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I. SCOPE

After a brief description of what Bose—Einstein condensa-
tion (BEC) is and why it is expected to occur in an uncon-
fined three-dimensional volume, five problems are posed.
Two of them show how cold and dense a sample must be
before BEC is possible; the solutions of the other three illus-
trate how the critical temperature and the temperature depen-
dence of the condensate density depend on dimensionality
and on external potentials. To work the problems a student
should be acquainted with the Bose distribution function and
the chemical potential. The problems are appropriate for a
statistical physics course such as might be taught out of Kit-
tel and Kroemer.'

II. INTRODUCTION

In 1995 while studying a very dilute gas of rubidium at-
oms confined in space by an inhomogeneous magnetic field,
physicists observed Bose—Einstein condensation in a gas of
atoms for the first time.> The phenomenon was originally
predicted in 1925 by Albert Einstein shortly after Satyendra
Bose brought to his attention a simple derivation of the
Planck radiation law that treated photons as particles that
obeyed the counting rules that are today called Bose—
Einstein statistics. Einstein showed® that a collection of at-
oms that obeyed these counting rules (bosons) might at the
proper temperature and density suddenly populate the collec-
tion’s ground state in observably large numbers. This mac-
roscopic occupation of the ground state is a phase transition
and takes place at critical temperature 7', and/or number den-
sity n,, and was given the name ‘‘Bose—FEinstein condensa-
tion”” (BEC). Although BEC has been a textbook example®
in statistical mechanics for a long time, and although BEC is
believed to be responsible for superfluidity in liquid helium,
it has taken more than 70 years of increasingly intensive
effort to unambiguously observe BEC. An important experi-
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mental goal will be to show that Bose condensed gases pos-
sess the property of superfluidity. Other observations have
been made, and there are current experiments to study a Bose
gas in a two-dimensional geometry.’

ITII. BACKGROUND

Particles with integral spin (0,1,2,...) are called bosons.
For an assembly of identical bosons there is no limit to the
number of particles which can occupy a single quantum
state. Bose and Einstein derived the expression for the ther-
mal occupation of a state with energy e at temperature T

— 1

Ne= (e—n) 4 ’ W

kT

exp

where kp is the Boltzmann constant and w is the chemical
potential.

Although interactions are extremely important in a real
gas, the problems are made tractable and the essential phys-
ics is retained by assuming an ideal gas of noninteracting
particles. We also assume that the states are non-degenerate.
The chemical potential, which is a measure of the change of
internal energy of the system when a particle is added, is a
very important quantity in the theory of BEC. In equilibrium
the chemical potential must be uniform although quantities
such as pressure and density may vary across an inhomoge-
neous system. We shall see that for 7<<T,., =0 and par-
ticles added to the system go into the zero-energy state. The
chemical potential is determined by requiring that the sum of
particles occupying every state be equal to the total number
of particles N. From Eq. (1) we see that 4 < 0 because the
occupation number must be positive. For a gas in the low-
density, high-temperature limit u is large and negative and
goes to zero as temperature is decreased or density is in-
creased to the critical value where BEC occurs.

© 1997 American Association of Physics Teachers 570

Downloaded 06 Feb 2013 to 193.48.255.141. Redistribution subject to AAPT license or copyright; see http://ajp.aapt.org/authors/copyright_permission



In a gas of atoms obeying Maxwell-Boltzmann statistics
there is a large continuum of energy or momentum states
which are microscopically populated, i.e., the number of par-
ticles occupying any one state is a very small fraction of the
total number of particles. Only at 7 = 0 is the ground state
with € = 0 macroscopically populated by all of the particles.
However, Einstein showed that for a gas of identical bosons,
macroscopic occupation of the ground state, comparable to
the total number of particles in the gas, can occur at a finite
nonzero temperature. This phase change is BEC.

For a uniform space (no spatially varying potentials) the
usual derivation of BEC is as follows. Equation (1) shows if
m = 0 then N, the occupation of the state with € = 0, di-

verges. N_O is called the condensate. When evaluating the
chemical potential by summing all states, this term is sepa-
rated out because of its possible divergent behavior,

1

(€—n)

N=No+ >, 2)

e#0

exp

This sum is bounded in three-dimensional space and can be
evaluated by converting it to an integral, which you may do
because the free particle states are very closely spaced, so
that in the semi-classical approximation we can go over to a
continuum model. Noting that the number of states equals
the phase space volume divided by 43, we have

dp; dr; 1
E _’f (27Tﬁ)3 = (27Tﬁ)3 f 47Tp2dp dl‘3. (3)
Using € = p2/2M, we have
47v2
> = i)’ M”Zf Vede drs. (4)

Since 3, is the number of states, you can recognize in Eq. (4)
the number of states between € and € + de, i.e., p(e) the
density of states,

4mVIMPVE?

