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The force exerted by an optical trap on a dielectric bead in a fluid is often found by fitting a
Lorentzian to the power spectrum of Brownian motion of the bead in the trap. We present explicit
functions of the experimental power spectrum that give the values of the parameters fitted, including
error bars and correlations, for the best suchx2 fit in a given frequency range. We use these
functions to determine the information content of various parts of the power spectrum, and find, at
odds with lore, much information at relatively high frequencies. Applying the method to real data,
we obtain perfect fits and calibrate tweezers with less than 1% error when the trapping force is not
too strong. Relatively strong traps have power spectra that cannot be fitted properly withany
Lorentzian, we find. This underscores the need for better understanding of the power spectrum than
the Lorentzian provides. This is achieved using old and new theory for Brownian motion in an
incompressible fluid, and new results for a popular photodetection system. The trap and
photodetection system are then calibrated simultaneously in a manner that makes optical tweezers
a tool of precision for force spectroscopy, local viscometry, and probably other applications.
© 2004 American Institute of Physics.@DOI: 10.1063/1.1645654#

I. INTRODUCTION

Optical tweezers are used in many contexts in biological
physics,1 e.g., in single molecule studies of molecular
motors2,3 and other proteins and polymers,4–7 and in surgery
at the cellular level,8 to name a few. In some of these con-
texts, the tweezers are only used to grab and hold something.
In other contexts, they are used to exert a prescribed force, or
to measure force: pico-Newton forces are measured or
exerted,4,7,9–11local viscosity is measured,12–14 or properties
of a system are deduced from the Brownian motion of its
parts.15–17 While relative relationships for, e.g., force versus
displacement can be calculated theoretically in a decent
approximation,18 the absolute value of the force cannot. It
depends too much on experimental circumstances. So cali-
bration is necessary. Good calibration is also a test that the
tweezers, detection system, and data acquisition work as they
are supposed to. As tweezer technology evolves and applica-
tions multiply, the need for good calibration methods will
undoubtedly grow.

There are a number of ways to calibrate optical traps.
~We usetrap and tweezers as synonyms.! They are discussed
in several excellent texts.19–25 The most reliable procedure
interprets the power spectrum of Brownian motion of a bead
in the trap. This is conventionally done with the Einstein–
Ornstein–Uhlenbeck theory of Brownian motion, which pre-
dicts a Lorentzian spectrum. The stochastic distribution of
experimental spectral values about this Lorentzian is also
known theoretically~Sec. III!. This fact, and the simplicity of
the Lorentzian form, permit us to give explicit analytical

results for the values of fitted parameters as functions of the
experimental power spectrum~Sec. IV!. Thus, when the
power spectrum is legitimately modeled with a Lorentzian,
these results fit it with ease, insight, and error bars on the
parameter values found. The trap’s strength is consequently
known with precision that may be limited mainly by the
calibration of the position detection system~Sec. V!.

Very similar results might be obtained also whenalias-
ing is taken into account~Sec. VI!, but are not that interest-
ing because the Lorentzian is a low-frequency approximation
~Sec. VII! that can exploit only a fraction of the information
content of the power spectrum~Sec. VIII!. Even worse is the
fact that even at intermediate trapping strengths some photo-
detection systems have no low-frequency window at all in
which a Lorentzian can be fitted properly.

Thus a correct theory for the power spectrum is needed
when the Lorentzian fails, and in general improves precision.
We show that the power spectrum can be fully understood by
combining known and new results on Brownian motion in
incompressible fluids~Secs. IX–XII! with new results for
typical photodetection systems~Sec. XIII!. Once the effects
of aliasing and antialiasing filters are accounted for~Sec.
XIV !, we have a procedure for how to calibrate tweezers
~Secs. XV and XVI! which, e.g., adds decades of interpret-
able spectrum to local viscometry measurements. It makes
details of the power spectrum of complex systems
interpretable.17 And it may open up the way for new appli-
cations of tweezers by making them a tool of precision.

Thus the thrust of this article is theory for how to ana-
lyze experimental data, with examples of how this is done.
Readers who might wish to apply this analysis to their own
data may do so easily with ourMATLAB program that fits and
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plots at the click of a button. Reference 26 documents this
program.

In Appendix A is a collection of notations and character-
istic values of quantities in this article. Appendices B–D de-
scribe manipulations and tests of data which ensure that the
data quality matches the precision that the theory can extract
from good data. These procedures are an integral part of the
practical application of our theoretical results. Appendix E
explores how maximum likelihood estimation changes with
the data compression we employ. Appendix F contains a long
calculation. Appendices G and H expand on two technical
points.

II. MATERIALS AND METHODS

The experimental data analyzed here were obtained with
the optical tweezer setup described in Ref. 27. The laser light
had wavelengthl51064 nm and positions were detected
with a silicon PIN photodiode, S5981 from Hamamatsu,
which is a popular choice because of its large active area,
10310 mm. The trapped microsphere was from a batch of
uniform microspheres from Bang Laboratories, Inc., catalog
code No. PS04N, Bangs lot No. 1013, Inventory No.
L920902A, with density of 1.050 g/ml and diameter of
1.0560.01mm.28

The equipment was tested for electronic and mechanical
noise in two ‘‘null tests’’ described in Appendix B. These
tests set a bound on electronic noise, on the laser beam’s
pointing instability, and on much, but not all, mechanical
noise. Crosstalk betweenx- and y-channel data was diag-
nosed and removed by a linear transformation described in
Appendix C. A model-independent data analysis that tests
our assumption of a harmonic trapping potential was done
and is described in Appendix D. This test can indicate, but
not prove, that the potential actually is harmonic, so its role
is to warn us against analyzing data that seem to not satisfy
this essential assumption. The data analyzed here pass this
and another test@Fig. 1~b!# to perfection.

III. SIMPLE THEORY RECAPITULATED

The Einstein–Ornstein–Uhlenbeck theory of Brownian
motion29 describes the motion of the bead in a harmonic
trapping potential with the following Langevin equation:

mẍ~ t !1g0ẋ~ t !1kx~ t !5~2kBTg0!1/2h~ t !, ~1!

given here in one dimension for simplicity. Herex(t) is the
trajectory of the Brownian particle,m is its mass,g0 its
friction coefficient, 2kx(t) the harmonic force from the
trap, and (2kBTg0)1/2h(t) a random Gaussian process that
represents Brownian forces at absolute temperatureT; for all
t and t8:

^h~ t !&50; ^h~ t !h~ t8!&5d~ t2t8!. ~2!

Stokes’s law for a spherical particle gives

g056prnR, ~3!

wherern is the fluid’s shear viscosity,r the fluid’s density,n
its kinematic viscosity, andR the sphere’s radius.

The characteristic time for loss of kinetic energy through
friction, t inert[m/g0 , is 1000 times shorter than our experi-
mental time resolution at 16 kHz sampling rate. We conse-
quently follow Einstein and drop the inertial term in Eq.~1!,
so it then reads

ẋ~ t !12p f cx~ t !5~2D !1/2h~ t !, ~4!

where thecorner frequency,

f c[k/~2pg0!, ~5!

has been introduced, and Einstein’s equation,

D5kBT/g0 ~6!

relating the diffusion constant, Boltzmann energy, and fric-
tion coefficient has been used.

After recordingx(t) for time Tmsr, we Fourier transform
x(t) andh(t),

x̃k5E
2Tmsr/2

Tmsr/2

dtei2p f ktx~ t !, f k[k/Tmsr, k integer. ~7!

Equation~4! gives the path as a function of noise,

x̃k5
~2D !1/2h̃k

2p~ f c2 i f k!
.

~Whenẋ(t) is Fourier transformed, partial integration gives a
contribution from the ends of the interval of integration
which we ignore. This leakage term~Ref. 30, Sec. 12.7! is
truly negligible in our case because the power spectral den-
sity in Eq. ~10! is a smooth function without spikes or other
abrupt changes in value.!

From Eq.~2! it follows that

^h̃k&50; ^h̃k* h̃,&5Tmsrdk,, ; ^uh̃ku4&52Tmsr
2 . ~8!

Since h(t) is an uncorrelated Gaussian process,
(Reh̃k)k50,1,... and (Imh̃k)k51,2,... are uncorrelated random
variables with Gaussian distribution. Consequently,
(uh̃ku2)k51,2,... are uncorrelated non-negative random vari-
ables withexponentialdistribution. Hence so are experimen-
tal values for the power spectrum,

Pk
~ex![ux̃ku2/Tmsr5

D/~2p2Tmsr!uh̃ku2

f c
21 f k

2 ~9!

for k.0. Their expected value is a Lorentzian,

Pk[^Pk
~ex!&5

D/~2p2!

f c
21 f k

2 , ~10!

and becausePk
(ex) is exponentially distributed,

s@Pk
~ex!#5^~Pk

~ex!2Pk!
2&1/25Pk . ~11!

IV. LEAST-SQUARES FITTING OF LORENTZIAN

Experimentally, we samplex(t) with frequency f sample

for time Tmsr. From the resulting time seriesxj[x(t j ), j
51,...,N, we form thediscreteFourier transform,

x̂k[Dt(
j 51

N

ei2p f kt jxj5Dt(
j 51

N

ei2p jk/Nxj , ~12!

k52N/211,...,N/2, where Dt[1/f sample, t j5 j Dt, and
NDt5Tmsr. This discrete Fourier transform is a good ap-
proximation to the continuous one, Eq.~7!, for frequencies
u f ku! f sample. Consequently, the experimental power spec-
trum
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Pk
~ex![ux̂ku2/Tmsr

obeys the same statistics asux̃ku2/Tmsr; see Sec. VI for de-
tails.

Least-squares fitting in its simplest form presupposes
that each data point is ‘‘drawn’’ from a Gaussian distribution
and that different data points are statistically independent.
The second condition is satisfied byPk in Eq. ~9!, but the
first is not, sincePk is exponentially distributed. The solution
is data compression, which results in a smaller data set with
less noise,and, by way of the central limit theorem, in nor-
mally distributed data.

