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Power spectrum analysis for optical tweezers
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The force exerted by an optical trap on a dielectric bead in a fluid is often found by fitting a
Lorentzian to the power spectrum of Brownian motion of the bead in the trap. We present explicit
functions of the experimental power spectrum that give the values of the parameters fitted, including
error bars and correlations, for the best sychfit in a given frequency range. We use these
functions to determine the information content of various parts of the power spectrum, and find, at
odds with lore, much information at relatively high frequencies. Applying the method to real data,
we obtain perfect fits and calibrate tweezers with less than 1% error when the trapping force is not
too strong. Relatively strong traps have power spectra that cannot be fitted properlganyith
Lorentzian, we find. This underscores the need for better understanding of the power spectrum than
the Lorentzian provides. This is achieved using old and new theory for Brownian motion in an
incompressible fluid, and new results for a popular photodetection system. The trap and
photodetection system are then calibrated simultaneously in a manner that makes optical tweezers
a tool of precision for force spectroscopy, local viscometry, and probably other applications.
© 2004 American Institute of Physic§DOI: 10.1063/1.1645654

I. INTRODUCTION results for the values of fitted parameters as functions of the
experimental power spectrurSec. IV). Thus, when the
Optical tweezers are used in many contexts in biologicahower spectrum is legitimately modeled with a Lorentzian,
physics, e.g., in single molecule studies of molecular these results fit it with ease, insight, and error bars on the
motors-® and other proteins and polymé¥s,and in surgery  parameter values found. The trap’s strength is consequently

at the cellular levef,to name a few. In some of these €oN- known with precision that may be limited mainly by the
texts, the tweezers are only used to grab and hold somethinggjipration of the position detection systdfec. \J.

In other contexts, they are used to exert a prescribed force, or Very similar results might be obtained also whalias-

to measure force: pico-Newton forces are measured Qg s taken into accouniSec. V), but are not that interest-

,7,9-11 H H H -14 :
e1>t<erted‘ft Iocacli v(;scoscljt‘ 1S mtehaSLge]d, or pror;ertle? i ing because the Lorentzian is a low-frequency approximation
ora 155y_‘°17em are geguced irom the brownian motion o 1Sge¢ v) that can exploit only a fraction of the information
parts. While relative relationships for, e.g., force versus

) ) . ontent of the power spectru(Bec. VIIl). Even worse is the
displacement can be calculated theoretically in a dece% P P (6 )

approximatiort® the absolute value of the force cannot. Itnfact that even at intermediate trapping strengths some photo-

: . petection systems have no low-frequency window at all in
depends too much on experimental circumstances. So Ca\'/\_/hi h a Lorentzian can be fitted prooerl
bration is necessary. Good calibration is also a test that the ch a Lorentzian can be Titted properly. .
Thus a correct theory for the power spectrum is needed

tweezers, detection system, and data acquisition work as the X : . ) .
'hen the Lorentzian fails, and in general improves precision.

are supposed to. As tweezer technology evolves and applic
tions multiply, the need for good calibration methods will W& show that the power spectrum can be fully understood by

undoubtedly grow. combining known and new results on Brownian motion in
There are a number of ways to calibrate optical trapsincompressible fluidgSecs. IX-XI) with new results for
(We usetrap and tweezers as synonymghey are discussed typical photodetection systentSec. XIll). Once the effects
in several excellent text§2° The most reliable procedure Of aliasing and antialiasing filters are accounted (8ec.
interprets the power spectrum of Brownian motion of a beadlV), we have a procedure for how to calibrate tweezers
in the trap. This is conventionally done with the Einstein—(Secs. XV and XV] which, e.g., adds decades of interpret-
Ornstein—Uhlenbeck theory of Brownian motion, which pre-able spectrum to local viscometry measurements. It makes
dicts a Lorentzian spectrum. The stochastic distribution ofletails of the power spectrum of complex systems
experimental spectral values about this Lorentzian is alsinterpretabléy’ And it may open up the way for new appli-
known theoreticallySec. Il). This fact, and the simplicity of cations of tweezers by making them a tool of precision.
the Lorentzian form, permit us to give explicit analytical Thus the thrust of this article is theory for how to ana-
lyze experimental data, with examples of how this is done.
aElectronic mail: berg@alf.nbi.dk Readers who might wish to apply this analysis to their own
YElectronic mail: henrik.flyvbjerg@risoe.dk data may do so easily with omATLAB program that fits and
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plots at the click of a button. Reference 26 documents this  The characteristic time for loss of kinetic energy through

program. friction, tj,e( =M/ g, is 1000 times shorter than our experi-
In Appendix A is a collection of notations and character-mental time resolution at 16 kHz sampling rate. We conse-

istic values of quantities in this article. Appendices B—D de-quently follow Einstein and drop the inertial term in Ed),

scribe manipulations and tests of data which ensure that theo it then reads

data quality matches the precision that the .theory can extract (1) + 27 X(1) = (2D)¥29(1), (4)

from good data. These procedures are an integral part of the

practical application of our theoretical results. Appendix Ewhere thecorner frequency

explores how maximum likelihood estimation changes with  f.=«/(2m7y,), 6)

the data compression we employ. Appendix F contains a longas peen introduced, and Einstein’s equation,
calculation. Appendices G and H expand on two technical D=kgT/v, ©®)
— B 0

points.
relating the diffusion constant, Boltzmann energy, and fric-
tion coefficient has been used.

Il. MATERIALS AND METHODS After recordingx(t) for time T,,,, Wwe Fourier transform

The experimental data analyzed here were obtained Witﬁ(t) and #(t),
the optical tweezer setup described in Ref. 27. The laser light %= Tms/2
had wavelengthh =1064 nm and positions were detected kK T2
with a silicon PIN photodiode, S5981 from Hamamatsu, . . . .

o . : . Equation(4) gives the path as a function of noise,
which is a popular choice because of its large active area, e
10x 10 mm. The trapped microsphere was from a batch of . _ (2D) "7
uniform microspheres from Bang Laboratories, Inc., catalog KT 2m(fo—ify)

code No. PSO4N, Bangs lot No. 1013, Inventory No.\when(t) is Fourier transformed, partial integration gives a
L920902A, W'tg density of 1.050 g/ml and diameter of congripution from the ends of the interval of integration
1.05+ 0-01Mm- ) _which we ignore. This leakage tertRef. 30, Sec. 12)7is

The equipment was tested for electronic and mechanicglyy negligible in our case because the power spectral den-

noise in two “null tests” described in Appendix B. These gty in Eq.(10) is a smooth function without spikes or other
tests set a bound on electronic noise, on the laser beamé?brupt changes in valle.

pointing instability, and on much, but not all, mechanical From Eq.(2) it follows that

noise. Crosstalk betweex and y-channel data was diag- ~ e ) 4 5

nosed and removed by a linear transformation described in (Md=0; (M D0)=Tmsde; (") =2Thgr ®)
Appendix C. A model-independent data analysis that testSince #(t) is an uncorrelated Gaussian process,
our assumption of a harmonic trapping potential was donéRe7)x—o 1. and (Im7)y-1,, . are uncorrelated random
and is described in Appendix D. This test can indicate, butariables with  Gaussian distribution. Consequently,
not prove, that the potential actually is harmonic, so its role(|77k|2)k=1,2“__ are uncorrelated non-negative random vari-
is to warn us against analyzing data that seem to not satisfgbles withexponentiadistribution. Hence so are experimen-
this essential assumption. The data analyzed here pass tlé values for the power spectrum,

and another tegtFig. 1(b)] to perfection. D/(272T )| 742

dte’27fx(t), f =k/T,g, k integer. (7)

P =R Tvsi=— 2 2 )
lll. SIMPLE THEORY RECAPITULATED for k>0. Their expected value is a Lorentzian,

The Einstein—Ornstein—Uhlenbeck theory of Brownian [ _ g, D/(2m?) 10
motior?® describes the motion of the bead in a harmonic =P = fo+fg (10
trapping potential with the following L/angevm equation: and becausé’f(ex) is exponentially distributed,

3 : — 1/2

MX(t) + yoX(t) + xx(t) = (2kgTyo) ““n(t), 1) o[ P ]=((P{® = P)2)Y2=P, . (11)
given here in one dimension for simplicity. Hexét) is the
trajectory of the Brownian particlem is its mass,y, its V. LEASTfSQUARES FITTING OF LO.RENTZM‘N
friction coefficient, — kx(t) the harmonic force from the Experimentally, we sampl&(t) with frequencyfsampie
trap, and (XgTvo)Y?5(t) a random Gaussian process thatfor time Tr. From the resulting time serieg=x(t), ]
represents Brownian forces at absolute temperdiufer all ~ =1....N, we form thediscreteFourier transform,
tandt’: % . % _

, K=At Y, e?mdix. =At D, e'2mkNy. 12

(n()=0; (7(t)n(t")=s(t—1"). @ = imA i (12
Stokes’s law for a spherical particle gives k=—N/2+1,..N/2, where At=1/fs;npe tj=]At, and

NAt=Tg. This discrete Fourier transform is a good ap-

Yo=6mpvR, ()

proximation to the continuous one, E), for frequencies
wherepv is the fluid's shear viscosity the fluid's densityy  |f|<fs,mpe Consequently, the experimental power spec-
its kinematic viscosity, an® the sphere’s radius. trum
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P =%,/ Tinsr +V,—V— Vv, andV, defined in Appendix C. This results
2 in three arbitrary measures of length, one for each direction,
obeys the same statistics B&|“/ Trsr; see Sec. VI for de- y, andz. We determine two of the three corresponding
tails. conversion factors to units of physical length by equating the

Least-squares ﬁ'Ft"T‘g in it”s simplest form presupposesjitad values foD, which is determined in arbitrary units, to
that each data point is “drawn” from a Gaussian distributionhe value in physical units known from Einstein’s relation,

and that different data points are statistically independentz .(6).

