−2µr

〈

r2〉+ λr + µr 〈r〉

A short massage of this expression will show that the stationary variance isVar(r) = 〈r〉: the probability distribution of RNAs
is thus poissonian.

The production of proteins depends on the amount of available RNAs and the efficiency of this reactionλp:

W+
2 (r, p) = λpr (15)

W−2 (r, p) = µpp (16)

The stationary average number of proteins is easy to computeand reads〈p〉 = λpr/µp. The second moment however contains
correlations :

d
〈

p2
〉

dt
= 2λp〈rp〉−2µp

〈

p2〉+ λp〈r〉+ µp〈p〉

So we have to write them down :

d 〈rp〉
dt

= 〈p(λr − µrr)〉+
〈

r (λpr− µpp)
〉

= −(µr + µp) 〈rp〉+ λr 〈p〉+ λp
〈

r2〉

As 〈r〉 ,
〈

r2
〉

and〈p〉 are known, the above coupled equations are easily solved if enough care is taken of not loosing a parameter
along the road. The interested reader can show that the steady state variance is given byVar(p)/〈p〉 = 1+ b whereb is the
average number of proteins produced per RNA. Protein distribution is therefore non-poissonian.

j. Example 3. RNA burst. In a beautifull paper, Goldinget al. 2measured the RNA production in single cells and in real time.
They came with the (apparently) strange result that for the random variable RNA,V/〈r〉 = 4. The RNA production seems
simili-poissonian, but with a ratio of 4 instead of one between the variance and the average. In order to explain this result, they
imagined the RNA production as a two step process : a gene can be turned ON or OFF. During the ON period, the gene can
transcribe RNA.

Let us calln the state of the gene (0 or 1) andr the number of RNA molecule. The state of the gene is a binomialprocess

W+
1 (n) = k(1−n)

W−1 (n) = k′n

wherek,k′ are ON-OFF switch rates. the equilibrium state is given by

〈n〉= k
k+k′

= τ

whereτ is the fraction of time spent by the gene in the ON state and
〈

n2〉= τ

As an honorable binomial process, the variance ofn is given byτ(1−τ). Production of RNA can only take place during the ON

state of the gene, /0
µ←− R

λ n−→ R+1:

W+
2 (n, r) = λn

W−2 (n, r) = µr

whereλ is the synthesis rate of RNA andµ its degradation as before. Processing these rates as before, we get

〈r〉= (λ/µ)τ

2 Golding, Paulsson, Zawilski & Cox, Cell,123:1025(2005)
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the actual number of RNA is as before the ratio of production over degradatin, but this time multiplied by the fraction of time
when the gene is ON. After processing the correlations, we get

〈

r2〉= (λ/µ)τ(1+ α)

where

α =
λ (k+ µ)

µ(k+k′+ µ)

First, note that ifτ ≪ 1, then〈r〉2≪
〈

r2
〉

and thus,

V
〈r〉 ≈ (1+ α)

More over, ifk,k′ ≪ µ , then an increase inτ will increase〈r〉, but will not affect noticeably the ratioV/〈r〉. This is what is
observed.

IV. SPATIALLY EXTENDED SYSTEM.

We could also have called this section “infinite components system”. The smart term for this, used in quantum mechanics,
is “second quantification”. As an example, suppose that you have placedn0 particle oneachcell of an array (which we’ll
suppose 1d for the moment) ; particles are subject to stochastic evolution such as diffusion. It will be useless to track the
spatial probability distribution of each particle, specially as they are indistinguishable. A much more useful information is the
probability of havingni particles on celli.

This will be our task below. Notations however will become cumbersome very soon, so we should spend some time on
them. The state of the system will be referred to by the vectorn = (...,ni ,ni+1, ...) andP(n; t) will be the probability of being
in staten at timet, i.e. havingni particles on sitei. We will frequently have to manipulate the state(...ni−1,ni ± 1,ni+1, ...),
i.e. the staten

′
where one particle has been added (or removed) at sitei of staten. We will note these sates bya+

i n andain.
Thea’s are often referred to as creation and annihilation operator. When one particle jumps from sitei to site i + 1, the state
n becomes the statea+

i+1ain. Let us not forget that this is just a short hand notation for :“state(...,ni−1,ni ,ni+1, ...) becomes
(...,ni−1,ni−1,ni+1+1, ...)”.