Data compression bywindowingis common and has its
advantages.30 When the numbernw of windows used is large,
the values of the compressed power spectrum are statistically
independent and Gaussian distributed, and can be used in the
formulas below. Windowing always compresses to equidis-
tant points on the frequency axis. ‘‘Blocking’’ is an alterna-
tive method without this constraint, and hence is useful for
data display with the logarithmic frequency axis. It replaces
a ‘‘block’’ of nb consecutive data points (f ,P(ex)( f )) with a
single new ‘‘data point’’ (f̄ ,P̄(ex)( f )), with coordinates that
simply are block averages.30 Whennb is so large that we can
ignore terms of nonleading power innb , P̄(ex)( f̄ ) is Gauss-
ian distributed with ^P̄(ex)( f̄ )&5P( f̄ ) and s( P̄(ex)( f̄ ))
5P( f̄ )/Anb.

In the following, it is understood that data have been
blocked~or windowed, or both!, but we leave out the overbar
to keep the notation simple. We fit by minimizing

x25(
k

S Pk
~ex!2Pk

Pk /Anb
D 2

5nbnw(
k

S Pk
~ex!

Pk
21D 2

;

see Appendix E for background. Thisx2 can be minimized
analytically: The theoretical spectrum can be writtenPk

5(a1b fk
2)21 with a andb positive parameters to be fitted,

so x2 is a quadratic function ofa andb. Minimization gives

f c5~a/b!1/25S S0,1S2,22S1,1S1,2

S1,1S0,22S0,1S1,2
D 1/2

, ~13!

DTmsr

2p2 51/b5
S0,2S2,22S1,2

2

S1,1S0,22S0,1S1,2
,

xmin
2

nb
5S0,02

S0,1
2 S2,21S1,1

2 S0,222S0,1S1,1S1,2

S0,2S2,22S1,2
2 , ~14!

where we have introduced the sums

Sp,q[(
k

f k
2pPk

~ex!q .

V. FROM MILLIVOLTS TO NANOMETERS:
CALIBRATING LENGTH SCALES

Note that we fit bothD and f c to the power spectrum of
the x coordinate, and, in an independent fit, to the power
spectrum of they coordinate. The position detection system’s
output has a somewhat arbitrary amplitude that depends lin-
early on laser power and the three independent amplifier set-
tings for the voltages measured,VI2VII2VIII 1VIV , VI

1VII2VIII 2VIV , andVz defined in Appendix C. This results
in three arbitrary measures of length, one for each direction,
x, y, and z. We determine two of the three corresponding
conversion factors to units of physical length by equating the
fitted values forD, which is determined in arbitrary units, to
the value in physical units known from Einstein’s relation,
Eq. ~6!.

The fitted values ofD can be determined with high pre-
cision, as demonstrated below. Its value in physical units,
however, is not known with similar precision in some bio-
physical experiments. While the temperatureT can be known
very well, the value ofg0 is a source of error in Einstein’s
relation. Microspheres are commercially available with ra-
dius R known to within 1% and similar precision of the
spherical shape, so Stokes law, Eq.~3!, applies. But the value
of the dynamic viscosityrn of the fluid, in which the experi-
ments take place, may not be known with the same precision.
Additives such as glucose, BSA, and casein change the value
of rn dramatically. Five percent of glucose, e.g., changes the
viscosity of water by a factor of 1.12.32 Similarly, 5% of
NaCl changes the viscosity of water by a factor of 1.19. Such
concentrations of additives occur, e.g., in studies of single
kinesin molecules33 and in studies of single myosin
molecules.34 In such cases it is better to determine the con-
version factors from arbitrary units to physical units of
length by independent measurements, as was done in, e.g.,
Refs. 23 and 35. The fitted values ofD may then serve as
either a check of consistency for the method, or as indepen-
dent determination of the value ofg0 , hence ofrn, which
may also be calculated if one knows the concentrations of
additives and how they affect the viscosity.

VI. ALIASED LORENTZIAN

We will now understand the effect of finite sampling
time better than we did in Sec. IV: In an experiment we
samplex(t) at discrete timest j5 j Dt, Dt[1/f sample. We
consequently solve Eq.~4! in the time intervalt j<t<t j 11

for given noise to find theeffective Einstein–Ornstein–
Uhlenbeck theory for discretely sampled data. We find

xj 115cxj1Dxh j , ~15!

with

^h j&50; ^h ih j&5d i , j for all i , j . ~16!

Here we have introduced

h j[S 4p f c

12c2D 1/2E
t j

t j 11
dte22p f c~ t j 112t !h~ t !, ~17!

c[exp~2p f c / f Nyq!; f Nyq[ f sample/2, ~18!

and

Dx[S ~12c2!D

2p f c
D 1/2

. ~19!

Application of the discrete Fourier transform, Eq.~12!,
to x andh in Eq. ~15! transforms Eq.~15! to

ei2pk/Nx̂k5cx̂k1Dxĥk , ~20!

while the Fourier transformed version of Eq.~16! is
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^ĥk&50; ^ĥk* ĥ,&5TDtdk,, ~21!

for all k, ,P$N/211,...,N/2%. So now our experimental es-
timate for the power spectrum is

Pk
~ex!5ux̂ku2/T5

~Dx!2uĥku2/T

11c222c cos~2pk/N!
. ~22!

The expected value for this spectrum is

Pk[^Pk
~ex!&5^ux̂ku2/T&5

~Dx!2Dt

11c222c cos~2pk/N!
, ~23!

and its root-mean-square deviation is

s~Pk
~ex!!5Pk , ~24!

identical in form to Eq.~11! becauseuĥku2 like uh̃ku2 is ex-
ponentially distributed.

Equation ~23! gives the function that replaces the
Lorentzian in the case of finite sampling frequency, and it
should fit the experimental spectrum for all frequencies of
0, f k< f Nyq if the simple theory discussed here is correct.
Least-squares fitting of Eq.~23! to experimental data can be
done analytically, once and for all, and it results in expres-
sions very similar to those in Sec. IV.

We note that forf c! f Nyq and u f ku! f Nyq , Eq. ~23! to
leading order inf c / f Nyq and f k / f Nyq becomes the Lorentzian
in Eq. ~10!. So the approximation done in Sec. IV when we
fitted the Lorentzian to the experimental spectrum has now
been understood within the same simple theory for Brownian
motion by accounting for the finite sampling frequency. The
effect of the latter is maximal atf Nyq5 f N/2 where, for same
f c andD, PN/252.47P( f N/2), i.e., atf Nyq the finite sampling
rate increases the power spectrum by 247% over its Lorent-
zian value.

With this understanding, it seems more correct to replace
the Lorentzian altogether with Eq.~23!, the so-calledaliased
Lorentzian; see Appendix H for more about aliasing. More so
because so-called antialiasing filters donot change the
aliased Lorentzian back into a Lorentzian; see Fig. 11. The
outcome of this replacement can be determined without ac-
tually doing it from a simple phenomenological plot of the
experimental power spectrum. If an aliased Lorentzian fits
the experimental power spectrumPk

(ex) , a plot of Pk
(ex)21 vs

cos(2pk/N) falls onto a straight line, according to Eq.~23!.
Figure 1 shows our experimental power spectrum plotted in
this manner. Clearly, the data points do not fall onto a
straight line. They do increasingly for smaller beads and
sampling rates, especially for a different photodetection sys-
tem and/or shorter laser wavelength, as explained below.

VII. LIMITS ON LORENTZIANS

Over which range of frequenciesf k should the sumsSp,q

be done? Stochastic errors are minimized by maximizing this
range, but systematic errors limit the range: At low frequen-
cies the experimental power spectrum typically is contami-
nated by low-frequency noise external to the experiment; see
Appendix B. At high frequencies there are three concerns:~i!
The Lorentzian is a good approximation only forf 2! f Nyq

2 ,
where f Nyq[ f sample/2, as we have seen. As we have also

seen, one can trade this approximation for an exact result, an
aliased Lorentzian, but the latter does not describe the data.
Other effects are in play.~ii ! Some position detection sys-
tems, including ours, unintentionally cause significant low-
pass filtering.36 ~iii ! The Einstein–Ornstein–Uhlenbeck
theory of Brownian motion is only a low-frequency approxi-
mation when used for liquids; the hydrodynamically correct
spectrum is not Lorentzian.

Thus one should fit with a Lorentzian in an interval
@ f min ,fmax# that avoids these systematic errors at high and
low frequencies while minimizing stochastic errors of the
fitted parameters. To this end, we give the stochastic errors’
dependence on@ f min ,fmax#.

VIII. INFORMATION CONTENT OF THE SPECTRUM

Given Eqs.~13! and ~14!, propagation of errors gives
~see Appendix F!

s~ f c!

f c
5

sf c
~xmin ,xmax!

Ap f cTmsr

, ~25!

s~D !

D
5S 11p/2

p f cTmsr
D 1/2

sD~xmin ,xmax!, ~26!

and the covariancê( f c2^ f c&)(D2^D&)&[^ f cD&c is

^ f cD&c

s~ f c!s~D !
5S v~xmin ,xmax!

u~xmin ,xmax!
D 1/2

.

Here, xmin[fmin /fc , xmax[fmax/fc , and we have introduced
the dimensionless functions,

FIG. 1. Inverse experimental power spectrum,Pk
(ex)21 plotted vs

cos(pf/fNyq). Plotted this way, an aliased Lorentzian form would fall onto a
straight line, see Eq.~23!. In case one uses an oversampling delta–sigma
data converter, aliasing and electronic filtering do not occur below the out-
put frequency. So for that case one should plotPk

(ex)21 vs f 2. Then a pure
Lorentzian form falls onto a straight line, and effects of frequency-
dependent hydrodynamical friction and unintended filtering~see Secs. IX–
XIII ! show up as curvature.
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sf c
~x1 ,x2![S p

u~x1 ,x2!2v~x1 ,x2! D
1/2

, ~27!

sD~x1 ,x2![S u~x1 ,x2!