The second condition is satisfied B in Eq. (9), but the The fitted values oD can be determined with high pre-
first is not, sinceP, is exponentially distributed. The solution cision, as demonstrated below. Its value in physical units,
is data compressigrwhich results in a smaller data set with however, is not known with similar precision in some bio-
less noiseand, by way of the central limit theorem, in nor-  pysical experiments. While the temperatiirean be known
mally distributed data. o _very well, the value ofy, is a source of error in Einstein's
Data compression byindowingis common and has its g|ation. Microspheres are commercially available with ra-
advantage$? When the numben,, of windows used is large,  jiys R known to within 1% and similar precision of the
the values of the compressed power spectrum are statisticalgbhericm shape, so Stokes law, E3), applies. But the value
independent and Gaussian distributed, and can be used in tB?the dynamic viscosityw of the fluid, in which the experi-
formulas below. Windowing always compresses to equidisynents take place, may not be known with the same precision.
tant points on the frequency axis. “Blocking” is an alterna- aggitives such as glucose, BSA, and casein change the value
tive method without this constraint, and hence is useful fors pv dramatically. Five percent of glucose, e.g., changes the
data display with the Ioggrithmic frequency axis. It replaces\,iscosity of water by a factor of 1.1%. Similarly, 5% of
a “block” of n, consecutive data points P(*(f)) with a  Nac| changes the viscosity of water by a factor of 1.19. Such
single new “data point” ¢,P(®(f)), with coordinates that concentrations of additives occur, e.g., in studies of single
simply are block averagé Whenn, is so large that we can  kinesin moleculé¥ and in studies of single myosin
ignore terms of nonleading power ig,, P®®9(f) is Gauss- molecules’® In such cases it is better to determine the con-
ian distributed with <E(e><)(f_)>= p(f_) and U(E(EX)(f_)) version factors from arbitrary units to physical units of
:P(f_)/\/n—b- length by independent _measurements, as was done in, e.g.,
In the following, it is understood that data have beenRefS: 23 and 35. The fitted values bfmay then serve as
blocked(or windowed, or both) but we leave out the overbar either a check of consistency for the method, or as indepen-

to keep the notation simple. We fit by minimizing dent determination of the value of,, hence ofpv, which
may also be calculated if one knows the concentrations of
P~ Py
=2 (

P& )2. additives and how they affect the viscosity.
K\ P/ ,

2
) =2, (P—k‘l

see Appendix E for background. Thi€ can be minimized ) . i
analytically: The theoretical spectrum can be writtep e Will now understand the effect of finite sampling
—(a+bf2) L with a andb positive parameters to be fitted, time better than we did in Sec. IV: In an experiment we

so x2 is a quadratic function o& andb. Minimization gives ~ Samplex(t) at discrete timed;=jAt, At=1/fsmpe We
consequently solve Ed4) in the time intervaltj<t<t;,

VI. ALIASED LORENTZIAN

f = (alb)= S01822~ S1.1S1.2| 13 for given noise to find theeffective Einstein—Ornstein—
¢ 1 S11S02-S0:S1a) Uhlenbeck theory for discretely sampled data. We find
D Tisr b S0,25,,2— Siz Xj+1=CX+ AX7]J- , (15
22 o= S11S02~S0.1S12" with
szin — Sy S3,152,2+ S%,lsO,Z_ 2Sy,151,151 2 (14 (m)=0; (mmn;)=26; for all i,j. (16)
n, °° S0.552.0— St ’ Here we have introduced
where we have introduced the sums Amf\ Y2t
s dte”27lelir 1" Ua(1), (17
- ;
Spq=> f2PPE.
k c=exp(—mf/fryg) Fayg=Fsampid2, (18
V. FROM MILLIVOLTS TO NANOMETERS: and
CALIBRATING LENGTH SCALES (1-c?)D\ 2
Ax= T . (19)
C

Note that we fit bottD andf to the power spectrum of
the x coordinate, and, in an independent fit, to the power  Application of the discrete Fourier transform, Ed2),
spectrum of theg/ coordinate. The position detection system’sto x and » in Eq. (15) transforms Eq(15) to
output has a somewhat arbitrary amplitude that depends lin- ;5 /N«
early on laser power and the three independent amplifier set- x
tings for the voltages measure®,—V,—V,,+V,y, V,  while the Fourier transformed version of E46) is

k:C’)\(k‘f‘AXAﬂk, (20)
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(=0 (7 ) =TAtSy ¢ (21 40 \ ' ' '
for all k, € e {N/2+1,...N/2}. So now our experimental es- 35 1%, T
timate for the power spectrum is — 30 L % ]
[2] .
(AX)?| 32T E e
(eX)_ & 12T — S o5 | - i
P = R T = T 2 =20 cog 2Ny - (22 2 .
) . = oot *e .
The expected value for this spectrum is < .,
= 15} % i
(Ax)?At e .
= /(P — /1% [2/T) = o ‘e
Pi=(PI) = (%) 1+c?—2ccog2mk/IN)’ @3 = 10 F ‘e, .
and its root-mean-square deviation is 5 .°'-.,. .
o(PI) =Py, (24 0 ' ' —
-1 0.5 0 0.5 1
identical in form to Eq(11) because#,/? like |7,/ is ex- cos (i)

ponentially distributed.

Equation (23) gives the function that replaces the FIG. 1. Inverse experimental power spectru®{® ! plotted vs
Lorentzian in the case of finite sampling frequency, and itcos@rf/fy,y). Plotted this way, an aliased Lorentzian form would fall onto a
should fit the experimental spectrum for all frequencies offtraight line, see Eq23). In case one uses an oversampling delta-sigma
0<f,<f if the simple theorv discussed here is COrreCt.data converter, aliasing and electronic filtering dq not occur below the out-

k™= "Nyq . P y ; put frequency. So for that case one should 9~ vs f2. Then a pure
Least-squares fitting of E¢23) to experimental data can be |orentzian form falls onto a straight line, and effects of frequency-
done analytically, once and for all, and it results in expres-dependent hydrodynamical friction and unintended filteisge Secs. IX—
sions very similar to those in Sec. IV. XIIT) show up as curvature.

We note that forf <fy,q and |f | <fyyq, EQ. (23) to

leading order irf ./fyyq andfy/fy,, becomes the Lorentzian sean, one can trade this approximation for an exact result, an
in Eq. (10). So the approximation done in Sec. IV when we gjiased Lorentzian, but the latter does not describe the data.
fitted the Lorentzian to the experlmental spectrum has NOVther effects are in playii) Some position detection sys-
been understood within the same simple theory for Browniafepms  including ours, unintentionally cause significant low-
motion by accounting for_the finite sampling frequency. Thepass filtering® (iii) The Einstein—Ornstein—Uhlenbeck
effect of the latter is maximal &tyyq= fn; where, for same  thaory of Brownian motion is only a low-frequency approxi-
fe andD, Py;=2.47P(fyp), 1.€., atfnyg the finite sampling  mation when used for liquids; the hydrodynamically correct
rate increases the power spectrum by 247% over its Lore”E‘pectrum is not Lorentzian.

zian value. Thus one should fit with a Lorentzian in an interval

With thi; understandingz it seems more correct t.o replac?fmin'fmax] that avoids these systematic errors at high and
the Lorentzian altogether with E(R3), the so-callediliased  |oy frequencies while minimizing stochastic errors of the

Lorentzian see Appendix H for more about aliasing. More SO iteq parameters. To this end, we give the stochastic errors’
because so-called antialiasing filters dot change the dependence off iy, fred-

aliased Lorentzian back into a Lorentzian; see Fig. 11. The
outcome of this replacement can be determined without ac-

tually doing it from a simple phenomenological plot of the
experimental power spectrum. If an aliased Lorentzian fits/!ll. INFORMATION CONTENT OF THE SPECTRUM

i ex) (ex)—1
the ZtileNrm;ethal ptower tSp?C;rtLﬁ 8 plodt.ofPtk E ;’S Given Egs.(13) and (14), propagation of errors gives
cos( ) falls onto a straight line, according to E®3). (see Appendix F

Figure 1 shows our experimental power spectrum plotted in

this manner. Clearly, the data points do not fall onto a

straight line. They do increasingly for smaller beads and  o(f;) St (Xmin »Xmax)

sampling rates, especially for a different photodetection sys- f.oo Jaf T (25)
. c T T s

tem and/or shorter laser wavelength, as explained below.