We will also need a notation for “number of particle on sitei”. When there is no possible confusion on the saten, we will just
useni ; if there is a risk, we will useNi(n). Ni is the counting operator of sitei.

Fundamental example : diffusion.

As for before, the jump (to a neighboring site ) probability for a given particle is, independent of all others,β . What is then
the probability foroneparticle migrating from sitei to sitei +1 during a short intervaldt ? Of course, it is proportional to how
many particles are already there oni :

W(i→ i +1; n) = βNi(n) = βni (17)

To write a master equation,i.e. write an evolution equation forP(n; t), we have to count all the possibilities of coming to and
leaving the staten. Leaving staten is easy : it is enough to be in this state and have one particle jumping from sitei to sitei±1
(whateveri). On the other hand, to come to this state, it is enough to be inthe statea+

i ai±1n and have one particle on sitei to
migrate to sitei±1. Summing up all these possibilities

dP(n; t)
dt

= ∑i W(i→ i +1; a+
i ai+1n)P(a+

i ai+1n; t)−W(i→ i +1; n)P(n; t) (18)

+ W(i→ i−1; a+
i ai−1n)P(a+

i ai−1n; t)−W(i→ i−1; n)P(n; t) (19)

You could think that we have forgotten some events, like being in statea+
i+1ain and having one particle leavingi + 1 for

i. But because we are summing on all sitesi, this event is indeed accounted for in the above master equation. As we said,
notations are a little cumbersome, but nothing is really complicated. For example,W(i → i + 1; a+

i ai+1n) = β (ni + 1) and
W(i→ i +1; n) = βni .

Let us just recall now the definition of various moments. The average number of particle at sitek is

〈nk〉= ∑
{ni}

nkP(n)
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which is just a generalisation of what we have seen at sectionIII. All other moments are computed alike. For example, the
correlation between sitek and siteℓ is

〈nknℓ〉= ∑
{ni}

nknℓP(n)

Evolution of the average.

Following the same lines of arguments developed above, to get the average number of particle at sitek, we apply the∑{n j}nk

to the master equation (18). The left hand side will give, as usual,d 〈nk〉/dt.
For the right hand side, little care should be taken as we haveto perform a double sum∑{n j}nk ∑i{...}. Note that terms in

the second summation which do not containnk explicitly will vanish after the summation. The only sites with non-vanishing
contributions are theni = k±1 andi = k.

k. (i) Let us look ati = k−1 in full details. The are four terms in the summation. We haveto perform first

∑
{n j}

nkW(k−1→ k; a+
k−1akn)P(a+

k−1akn; t) (20)

We will play again the “dummy index” game. Performing variables changenk→ nk +1andnk−1→ nk−1−1 will transform state
a+

k−1akn into staten. The boundaries of summation being minus and plus infinity, equation (20) is then rewritten :

∑
{n j}

(nk +1)W(k−1→ k; n)P(n; t)

The second term is just−β ∑{n j}nkW(k−1→ k; n)P(n; t) . The next two terms do not containnk explicitly in their transition
rates (which involve sitesk−1 andk−1) and their contribution is zero. Therefore, the contribution of the sitei = k−1 to the
average evolution is

〈W(k−1→ k; n)〉

By the same token, the contribution of sitei = k+1 to the average evolution will be〈W(k+1→ k; n)〉.

l. (ii) It remains to compute the contribution of sitei = k. For

∑
{n j}

nkW(k→ k±1; a+
k ak±1n)P(a+

k ak±1n; t)

Changing variablesnk→ nk−1 andnk±1→ nk±1 +1, the sum transforms into

∑
{n j}

(nk−1)W(k→ k±1; n)P(n; t)

and therefore, the total contribution of sitei = k to the average evolution is−〈W(k→ k−1; n)〉 − 〈W(k→ k+1; n)〉. The
evolution equation takes the symmetric form

d 〈nk〉
dt

= 〈W(k−1→ k; n)〉− 〈W(k→ k−1; n)〉 (21)

+ 〈W(k+1→ k; n)〉− 〈W(k→ k+1; n)〉

Remembering the definition of transition rates (17),

d 〈nk〉
dt

= β (〈nk−1〉+ 〈nk+1〉−2〈nk〉) (22)

which will become the usual diffusion equation∂tc = D∂ 2
x c when we will take the continuous limit. More on this later.
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Evolution of second moments.