~11p/2!~x22x1! D
1/2

sf c
~x1 ,x2!,

u~x1 ,x2![
2x2

11x2
22

2x1

11x1
2 12 arctanS x22x1

11x1x2
D ,

~28!
v~x1 ,x2![

4

x22x1
arctan2S x22x1

11x1x2
D .

The functionsf c
is normalized such thatsf c

(0,̀ )51. Thus
sf c

(xmin ,xmax)>1, because maximum precision is achieved
only by fitting to the whole spectrum. Less will do in prac-
tice, and do well, as Figs. 2 and 3 illustrate.

Figure 2 has f c5357 Hz, f min5110 Hz, and f max

51 kHz, hencesf c
(xmin ,xmax)5sfc

(0.31,2.80)52.4. For com-
parison,sf c

(0,2.80)51.8. So, given our value forf max, our
nonvanishing value forf min costs us a 30% increase in the
error bar for the value we find forf c . On the other hand,
sf c

(0.31,̀ )51.26. So, given our value forf min , by increas-
ing f max we could reduce the stochastic error forf c by almost
a factor of 2, if systematic errors did not prevent this. This is
despite f max.3fc . To harvest this extra information, one
needs a better understanding of the power spectrum at these
frequencies than the Lorentzian provides.

Systematic errors may leave no frequency range at all in
which one can properly fit a Lorentzian. A data set with
almost twice larger corner frequency illustrates this, although
it is sampled three times faster. When a Lorentzian is fitted to
this power spectrum,f c decreases asf max is increased, and
support for the fit vanishes althoughf max

2 !fNyq
2 is satisfied;

see Table I. In this case, proper calibration is impossible
without better understanding of the power spectrum than the
Lorentzian provides. Below, this understanding is provided,
and calibration is achieved using the very same data set.

IX. FRICTION FELT BY A MICROSPHERE MOVING IN
AN INCOMPRESSIBLE FLUID

When a rigid body moves through a dense fluid like
water, the friction between the body and fluid depends on the
body’s past motion, since that determines the fluid’s present
motion. For a sphere performing linear harmonic motion
x(t) with cyclic frequencyv52p f in an incompressible
fluid and at vanishing Reynold’s number, the~Navier–!
Stokes equations were solved analytically and give a ‘‘fric-
tional’’ force,37,38

F fric52g0S 11
R

d D ẋ2S 3prR2d1
2

3
prR3D ẍ, ~29!

where only the term containingẋ dissipates energy; the term
containingẍ is inertial force from entrained fluid. The nota-
tion is the same as above:g0 is the friction coefficient of
Stokes’ law for linear motion with constant velocity, Eq.~3!,
r51.0 g/cm is the density of water at room temperature,n
51.0mm2/s is the kinematic friction coefficient of water,
and 2R51.05mm is the diameter of the sphere we used.
Thus g05931026 g/s. Thepenetration depthd character-

izes the exponential decrease of the fluid’s velocity field as a
function of the distance from the oscillating sphere. It is
frequency dependent,

d~ f !5~n/p f !1/25R~ f n / f !1/2, ~30!

and large compared toR for the frequencies we consider,
f n[n/(pR2)51.3 MHz. This and other notations are given
in Appendix A.

X. BEYOND EINSTEIN: BROWNIAN MOTION IN AN
INCOMPRESSIBLE FLUID

Since Fourier decomposition describes any trajectory as
a sum of linear oscillatory motions, the friction in Eq.~29!

FIG. 2. ~a! Lorentzian fitted to a power spectrum in the interval@110 Hz, 1
kHz# yielding f c535763 Hz andD558564 (arb units)2/s. ~The position
detection system’s arbitrary units of length are calibrated in Sec. V.! The
power spectrum in this interval, already an average ofnw55 spectra, was
blocked by a factor ofnb5517 toN8529 points evenly distributed on the
linear axis, then fitted using Eqs.~13! and ~25!. Dashed lines indicate
6one standard deviation of the theoretical curve. Statistical support~Refs.
30 and 31! for the fit shown here is 60%. The experimental spectrum has
f Nyq58 kHz. ~b! Histogram ofPk

(ex)/Pk for f k in the frequency range of the
fit, Pk

(ex) the unblocked experimental power-spectral values atf k , andPk its
expected value, the fitted theory’s value atf k . According to theory, Eqs.~6!
and ~7!, this ratio is exponentially distributed. Dashed line:y5exp(2x).
Perfect agreement between theory and data is seen over all four decades of
probability shown.
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also appears in the frequency representation of thegeneral-
ized Langevin equationdescribing the Brownian motion of a
harmonically trapped sphere in an incompressible fluid,39

@m~2 i2p f !21gStokes~ f !~2 i2p f !1k# x̃~ f !

5@2kBT RegStokes~ f !#1/2h̃~ f !,
~31!

gStokes~ f !5
F fric

i2p f x̃~ f !
5g0S 11~12 i !

R

d
2 i

2R2

9d2 D ,

which becomes Einstein–Ornstein–Uhlenbeck theory, Eq.
~1!, in the limit of f→0. Here, as above,m is the mass of the

sphere,k the spring constant of the harmonic trapping force,
kBT the Boltzmann energy, Re denotes the ‘‘real part of,’’
andh̃( f ) is the Fourier transform of an uncorrelated random
processh(t), normalized like in Eq.~2! in order to show
explicitly the frequency dependence of the Brownian noise
that makes up the right-hand side of Eq.~31!.

Experimentally, we monitorx(t) for a long, but finite,
time Tmsr. Fourier transformation on this time interval, Eq.
~7!, gives the experimental power spectrum,

Pk
~ex!5

ux̃ku2

Tmsr
5

2kBT RegStokes~ f k!uh̃ku2/Tmsr

uk2 i2p f kgStokes~ f k!2m~2p f k!
2u2

,

where (uh̃ku2)k51,2,..., are uncorrelated non-negative random
variables with exponential distribution that satisfy Eq.~8!.
Thus (Pk

(ex))k51,2,..., are uncorrelated non-negative exponen-
tially distributed random variables, each of which conse-
quently has RMSD equal to its expected value. This property
is unchanged by the filtering and aliasing applied below.

The expected value ofPk
(ex) is

Phydro~ f !5
D/~2p2!@11~ f / f n!1/2#

~ f c2 f 3/2/ f n
1/22 f 2/ f m!21~ f 1 f 3/2/ f n

1/2!2 ,

~32!

where f m[g0 /(2pm* ).3 f n/251.9 MHz since m* [m
12prR3/3.3m/2 for the polystyrene bead we use.~This
simple relation betweenf m and f v might tempt one to elimi-
nate one of these frequencies in favor of the other. They
parameterize different physics however,f v parameterizes the
flow pattern established around a sphere undergoing linear
harmonic oscillations in an incompressible fluid. This pattern
is unrelated to the mass of the sphere. It need not have any,
for that matter.f m parameterizes the time it takes for friction
to dissipate the kinetic energy of the sphere and the fluid it
entrains. It depends on the mass of the sphere. By keeping
both parameters in formulas, the physical origin of various
terms remains clear.!. This power spectrum contains the
same two fitting parameters,f c andD, as the Lorentzian of

FIG. 3. ~a! Ratiosf c(xmin ,xmax) betweens( f c) and the theoretical minimum
for s( f c), the former from a fit of a Lorentzian to an experimental power
spectrum in the interval@ f min ,fmax#, the latter from fitting to the same spec-
trum in @0, `#, assuming it is known there. Solid line:sf c(0,xmax) vs x
5xmax5fmax/fc . Dashed line:sf c(xmin ,`) vs x5xmin5fmin /fc . Here xmax

5` only means thatf max is so much larger thanf c that the experimental
spectrum’s information content regardingf c is essentially exhausted. Thus
one can simultaneously havef max

2 !fNyq
2 , ensuring aliasing is negligible for

f < f max. Note thatsf c(1,̀ ),sf c(0,2), i.e., there is more information about
the f c value in interval (f c ,`) than in interval (0,2f c). ~b! Graph of
sD(0,x) showings(D)/D vanishes asxmax→`, wheresD(0,x);xmax

2(1/2) ac-
cording to Eq.~28!. Both ~a! and~b! illustrate the great amount of informa-
tion located in the high-frequency part of the spectrum.

FIG. 4. Ratio between the Lorentzian power spectrum and the hydrody-
namically correct power spectrumPhydro( f ) in Eq. ~32! evaluated with same
parameter valuef c5666 Hz. Solid line: Case of 2R51.05mm like that in
this article. Dashed line: Case of 2R5500 nm. Simple Einstein–Ornstein–
Uhlenbeck theory is a better approximation for smaller objects and at lower
frequencies. A change inf c to '370 Hz does not change these curves at
higher frequencies, but shifts the location of their minima to values just
below the new value forf c .

TABLE I. Parameter values of the Lorentzian fit~not shown! as a function
of f max. The experimental power spectrum fitted to was obtained at a larger
laser intensity than the spectrum shown in Fig. 2 andf sample525 kHz. Data
points in the experimental power spectrum were blocked to 750 equidistant
points in the range of 110 Hz–25 kHz before fitting the Lorentzian to the
points in the interval@ f min ,fmax# with f min5110 Hz andf max listed.

f max

~kHz!
f c

~Hz!
D

~arb units!2/s
Support

~%!

1 641610 42969 37
2 63066 42064 9
3 61065 40562 0
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the Einstein–Ornstein–Uhlenbeck theory, but differs signifi-
cantly from it, except at low frequencies, as shown in Fig. 4.
The radiusR of the bead now also occurs inf n and f m , and
not only throughf c , but it is not a parameter we must fit,
because it is known to 1% uncertainty, and occurs only in
terms that are so small that this small uncertainty ofR has
negligible effect onPhydro( f ).