1/2
SD(Xmin vaax) ’ (26)

1+ m/2

7 Tmsr

o(D) _

VII. LIMITS ON LORENTZIANS D

Over which range of frequencidg should the sum$§ . .
be done? Stochastic errors are minimized by maximiz?hqg thi§Ind the covariancg(f.—(fc)) (D —(D)))=(f.D)c is
range, but systematic errors limit the range: At low frequen-
cies the experimental power spectrum typically is contami- (feD)e _
nated by low-frequency noise external to the experiment; see o (fc)o(D)
Appendix B. At high frequencies there are three concdiins:

The Lorentzian is a good approximation only fb2r<fﬁyq, Here, Xmin=fmin/fc, Xmax=fmax/fc, @nd we have introduced
where fyy=fsampid2, as we have seen. As we have alsothe dimensionless functions,

1/2
U (Xmin rxmax) )
U(Xmin -Xmax)

Downloaded 25 Jun 2008 to 193.48.255.141. Redistribution subject to AIP license or copyright; see http://rsi.aip.org/rsi/copyright.jsp



598 Rev. Sci. Instrum., Vol. 75, No. 3, March 2004

K. Berg-Sgrensen and H. Flyvbjerg

aT 1/2 T T
SfC(Xl’XZ)E(U(lexz)_v(xlyxz) ' @)
U(X1,X2) v
SD(XlaXZ)E((1+ 7T/2)(X2—X1)) St (X1.X2), %
2X5 2Xq Xo—Xq 5
u(xl,xz)zmg— 1+X1+2 arcta/élJr—Xle), E
X2— Xy (28) g
v(X1,Xp)= - arctart T X, <
The functionsfc is normalized such thaﬁfc(o,oo)zl. Thus
sfc(xmin Xmay =1, because maximum precision is achieved
only by fitting to the whole spectrum. Less will do in prac- . .

tice, and do well, as Figs. 2 and 3 illustrate.

and f

200

300

Figure 2 hasf.=357Hz, f,;,=110 Hz,
=1kHz, hences; (Xmin Xmad =51 (0.31,2.80)=2.4. For com- 1 Frequency (Hz)

parison,sfc(0,2.80)= 1.8. So, given our value fof,,y, our T

nonvanishing value fof ,;,, costs us a 30% increase in the B
error bar for the value we find fof.. On the other hand,
s (0.310) =1.26. So, given our value fdf,, by increas- 01 .

ing f 2 We could reduce the stochastic error feiby almost
a factor of 2, if systematic errors did not prevent this. This is
despite f ,5,=3f.. To harvest this extra information, one
needs a better understanding of the power spectrum at thes’
frequencies than the Lorentzian provides. - S 8
Systematic errors may leave no frequency range at allin 103 | N 3
which one can properly fit a Lorentzian. A data set with - N .
almost twice larger corner frequency illustrates this, although A
itis sampled three times faster. When a Lorentzian is fitted to 454 L ~ |
this power spectrumf. decreases af,, iS increased, and ! ! ! !
support for the fit vanishes althoud®,,<fg,, is satisfied; 0 2 4 6 8 10
see Table I. In this case, proper calibration is impossible p(ex) /P,
without better understanding of the power spectrum than the|c. 2. (a) Lorentzian fitted to a power spectrum in the interi0 Hz, 1
Lorentzian provides. Below, this understanding is providedkHz] yielding f,=357+3 Hz andD =585+ 4 (arb units/s. (The position

and calibration is achieved using the very same data set. detection system'’s arbitrary units of length are calibrated in SecThe
power spectrum in this interval, already an averagep£5 spectra, was

blocked by a factor oh,=517 toN’=29 points evenly distributed on the
linear axis, then fitted using Eq$13) and (25). Dashed lines indicate
+one standard deviation of the theoretical curve. Statistical supRefs.

30 and 31 for the fit shown here is 60%. The experimental spectrum has

- o - i (ex) ;

When a rigid body moves through a dense fluid like ftva=8 kHz. (b) Histogram ofPi™/Py for . in the frequency range of the

ter. the friction between the bodv and fluid depends on thf't’ P the unblocked experimental power-spectral valuelg aandP, its
wa ) . . y . p_ , gxpected value, the fitted theory’s valuefat According to theory, Eq<6)
body’s past motion, since that determines the fluid’'s presennd (7), this ratio is exponentially distributed. Dashed lines exp(-x).
motion. For a sphere performing linear harmonic motionPerfect agreement between theory and data is seen over all four decades of
x(t) with cyclic frequencyw=2=f in an incompressible Probability shown.
fluid and at vanishing Reynold’s number, tf¢avier-

Stokes equations were solved analytically and give a “fric-

0.01 | -

Distribution
T

IX. FRICTION FELT BY A MICROSPHERE MOVING IN
AN INCOMPRESSIBLE FLUID

izes the exponential decrease of the fluid’s velocity field as a

tional” force 37:38 function of the distance from the oscillating sphere. It is
' R 5 frequency dependent,
ch=—m(l+g k=|3mpR?o+ 5 mpR% %, (29) S(F)=(wlmf )V2=R(f,/f)" (30)

where only the term containing dissipates energy; the term and large zcompared B fo_r the frequencies_we consic_jer,
f,=v/(wR“)=1.3 MHz. This and other notations are given

containingXx is inertial force from entrained fluid. The nota- . .
tion is the same as abovey is the friction coefficient of in Appendix A.
Stokes’ law for linear motion with constant velocity, ),
p=1.0 g/cm is the density of water at room temperature,
=1.0um?/s is the kinematic friction coefficient of water,
and R=1.05um is the diameter of the sphere we used.
Thus yo=9%10 ® g/s. Thepenetration depths character-

X. BEYOND EINSTEIN: BROWNIAN MOTION IN AN
INCOMPRESSIBLE FLUID

Since Fourier decomposition describes any trajectory as
a sum of linear oscillatory motions, the friction in E@9)
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1000 14 T T TTTTTT T T TTTTIT T T TTTTIT T T TTTTIT
1.35
B 13
x 100 2
% 2 125
2 <
« £ 12
= o
s, 10 o 115
& o
= 1.1
any
1.05
1
1
100 095 11 111111 11 111111 11 111111 L1 111111
10 100 10° 10* 10°
= 10 Frequency (Hz)
<3 FIG. 4. Ratio between the Lorentzian power spectrum and the hydrody-
& namically correct power spectruRyq f ) in Eq.(32) evaluated with same
1 parameter valué.=666 Hz. Solid line: Case ofR=1.05um like that in
this article. Dashed line: Case oR2500 nm. Simple Einstein—Ornstein—
Uhlenbeck theory is a better approximation for smaller objects and at lower
0.1 frequencies. A change ifi, to ~370 Hz does not change these curves at
’ higher frequencies, but shifts the location of their minima to values just
0.1 1 10 below the new value fof, .

X sphere x the spring constant of the harmonic trapping force,
FIG. 3. (a) Ratiost(Xmin Xmax betweeno(f.) and the theoretical minimum  kgT the Boltzmann energy, Re denotes the “real part of,”
for o(f.), the former from a fit of a Lorentzian to an experimental power and7(f) is the Fourier transform of an uncorrelated random
spectrum in the intervdlf i, ,fmad, the latter from fitting to the same spec- processy(t), normalized like in Eq.(2) in order to show
trum in [0, «°], assuming it is known there. Solid lin&;;(0Xma) VS X .. ’ ) . .
= X=Frna/fo . Dashed line:s;e(Xon %) VS X=Xonin= frnn /e . HETE Xpag explicitly the frequency dependence of the Brownian noise
= only means thaf ,, is so much larger tha, that the experimental that makes up the right-hand side of Eg1).
spectrum’s information content regardifigis essentially exhausted. Thus Experimentally, we monitox(t) for a long, but finite,
one can simultaneously ha\iélax<f§yq, ensuring aliasing is negligible for  tjme Tmsr- Fourier transformation on this time interval, Eq.

f<fax. Note thats; (1,2)<s;.(0,2), i.e., there is more information about . :
the f. value in interval €.,») than in interval (0,Z.). (b) Graph of (7), gives the experimental power spectrum,

Sp(0x) showingo(D)/D vanishes e, wheresp(0x) ~Xns > ac- (% %y 2 2ksT Re ysoked Fi) |7k %/ Tmsr
cording to Eq.(28). Both (a) and(b) illustrate the great amount of informa- Pk = T = | Ry yer fo— 2 f 2|2 )
tion located in the high-frequency part of the spectrum. msr k=127 fysioked f) —m(27fy)

where 477k|2)k:1,2,__,, are uncorrelated non-negative random
also appears in the frequency representation ofgéireeral- ~ variables with exponential distribution that satisfy E8).
ized Langevin equatiodescribing the Brownian motion of a ThUS (P_(kex_))k: 12, are uncorr_elated non-negative exponen-
harmonically trapped sphere in an incompressible fitid,  tially distributed random variables, each of which conse-
. 2 . - quently has RMSD equal to its expected value. This property
[M(=1271) "+ ysioked ) (= 127rF ) + kIX(T) is unchanged by the filtering and aliasing applied below.

=[2ksT Reyeoed F ) 1V5(F), The expected value d?{® is
Fi R 2R2 (32) P () D/(2m*)[1+(f/f,)1?]
ric . . =
Yswked 1) = 5m iy = vo| 1 (A-D 5 g5z ward 1) = (TR 2 (14 19T

(32)

wh|(?h bec_orr_1es Elnstem—Ornsteln—Uh_Ienbeck theory, EQynere f.=vo/(2rm*)=3f /2=1.9 MHz since m*=m
(1), in the limit of f — 0. Here, as aboven is the mass of the +2mpR%3=3m/2 for the polystyrene bead we us@his

o _ simple relation betweefi,, andf, might tempt one to elimi-
TABLE I. Paramet_er values of the Lorentna_m(inot shown as_a function nate one of these frequencies in favor of the other. They
of fhax. The experimental power spectrum fitted to was obtained at a larger terize diff t phvsics h teri th
laser intensity than the spectrum shown in Fig. 2 &ngd ¢ 25 kHz. Data parameierize di er_en physics owequ;,parame erlz_es _e
points in the experimental power spectrum were blocked to 750 equidistarlOW pattern established around a sphere undergoing linear
points in the range of 110 Hz—25 kHz before fitting the Lorentzian to theharmonic oscillations in an incompressible fluid. This pattern

points in the interval fuin ,fma WIth frin=110 Hz andf sy listed. is unrelated to the mass of the sphere. It need not have any,

f £ D Support for that matterf,, parameterizes the time it takes for friction

max C . . . . . .