Let us recall what we did in the last section. We saw that the contribution of sitei = k±1 to the average evolution is

〈[(nk +1)−nk]W(k±1→ k; n)〉

The contribution of sitei = k is

〈[(nk−1)−nk]W(k→ k±1; n)〉

A little exercise will show that this generalises naturallyto moments of orderp, when operator∑{n j}n
p
k is applied to the diffusion

master equation. The contribution of these sites to the evolution of the second moment of sitek will be respectively
〈[

(nk +1)2−n2
k

]

W(k±1→ k; n)
〉

= 〈(2nk +1)W(k±1→ k; n)〉

and
〈[

(nk−1)2−n2
k

]

W(k→ k±1; n)
〉

= 〈(−2nk +1)W(k→ k±1; n)〉

We therefore get a nice symmetric form for the second moment as before

d
〈

n2
k

〉

dt
= 〈2nkW(k+1→ k; n)〉− 〈2nkW(k→ k+1; n)〉
+ 〈2nkW(k−1→ k; n)〉− 〈2nkW(k→ k−1; n)〉
+ 〈W(k+1→ k; n)+W(k−1→ k; n)+2W(k→ k−1; n)〉

There is however a small problem here if we recall the definition of transition rates (17)

1
β

d
〈

n2
k

〉

dt
= −4

〈

n2
k

〉

+2〈nknk+1〉+2〈nknk−1〉 (23)

+ 2〈nk〉+ 〈nk+1〉+ 〈nk−1〉

The evolution of the second moment at sitek depends on the correlations between this site and its neighbor 〈nknk±1〉, which are
unknown quantities.

We had already encountered this problem when handling two-component systems. To compute〈nknk+1〉, we just have to
apply∑{n j}nknk+1to the master equation (18). Sitesi = k−1, ...,k+2 will contribute to the sum. We will drop writing the state
n in transition ratesW.

• Contribution of sitei = k−1 is 〈[(nk +1)nk+1−nknk+1]W(k−1→ k)〉.
• Contribution of sitei = k is 〈[(nk−1)(nk+1+1)−nknk+1]W(k→ k+1)〉+〈[(nk−1)nk+1−nknk+1]W(k→ k−1)〉
• Contribution of sitei = k+1 is〈[nk(nk+1−1)−nknk+1]W(k+1→ k+2)〉+〈[(nk +1)(nk+1−1)−nknk+1]W(k+1→ k)〉.
• Contribution of sitei = k+2 is 〈[nk(nk+1 +1)−nknk+1]W(k+2→ k+1)〉

The dummy index game is clear : when writing an expression containingW(i→ j), the prefactor which contain thej index (the
receiving end) will get+1 and the one containingi (the giving end) will get−1. Simplifying and summing the above expression,

d 〈nknk+1〉
dt

= 〈nk+1 [W(k−1→ k)−W(k→ k−1)]〉
+ 〈(nk−nk+1) [W(k→ k+1)−W(k+1→ k)]〉
+ 〈nk [−W(k+1→ k+2)+W(k+2→ k+1)]〉
− 〈W(k→ k+1)〉− 〈W(k+1→ k)〉

And replacing with the actual transition rates

1
β

d 〈nknk+1〉
dt

=−4〈nknk+1〉+ 〈nk−1nk+1〉+ 〈nknk+2〉+
〈

n2
k

〉

+
〈

n2
k+1

〉

−〈nk〉− 〈nk+1〉 (24)

It will not consume to much energy to show that this formula generalizes to
〈

nin j
〉

for |i− j|> 1 :

1
β

d
〈

nin j
〉

dt
=−4

〈

nin j
〉

+
〈

ni±1n j
〉

+
〈

nin j±1
〉

(25)
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Figure 1 functionse−t In(t) for n = 0,1,2,4.

Solving the moment equations for homogeneous initial conditions.