XI. FAXÉN’S FORMULA GENERALIZED TO LINEAR
HARMONIC MOTION

The frictional force in Eq.~29! was derived by Stokes
under the assumption that the oscillating sphere is infinitely

deep inside the fluid volume. For optimal designs, the lens
that focuses the light into an optical trap typically has a short
focal length. So a microsphere caught in such a trap is typi-
cally near a microscope coverslip. Consequently, the hydro-
dynamical interaction between the microsphere and the es-
sentially infinite surface of the coverslip must be accounted
for. Faxén has done this for a sphere moving parallel to an
infinite plane with constantvelocity in an incompressible
fluid bounded by the plane and asymptotically at rest at con-
ditions of vanishing Reynold’s number. Solving perturba-
tively in R/,, where, is the distance from the sphere’s cen-
ter to the plane, Faxe´n found,40,41

gFaxén~R/, !5
g0

12~9R/16, !1~R3/8,3!2~45R4/256,4!2~R5/16,5!1¯

.

There is no second-order term in the denominator, so this
formula remains good to within 1% for,.3R if one ignores
all but the first-order term. This first-order result was first
obtained by Lorentz.42 If his first-order calculation is re-
peated for a sphere undergoing linear oscillating motion par-
allel to a plane, one finds a friction formula that has Stokes’
and Lorentz’s as limiting cases43

g~ f ,R/, !5gStokes~ f !X11
9

16

R

,
3F12

12 i

3

R

d

1
2i

9 S R

d D 2

2
4

3
~12e2~12 i !~2,2R!/d! D G .

~33!

The effect of the infinite plane is to increase friction, but less
so at larger frequencies whered is smaller.

We measured, by first focusing the microscope on the
coverslip surface. Having established,50, the distance, to
the bead was determined with software provided for the mi-
croscope~Leica DM IRBE! by Leica. The software com-
putes the distance moved by the oil-immersion microscope
objective. This distance multiplied with the ratio of the re-
fractive index of water to that of glass, 1.33/1.5, gives dis-
tance,. The software gives, within precision of 0.1mm, to
which must be added the independent error for determination
of ,50, which is also 0.1mm, we found, from repeated
determinations.

We hadR/,'1/12 when it was largest. So the bead’s
hydrodynamic interaction with the coverslip has an effect of
4% or less, large enough that we must account for it. Fortu-
nately, this introduces no new fitting parameters, because we
know the value of,. Since, occurs only in a term of at most
4% relative importance, any error in, value affects the final
result with a 0.04 times smaller error, in our case by one per
mil, at most.

XII. PHYSICAL POWER SPECTRUM

By replacinggStokes( f ) with g( f ,R/,) in Eqs.~29! and
~31!, one obtains a power spectrum that accounts for all rel-
evant physics of the bead in the trap, with the expected value

Phydro~ f ;R/, !5
D/~2p2!Reg/g0

~ f c1 f Im g/g02 f 2/ f m!21~ f Reg/g0!2 ,

~34!

where

Reg/g0511Af / f n2
3R

16,

1
3R

4,
expS 2

2,

R
Af / f nD cosS 2,

R
Af / f nD

and

Im g/g052Af / f n1
3R

4,

3expS 2
2,

R
Af / f nD sinS 2,

R
Af / f nD .

We refer to this as thephysicalpower spectrum. It dif-
fers from therecordedpower spectrum because the data ac-
quisition system contains filters, some intended, some not,
and because the data acquisition system samples the result-
ing filtered spectrum only at discrete times to produce the
spectrum recorded. Below, we discuss the effects of filtering
and finite sampling frequency.

XIII. POSITION DETECTION SYSTEM IS A LOW-PASS
FILTER

Silicon is transparent to infrared light. For this reason,
position detection systems like ours have finite response
times of the order of tens of microseconds. The delayed part
of the signal decreases over time as a simple exponential, so
our diode’s characteristics is a sum of two terms:36 ~i! a
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small constanta (diode)2, corresponding to the fractiona (diode)

of response that is instantaneous, and~ii ! a Lorentzian, cor-
responding to the delayed response,

P~ f !

P0~ f !
5a~diode!21

12a~diode!2

11~ f / f 3 dB
~diode!!2 . ~35!

The parametersa (diode) and f 3 dB
(diode) depend on~i! the la-

ser’s wavelength and intensity,~ii ! the photodiode’s thick-
ness, material properties, and reverse bias, and~iii ! line up of
the laser beam and photodiode.36,44,45Consequently, the op-
timal way in which to determine the values off 3 dB

(diode) and
a (diode) relevant for a recorded spectrum is to include them
with f c andD as third and fourth fitting parameters in a fit to
the spectrum. The logic of this procedure is sound, even
though we calibrate the position detection system with the
same data from which we want to calibrate the trap; see
Appendix G for details.

For the position detection system analyzed here, Eq.~35!
describes the filtering effect of this system out to approxi-
mately 30 kHz with the precision achieved here. We used
zero reverse bias across the photodiode. With reverse bias,
Eq. ~35! is good out to larger frequencies. In general, the
filtering effect of the position detection system at larger fre-
quencies is described by a more complicated expression than
Eq. ~35!, an expression that accounts also for faster decreas-
ing solutions to the diffusion equation for charge carriers in
the photodiode.44

XIV. ALIASING AND ANTIALIASING FILTERS

Sampling of the power spectrum with finite sampling
rate causesaliasing. Data acquisition electronics typically
have built-in antialiasing filters. Delta–sigma data conver-
sion systems use oversampling and ‘‘noise-shaping’’ filters to
eliminate aliasing altogether, and the effect of their built-in
filters is only seen near their readout frequency. Section XIV
can be skipped by those using such data acquisition systems.
For others, aliasing, antialiasing filters, and how they relate
are discussed in some detail in Appendix H. An important
point made there is that antialiasing filters do not prevent all
aliasing, they do not prevent the aliasing accounted for here
with Eq. ~37!.

Our data acquisition electronics have two built-in anti-
aliasing filters, both first-order filters with roll-off frequen-
cies, f 3 dB, that we set as high as possible, 80 and 50 kHz,
respectively. This is not the normal recommended setting,
but it gives optimal conditions for observation of the physics
of the problem and of unintentional filtering by the position
detection system.

A first-order filter reduces the power of its input,P0( f ),
by a factor of

P~ f !

P0~ f !
5

1

11~ f / f 3 dB!2 . ~36!

The effect of filters, intended or not, is accounted for by
multiplying the physically correct power-spectral expected
value in Eq.~34! with the characteristic function for each
filter, i.e., with Eqs.~35! and~36!—the latter twice, once for

each of our filters. That done, aliasing is accounted for by
summing the result,P(filtered), over aliased frequencies,

P~aliased!~ f !5 (
n52`

`

P~filtered!~ f 1n fsample!, ~37!

where in practice a finite number of terms exhausts the sum.
The result,P(aliased)( f ), is our theory for the expected value
of the experimental power spectrum recorded.

XV. HOW TO CALIBRATE TWEEZERS

The procedure described here in Sec. XV is implemented
in freely availableMATLAB software documented in Ref. 26.

The experimental spectrum to which we fitted in Fig. 5
is the result ofblocking30 a spectrum that is the average of
five spectra, which were calculated from five time series re-
corded in five time windows, each with duration of 218Dt
.16 s (Dt51/f sample51/16 000 s). Similarly, Fig. 6 is based
on four such time windows, each with duration of 218Dt
.5 s (Dt51/f sample51/50 000 s). In both cases consecutive
windows were separated by several minutes. A study of
power spectra and fitted parameters obtained from individual
windows showed that neither drifted between windows, al-
though the center of the trap did. Thus it is legitimate to
average over five/four spectra as we did. The spectrum thus
obtained was blocked on the linear frequency axis toN8
5150 data points, with each block containing approximately
870 points. Before any blocking was done, crosstalk between
channels was eliminated in the manner described in Appen-
dix C.

Our theory for the expected value of the power spectrum
was fitted to the recorded experimental power spectrum us-
ing our theory for the scatter of the latter about the former: It
scatters with standard deviation proportional to its expected
value, i.e., Eqs.~E4! and ~E5! apply with nb replaced by
nbnw , nw55 ~4!, as described in Appendix E. Thus we fit by
minimizing

x25 (
k51

N8 S Pk
~ex!2Pk

Pk /Anwnb
D 2

5nwnb(
k51

N8 S Pk
~ex!

Pk
21D 2

, ~38!

where the sum is over blocked data points andN8
[N/(nwnb). The form of x2 does not suit standard least-
squares fitting routines. However, exact rewriting yields a
form that does,

x25 (
k51

N8 S Pk
212Pk

~ex!21

sk
D 2

~39!

wheresk5Pk
(ex)21/(nwnb)1/2.

The solid line in Fig. 5~a! @Fig. 6~a!# shows
Phydro( f ;R/ l ), multiplied by the characteristic functions of
the diode and electronic filters, aliased withf sample516 kHz
@50 kHz#, then fitted to the experimental spectrum usingf c ,
D, f 3 dB

(diode), anda (diode) as fitting parameters. The parameter
values obtained from these least-squares fits are listed in
Tables II and III. We see that both the strength of the trap, in
the form of f c , and conversion of the position detection sys-
tem’s arbitrary units to nanometers, are determined to within
1% precision or better. The latter conversion was found by
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FIG. 5. Same data as in Fig. 2, here fitted withf max5fNyq . ~a! The thick
solid line is the theoretical spectrum in Eq.~34!, filtered and aliased, then
fitted to the experimental spectrum in the interval@110 Hz, 8 kHz#. Statis-
tical support for the fit is 96%~Refs. 30 and 31!. The data points shown
were obtained by blocking the experimental spectrum in intervals of equal
length on thelogarithmicaxis, and hence are not the same as those shown in
~b!. Two dashed lines practically on top of the solid line delineate a vertical
window of 61 standard deviation of Gaussian scatter of data. Thin solid and
dashed lines that overshoot the data are aliased Lorentzian and aliased
Phydro( f ;R/,), respectively, unfiltered, and with same values forD and f c as
those shown by the thick solid line and given in Table II for thex coordinate.
They illustrate the importance of filters and the frequency dependence of
hydrodynamical friction.~b!, ~c! See the caption for Fig. 6.