(kHz) (Hz) (arb units?s (%) to dissipate the kinetic energy of the sphere and the fluid it
entrains. It depends on the mass of the sphere. By keeping

1 641+10 429+ 9 37 . . . .

5 630+6 420+ 4 9 both parameters in formulas, the physical origin of various

3 610+5 405+ 2 0 terms remains clear. This power spectrum contains the
same two fitting parameter§, andD, as the Lorentzian of
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the Einstein—Ornstein—Uhlenbeck theory, but differs signifi-deep inside the fluid volume. For optimal designs, the lens
cantly from it, except at low frequencies, as shown in Fig. 4that focuses the light into an optical trap typically has a short
The radiusR of the bead now also occurs fry andf,,, and  focal length. So a microsphere caught in such a trap is typi-
not only throughf,, but it is not a parameter we must fit, cally near a microscope coverslip. Consequently, the hydro-
because it is known to 1% uncertainty, and occurs only irdynamical interaction between the microsphere and the es-
terms that are so small that this small uncertaintyRdfias  sentially infinite surface of the coverslip must be accounted
negligible effect orPpyqf ). for. Faxen has done this for a sphere moving parallel to an
infinite plane with constantvelocity in an incompressible
fluid bounded by the plane and asymptotically at rest at con-
ditions of vanishing Reynold’s number. Solving perturba-

The frictional force in Eq.29) was derived by Stokes tively in R/¢, where( is the distance from the sphere’s cen-
under the assumption that the oscillating sphere is infinitelyer to the plane, Faxefound#%4

XI. FAXEN'S FORMULA GENERALIZED TO LINEAR
HARMONIC MOTION

w(RIC)= 7
raxe 1—(9R/160)+ (R/8¢%) — (45R*/256(*) — (R°/16¢°) + -+

There is no second-order term in the denominator, so thiXll. PHYSICAL POWER SPECTRUM
formula remains good to within 1% fd@> 3R if one ignores
all but the first-order term. This first-order result was first
obtained by Lorent?? If his first-order calculation is re-
peated for a sphere undergoing linear oscillating motion pa

By replacing ysiored f ) with y(f,R/€) in Egs.(29) and
(31), one obtains a power spectrum that accounts for all rel-
r(::-vant physics of the bead in the trap, with the expected value

allel to a plane, one finds a friction formula that has Stokes’ FRIC D/(27%)Reyl y,
and Lorentz’s as limiting casts Phyard T R/€) = (fot FIm oyl yo— £2f )2+ (f ReW'yo)z(' )
34
where
(F,RI) =yl F )1+ — — x| 1 iR 3R
AL Vstoke 16 ¢ 3 5 Reylyo=1+f/f,— 1=
2i [R\? 4 _
+o 5] —g(l—e (ATNERID ” 3R 2¢ 2¢
9 5) 3! ) +—exp — — Jf/f,|cog —= \f/f,
a¢ R R
(33
and
3R
The effect of the infinite plane is to increase friction, but less Im ylyo=—Vi/f,+ a0
so at larger frequencies wheéds smaller.
We measured by first focusing the microscope on the 26 ) (26—
coverslip surface. Having establishée 0, the distance to X ex R F/t, |sin R Pt

the bead was determined with software provided for the mi- We refer to this as thehysicalpower spectrum. It dif-

croscope(Leica DM IRBE) by Leica. The software com-
: o : ; fers from therecordedpower spectrum because the data ac-
putes the distance moved by the oil-immersion microscope

objective. This distance multiplied with the ratio of the re- quisition system contains filters, some intended, some not,

fractive index of water to that of glass, 1.33/1.5, gives dis-f'Jlnd because the data acquisition system samples the result-

tancef. The software give within precision of 0.1um, to ing filtered spectrum only at discrete times to produce the

which must be added the independent error for determinatioﬁpectrum recorded. Below, we discuss the effects of filtering

of {=0, which is also 0.1um, we found, from repeated and finite sampling frequency.
determinations.

We hadR/¢~1/12 when it was largest. So the bead'sfxm. POSITION DETECTION SYSTEM IS A LOW-PASS
hydrodynamic interaction with the coverslip has an effect o FILTER
4% or less, large enough that we must account for it. Fortu-
nately, this introduces no new fitting parameters, because we Silicon is transparent to infrared light. For this reason,
know the value of. Sincef occurs only in a term of at most position detection systems like ours have finite response
4% relative importance, any error fhvalue affects the final times of the order of tens of microseconds. The delayed part
result with a 0.04 times smaller error, in our case by one peof the signal decreases over time as a simple exponential, so
mil, at most. our diode’s characteristics is a sum of two terihi) a
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small COnstanb[(diOde)27 Corresponding to the fractiam(di()de) each of our filters. That dOI’le, aliasing is accounted for by
of response that is instantaneous, &inda Lorentzian, cor- summing the result?(™e? over aliased frequencies,

responding to the delayed response, w
P(f) (diode 1— gldiode2 plaliased ¢ ):nE p(filtered)(f+nfsamp|g, 37)
= 1o + — 35 =—o
Po(f) @ 1+ (/0882 (35

where in practice a finite number of terms exhausts the sum.
The parameters/(9°d®) and f{f99®) gepend or(i) the la-  The result,P@ @) is our theory for the expected value

ser’'s wavelength and intensitfii) the photodiode’s thick- of the experimental power spectrum recorded.

ness, material properties, and reverse bias,(@ndine up of

the laser beam and photodiotfé'**°Consequently, the op- XV. HOW TO CALIBRATE TWEEZERS

; R R ; iode)
t"(T:,%Le\;vay in which to determine the valqes bgde and The procedure described here in Sec. XV is implemented
@ relevant for a recorded spectrum is to include them

. . o . . in freely availablemATLAB r mented in Ref. 26.
with f; andD as third and fourth fitting parameters in a fit to eely availablev software documented ef. 26

the spectrum. The logic of this procedure is sound, even The experimental spectrum to which we fitted in Fig. 5

. . . . is the result ofblocking® a spectrum that is the average of
though we calibrate the position detection system with thefive spectra, which were calculated from five time series re-

same data from which we want to calibrate the trap; S€%orded in five time windows, each with duration of&t

Appendix G for details. o . .
. . =16s At=1/f =1/16 000 s). Similarly, Fig. 6 is based
For the position detection system analyzed here/(E5. .on four( such tsi:qeplewindows e;ch with ()j/uragt]ion of&t

describes the filtering effect of this system out to approxi-_ o (At=1/f e 1/50 000 5). In both cases consecutive

Eq' (35) Is good out to !grger frquenmes. In general, theWindows showed that neither drifted between windows, al-
filtering effect of the position detection system at larger fre-

s is d ibed b i d . hthough the center of the trap did. Thus it is legitimate to
guené;ées IS describe }{/hatmore co:np :cat? ?xptreszlon t rQ/erage over five/four spectra as we did. The spectrum thus
'nq.(sol)’tgrr]lse)t(grtis:g?f s%na;:co:?osnic?rocﬁ;ra; E;rrzirse%%btained was blocked on the linear frequency axis\to
th hcl)Jt(I)diodé“ st quati 9 €15 IN_ 150 data points, with each block containing approximately

P ' 870 points. Before any blocking was done, crosstalk between
channels was eliminated in the manner described in Appen-
dix C.

Our theory for the expected value of the power spectrum

Samp“ng of the power spectrum with finite samp"ng was fitted to the recorded experimental power spectrum us-
rate causesliasing Data acquisition electronics typically ing our theory for the scatter of the latter about the former: It
have built-in antialiasing filters. Delta—sigma data conver-scatters with standard deviation proportional to its expected
sion systems use oversampling and “noise-shaping” filters to/alue, i.e., Eqs(E4) and (E5 apply with n, replaced by
eliminate aliasing altogether, and the effect of their built-inNpNw, Nw=5 (4), as described in Appendix E. Thus we fit by

filters is only seen near their readout frequency. Section XIvminimizing

XIV. ALIASING AND ANTIALIASING FILTERS

can be skipped by those using such data acquisition systems. N [ plen_p. |2 N (e 2
For others, aliasing, antialiasing filters, and how they relate 2_ k "~ Tk =n nbE ( k _1) (39)
are discussed in some detail in Appendix H. An important k=1 \ P /\/nyny YREL Py ’

point made there is that antialiasing filters do not prevent all : .