To solve eqs(25-23) we need to precise the initial conditions. The condition in which we are interested here is one having
translational symmetry. For example, having exactlyn0 particle on each site att = 0. As time flows, particles will jump around
and destroy the initial condition ; moreover, each realisation will do that in a different way. What we can expect howeveris
that averagequantities will keep the symmetry of initial conditions, because the master equation we use is just an ordinary
differential equations onprobabilities. We will thus assume that〈ni〉=

〈

n j
〉

= µ ∀i, j. Eq. (22) reads :

dµ
dt

=−2µ + µ + µ = 0

The average number of particles per site remains constantµ(t) = n0. For the correlation, translation symmetry imposes that
〈

nin j
〉

=
〈

ni+kn j+k
〉

∀i, j,k : correlations between two sites then can only depend on their distance|i− j|. Callingun = 〈nini±n〉,
eqs (25-23) read (normalizing time by the 2β factor) :

du0

dt
= −2u0+2u1+2µ

du1

dt
= −2u1+u0+u2− µ

dun

dt
= −2un+un−1+un+1

It will be wiser to usev0 = u0− µ , vn = un which will give a more symmetric pictures of the above equations :

dvn

dt
=−2vn+vn+1+vn−1 (26)

with the initial conditionsv0 = n2
0−n0 andvn = n2

0. It would have been even wiser to definev0 = u0−µ2−µ , vn = un−µ2which
does not change the form of equation (26) but only the initialconditions :v0 =−n0 andvn = 0. We will come back to why it is
necessary to subtract average from the variance in diffusive processes.

Bessel functionsIn have a nice property, linking derivative of thenth order to adjacent ones :

dIn(t)
dt

=
1
2

(In−1(t)+ In+1(t))

and therefore, the natural solution of eqs.(26) is

vn(t) =−n0e−2t In(2t) (27)

. The asymptotic behavior of modified Bessel function isIn(t) ≈ (1/
√

t)exp(t), so all correlations will die out eventually. To
get to the continuum limit, we use the approximation of eq.(8), keeping in mind thatni = ℓc(x) (wherex = i/ℓ) and〈nini+k〉 =
ℓ2 〈c(y)c(y+x)〉

〈nini+k〉 = −n0e−4β t In(4β t)+n2
0+n0δk,0

〈c(y)c(y+x)〉 = − c0
√

2π(2Dt)
exp

(

− x2

2(2Dt)

)

+c2
0 +c0δ (x)

m. What is the spatial correlation function ?What do we mean byf (k) = 〈nini+k〉 ? This is just a histogram of particles distance
: if we find two particles at distancek of each other, they will contribute one unit tof (k). Now, if we haveniparticles in celli
andni+k particles in celli +k, we will haveni×ni+k particles with distancek. Of course, the distance between each particle and
itself ; therefore, each particle contributes one unit to

〈

n2
i

〉

, whatever the size of cell array . This is the reason behind terms such
asn0δk,0 or c0δ (x).
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V. GENERALIZATION OF JUMP PROCESSES.

Lets get back to 1-component systems. Until now, we have onlyconsidered jump processes of the typeW(i→ i±1). From
a practical point of view, this means the following : considering a small time intervaldt, the probability for one event (i.e.
jump, birth, death,...) to occur in this interval is somthing like αdt, whereα is a caracteristic constant of the system under
consideration. The probability fortwoevents to occur is proportional todt2, so for smalldt, we can just neglect these processes.
Of course, bysmall dt, we mean time interval small enough to setαdt≪ 1.

Now, what if the time resolution of our measurement apparatus is not good enough to be in this approximation ? Suppose for
exemple that we are observing GFP-proteins under fluorescence appearing in avergage every 10 seconds, but our camera hasa
low sensitivity and we have to integrate for 30” to see an image. Then, the probability for 3 proteins to appear during thistime
interval is not anymore negligeable.

We can easily generalize our master equation describing “more than one” jumps by taking into account terms likeW(n→ n±
k) ; such a term means that, being in the staten, the probability to jump to the staten+k during an intervaldt isW(n→ n±k)dt.
This is a function of two variablesn,k. We can measure it experimentzally by making a histogram of all jumps observed.

dP(n, t)
dt

=
∞

∑
k=−∞

W(n−k→ n)P(n−k)−W(n→ n+k)P(n)

Note that this equation does not containk = 0, which is automatically removed in the substraction.