FIG. 6. Same plots as in Fig. 5, but for data obtained with a stronger optical
trap and f Nyq525 kHz ; see the values in Table III. The same power
spectral data were used to obtain results given in Table I. Statistical support
for the fit is 49%~Refs. 30 and 31!. ~a! See the caption for Fig. 5.~b! Values
of the data fitted to, divided by fitted theory in order to visualize their scatter
about a value 1. The two dashed lines delineate the vertical window of61
standard deviation of Gaussian scatter. Thus 68% of the data points should
fall between the two dashed lines if the data indeed are Gaussian distributed.
They do. Further blocking will reduce the scatter to less than 1%.~c! His-
togram ofN5106 @N51.33106 in Fig. 5~c!# experimental power-spectral
valuesPk

(ex) measured in units of their expected valuesPk , the latter being
the fit shown in~a!. Inset: Same data binned into a histogram with finer
resolution, showing 99% of the data.
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equating the value forD obtained in the fit with the value
known from Einstein’s relation, Eq.~6!. Thus, the forcekDx
exerted at distanceDx from the center of the trap is known to
within only 1%–2% error due to calibration of the trap and
diode. This error is typically negligible compared to the un-
certainty of the position. Thus our calibration scheme essen-
tially eliminates calibration errors from force measurements.

The x coordinate in Table II should be compared with
the results in Fig. 2. They were obtained from the same data
set. The two values for the corner frequency differ by four
standard deviations, with the Lorentzian fit yielding the
lower value, because it absorbs the effect of unintentional
filtering in this manner, with a small systematic error as re-
sult. This point is borne out in Table I and should be com-
pared with Table III’s data for thex coordinate obtained from
the same data set.

The two values found forf 3 dB
(diode) for the x andy coordi-

nates, respectively, are indistinguishable in Table II as well
as in Table III. This is what one would expect for a diode
with four identical quadrants. It is a coincidence that the
values differ only in the fourth digit, not shown in Table III.
The two values found forf c , on the other hand, differ by
three to four standard deviations. They differ by 2%~4%!,
corresponding to an elliptical cross section of the beam with
1% ~2%! difference between the lengths of the major and
minor axes, or ellipticity of @12(37462)/(38362)#1/2

50.1560.03, $@12(66665)/(63765)#1/250.2160.04%.
This ellipticity does not differ significantly from the 10%
maximum ellipticity of the laser beam promised by the
manufacturer. Also, trap ellipticity and laser ellipticity are
not necessarily the same thing. Polarized laser beams, even if
perfectly nonelliptical, tend to get focused onto elliptical,
diffraction limited spots in the image plane. This might be
the source of differences between the trap stiffness ellipticity

one measures and the laser beam ellipticity specified by the
manufacturer.

According to theory, the blocked experimental data
points are statistically independent and normally distributed
with known standard deviations. The ‘‘residual plot’’ in Fig.
5~b! @6~b!# shows the scatter about their expected value, fit-
ted theory, in units of this expectated value. Figures 5~b! and
6~b! show that the theoretical power spectrum presented here
fits the experimental one perfectly.

Figures 5~c! and 6~c! provide a more radical illustration
that the theoretical power spectrum used here really de-
scribes the expected value of the experimental spectrum: The
‘‘raw’’ experimental spectral values, i.e., unaveraged and un-
blocked values, were divided with the fitted theoretical value
and binned into histograms that show that the raw experi-
mental spectral values reallyare exponentially distributed
about their expected value, as stated by theory. This is a
powerful illustration of the correctness of the theory, as well
as of the experiment: The histogram shows an exponential
distribution over four decades obtained from experimental
values that range over no less than seven decades: the four
decades they scatter about their expected value, plus the
three decades that this expected value varies with the fre-
quency.

XVI. DISCUSSION

A. When precision is no concern

In many biological experiments, e.g., 10%–20% calibra-
tion error is of no concern because other sources of error are
dominant. So the trapping force can be estimated with
sufficient—albeit unknown—precision with the roughest
calibration based on a Lorentzian spectrum. Freely available
MATLAB software26 will do this as was shown in Sec. IV.

B. When precision is a concern

When precision is a concern an optical trap can advan-
tageously be calibrated as was demonstrated above. Our
recommendations—which we have implemented in freely
availableMATLAB software26—thus are the following.

~a! When plotting the experimental power spectrum, com-
press data by blocking to show fewer data points with
smaller scatter about their expected value. After all, we
know a priori that the expected value is a smoothly
varying function of the frequency. So the data can ad-
vantageously reflect this.

~b! Plot Pxy ~defined in Appendix C! and use its minimal-
ization as a criterion for good alignment of the diode
with the laser beam.

~c! If Pxy cannot be made to vanish, find a linear coordi-
nate transformation to a frame of reference in which it
does vanish, and work in this frame of reference.

~d! The frequency dependence of the friction coefficient
and of the Brownian noise should be taken into ac-
count. Not only is that correct theory, but using it costs
nothing: No new fitting parameters are introduced with
it.

~e! Data acquisition electronics contain antialiasing filters.

TABLE II. Values of fitted parameters for Fig. 5, based on blocking to 150
data points andf min5110 Hz, f max5fNyq58 kHz. D50.41 nm2/ms was
used to find the nanometer equivalent for diode output forRx andRy . The
covariance betweenf c andD was20.95.

Parameter x coordinate y coordinate

f c ~Hz! 37462 38362
f 3 dB

(diode) ~kHz! 6.7360.17 6.3960.14
D ~arb units!2/s 61069 58468
Arb unit equiv ~nm! 26.060.2 26.360.2
12a (diode)2 0.9260.02 0.9160.01
Support~%! 96 81

TABLE III. Values of fitted parameters for Fig. 6, based on fit to 150
blocked data points andf min5110 Hz, f max5fNyq525 kHz. The covariance
betweenf c andD was20.95.

Parameter x coordinate y coordinate

f c ~Hz! 66665 63765
f 3 dB

(diode) ~kHz! 7.2760.04 7.2760.05
D ~arb units!2/s 44769 46769
Arb unit equiv ~nm! 30.360.3 29.660.3
12a (diode)2 0.92860.001 0.92460.001
Support~%! 49 52
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Their effect is known, or easily measured with a signal
generator, so it is costs nothing to account for it when it
affects the power spectrum recorded. If the filters are
set to have minimal effect, that also minimizes the ef-
fect of imprecise knowledge about these filters’ param-
eter values.

~f! One should be aware that one’s position detection sys-
tem may have frequency-dependent sensitivity, hence
may act as an unintended low-pass filter. Ours, a Si
PIN diode used with a 1064 nm laser, does, and it is by
far the most important filter in our setup. However,
since we know the form of its characteristic, we can
calibrate its parameters from the very power spectrum
we wanted to fit. This is the optimal way in which to
determine these parameters, because their values de-
pend on experimental circumstances. If one calibrates
with f max

2 !f3 dB
(diode)2, one should use the approximation

in Eq. ~G1!. If one uses another kind of quadrant pho-
todiode and/or laser wavelength, this filter effect may
be different or absent.44,45

~g! Aliasing due to finite sampling frequency always oc-
curs, unless ones data acquisition system uses oversam-
pling. Aliasing is easily accounted for, however, and
doing so costs nothing if the theory one aliases is also
correct at frequenciesf . f Nyq that contribute through
aliasing to the spectrum belowf Nyq . No new fitting
parameters are introduced, onlyf Nyq , which is known
to high precision.

~h! Leakage,30 on the other hand, is truly negligible be-
cause the power spectrum of a trapped bead is a
smooth and slowly varying function. So there is no
need to introduce window functions that reduce leak-
age. Consequently, overlapping data windows that
compensate for loss of information caused by window
functions are also not needed. However, if built into
one’s data acquisition software, they can be used as
they were intended: for quick, on-line data compres-
sion. The correlations they introduce in the resulting
power spectrum are negligible if a very large number
of windows is used.

~i! The scatter of experimental power spectral values
about their expected values is known theoretically. So
it costs nothing to use correct error bars, and doing so
yields correct stochastic error bars on fitted parameters
such asf c andD, and, last but not least, use of correct
error bars makes it possible to obtain statistical support
for fits.

~j! Plots like Figs. 1, 2~b!, 5~b! and 5~c!, 6~b! and 6~c!, and
7–10 are well worth doing. They provide simple,
strong, virtually model-independent checks that will
catch many kinds of errors in one’s experiment and
initial data analysis, if present.

~k! If the fitted value ofD is used to calibrate the length
scale of displacements measured, one should be aware
that the viscosity of the fluid in which one measures
may differ significantly from that of pure water at the
same temperature. If this is so, reliable calculation or

measurement of its viscosity is needed, or a direct mea-
surement of length scales by moving a fixed bead with
a piezo stage.

~l! Finally, one should beware that the procedure de-
scribed here calibrates thecenter of the trap. This
makes it valid anywhere near the center where the trap-
ping potential is harmonic. That includes everywhere
Brownian motion took our bead during calibration, it
seems from Fig. 10. How to calibrate off center, at a
given displacement along the beam axis, is a separate
project of practical interest, but was not addressed here.
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APPENDIX A: NOTATION

For convenience, our notation and characteristic values
of parameters and variables are given in Table IV.

FIG. 7. ~a! Dark spectrum: Power spectrum recorded with the diode in total
darkness, a measure of the electronic noise level. The spike at 50 Hz is
caused by the power supply. All values are a factor of 102– 104 below our
calibration spectra.~b! Light spectrum: Power spectrum recorded with the
trap’s laser light impinging directly onto the photodiode with no micro-
sphere in the trap. The dashed line at low frequencies has a slope of22.
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APPENDIX B: NULL TESTS FOR NOISE

We did two simple null tests of our equipment before we
recorded power spectra for the bead in the trap. We recorded
a ‘‘dark spectrum,’’ the power spectrum generated when the
diode is kept in total darkness; see Fig. 7~a!. This is a mea-
surement of the equipment’s electronic noise. We see the
spectrum is flat, except for a spike at 50 Hz from the power
supply, and at a few higher frequencies, 400 Hz in particular.
All values are a factor of 102– 104 below that of our calibra-
tion spectra, hence noise may contribute from 1% to 10% to
the spectra, since amplitudes, not spectra, add up. However,
the spikes are so narrow and few in addition to being small

that they do not matter statistically in our calibration spectra,
and also do not show above their noise. The spike at;7 kHz
was an exception, but it was so narrow that it easily was
filtered out manually and had negligible consequence for the
statistics of the calibration spectrum.