. T where the sum is over blocked data points aNd
aliasing, they do not prevent the aliasing accounted for here 2 :
with Eq. (37) =N/(nyn,). The form of y* does not suit standard least-

Our data acquisition electronics have two built-in anti- squares fitting routines. However, exact rewriting yields a

aliasing filters, both first-order filters with roll-off frequen- form that does,

cies, f3 45, that we set as high as possible, 80 and 50 kHz, N p-l_p(ex-1\2

respectively. This is not the normal recommended setting,  x2= >, (¥> (39

but it gives optimal conditions for observation of the physics k=1 %k

of the problem and of unintentional filtering by the position where o = P{*?~%/(n,,n,) 2

detection system. The solid line in Fig. %) [Fig. 6(@] shows
Afirst-order filter reduces the power of its inplte(f ), Py 4 f;R/), multiplied by the characteristic functions of

by a factor of the diode and electronic filters, aliased withmge= 16 kHz
P(f) 1 [50 kHz], then fitted to the experimental spectrum usfpg

Bo(f) ~ 15 (e (36) D, f{o0e) and a(9°9) as fitting parameters. The parameter
0 3ds values obtained from these least-squares fits are listed in
The effect of filters, intended or not, is accounted for byTables Il and Ill. We see that both the strength of the trap, in
multiplying the physically correct power-spectral expectedthe form off., and conversion of the position detection sys-
value in Eq.(34) with the characteristic function for each tem’s arbitrary units to nanometers, are determined to within
filter, i.e., with Egs.(35) and(36)—the latter twice, once for 1% precision or better. The latter conversion was found by
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FIG. 5. Same data as in Fig. 2, here fitted With,=fy,q. (@ The thick FIG. 6. Same plots as in Fig. 5, but for data obtained with a stronger optical
solid line is the theoretical spectrum in E@4), filtered and aliased, then trap and fy,=25 kHz; see the values in Table lll. The same power
fitted to the experimental spectrum in the inter/al0 Hz, 8 kH3. Statis- spectral data were used to obtain results given in Table I. Statistical support
tical support for the fit is 96%Refs. 30 and 31 The data points shown for the fit is 49%(Refs. 30 and 311 (a) See the caption for Fig. %b) Values

were obtained by blocking the experimental spectrum in intervals of equabf the data fitted to, divided by fitted theory in order to visualize their scatter
length on thdogarithmicaxis, and hence are not the same as those shown irfbout a value 1. The two dashed lines delineate the vertical windat/lof

(b). Two dashed lines practically on top of the solid line delineate a verticalstandard deviation of Gaussian scatter. Thus 68% of the data points should
window of +1 standard deviation of Gaussian scatter of data. Thin solid andall between the two dashed lines if the data indeed are Gaussian distributed.
dashed lines that overshoot the data are aliased Lorentzian and aliasdtiey do. Further blocking will reduce the scatter to less than (&yais-

Puyard f;R/ ), respectively, unfiltered, and with same valuesBoandf. as  togram ofN=10° [N=1.3x10P in Fig. 5(c)] experimental power-spectral
those shown by the thick solid line and given in Table Il for tmordinate.  valuesP{™ measured in units of their expected valigs, the latter being
They illustrate the importance of filters and the frequency dependence dahe fit shown in(a). Inset: Same data binned into a histogram with finer
hydrodynamical friction(b), (c) See the caption for Fig. 6. resolution, showing 99% of the data.
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TABLE Il. Values of fitted parameters for Fig. 5, based on blocking to 150 pne measures and the laser beam ellipticity specified by the
data points andf ;=110 Hz, f ;="\, =8 kHz. D=0.41 nnt/us was manufacturer

used to find the nanometer equivalent for diode outpuRpandR, . The . .
covariance betweef, andD was —0.95. _ According _to_ theqry, the blocked expenmen_tal _ data
points are statistically independent and normally distributed

Parameter x coordinate y coordinate with known standard deviations. The “residual plot” in Fig.

f. (H2) 374+ 2 383+ 2 5(b) [6(b)] s_how_s the scatter about their expe_cted value, fit-
f{diode) (et 17) 6.73-0.17 6.39+0.14 ted theory, in units of this expectated value. Figurés &nd

D (arb unit§¥s 610+9 584+8 6(b) show that the theoretical power spectrum presented here
Arb ug_itdeguiV(nm) 26.0+0.2 26.3-0.2 fits the experimental one perfectly.

1— a0 0.92+0.02 0.91+0.01 Figures %c) and Gc) provide a more radical illustration
Support(%) 96 81

that the theoretical power spectrum used here really de-
scribes the expected value of the experimental spectrum: The
“raw” experimental spectral values, i.e., unaveraged and un-
equating the value fob obtained in the fit with the value blocked values, were divided with the fitted theoretical value
known from Einstein’s relation, Eq6). Thus, the forcecAx  and binned into histograms that show that the raw experi-
exerted at distancéx from the center of the trap is known to mental spectral values reallgre exponentially distributed
within only 1%—2% error due to calibration of the trap and about their expected value, as stated by theory. This is a
diode. This error is typically negligible compared to the un-powerful illustration of the correctness of the theory, as well
certainty of the position. Thus our calibration scheme esseras of the experiment: The histogram shows an exponential
tially eliminates calibration errors from force measurementsdistribution over four decades obtained from experimental
The x coordinate in Table Il should be compared with values that range over no less than seven decades: the four
the results in Fig. 2. They were obtained from the same datdecades they scatter about their expected value, plus the
set. The two values for the corner frequency differ by fourthree decades that this expected value varies with the fre-
standard deviations, with the Lorentzian fit yielding thequency.
lower value, because it absorbs the effect of unintentional
filtering in this manner, with a small systematic error as re-xv|. DISCUSSION
sult. This point is borne out in Table | and should be com-
pared with Table IlI's data for the coordinate obtained from
the same data set. In many biological experiments, e.g., 10%—-20% calibra-
The two values found fof (%% for the x andy coordi- tion error is of no concern because other sources of error are
nates, respectively, are indistinguishable in Table Il as weldominant. So the trapping force can be estimated with
as in Table lll. This is what one would expect for a diode sufficient—albeit unknown—precision with the roughest
with four identical quadrants. It is a coincidence that thecalibration based on a Lorentzian spectrum. Freely available
values differ only in the fourth digit, not shown in Table Ill. mATLAB softwaré® will do this as was shown in Sec. IV.
The two values found fof., on the other hand, differ by
three to four standard deviations. They differ by 2866), B when precision is a concern
corresponding to an elliptical cross section of the beam with

1% (2%) difference between the lengths of the major and ~ When precision is a concern an optical trap can advan-
minor axes, or ellipticity of[1— (374%2)/(383+2)]*2 tageously be calibrated as was demonstrated above. Our

—0.15+0.03 {[1—(666+5)/(637+5)]1’2=0 21+0.04 recommendations—which we have implemented in freely
.15+0.03, + + . .04. 5 _
This ellipticity does not differ significantly from the 10% availablemaTLag softwaré®—thus are the following.

maximum ellipticity of the laser beam promised by the (g When plotting the experimental power spectrum, com-

A. When precision is no concern

manufacturer. Also, trap ellipticity and laser ellipticity are press data by blocking to show fewer data points with
not necessarily the same thing. Polarized laser beams, evenif  smaller scatter about their expected value. After all, we
perfectly nonelliptical, tend to get focused onto elliptical, know a priori that the expected value is a smoothly
diffraction limited SpOtS in the image plane. This mlght be Varying function of the frequency_ So the data can ad-

the source of differences between the trap stiffness ellipticity vantageously reflect this.

(b) Plot P,, (defined in Appendix Cand use its minimal-

TABLE lll. Values of fitted parameters for Fig. 6, based on fit to 150 ization as a criterion for gOOd allgnment of the diode

blocked data points antl,i,=110 Hz, f .= fnyq=25 kHz. The covariance with the laser beam.

betweenf, andD was —0.95. (c) If Py, cannot be made to vanish, find a linear coordi-
_ . nate transformation to a frame of reference in which it

Parameter X coordinate y coordinate does vanish, and work in this frame of reference.

fe (H2) 666+5 6375 (d) The frequency dependence of the friction coefficient

fi'65" (kHz) 7.27+0.04 7.27+0.05 and of the Brownian noise should be taken into ac-

D (arb unity*s 447+9 467+9 count. Not only is that correct theory, but using it costs

'i\r_ba“(f}iffdg?”“'(”m) 0.23'835095’0 L 0;25&301 nothing: No new fitting parameters are introduced with

Support(%) 49 52 It.

(e) Data acquisition electronics contain antialiasing filters.
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Their effect is known, or easily measured with a signal
generator, so it is costs nothing to account for it when it
affects the power spectrum recorded. If the filters are
set to have minimal effect, that also minimizes the ef-
fect of imprecise knowledge about these filters’ param-
eter values.

One should be aware that one’s position detection sys-
tem may have frequency-dependent sensitivity, hence
may act as an unintended low-pass filter. Ours, a Si
PIN diode used with a 1064 nm laser, does, and it is by
far the most important filter in our setup. However,
since we know the form of its characteristic, we can
calibrate its parameters from the very power spectrum
we wanted to fit. This is the optimal way in which to
determine these parameters, because their values de-
pend on experimental circumstances. If one calibrates
with f2_,<fld99)2 one should use the approximation
in Eq. (GY). If one uses another kind of quadrant pho- -
todiode and/or laser wavelength, this filter effect may
be different or abserft:*®

Aliasing due to finite sampling frequency always oc-
curs, unless ones data acquisition system uses oversam-
pling. Aliasing is easily accounted for, however, and \
doing so costs nothing if the theory one aliases is also
correct at frequencies> fy, that contribute through
aliasing to the spectrum belofy,. No new fitting
parameters are introduced, orfly,,, which is known

to high precision. FIG. 7. (a) Dark spectrum: Power spectrum recorded with the diode in total

Leakage™® on the other hand, is truly negligible be- darkness, a measure of the electronic noise level. The spike at 50 Hz is
cause the power spectrum of a trapped bead is 5aused by the power supply. All values are a factor G110 below our
calibration spectratb) Light spectrum: Power spectrum recorded with the

smooth and slowly varying function. So there is NO aps jaser light impinging directly onto the photodiode with no micro-
need to introduce window functions that reduce leak-sphere in the trap. The dashed line at low frequencies has a slop@.of

age. Consequently, overlapping data windows that

10

10° H—F+—+—+—+—+—+—+—

P(f) (arbitrary units)

10-5 L1 1 :‘\ 1 1 1 1 1 1
10 100 1000

Frequency (Hz)

compensate for loss of information caused by window
functions are also not needed. However, if built into
one’s data acquisition software, they can be used as
they were intended: for quick, on-line data compres-(I)
sion. The correlations they introduce in the resulting
power spectrum are negligible if a very large number
of windows is used.

