TD3: Application des séries de Fourier aux EDP.

Vibration d'une corde tendu.

L'exemple que nous avons considéré peut être compléter de bien des façon. Si la corde est soumise à un frottement visqueux, il faut ajouter un terme en $-\lambda \partial y/\partial t$ (proportionnel à la vitesse locale) à droite de l'équation (??). Si la corde est en plus soumis à une force par unité de longueur f(x,t), il faut également l'ajouter à droite. Résolver l'équation de la corde vibrante (i) en présence d'un frottement (ii) en présence de la force de gravité $f=-\rho g$ (iii) en présence d'une force de rappelle harmonique f=-ky. Les conditions aux bords sont toujours les même : corde fixée à ses deux extrémités et avec une déformation initiale $y_0(x)$.

Vibration d'une barre elastique.

L'équation de vibration d'une barre élastique est donnée par

$$\frac{\partial^2 y}{\partial t^2} = \alpha \frac{\partial^4 y}{\partial x^4}$$

Discuter les solutions de cette équation. Que pensez vous des conditions initiales ?

Équation de Schroedinger dans un puits.

Dans un puits de potentiel rectangulaire est très profond, à une dimension, l'équation de Schroedinger s'écrit :

$$i\hbar\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\frac{\partial^2\psi}{\partial x^2}$$

avec les condition aux limites $\psi(-L,t) = \psi(L,t) = 0$ et $\psi(x,0) = f(x)$. Discuter de la solution de cette équation en suivant l'exemple de la corde vibrante.

Equation de la chaleur.

C'est une équation très similaire qui gouverne les phénomène de diffusion (de la chaleur, de la concentration, ...). Elle s'écrit

$$\frac{\partial u}{\partial t} = D \frac{\partial^2 u}{\partial x^2}$$

Supposons que la température u est maintenu à 0 en x=0 et à T_L à x=L. Supposons en plus qu'à l'instant t=0, la température soit distribuée selon une fonction palier : égale à 0 pour x < L/2 et à T_L pour $(L/2) \le x \le L$. Analyser la solution de cette équation et discuter la limite $t \to \infty$ (souvenez vous de la série de Fourier de la fonction f(x) = x). Aurait on pu intuiter ce résultat directement à partir de l'équation de la chaleur?