We also recorded a ‘‘light spectrum,’’ see Fig. 7~b!.
Compared with the dark spectrum, this light spectrum shows
significant low-frequency noise, plus a peak at 100 Hz, prob-
ably caused by stray light. Apart from stray light, the differ-
ence is caused by the limited pointing stability of the unscat-
tered laser beam and the optics it passes through relative to
the photodiode. The low-frequency noise seems to fall off as
f 22, which is what one would observe if the direction of the
laser were doing a slow random walk about its average di-
rection driven by white noise.

Although only the microsphere is missing, this light
spectrum is not a direct measurement ofall noise in the
system apart from the Brownian noise of the sphere. Me-
chanical vibrations, e.g., are transmitted to the fluid volume,
but not to the light spectrum because the fluid is transparent.
They are, however, transmitted by the fluid to the sphere’s
spectrum when the sphere is present. So this is noise that
occurs in the experiment, but not in the light spectrum.
Strictly speaking, the light spectrum therefore only provides
a lower bound on ‘‘all noise but the sphere’s Brownian.’’ It
may nevertheless be a good approximation to all noise, al-
though proof of this is missing.

By choosing f min5110 Hz in calibration fits, we leave
low-frequency noise entirely out of the calibration. The light
spectrum’s extra features relative to those in Fig. 7~a! above
this f min value all fall a factor of 1024 below the calibration
spectrum’s power at the same frequencies, hence add less
than 1% to the calibration spectrum.

FIG. 8. Experimental power spectra forx and y coordinates~lower and
upper data points, respectively!. Points plotted here are averages over
‘‘blocks’’ of points from the original power spectrum; see Appendix E. The
error bars were calculated from data within blocks. Since the block intervals
were chosen to be of equal size on the logarithmic frequency axis used here,
the number of data points in a block grows exponentially with the frequency.
Consequently, the error bars decrease exponentially with an increase in fre-
quency, and range from small at low frequencies to nondiscernible at inter-
mediate and large frequencies. Inset: Experimental values of the dimension-
less cross correlation functionPxy /(PxPy)

1/2 introduced in Sec. C 1, as a
function of the frequency.~Same power spectral data as in Figs. 2 and 5.!

FIG. 9. Px8y8( f )/@Px( f )Py( f )#1/2 as a function off at a minimum with
respect to (b,c) of S f Px8y8( f )2/@Px( f )Py( f )#. Note that the quantity plot-
ted, and hencePx8y8( f ), are both zero within errors. More precisely, statis-
tical support for the hypothesis that it vanishes is 10%.~Same data as was
used in Figs. 2 and 5.!

FIG. 10. Linear–log plot of a histogram of the positions that occur in a time
series for a bead in a trap. Data are the same as those used in Figs. 2, 8, and
9. Superimposed is the Gaussian distribution with the same second moment
as the data. Inset: Linear–linear plot of the same histogram and Gaussian.
The 4.5 decades of Gaussian behavior seen here demonstrates that the trap’s
potential is harmonic up to 10kBT at least.~Same data as was used in Figs.
2 and 5.!
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APPENDIX C: CROSSTALK BETWEEN CHANNELS

1. How to decorrelate channels

The photodiode that we used to measure the bead’s po-
sition consists of four quadrants, each of which outputs volt-
age proportional to the amount of light impinging upon it.
We number the quadrants I, II, III, and IV like the quadrants
of a two-dimensional~2D! coordinate system, and denote
their output voltagesVI , VII , VIII , andVIV . Then changes in
the voltage and the ratios,

Vz[VI1VII1VIII 1VIV , ~C1!

Rx[~VI2VII2VIII 1VIV !/Vz , ~C2!

Ry[~VI1VII2VIII 2VIV !/Vz , ~C3!

are, to good first approximation,35,46–48 proportional to
changes in the bead’s position (z,x,y), with z the coordinate
along the laser beam’s axis.

Figure 8 shows that this approximation is not adequate
when precision is desired. The experimentally recorded ‘‘co-
ordinates’’Rx(t) andRy(t) are not independent. Their power
spectra,Px( f )[uR̂x( f )u2 and Py( f )[uR̂y( f )u2, where the
caret denotes discrete Fourier transformation, Eq.~12!, are
plotted in Fig. 8, together withPxy( f )[Re@R̂x(f )R̂y* (f )#.
Whenx andy are uncorrelated degrees of freedom, so areRx

andRy , hence so areR̂x andR̂y . Consequently,Pxy should
vanish compared to Px and Py . We find
Pxy( f )/@Px( f )Py( f )#1/2'3% – 5%, however, as shown in
the inset in Fig. 8.

Two explanations for crosstalk given below suggest that
(Rx ,Ry) is a linear function of (x,y), and vice versa, and
that this function does not depend on time. Assuming this,
we look for a linear transformation of (Rx ,Ry) to a pair of
coordinates (x8,y8) for which Px8y850. If we can find such
a transformation, it does not matter what motivated the
search for it: the transformed coordinates are the correct Car-
tesian coordinates in which to analyze the bead’s motion and
calibrate the trap. To find this transformation, we must find
two real constants,b andc, such that the time series,

~x8~ t !,y8~ t !![~Rx~ t !1bRy~ t !,Ry~ t !1cRx~ t !!, ~C4!

has the property thatPx8y8( f )50 for all f.
Clearly, constantsb and c are greatly overdetermined.

Nevertheless, we were able to find them for all time series
that we have analyzed, and have also found that the solution
is almost degenerate. This is becausePx( f ), Py( f ), and
Pxy( f ) are nearly proportional to each other. It probably also
helped that before we recorded any of the data used here, we
aligned the diode with the laser beam using as the alignment

TABLE IV. Notation used and characteristic values of quantities encountered for data set shown in Figs. 2, 5,
and 6. Note: The thermal velocity and the half width of the trap both refer to a single coordinate of motion, i.e.,
to motion in one dimension.

Quantity Notation Equal to
Value

~Figs. 2 and 5!
Value

~Fig. 6!

Sampling frequency f sample 16 kHz 50 kHz
Nyquist frequency f Nyq f sample/2 8 kHz 25 kHz
Corner frequency f c k/~2pg! ;370 Hz ;670 Hz
Frequency whered5R fn n/(pR2) 1.3 MHz
Frequency of inertial relaxation f m g/(2pm* )'g/(3pm) 1.9 MHz
Minimum fitted frequency f min 110 Hz
Maximum fitted frequency f max 8 kHz 25 kHz
Diode frequency f 3 dB

(diode) 6.8 kHz 7.3 kHz
Total No. of data points N nw3218 1.33106 1.03106

Time between measurements Dt f sample
21 62.5ms 20.0ms

Total duration of measurements Tmsr NDt 82 s 21 s
No. of data windows nw 5 4
Duration of one data window 16.4 s 5.2 s
Time between windows 1 min
No. of points of block nb 517, 861 869
No. of blocked points N8 29, 150 150
Diameter of bead 2R 1.05mm
Density of bead and water r 1.0 g/cm3

Mass of bead m 4pR3r/3 6.1310213 g
Hydrodynamical mass m* m12pR3r/3 9.1310213 g
Thermal energy kBT 4.1 pN nm
Thermal velocity ^v2&1/2 kBT/m 3 mm/s
Kinematic viscosity n 1.0 mm2/ms
Reynolds number NRe R^v2&1/2/n 1.431023

Drag/friction coefficient g 6prnR 931026 g/s
Trap stiffness k 2p f cg 0.021 pN/nm 0.038 pN/nm
Relaxation time in trap t trap g/k5(2p f c)

21 0.5 ms 0.2 ms
Diffusion coefficient D kBT/g 0.41 nm2/ms
Inertial time scale t inert m/g 56 ns
Half width of trap ^x2&1/2 (kBT/k)1/2 14 nm 10 nm
Penetration depth d Frequency dependent
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criterion ^Rx&5^Ry&50 and Pxy minimal ~all three com-
puted and plotted on line!.

In general, the transformation just defined gives

Px85Px12bPxy1b2Py , ~C5!

Py85Py12cPxy1c2Px , ~C6!

Px8y85~11bc!Pxy1cPx1bPy . ~C7!

We found (b,c)5(0.47,20.56) by minimizing
( f Px8y8( f )2/@Px( f )Py( f )# with respect tob andc. As de-
sired, we found that at the minimum
Px8y8( f )/@Px( f )Py( f )#1/250 was satisfied for allf to
within experimental error of this quantity; see Fig. 9.

Having determinedb andc in this manner, the resulting
power spectra,Px8 and Py8 , for the uncoupled coordinates
(x8,y8) are the spectra that we analyzed in the manner de-
scribed in the body of this article. So we drop the prime from
the notation hereafter, but it should always be understood
implicity.

2. Possible origins of crosstalk

If the parabolic trapping potentialV is perfectly rotation-
ally symmetric about the beam axis~chosen as thez axis!,
V(x8,y8,z)5v(x821y82,z), the bead’s equation of motion
decouples no matter which pair of Cartesian coordinates
(x8,y8) we use, as long as they are orthogonal to the beam
axis. If the parabolic trap isnot rotationally symmetric, but
elliptic about the beam axis, decoupling is achieved in coor-
dinates (x8,y8) that coincide with the major and minor axes
of the ellipse.

Figure 8 shows thatPx and Py are approximately pro-
portional to each other: The data set for one function is
shifted vertically relative to the data set for the other function
by an amount approximately independent of frequencyf.
This means that the two channels have nearly the same cor-
ner frequency. So the trap is nearly rotationally symmetric.