The scatter of experimental power spectral values
about their expected values is known theoretically. So
it costs nothing to use correct error bars, and doing so
yields correct stochastic error bars on fitted parameters
such asf. andD, and, last but not least, use of correct
error bars makes it possible to obtain statistical support
for fits.

Plots like Figs. 1, &), 5(b) and Hc), 6(b) and &c), and

measurement of its viscosity is needed, or a direct mea-
surement of length scales by moving a fixed bead with
a piezo stage.

Finally, one should beware that the procedure de-
scribed here calibrates theenter of the trap. This
makes it valid anywhere near the center where the trap-
ping potential is harmonic. That includes everywhere
Brownian motion took our bead during calibration, it
seems from Fig. 10. How to calibrate off center, at a
given displacement along the beam axis, is a separate
project of practical interest, but was not addressed here.
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that the viscosity of the fluid in which one measures”PPENDIX A: NOTATION

may differ significantly from that of pure water at the For convenience, our notation and characteristic values
same temperature. If this is so, reliable calculation orof parameters and variables are given in Table IV.
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FIG. 8. Experimental power spectra farandy coordinates(lower and FIG. 10. Linear—log plot of a histogram of the positions that occur in a time
upper data points, respectivelyPoints plotted here are averages over series for a bead in a trap. Data are the same as those used in Figs. 2, 8, and
“blocks” of points from the original power spectrum; see Appendix E. The 9. Superimposed is the Gaussian distribution with the same second moment
error bars were calculated from data within blocks. Since the block intervalsas the data. Inset: Linear—linear plot of the same histogram and Gaussian.
were chosen to be of equal size on the logarithmic frequency axis used her@he 4.5 decades of Gaussian behavior seen here demonstrates that the trap’s
the number of data points in a block grows exponentially with the frequencypotential is harmonic up to QT at least(Same data as was used in Figs.
Consequently, the error bars decrease exponentially with an increase in fr@-and 5)

quency, and range from small at low frequencies to nondiscernible at inter-

mediate and large frequencies. Inset: Experimental values of the dimension-

less cross correlation functioR,, /(P4P,)? introduced in Sec. C1, as a o ) ) )

function of the frequencySame power spectral data as in Figs. 2 and 5. that they do not matter statistically in our calibration spectra,

and also do not show above their noise. The spike AkHz
was an exception, but it was so narrow that it easily was

filtered out manually and had negligible consequence for the
We did two simple null tests of our equipment before wegatistics of the calibration spectrum.

recorded power spectra for the bead in the trap. We recorded \ye also recorded a “light spectrum,” see Fig(bY.

a “dark spectrum,” the power spectrum generated when theCompared with the dark spectrum, this light spectrum shows

diode is kept in total darkness; see Figaj7 This is a mea- significant low-frequency noise, plus a peak at 100 Hz, prob-
surement of the equipment’s electronic noise. We see theg q Y P P P

spectrum is flat, except for a spike at 50 Hz from the powel""ny gaused by stray "th_- Apart- frgm S”aY,"gh‘* the differ-
supply, and at a few higher frequencies, 400 Hz in particular?nce is caused by the limited pointing stability of the unscat-
All values are a factor of 2o-10" below that of our calibra- tered laser beam and the optics it passes through relative to

tion spectra, hence noise may contribute from 1% to 10% téhe photodiode. The low-frequency noise seems to fall off as
the spectra, since amplitudes, not spectra, add up. Howevdr, %, which is what one would observe if the direction of the
the spikes are so narrow and few in addition to being smallaser were doing a slow random walk about its average di-
rection driven by white noise.

Although only the microsphere is missing, this light

APPENDIX B: NULL TESTS FOR NOISE

0.015 . . . . . . .
spectrum is not a direct measurementadf noise in the
0.01 | - system apart from the Brownian noise of the sphere. Me-
chanical vibrations, e.g., are transmitted to the fluid volume,
> 0.005 T but not to the light spectrum because the fluid is transparent.
o W T H { T I [ . They are, however, transmitted by the fluid to the sphere’s
< 0= ‘I I J* \ I spectrum when the sphere is present. So this is noise that
o 0.005 ) } I } | occurs in the experiment, but not in the light spectrum.
{ Strictly speaking, the light spectrum therefore only provides
-0.01 | } N a lower bound on “all noise but the sphere’s Brownian.” It
may nevertheless be a good approximation to all noise, al-
-0.015 ' : : ' : : : though proof of this is missing.
0 1 2 3 4 5 6 7 8

By choosingf ;=110 Hz in calibration fits, we leave
low-frequency noise entirely out of the calibration. The light
spectrum’s extra features relative to those in Fig) above
this f i, value all fall a factor of 10* below the calibration
spectrum’s power at the same frequencies, hence add less
than 1% to the calibration spectrum.

Frequency (kHz)

FIG. 9. Pyy (f )I[Px(f)Py(f )]*? as a function off at a minimum with
respect tol,c) of 3P,/ (f VU[P(f )Py(f)]. Note that the quantity plot-
ted, and henc®,,,,(f ), are both zero within errors. More precisely, statis-
tical support for the hypothesis that it vanishes is 108ame data as was
used in Figs. 2 and b.
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TABLE IV. Notation used and characteristic values of quantities encountered for data set shown in Figs. 2, 5,
and 6. Note: The thermal velocity and the half width of the trap both refer to a single coordinate of motion, i.e.,

to motion in one dimension.

Value Value
Quantity Notation Equal to (Figs. 2 and b (Fig. 6)
Sampling frequency fsample 16 kHz 50 kHz
Nyquist frequency fryg fsampid2 8 kHz 25 kHz
Corner frequency fe «l(2my) ~370 Hz ~670 Hz
Frequency wheré=R f, vl(wR?) 1.3 MHz
Frequency of inertial relaxation — f, vyl (2mm*)~ y/(37m) 1.9 MHz
Minimum fitted frequency finin 110 Hz
Maximum fitted frequency f max 8 kHz 25 kHz
Diode frequency f{dide) 6.8 kHz 7.3 kHz
Total No. of data points N n,x 218 1.3x10° 1.0x 10°
Time between measurements At f;almple 62.5 us 20.0us
Total duration of measurements T, NAt 82s 21s
No. of data windows ny 5 4
Duration of one data window 16.4 s 52s
Time between windows 1 min
No. of points of block ny 517, 861 869
No. of blocked points N’ 29, 150 150
Diameter of bead R 1.05um
Density of bead and water o 1.0 g/cnt
Mass of bead m 47R%p/3 6.1x10 3 g
Hydrodynamical mass m* m-+27R%p/3 9.1x10 ¥ g
Thermal energy kgT 4.1 pNnm
Thermal velocity (v?)¥? kgT/m 3 mm/s
Kinematic viscosity v 1.0 um?/us
Reynolds number Nre R(v?)Y v 1.4x10°3
Drag/friction coefficient y 67pvR 9x10 ® g/s
Trap stiffness K 2mfey 0.021 pN/nm  0.038 pN/nm
Relaxation time in trap tirap ylk=(2mf) ! 0.5 ms 0.2 ms
Diffusion coefficient D keT/y 0.41 nnt/us
Inertial time scale tinert m/y 56 ns
Half width of trap (x?)12 (kgT/x)Y? 14 nm 10 nm
Penetration depth ) Frequency dependent

1. How to decorrelate channels

APPENDIX C: CROSSTALK BETWEEN CHANNELS

andR,, hence so ar®, andR,. ConsequentlyP,, should

vanish

compared
Py (F)I[Py(f)Py(f)]*>~3%-5%, however, as shown in

to P,

and Py. We find

The photodiode that we used to measure the bead’s pgpe inset in Fig. 8.

sition consigts of four quadrants, eaqh of.whi.ch .outputs vc_)lt— Two explanations for crosstalk given below suggest that
age proportional to the amount of light impinging upon it. R.,R,) is a linear function of X,y), and vice versa, and
We number the quadrants |, II, Ill, and 1V like the quadrantsyyat this function does not depend on time. Assuming this,
of a two-dimensional2D) coordinate system, and denote we look for a linear transformation oR{,R,) to a pair of

their output voltage¥, Vy, Vi, andV,y . Then changes in - coqrginates x',y') for which P,y =0. If we can find such
the voltage and the ratios, a transformation, it does not matter what motivated the

V,=V,+V,+ V) +Vyy, (c1  search forit: the transformed coordinates are the correct Car-
tesian coordinates in which to analyze the bead’s motion and
Ry=(Vi= V=V +Vi)/Vy, (C2)  calibrate the trap. To find this transformation, we must find
two real constantdy andc, such that the time series,
Ry=(Vi+V, =V, —V\)IV,, (C3) B

are, to good first approximatiofi;**=*® proportional to
changes in the bead’s position,X,y), with zthe coordinate

along the laser beam’s axis. o has the property tha,.,(f)=0 for all f.