A. The average.

Again, playing the dummy index game, multipying byn and summing over alln’s, changing the variable of summation from
n to n+k when needed, we get

∂ 〈n〉
∂ t

= ∑
n

(

∑
k

kW(n→ n+k)

)

P(n)

The inner sum overk’s is just the “average” jump size when the system is in staten, which we can notēkn or 〈k|n〉. The second
summation is the summation of this quantity overn’s, weighted by the probabilities of being in staten. Therefore,

∂ 〈n〉
∂ t

= 〈〈k|n〉1〉2 (28)

where the inner bracket (subscript 1) is the average over thejumps and the outer one is the average over the states of the system
n′s.

n. trivial example. Let us reconsider the simplest birth-date process considered in section II, whereW(n→ n+1) = λn, W(n→
n+k) = 0 if k > 1,W(n→ n−1) = µn andW(n→ n+k) = 0 if k <−1. Thenk̄n = 1×λn+(−1)× µn= (λ − µ)n and

∂ 〈n〉
∂ t

= (λ − µ)〈n〉 (29)

which is what we had. It is of course obvious that from (29) we can recover the simpler case (4).

o. RNA or Protein burst. This is a problem we had fully treated in two component systems, but we can simplify it through
generalized jumps. Suppose that during a small time, species A (be it RNA or protein or whatever) arrive packed in bags of
random size, so thatW(n→ n+ k) = f (k) for k > 0 (independent ofn). On the other hand, we still continue to consider the
degradation process ofA’s as a simple poisson oneW(n→ n−1) =−µn. Then,

k̄n = ∑
k>0

k f(k)− µn

= E− µn

whereE is the average size of the bags. Then

∂ 〈n〉
∂ t

= E− µ 〈n〉

So after a given time (≫ 1/µ), the average reaches the stationnary value

〈n〉= E/µ
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Figure 2 SpeciesA appears in (temporally poissonian) bursts of random sizek and degrades with rateµ.

B. The second moment.

We can continue and multiply byn2 the master equation, and then sum over alln’s. We are now used to this game and we get

∂
〈

n2
〉

∂ t
= ∑

n

(

∑
k

2nkW(n→ n+k)+∑
k

k2W(n→ n+k)

)

P(n)

= 2〈n〈k|n〉1〉2 +
〈〈

k2|n
〉

1

〉

2

p. trivial example : birth-death. We have already computed〈k|n〉1 = (λ − µ)n, so the first term reads

2〈n〈k|n〉1〉2 = 2(λ − µ)
〈

n2〉

For the second term, we have
〈

k2|n
〉

1 = (λ + µ)n ; putting all terms together, we have

∂
〈

n2
〉

∂ t
= 2(λ − µ)

〈

n2〉+(λ + µ)〈n〉

Wich we already knew.

q. RNA or Protein burst. Let us call

F = ∑
k>0

k2 f (k)

Computing all the terms accordingly, we have

∂
〈

n2
〉

∂ t
= 2〈n(E− µn)〉+ 〈F + µn〉

= −2µ
〈

n2〉+(2E+ µ)〈n〉+F

Again, we can compute the stattionary solution
〈

n2
〉

〈

n2〉 =
2E+ µ

2µ
〈n〉+ F

2µ

=
E2

µ2 +
E
2µ

+
F
2µ

or the more interersing quantity VMR, the varianceV =
〈

n2
〉

−〈n〉2 over the mean〈n〉

V
〈n〉 =

1+E
2

+
F−E2

2E

Note that the term term is just the VMR of the bursts. Because we are considering only non-empty bags of speciesA appearing,
E ≥ 1. So in general, for this process

V
〈n〉 = 1+ α

where the termα has one contribution from the average size of the bags and onecontribution from the variance to mean of the
size of the bags. For bags of size 1,VMR= 1.
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Appendix A: Alternative formulations of the brownian motio n.

1. Basic facts.

Brownian motion plays a central role in physics and therefore many alternative formulations of it coexist ; their usage depends
on the taste of the user and the experimental/theoretical problem at hand. In the above section, we used continuous time and
discrete lattice approach. On the other hand, an experimentalist recording a brownian motion will take successive pictures at
fixedtime intervals. At each time stepi, he will record the displacementdi : to him di ’s arethe(continuous) random variables
and he can construct all the above concept of brownian motionby using a “discrete time, continuous space” formulation. Of
course, it would be also possible to develop a full “continuous time, continuous space” theory, but we will focus here only on
the former formulation.