With an asymmetric trap excluded, the simplest explana-
tion for the constant ratio betweenPx andPy is a difference
in sensitivity of the photodiode with respect to the two di-
rections. This would come about if the four quadrants of the
diode are not identically sensitive, and this would also ex-
plain the nonvanishing values forPxy , including its nearly
constant ratio toPx andPy : Rx becomes linearly correlated
with Ry if we introduce independent sensitivitiessi for each
of the quadrants,Vi5siLi , i 5I, II, III, and IV, where Li is
the amount of light impinging on thei th quadrant. If, e.g., a
spot of light moves in thex direction,L I1L II remains con-
stant, as doesL III 1L IV andVz . The ratioRy changes value
whensIÞsII and/orsIIIÞsIV , however. Note that such asym-
metry needs not be a property of the diode itself. All four
quadrants could be identical, but have a nonlinear relation-
ship between input light intensity and output voltage. In that
case, less-than-perfect centering of the laser beam on the
diode will cause different amounts of light to fall on different
quadrants, and hence make them respond with different sen-
sitivity to the small changes in light that correspond to move-
ment of the bead.

Another explanation, which does not exclude the first,
could be small asymmetry in the spot of light scattered by
the bead onto the photodiode. That would cause different
amounts of light to shift between quadrants for identical
shifts of the bead in thex and y directions. If, furthermore,
some of that asymmetrically scattered light falls beyond the
edge of the quadrant diode, then a shift of the bead in thex
direction will changeRy , and hence register as a correlated
change iny.

APPENDIX D: MODEL-INDEPENDENT DATA
ANALYSIS

Histograms ofx andy positions of the decorrelated time
series were consistent with a harmonic trapping potential up
to 10kBT, at least, as shown in Fig. 10 for thex channel.

The parabola through the data in the lin–log plot shows
that the data are modeled well withV(x)5 1

2kx2 in the range
of x values visited. It is very satisfying that a model-
independent data analysis can point so precisely to a specific
model. If we determined the value ofk in this manner, how-
ever, we may find too low a value. This is because the true
distribution } exp@2V(x)/kBT# was smeared to a wider one
by low-frequency vibrations which are external to the experi-
ment in the sense that they do not originate in the bead’s
thermal motion. We may also find too large a value fork
because low-pass frequency filters artificially narrow the dis-
tribution of positions recorded. Furthermore, since fits like
that in Fig. 10 do not calibrate the position detection system,
the units forx and y remain arbitrary until an independent
calibration of the position detection system is carried out,
e.g., by findingf c . Force measurements would consequently
contain errors that originate in that calibration as well, were
we to do one.

APPENDIX E: MAXIMUM-LIKELIHOOD FITTING AND
DATA COMPRESSION

Suppose we data compress a power spectrum by block-
ing, and only then fit to it. How should that be done, and
what is the approximation introduced by this?

In an unprocessed~uncompressed! power spectrum, the
power spectral values areexponentiallydistributed. Least-
squares fitting presupposes that the data are Gaussian distrib-
uted. With sufficient compression, a spectrum whose values
were exponentially distributed will turn into a spectrum with
much less scatter and Gaussian distributed values by virtue
of the central limit theorem. So after compression, least-
squares fitting can be applied. What is the approximation
involved, we should ask, and what is the precision to expect,
we mustask, in view of the precision we achieve in calibrat-
ing to compressed spectra, and hence want to claim for the
calibration method described.

In order to answer these questions, we first observe that
maximum-likelihood fitting to exponentially distributed data
is equivalent to minimizing

F[2 log p5(
k

~Pk
~ex!/Pk1 log Pk!. ~E1!
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Now consider the contribution from one block of data toF in
Eq. ~E1! before blocking has been done,

DF~block!5 (
f Pblock

S P~ex!~ f !

P~ f !
1 log P~ f ! D . ~E2!

In this equation we expandP( f ) at f 5 f̄ to second order in
f 2 f̄ , and find

DF~block!5nbF P̄~ex!~ f̄ !

P~ f̄ !
1 log P~ f̄ !

2
1

24
S nbD f P8~ f̄ !

P~ f̄ !
D 2G , ~E3!

where the last term on the right-hand side was obtained by
replacing the sum( f Pblock with an integral overf between
f̄ 6 1

2nbD f .
Note that nbD f P8( f̄ )/P( f̄ ) is the relative change in

P( f ) across a block. SinceD f 51/T50.06 Hz while
P8( f )/P( f )5O( f c

21), it is possible to choosenb large, e.g.,
nb5500, and still have the last term in Eq.~E3! negligible,
so that we are left with the same form as Eq.~E1! for
maximum-likelihood estimation of the theory’s parameters
from given, now blocked, experimental data.

Calculation entirely like the one leading from Eqs.~E2!–
~E3! shows that the expected value and RMSD forP̄(ex)( f̄ )
are

^P̄~ex!~ f̄ !&5P~ f̄ !, ~E4!

s@ P̄~ex!~ f̄ !#5s@P~ex!~ f̄ !#/Anb5P~ f̄ !/Anb, ~E5!

to the orders innbD f given. In this last identity, Eq.~E5!, if
the power spectrum blocked was already windowed, its val-
ues were not exponentially distributed, andnb should be re-
placed withnwnb in the case of nonoverlapping rectangular
windows, and with 9nwnb/11 in the case of Hanning win-
dows ~Ref. 30, p. 428!.

For largenb , or, if nwÞ1, for largenwnb , the central
limit theorem tells us thatP̄(ex)( f̄ ) is Gaussian distributed
with the expected value and root-mean-square deviations
given in Eqs.~E4! and~E5!. Fitting to data that are known to
be Gaussian distributed is usually done with the method of
least squares. So it is natural to ask how the method of least
squares relates to the maximum-likelihood estimation dis-
cussed above. According to Eq.~E3! with its last term ne-
glected, maximum-likelihood estimation based on blocked
data amounts to minimization of

F̄[nb(
f̄

S P̄~ex!~ f̄ !

P~ f̄ !
1 log P~ f̄ !D . ~E6!

A brief calculation shows that this is equivalent to minimi-
zation of

F̄2[
1

2
x21(

f̄

log P~ f̄ !, ~E7!

where

x2[nb(
f̄

S P̄~ex!~ f̄ !2P~ f̄ !

P~ f̄ !
D 2

. ~E8!

F̄2 is precisely the expression one must minimize with re-
spect to fitting parameters in the functionP when these pa-
rameters are maximum likelihood estimated from a set of
experimental data@ f̄ ,P̄(ex)( f̄ )# f̄ ,..., that are normally distrib-
uted with the theoretical expected value and root-mean-
square deviation given in Eqs.~E4! and ~E5!.

Thus we see that maximum-likelihood estimation ofP
simplifies tox2 minimization only whennb is so large that
one can ignore the last term in Eq.~E7! compared to the first.
This last term occurs because our theory gives both the ex-
pected value for the dataand the data’s root-mean-square
deviation for this expected value. Thus the parameters of our
theory occur also in the root-mean-square deviation, the
logarithm of which is the second term inF̄2 above. In text-
book derivations of ordinary least-squares fitting, this term is
independent of the fitted theory’s parameters, e.g., because
experimentally measured error bars are used, hence only the
first term,x2, is minimized.

Sincenbnw ranged from 2500 to 4350 in our data analy-
sis, we could neglect the second term inF̄2 relative to the
first term, and fit by minimizing onlyx2. Factors other than
this approximation limited our precision. However, with data
and equipment other than those discussed here, we have en-
countered situations wherex2 fitting clearly was not ad-
equate, and we had to minimize the full expression forF̄2 .44

APPENDIX F: CALCULATION OF s„f c…

Equations~25! and ~27! give f c as a function of the
experimental power spectrum (Pk

(ex))k51,...,N8 . SincePk
(ex) is

a random variable, so is the value we find forf c . We deter-
mine s( f c) by the usual method of linear propagation of
errors. The calculation is long, but is simplified by a conve-
nient choice of notation.

s2~ f c
2!5 (

k51

N8 S ] f c
2

]Pk
~ex!D

P~ex!5P

2

s2~Pk
~ex!!, ~F1!

] f c
2

]Pk
~ex! 5(

p,q

] f c
2

]Sp,q

]Sp,q

]Pk
~ex! , ~F2!

]Sp,q

]Pk
~ex! 5q fk

2pPk
~ex!q21, ~F3!

f c
25N/D, ~F4!

where we have introduced an explicit notation for the nu-
merator and the denominator,

N[S0,1S2,22S1,1S1,2, ~F5!

D[S0,2S1,12S0,1S1,2. ~F6!

Then
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] f c
2

]Sp,q
5D21S ]N

]Sp,q
2 f c

2 ]D
]Sp,q

D , ~F7!

and thus

] f c
2

]Pk
~ex! 5D21~Š2,22Š1,2~ f c

21 f k
2!22Š1,1~ f c

21 f k
2!Pk

~ex!

12Š0,1~ f c
21 f k

2!2Pk
~ex!!, ~F8!

where we have introduced the notation,

Šp,q[(
k51

N8

~ f c
21 f k

2!pPk
~ex!q , ~F9!

and note thatŠ0,q5S0,q , andS0,05N8. In this notation,

D5Š0,2Š1,12Š0,1Š1,2. ~F10!

Evaluated at

Pk
~ex!5Pk5b21~ f c

21 f k
2!21, ~F11!

Šp,q5b2qŠp2q,0 , ~F12!

and consequently,

S ] f c
2

]Pk
~ex!D

P~ex!5P

5b22D21~Š21,0~ f c
21 f k

2!2Š0,0!, ~F13!

with

D~P~ex!5P!5b23~Š22,0Š0,02Š21,0
2 !. ~F14!

Using

s~Pk
~ex!!5hb

21/2Pk5nb
2~1/2!b21~ f c

21 f k
2!21 ~F15!