Figure 8 shows that this approximation is not adequate  cjearly, constantd and c are greatly overdetermined.
when precision is desired. The experimentally recorded “COongyertheless, we were able to find them for all time series
ordinates’R,(t) andR,(t) are not independent. Their power h4; we have analyzed, and have also found that the solution
spectra,P,(f )=|R(f)|> and Py(f)=|R,(f)|?, where the is almost degenerate. This is becalBgd ), Py(f), and
caret denotes discrete Fourier transformation, ®Q), are P, (f) are nearly proportional to each other. It probably also
plotted in Fig. 8, together withP, (f)=RR(f)R;(f)].  helped that before we recorded any of the data used here, we
Whenx andy are uncorrelated degrees of freedom, soRyre aligned the diode with the laser beam using as the alignment

(X" (1),y" (1) =(Ry(t) +bRy(1), R, (1) +CRy(1)),  (C4)
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criterion (R,)=(R,)=0 and P, minimal (all three com-
puted and plotted on line
In general, the transformation just defined gives

Py =Py+2bPy,+b?Py, (C5)
Py =Py+2cP,,+c?P,, (C6)
Pyryr=(1+bc)P,,+CcP+bP,. (C7)
We found (,c)=(0.47-0.56) by minimizing

2iPyryi(f V[P (f )Py(f)] with respect tdb andc. As de-
sired, we found that at the minimum
Pury (F)[PL(f)P,(f)]¥?>=0 was satisfied for allf to
within experimental error of this quantity; see Fig. 9.
Having determinedb andc in this manner, the resulting

Power spectrum analysis for optical tweezers 607

Another explanation, which does not exclude the first,
could be small asymmetry in the spot of light scattered by
the bead onto the photodiode. That would cause different
amounts of light to shift between quadrants for identical
shifts of the bead in th& andy directions. If, furthermore,
some of that asymmetrically scattered light falls beyond the
edge of the quadrant diode, then a shift of the bead irnxthe
direction will changeR,, and hence register as a correlated
change iny.

APPENDIX D: MODEL-INDEPENDENT DATA
ANALYSIS

Histograms ofx andy positions of the decorrelated time

power spectraP,, and P/, for the uncoupled coordinates series were consistent with a harmonic trapping potential up
(x',y") are the spectra that we analyzed in the manner deto 10kgT, at least, as shown in Fig. 10 for tirechannel.

scribed in the body of this article. So we drop the prime from

The parabola through the data in the lin—-log plot shows

the notation hereafter, but it should always be understoothat the data are modeled well with(x) = 2«X? in the range

implicity.

2. Possible origins of crosstalk

If the parabolic trapping potenti® is perfectly rotation-
ally symmetric about the beam axishosen as the axis),
V(x',y',2)=v(x'?+y’?,z), the bead’'s equation of motion

of x values visited. It is very satisfying that a model-
independent data analysis can point so precisely to a specific
model. If we determined the value &fin this manner, how-
ever, we may find too low a value. This is because the true
distribution «« exd —V(x)/kgT] was smeared to a wider one
by low-frequency vibrations which are external to the experi-
ment in the sense that they do not originate in the bead’s
thermal motion. We may also find too large a value kor

decouples no matter which pair of Cartesian coordinatebecause low-pass frequency filters artificially narrow the dis-
(x",y") we use, as long as they are orthogonal to the beartribution of positions recorded. Furthermore, since fits like

axis. If the parabolic trap isot rotationally symmetric, but

that in Fig. 10 do not calibrate the position detection system,

elliptic about the beam axis, decoupling is achieved in coorthe units forx andy remain arbitrary until an independent
dinates &’,y’) that coincide with the major and minor axes calibration of the position detection system is carried out,

of the ellipse.
Figure 8 shows thaP, and P, are approximately pro-

e.g., by findingf .. Force measurements would consequently
contain errors that originate in that calibration as well, were

portional to each other: The data set for one function isnve to do one.
shifted vertically relative to the data set for the other function

by an amount approximately independent of frequehcy

This means that the two channels have nearly the same cofPPENDIX E: MAXIMUM-LIKELIHOOD FITTING AND

ner frequency. So the trap is nearly rotationally symmetric.
With an asymmetric trap excluded, the simplest explana-

tion for the constant ratio betwedt andP, is a difference

DATA COMPRESSION

Suppose we data compress a power spectrum by block-
ing, and only then fit to it. How should that be done, and

in sensitivity of the photodiode with respect to the two di- \what is the approximation introduced by this?

rections. This would come about if the four quadrants of the

In an unprocessetlincompressedoower spectrum, the

diode are not identically sensitive, and this would also exyower spectral values amxponentiallydistributed. Least-

plain the nonvanishing values fé,,, including its nearly
constant ratio td®, andP, : R, becomes linearly correlated
with R, if we introduce independent sensitivitissfor each
of the quadrantsy;=s;L;, i=|, Il, lll, and IV, whereL; is
the amount of light impinging on thigh quadrant. If, e.g., a
spot of light moves in the direction,L,+L, remains con-
stant, as doek, +L,, andV,. The ratioR, changes value

squares fitting presupposes that the data are Gaussian distrib-
uted. With sufficient compression, a spectrum whose values
were exponentially distributed will turn into a spectrum with
much less scatter and Gaussian distributed values by virtue
of the central limit theorem. So after compression, least-
squares fitting can be applied. What is the approximation
involved, we should ask, and what is the precision to expect,

whens,#s; and/ors, #s,y , however. Note that such asym- \ye mustask, in view of the precision we achieve in calibrat-

metry needs not be a property of the diode itself. All fouring to compressed spectra, and hence want to claim for the
quadrants could be identical, but have a nonlinear relationggjibration method described.

ship between input light intensity and output voltage. In that

In order to answer these questions, we first observe that

case, less-than-perfect centering of the laser beam on thgaximum-likelihood fitting to exponentially distributed data
diode will cause different amounts of light to fall on different s equivalent to minimizing

guadrants, and hence make them respond with different sen-

sitivity to the small changes in light that correspond to move-

ment of the bead.

fE—lOg p:z (Pf(ex)/Pk‘FIOg Pk) (El)
k
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Now consider the contribution from one block of dataAn PEI(T)— P(T) 2
Eq. (E1) before blocking has been done, 2=, >, | ——————| . (E9)
P(ex)(f ) f P(f )
Flblock= >, ( +logP(f)|. (E2) — . _ _ N .
fblock | P(f) F, is precisely the expression one must minimize with re-

spect to fitting parameters in the functiénwhen these pa-

In this equation we expanB(f) atf=f to second orderin 5 atars are maximum likelihood estimated from a set of

f—1, and find experimental datff,P(®)(f)]7  that are normally distrib-
P (T) uted with the theoretical expected value and root-mean-
A]—'(block)=nb[ +logP(f) square deviation given in Eq&4) and (E5).
Thus we see that maximume-likelihood estimationFof

simplifies to y? minimization only whem, is so large that
n,AfP’ (f ) one can ignore the last term in E&7) compared to the first.
2 4 T ' (E®  This last term occurs because our theory gives both the ex-
pected value for the datand the data’s root-mean-square
where the last term on the right-hand side was obtained bgleviation for this expected value. Thus the parameters of our
replacing the sun®; o With an integral overf between theory occur also in the root-mean-square deviation, the
f+ N Af. logarithm of which is the second term iR, above. In text-
Note thatn,AfP’(f)/P(f) is the relative change in 0Ok derivations of ordinary least-squares fitting, this term is
P(f) across a block. SinceAf=1/T=0.06 Hz while independent of the fitted theory's parameters, e.g., because
P/(f)/P(f)=0(f;Y), itis possible to choose, large, e.g., experimentally measured error bars are used, hence only the

. 2 . . . .
ny="500, and still have the last term in EGE3) negligible, ~ first term, x*, is minimized.

so that we are left with the same form as H&1) for Sincenyn,, ranged from 2500 to 4350 in our data analy-

maximum-likelihood estimation of the theory’s parameterssis, we could neglect the second termﬁ@ relative to the

from given, now blocked, experimental data. first term, and fit by minimizing only?. Factors other than
Calculation entirely like the one leading from E¢E2)— this approximation limited our precision. However, with data

(E3) shows that the expected value and RMSDRéP)(f)  and equipment other than those discussed here, we have en-

are countered situations wherg? fitting clearly was not ad-

- — equate, and we had to minimize the full expressionfer**
(P ))=P(f), (E4

o[ P(F)]=o PE(F))no=P(f )/, (EH)

to the orders im,Af given. In this last identity, Eq.EY), if

the power spectrum blocked was already windowed, its val-  Equations(25) and (27) give f. as a function of the

ues were not exponentially distributed, amgishould be re-  experimental power spectrunPﬁeX))kzll,,,N, . SinceP{™ is

placed withn,n, in the case of nonoverlapping rectangular a random variable, so is the value we find for We deter-

windows, and with @,ny/11 in the case of Hanning win- mine o(f.) by the usual method of linear propagation of

dows (Ref. 30, p. 428 errors. The calculation is long, but is simplified by a conve-
For largeny, or, if n,#1, for largen,n,, the central nient choice of notation.

limit theorem tells us thaP®)(f) is Gaussian distributed

with the expected value and root-mean-square deviations ey f2) 2 (

given in Eqs(E4) and(EY). Fitting to data that are known to

be Gaussian distributed is usually done with the method of

least squares. So it is natural to ask how the method of least of2 of? 9Sp.q

APPENDIX F: CALCULATION OF o (f,)