p(e)= T Qah)y} (5)

where V = [drj; is the volume in a three-dimensional space,
r;. Then Eq. (2) becomes

N=Ngt+ =T VM”IDC «de =No+N
0" 2mh)? 0 (e—w)] ~ °
ex T

(6)

For finite, negative w all states are about equally, and mi-
croscopically, populated. But consider what happens to a
system held at constant 7 and V when you add more par-
ticles. As N increases u must adjust by increasing toward
zero. Now for u = 0 the second term in Eq. (6) can be evalu-
ated as

47v2
(27h)3

x1/2 dx

e*—1"

VM3/2(kBT)3/2f (7)
0

The integral has the value 2.6127/2. Clearly for any given
V and T as u approaches zero, the integral approaches its
maximum value, and N* in Eq. (6) cannot increase further.
At this point T represents a critical value 7. at which the
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Fig. 1. The chemical potential x and condensate population ]70 of an ideal
Bose gas as a function of temperature (adapted from Ref. 6).

addition of more particles leads to new behavior. Writing the
density n = N/V, we have
h2
kpT =331 57 n*3. (8)

Now suppose you add more particles to the system. How
can u adjust further? The answer is found by expanding the
expression for the condensate,

— 1 kgT
NOZ—%—L-

—u M
exp(kB )—1

In the thermodynamic limit (N—o, V—oo such that N/V
remains constant), w approaches zero as 1/N. Thus, as
un—0, Ny becomes macroscopically occupied in a very con-
trolled way; as more particles are added below 7', they all
go into N,. The behavior of p and NO is shown in Fig. 1.
Likewise, N and V can be held constant and T lowered be-
low T,, so that above-condensate particles N* are trans-
ferred to the condensate. The gas is partitioned into two sets
of particles, ﬁo—the condensate—and the noncondensate
particles, which are sometimes referred to as the ‘‘above-

condensate’” or ‘‘normal’’ particles. From Eq. (7) we have
N* = N(T/T,)*?, which with Eq. (6) implies

. T\32
NOZN[“(F)

c

)

IV. PROBLEMS

A. De Broglie wavelength and BEC

In the semiclassical approximation at low density and high
temperature, atoms are localized to wave packets with di-
mensions small compared to the average interatomic separa-
tion. The average de Broglie wavelength N\ = h/p, whichis a
quantum measure of delocalization of a particle, must satisfy
this criterion. Here, p is the momentum spread or momentum
uncertainty of the wave packet. Indeed, in the other extreme
for T < T, for particles in the zero momentum eigenstate the
delocalization is infinite; i.e., the packet is spread over the
entire volume V. BEC occurs when the interparticle separa-
tion is of the order of the delocalization. A useful quantity in
the thermodynamics is the thermal de Broglie wavelength
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A [2mh?
BTN MyT”
which is a measure of the thermodynamical uncertainty in

the localization of a particle of mass M with the average
thermal momentum.

(a) Determine the interparticle separation in terms of A g
at the onset of BEC.

(b) Use the Heisenberg uncertainty principle and
Maxwell-Boltzmann statistics to show that A g is, to
within a factor of 2, just the uncertainty in the position

of aparticle Ar = V{(r?*)—(r)>.

B. Value of T, for rubidium vapor

Recently, BEC has been reported to have been produced
in a vapor of ’Rb atoms at a number density of n = 2.5
X 10'> cm™3. Calculate T, for such a gas in a uniform 3-D
space and compare it with the temperature of 170 nK re-
ported by the experimenters.

C. BEC in an inhomogeneous magnetic field

Atoms with magnetic moments m in an external magnetic
field B will have an interaction energy U = —m - B.”% As-
sume that the magnetic field varies quadratically and is of the
form B(z/a')* + By(p/b")?, with p> = x* + y?2, so that

2 2 2 2
e 2] =(Z) (2] a0

Find the critical temperature for BEC and the temperature
dependence of the condensate. Simplify the problem by sim-
plifying the potential to

e
U:szO a_,

2
U<z>=(f—z) . (11)

Notice that in an inhomogeneous potential the density is in-
homogeneous and peaked at the potential minimum. In an
ideal gas the condensate forms only in the center of the cloud
and is localized in space. In a quantum mechanical descrip-
tion, the ground harmonic oscillator state is macroscopically
occupied and condensate atoms only occupy this state as the
temperature is lowered.

Hint: Note that the kinetic energy of a particle now de-
pends on position so that the integral of the energy over
dr; [see Eq. (4)] must be executed.