(nb should be replaced withnbnw if nwÞ1), we find

s2~ f c
2!5nb

21b26D22Š0,0~Š22,0Š0,02Š21,0
2 !,

5nb
21b23D21Š0,0, ~F16!

5
Š0,0

nb~Š22,0Š0,02Š21,0
2 !

.

Finally, we replace the sums with the integrals they approxi-
mate,

Šp,05 (
k51

N/nb

~ f c
21 f k

2!p5
T

nb
E

f min

f max
d f~ f c

21 f 2!p ~F17!

and have, withxmin[fmin /fc andxmax[fmax/fc ,

Š0,055
T fc

nb
~xmax2xmin!, ~F18!

Š21,05
T

nbf c
arctanS xmax2xmin

11xmaxxmin
D , ~F19!

Š22,05
T

2nbf c
3 F xmax

11xmax
2 2

xmin

11xmin
2

1arctanS xmax2xmin

11xmaxxmin
D G , ~F20!

from which Eq.~25! follows, when using

s~ f c!

f c
5S s2~ f c

2!

4 f c
4 D 1/2

. ~F21!

APPENDIX G: FITTING f 3 dB
„diode … AND a „diode …

The fit shown in Fig. 5 givesf c50.37 kHz andf 3 dB
(diode)

56.8 kHz, i.e., the latter is 19 times larger than the former.
So the values of these two frequencies are sensitive to dif-
ferent parts of the power spectrum. This does not mean that
the covariances betweenf c , on the one hand, andf 3 dB

(diode) and
a (diode) on the other, are negligible. Bothf c and f 3 dB

(diode), for
example, depend on a large range of frequencies, and conse-
quently have significant covariance for realistic values of
both. This is seen when fitting using a program that gives
correlations, and can also be shown analytically for a Lorent-
zian fit with f c! f max&f3 dB

(diode)! f Nyq in a calculation analo-
gous to the one done in Appendix F; see Sec. G 1 below. In
units of s( f c)s( f 3 dB

(diode,eff)), one finds that the covariance of
f c and f 3 dB

(diode,eff) is 22( f c / f 3 dB
(diode,eff))1/2, which takes values

of 20.46 and20.47 for the values off c and f 3 dB
(diode,eff) that

we found above~Fig. 5, Table II! for the x and they coordi-
nates, respectively. In view of the approximation involved,
this is in good agreement with the values of20.55 and
20.54 found by the fitting program for the covariance be-
tween f c and f 3 dB

(diode) in units of s( f c)s( f 3 dB
(diode)). The agree-

ment is even better for the data set whosex-coordinate data
are shown in Fig. 6. The fit shown there and the equivalent
one for they coordinate give20.56, respectively,20.55, for
the correlation betweenf c and f 3 dB

(diode) in units of
s( f c)s( f 3 dB

(diode)). This compares very well with the analytical
result 22( f c / f 3 dB

(diode,eff))1/2520.59, respectively,20.58, for
the covariance betweenf c and f 3 dB

(diode,eff) in units of
s( f c)s( f 3 dB

(diode,eff)).
Since the covariance in units ofs( f c)s( f 3 dB

(diode,eff)) is
22( f c / f 3 dB

(diode,eff))1/2 in our analytical case based on Lorentz-
ians, we see that one needs an unrealistically small ratio for
f c / f 3 dB

(diode) in order to have negligible covariance between
these two parameters. We also see that because of their sub-
stantial covariance one cannot determine one correctly with-
out determining the other with similar precision. Because of
our rich data and well-fitting theory, we determine bothf c

and f 3 dB
(diode) with the high precision listed in Tables II and III.

This precision refers to the 68% probability interval for the
parameter in question, with the values for the other three
parameters floating; i.e., it is the most conservative, largest
interval. So our procedure is quite sound despite the nonva-
nishing covariance off c with f 3 dB

(diode).
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1. Low-frequency approximation for the diode
characteristic function

From Tables II and III we see that less than 10% of the
power in the spectrum,a (diode)2, is unaffected by the finite
response time of the diode. In this case, and for frequenciesf
for which (f / f 3 dB

(diode))2!1, we have

P~ f !

P0~ f !
5

11a~diode!2~ f / f 3 dB
~diode!!2

11~ f / f 3 dB
~diode!!2 ,

~G1!

'
1

11~ f / f 3 dB
~diode,eff!!2 ,

where we have introduced

f 3 dB
~diode,eff![~12a~diode!2!2~1/2! f 3 dB

~diode! . ~G2!

The last expression in Eq.~G1! is a simple Lorentzian. Equa-
tion ~G2! shows that in this casea (diode) combines with
f 3 dB

(diode) into a single parameter,f 3 dB
(diode,eff), an effective 3 dB

frequency of a first-order filter that describes the diode’s
characteristics.

One can use this approximation in a calculation analo-
gous to the one done in Appendix F to obtain the analytical
result used above: the covariance off c and f 3 dB

(diode,eff), in units
of s( f c)s( f 3 dB

(diode,eff)), is 22( f c / f 3 dB
(diode,eff))1/2.

APPENDIX H: ALIASING AND ANTIALIASING

1. What aliasing is

When a signal is sampled at discrete times,t j , with fre-
quencyf sample, the sampling process cannot distinguish fre-
quency components of the signal which differ from each
other by integer multiples of the sampling frequency. They
all add up to a single amplitude. This is seen as follows: Our
experiment records a time series (xj ) j 51,...,N by sampling the
continuous signalx(t) with frequencyf samplefor time Tmsr.
With x̃k the continuous Fourier transformed in Eq.~7!, the
continuous signal can be written in terms of its inverse Fou-
rier transform,

x~ t !5
1

Tmsr
(

n52`

`

e2 i2ptk/Nx̃k . ~H1!

Inserting this in thediscrete Fourier transform of our re-
corded time series, Eq.~12!, and using

1

N (
j 51

N

ei2p j ~k2, !/N5 (
n52`

`

dk2,,nN, ~H2!

where the right-hand side is equal to 1 fork5, moduloN,
and 0 otherwise, we find

x̂k5 (
n52`

`

x̃k1nN . ~H3!

Here the real and imaginary parts ofx̃k1nN are uncorrelated
random Gaussian variables with zero mean and common
variance in both the Einstein–Ornstein–Uhlenbeck theory
and the hydrodynamically correct theory, and for filtered ver-
sions of both theories. Hence, so are the real and imaginary
parts ofx̂k . Consequently,

Pk
~ex,aliased![ux̂ku2/Tmsr ~H4!

is exponentially distributed on the real, non-negative num-
bers, with mean

Pk
~aliased!5^ux̂ku2&/Tmsr,

5 (
n52`

`

^ux̃k1nNu2&/Tmsr,

5 (
n52`

`

Pk1nN . ~H5!

P(aliased)is obviously a periodic function ofk with period
N, i.e., of f k with period f sample. So it is sufficient to know its
value in the interval@2 f Nyq , f Nyq#, f Nyq5 f sample/2.

On the other hand, Eq.~H5! shows that neitherf Nyq nor
f sample represents a sharp frequency cutoff. The value of
Pk

(aliased) depends throughPk1nN
(unaliased), n561,62,..., on fre-

quency componentsx̃k of the signal x(t) outside
@2 f Nyq , f Nyq#.

2. Example: Aliased Lorentzian

As a specific example, we consider the Lorentzian, for
which

Pk
~aliased!5 (

n52`

`
D/~2p2!

f c
21~ f k1n fsample!

2

5
~Dx!2Dt

11c222c cos~2pk/N!
. ~H6!

In the case off c! f , f Nyq , P( f )}1/f 2, hence

PN/2
~aliased!} (

n52`

`
1

~ f Nyq12n fNyq!
2 ,

5
2

f Nyq
2 S 11

1

9
1

1

25
1

1

49
1

1

81
1¯ D

'
2.47

f Nyq
2 , ~H7!

i.e., aliasing adds almost 150% to the power spectrum near
f Nyq . This means that frequencies several timesf Nyq contrib-
ute significantly to the power spectrum nearf Nyq , no matter
what value f Nyq has, and one must consequently consider
whether the model yielding the Lorentzian really is also valid
at these higher frequencies, even if the model is known to be
valid below f Nyq .

3. What antialiasing is

Data acquisition electronics have built-inantialiasing fil-
ters. These filters prevent aliasing of electronic noise from
much higher frequencies. However, if not all 3 dB frequen-
cies of these filters are much larger than our highest fre-
quency of interest, the power spectrum wewant to measure
is distorted by antialiasing. Sincef 3 dB5 f Nyq is a popular
choice, this distortion commonly occurs and is significant;
see Fig. 11.
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It should be avoided when possible by choosing high
values forf 3 dB. Electronic noisemustbe filtered away, but
this should be done with minimal effect on the information-
containing part of the power spectrum. Although any anti-
aliasing filter is easily accounted for in principle when its
characteristic function is known, in practice parameter values
of the characteristic function are not known with precision.
However, if the filter settings are chosen to minimize filter-
ing, the uncertainty that this lack of precision causes, appears
on subdominant digits that describe an already small effect.
So this lack of precision may not matter.

4. What antialiasing is not

Antialiasing filters are no substitute for a correct descrip-
tion of the aliasing caused by finite sampling time, as Fig. 11

illustrates: If the theoretical power spectrum for a system is a
simple Lorentzian, but the signal from this system is sampled
at a finite rate, an aliased Lorentzian results. This is then
what one should fit to the experimental spectrum. If one
filters the signal before sampling it, say, withf 3 dB5 f Nyq ,
that should also be accounted for. However, one shouldnot
assume that the filter prevents the aliasing caused by finite
sampling time, and then fit a simple Lorentzian to the spec-
trum of the filtered, sampled signal, to frequencies up to
f Nyq . Not if 20% error matters, because the two spectra dif-
fer by that much for 0.6f Nyq, f ,0.8f Nyq . If one fits only to
frequencies belowf max50.6f Nyq , a simple Lorentzian is
about as bad an approximation to the filtered time series as to
the unfiltered one. So in this range also is antialiasing no
substitute for a theory that accounts for filters and sampling
rates.
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