2

2
L;,p(ex)) ‘72( P(kEX))v (FD
ex):p

squares relates to the maximum-likelihood estimation dis- P(ex E prEc (F2)
cussed above. According to E(E3) with its last term ne- pa Spq
glected, maximum-likelihood estimation based on blocked o
data amounts to minimization of ap(ke'ﬂ) =qf2Ppa-t, (F3)
— PeI(F)
F=n,>, +logP(f) (E6) f2=NID, (F4)
f P(f )

where we have introduced an explicit notation for the nu-
A brief calculation shows that this is equivalent to minimi- nmerator and the denominator,

zation of
1 - N=501; 2= S11S1 2, (F9
Fo==x*+2, logP(f), (E7)
72X ; 9P D=5y 5511~ S0,151,2- (F6)
where Then
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ot 1( IN aD)

iSpq iSoq  ©0Spql’ (F7)
and thus

ot C1E & (£2. 42\ o0& 1524 £2 (€%

P =D Sy o= Sy Afe+ i) =25 4(fE+ ) Py

+2Sp4(F2+F)2PEY), (F8)

where we have introduced the notation,
N!
Spa= 2, (Fe+ 1P, (F9

and note thaéovq=80,q, andSy=N'. In this notation,

D= vso,zvsl,l_ éo,lél,z- (F10
Evaluated at
PI=Pe=b (fE+ )%, (F11)
Spq=b S g0 (F12
and consequently,
af§ —2y-1/ & 2, £2y &
P =b" D (S fet+ ) —So0, (F13
k p(ex) P
with
D(P'™=P)=b"%(S_, S0~ 1) (F14
Using
O_( P(keX))z ngl/ZsznE(l/z)bfl(fg_l_fE)*l (F15)

(ny, should be replaced withyn,, if n,#1), we find

() =ny b D 25, ((S_5 Sp0— S 1,0
=n, b D15, (F16
&
No(S-26800~ 21,0

Finally, we replace the sums with the integrals they approxi-

mate,
N/nb
Spo= 2 (Fe+T0P=1- f df(f2+12)P (F17)
b fmin
and have, WithXq,i,="fmin/fc and X a=Tmax/fes
. Tf,
SO,O: = n_b(xmax_ Xmin)i (F18
~ T Xmax™ Xmin )
S_|o~=——Farctan ——|, F19
1o nbfc rﬁl"'xmaxxmin ( )
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pa _ T Xmax Xmin
S—2,0—

2n,f3 1+xmax 1+x5,

Xmax™ Xmin )
+arctan ———| |, F20
rﬁ:l-'i_)(maxxmin } ( )
from which Eq.(25) follows, when using
a(fy) [d?(fH)\ 12 21
fe afg | -

APPENDIX G: FITTING f{dode) AND q(diode)

The fit shown in Fig. 5 gives.=0.37 kHz andf{licde)
=6.8 kHz, i.e., the latter is 19 times larger than the former.
So the values of these two frequencies are sensitive to dif-
ferent parts of the power spectrum. This does not mean that
the covariances betwedp, on the one hand, arfd®?®) and

(1% on the other, are negligible. Boff andfgdg%de), for
example, depend on a large range of frequencies, and conse-
quently have significant covariance for realistic values of
both. This is seen when fitting using a program that gives
correlations, and can also be shown analytically for a Lorent-
zian fit with fc<fmax~fgd(',%de)<f,\,yq in a calculation analo-
gous to the one done in Appendix F; see Sec. G1 below. In
units of o(f ) or(fiedeeM one finds that the covariance of
fo and fidiode.eMig o (g /fldiode.eMi2 \yhich takes values
of —0.46 and—0.47 for the values of . and f{2deeM that
we found abovéFig. 5, Table I) for the x and they coordi-
nates, respectively. In view of the approximation involved,
this is in good agreement with the values ©0.55 and
—0.54 found by the fitting program for the covariance be-
tweenf, and f%%) in units of o(f.) o(f{9%®) . The agree-
ment is even better for the data set whaseordinate data
are shown in Fig. 6. The fit shown there and the equivalent
one for they coordinate give-0.56, respectively;-0.55, for
the correlation betweenf, and f{%%) in units of
o(fo)o(f99)  This compares very well with the analytical
result —2(f ./ f{lodeeMi2— _ 0 59, respectively-0.58, for
the covariance betweerf, and f{°d®eM in ynits of
a(fo) o™, _

Since the covariance in units af(f.)o(f{odeeM js
—2(f /f{diode M2 in our analytical case based on Lorentz-
ians, we see that one needs an unrealistically small ratio for
f./f§909) in order to have negligible covariance between
these two parameters. We also see that because of their sub-
stantial covariance one cannot determine one correctly with-
out determining the other with similar precision. Because of
our rich data and well-fitting theory, we determine bdth

and f{¥°9®) with the high precision listed in Tables Il and Il
This precision refers to the 68% probability interval for the
parameter in question, with the values for the other three
parameters floating; i.e., it is the most conservative, largest
interval. So our procedure is quite sound despite the nonva-

nishing covariance of, with f{i20®),
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1. Low-frgqgency approximation for the diode |3f(6><valiasegiz|)A(k|2/-|-msr (H4)
characteristic function
is exponentially distributed on the real, non-negative num-

From Tables Il and Il we see that less than 10% of thebers with mean

power in the spectrumg(9°%)2 is unaffected by the finite .
response time of the diode. In this case, and for frequeficies P 2= (| 2/ Trmsr,

for which (f/f{1%%)2<1, we have

P(f) 1+ qldodez f/f(diode)2 = 2 (Rernn M Tmsn
Po(f)  1+(f/1589)2 3
1 (G = 3 Pem. (HS)

~ —l+(f/f(diode,eﬁ)2’
3 dB (aliased); . . . . . .
. P is obviously a periodic function d€ with period
where we have introduced N, i.e., of f, with periodf sampe SO it is sufficient to know its
fgd‘gge'ef’su— a(diodeaz)—u/z)fgdigga_ (G2 value in the interval — fyyq, faygl, fayg™ fsamméz.
On the other hand, E4H5) shows that neithefyy, nor

The last expression in EqG1) is a simple Lorentzian. Equa- f_ . represents a sharp frequency cutoff. The value of

tion (G2) shows that in this case(“*®) combines with  p(aiased) gepends througP("aiased) n=+1+2 . on fre-
diode) ; ; diode, ; ~ N
f§te® into a single parametef{qy'® ", an effective 3 dB  quency componentst, of the signal x(t) outside

frequency of a first-order filter that describes the diode’s
characteristics.

One can use this approximation in a calculation analo-
gous to the one done in Appendix F to obtain the analyticaP- Example: Aliased Lorentzian

_fNyqnyyq]-

result used above: the covariancefplindf{'**?, in units As a specific example, we consider the Lorentzian, for
of o(fo) o (fian =™, is —2(f/f5uy= MY which
. . D/(27*
APPENDIX H: ALIASING AND ANTIALIASING paliased— ¥ (27) 5
n=—o fc+(fk+nf5amp|g
1. What aliasing is
Wh ignal i led at di te timgs,with f (Ax)°At (H6)
en a signal is sampled at discrete times,with fre- = 7 .
quencyfsampie the sampling process cannot distinguish fre- 1+c"—2ccod2mkiN)
quency components of the signal which differ from eachin the case of .<f<fy,, P(f)<1/f2, hence
other by integer multiples of the sampling frequency. They o 1
all add up to a single amplitude. This is seen as follows: Our  p(aliased >
. . . . . N/2 ol f +2nf )2 ’
experiment records a time serieg)(-1,_n by sampling the n=" (fryg Nyq
continuous signak(t) with frequencyf gmpefor time T ;.
L~ . . P . 2 1 1 1 1
With X, the continuous Fourier transformed in E{), the 1+ e
i - itten i its i < 9 25 49 81
continuous signal can be written in terms of its inverse Fou- fyq
rier transform, 2 47
o ' ~f (H7)
X(t) — T 2 e—|27rtk/N'~)-{k ) (Hl) Nyq
msrn=—c i.e., aliasing adds almost 150% to the power spectrum near
Inserting this in thediscrete Fourier transform of our re- fiyq- This means that frequencies several tirigg contrib-
corded time series, E412), and using ute significantly to the power spectrum nday,, no matter
N what valuefy,q has, and one must consequently consider

1 S giznik-0N_ i s H2) whether the model yielding the Lorentzian really is also valid
Ni=1 T, kN at these higher frequencies, even if the model is known to be

J
. L valid below f .
where the right-hand side is equal to 1 for ¢ moduloN,

and 0 otherwise, we find
3. What antialiasing is

fi= 2 Riron- (H3) Data acquisition electronics have builtantialiasing fil-
e ters These filters prevent aliasing of electronic noise from
Here the real and imaginary partsXf, ,y are uncorrelated much higher frequencies. However, if not all 3 dB frequen-
random Gaussian variables with zero mean and commocies of these filters are much larger than our highest fre-
variance in both the Einstein—Ornstein—Uhlenbeck theonguency of interest, the power spectrum wantto measure
and the hydrodynamically correct theory, and for filtered ver-s distorted by antialiasing. Sinc; 4= fnyq iS @ popular
sions of both theories. Hence, so are the real and imaginamhoice, this distortion commonly occurs and is significant;
parts of%,. Consequently, see Fig. 11.
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1 . 3 illustrates: If the theoretical power spectrum for a system is a
A ] simple Lorentzian, but the signal from this system is sampled
] at a finite rate, an aliased Lorentzian results. This is then
what one should fit to the experimental spectrum. If one
. filters the signal before sampling it, say, withyg=fnyq.
that should also be accounted for. However, one shoatd
assume that the filter prevents the aliasing caused by finite
sampling time, and then fit a simple Lorentzian to the spec-
trum of the filtered, sampled signal, to frequencies up to
fnyq- Not if 20% error matters, because the two spectra dif-
fer by that much for 0.6,,<f<0.8f\yq. If one fits only to
frequencies belowf ,,,=0.6fy\,y, a simple Lorentzian is
0.01 L about as bad an approximation to the filtered time series as to

Power spectrum

0.1 iy 1 the unfiltered one. So in this range also is antialiasing no
N ¥ - substitute for a theory that accounts for filters and sampling
24 r /] rates.
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