Let us suppose a one dimensional world where at each time stepi, the particle under our microscope makes a random jump
di . Space and time being homogeneous, we assume the same distribution for all di ’s ; in particular,〈di〉 = 0 and

〈

d2
i

〉

= σ2.
Moreover we assume that the jumps at stepi and stepj (i 6= j) are independent :

〈

did j
〉

= 〈di〉
〈

d j
〉

= 0.
The distance from origin afterN time interval is the random variable

XN =
N

∑
i=1

di

Obviously,〈XN〉 = 0 and
〈

X2
N

〉

= Nσ2. Calling τ the duration of time intervals andt the total time of recording,
〈

X2(t)
〉

=

(σ2/τ)t= Dt where the diffusion coefficientD is defined as it should.
The central limit theorem informs us that if random variablesdi are well behaving (i.e. possess at least a second order moment

σ2) then for largeN, XN is a gaussian random variable :

P(x) =
1√

2πs2
exp

(

− x2

2s2

)

wheres=
√

Nσ . UsingN = t/τ andD = σ2/τ, we get

P(x,t) =
1√

2πDt
exp

(

− x2

2Dt

)

which is the same as eq.(9).

2. The problem of persistence.

As we mentioned above, for large times, the distribution lawis gaussian. But how large is large ? Or how should we chose
the time interval between two pictures ? The main assumptionbehind our computation above was that successive steps are
independent. This is obviously inaccurate if the time interval between successive pictures is too short : because of itsinertia, a
1 micron latex particle in water will (approximately) conserve its direction and speed during one nano-second ; an amoebae will
keep moving in the same direction for some time ; a polymer will not bend over a picometer distance. In all these examples, we
see that thei step conserve some information fromi−1 step. The simplest way of modeling this process is to assumethat

di = pdi−1 +
√

1− p2δi (A1)

p (∈ [0,1]) is the amount of conserved information from the last step, and δi is the random modification brought to the step

i−1. Again, we assume translation invariance in time and space: no moment should depend on the indexi :
〈

δ k
i

〉

=
〈

δ k
j

〉

and
〈

dk
i

〉

=
〈

dk
j

〉

. Moreover, we suppose〈δi〉= 0 and
〈

δ 2
i

〉

= σ2. We then have

〈

d2
i

〉

= p2〈d2
i−1

〉

+(1− p2)
〈

δ 2
i

〉

+2p
√

1− p2〈diδi〉
= p2〈d2

i−1

〉

+(1− p2)σ2

becausedi andδi are independent. Therefore,
〈

d2
i

〉

= σ2 . Now, what about correlation ? Multiplying eq.(A1) bydi−1and taking
the average,

〈didi−1〉= pσ2
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More generally,

〈didi−k〉= pkσ2

So correlations decrease exponentially and become negligible afternc = −1/ logp steps, or equivalently, aftertc = −τ/ logp.
Sampling the particle at≫ tc, the movement appears truly brownian, while sampling at≪ tc, the movement appears ballistic.

The quantity measured by the experimentalist is the distance from origin afterN stepsXN = ∑N
1 di. Its fluctuations are given

by

〈

X2
N

〉

=
N

∑
i=1

N

∑
j=1

〈

did j
〉

= N
〈

d2
i

〉

+2
N−1

∑
k=1

(N−k)〈didi+k〉

=

(

N+2
N−1

∑
k=1

(N−k)pk

)

σ2

the second term is just a geometric series, so we get

〈

X2
N

〉

=
1+ p
1− p

σ2N−2p
1− pN

(1− p)2σ2

Or, in time unit,
〈

X2(t)
〉

= Dt−A(1−e−t/tc)

where

D =
1+ p
1− p

σ2

τ

is the diffusion coefficient and

tc =−τ/ logp

is the persistence time. Note that the amplitudeA = −2pσ2/(1− p)2 can be expressed as a function ofD, tc andτ and is not
an independent parameter. Experimentally, it is easy to estimateD andA from a linear regression of the data (if long times and
diffusive regime prevail) and estimatep throughA/D = 2τ p/(1− p2) which then give access totc. It is also possible to use a
non linear curve fitting to estimateA,D andtc and check then their compatibility.

r. History : Part of this lecture was given in 2006 at Ecole Doctorale de Physique, Grenoble University, as an introduction to
fluctuations in biological systems.