D. Does BEC occur in a uniform 2-D space?

Show that BEC will not occur in a 2-D gas in a uniform
space, i.e., one in which there is no external potential. BEC
or the separation of the particles into a condensate and
above-condensate part takes place only if the sum (or inte-
gral) in Eq. (2) does not diverge when w—O0. If it does di-
verge faster than N, 0. the occupation of N does not become
favored and macroscopic.’ It is convenient to show the di-
vergence of Eq. (2) by rewriting the sum in terms of z
= eP* where B = 1/kpT.
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E. Show that BEC occurs for a 2-D gas in a quadratic
potential

An applied external potential can change the results of the
previous problem.'®!! To see that this is so, redo the previ-
ous problem using, for simplicity, a one-dimensional poten-
tial in the x direction,

x2
U=—u0<l—a—), (12)

where u is the depth of the potential well and a is a measure
of its extent in the x direction. The results are easily ex-
tended to a 2-D potential.

V. SOLUTIONS

A. De Broglie wavelength and BEC

(a) It is straightforward from Eq. (8) to show that the
interparticle spacing is
Agp
1.38°

o 1B=

(b) From the uncertainty principle find Ar,
N ho f
Ap (p=(p)*
From Maxwell-Boltzmann statistics you know that
8MkB

(p?)=3MksT, (p)*=

from which it follows that
Ar: 0'59AdB%AdB .

B. Value of T, for rubidium vapor

This answer is obtained by substituting the appropriate
numbers into Eq. (8),

T 331X(1.05X 10732 X (2.5x10'%)*
€T 138X 10" BX 87X 1.67X10° %

=34%x10"°% K=34 nK.

Recent measurements show better agreement with theory.'?
To calculate the critical temperature for the actual experi-
mental conditions one should use an expression for an inho-
mogeneous field like that given in Problem 4.3. However, in
an inhomogeneous field BEC still takes place at the peak
density region where n, ~ A;BS, the condition given by Eq.

(8).

C. BEC in an inhomogeneous magnetic field

The kinetic energy of a particle in the potential is €
= p%/2M + U(r) so that the density of states function, Eq.
(5), becomes

4mvamM
ple)= k)

f mdr&

where V* is the accessible volume.

A particle with a given energy can have an excursion in
the potential to an extreme where p = 0 or € = U(z), yielding
the limits on the integral z = *z,, = *a/e, so that
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4mVIM3? Ly Z2
€ dz
Zz

P(€)=WS — 2

47vVIM3? ¢ T
T 2wk} 02 9®
whereS = [dx dy.
Now Eq. (7) becomes

47VIM”? @

_AmV2MT m [~ x dx
Qi) S 7 “ksD) JO 1

The definite integral has the value 7%/6 so that

12 h3/2
— 2 12

N (2wh)?
= akBM3/4_ o

S vantkiam?

where o = N/S is the areal density in the unconfined plane.

Following the procedure leading to Eq. (9) we find

T\2
7 |
If we solve for the potential of Eq. (10), we find

VARE
T.=133 W (m)

N():N

D. BEC in a uniform 2-D space

Rewritten in terms of z = e?#, Eq. (2) becomes

N=2 —m= e BEE

since 1/(1 — x) = ngl . Next, collect terms as follows:

NZEE I:EO (Zef,BE)IJrl:EE IZI (267[36)[

eiﬁe)l’

=D 71> e lPe,
1 €

Up to this point the result is independent of dimension.

Now in 2-D

1
E Hﬁfmrp dpfdrz,

€

SO

S ® —1Bp*
= l —_—
N (E z) hzZTrJ'Opdp exp( )
The momentum integral is easily evaluated to give

MkgT
!

or
i 7S
AT A
The sum can be recognized
!

2 Z7=—ln(1—z),
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SO

S M
N=— A2 ln(l exp(kB ))

N diverges when u— 0. Therefore, BEC does not take place
in 2-D.

Note that when you went over from the sum to the inte-
gral, you could have separated out the condensate fraction. In
3-D the integral representing the above-condensate particles
is bounded, so that for 7 < T particles ‘‘flow’’ into the con-
densate, and the total number of particles remains bounded.
In 2-D if you partition the particles into zero-momentum and
normal parts, you find that both parts diverge at 7. and there
is no phase transition.

E. BEC in 2-D in a quadratic potential

Substituting Eq. (12) into Eq. (2) gives the following in-
tegral to be evaluated:
1 }

dx dy
(6 ,u)

fef

Rather than evaluate the 1ntegral directly, make a transfor-
mation to the dummy variable p_,

pa
x:
ZMMO
so that
2, 2 2, 2
_px+py+U_px+py_ +u0x2
oM oM 0T T2
becomes
2, 2, 2
pxtpytp;
oM e

and the integral becomes

ab dpg,
N= f 2 2
V2Mu, pitpytp; B
M Up— M |
exp_ kpT

ab f dp3
2Mu, [ [pitpy+p ’
oM

exp kpT -1

where b is a measure of the size of the system along y, and
we have defined i = ug + . The integral is now identical to
the integral for BEC in 3-D that was carried out to give Eq.
(8). BEC takes place when & = 0 or u = —ug. The result is
that with a confining potential BEC will take place in 2-D.
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