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PREFACE.

THE usual point of view in the study of mechanics Is that

where the attention is ma.inly directed to the changes whicb

take place in the course of time in a given system. The prin-

cipal problem is the determination of the condition of the

system with respect to configuration and velocities at any

required time, when its condition in these respects bas been

given for some one time, and the fundamental equations are

those which express the changes continually taking place in

the system. Inquiries of this kind are often simplified by

taking into consideration conditions of the system other than

those through which it actually passes or is supposed to pass,
but our attention is not usually carried beyond conditions

differing innnitesimally from those which are regarded as

actual.

For some purposes, however, it is desirable to take a broader

view of the subject. We may imagine a great number of

systems of the same nature, but differing in the configura-
tions and velocities which they have at a given instant, and

differing not merely innnitesimally, but it may be so as to

embrace every conceivable combination of configuration and

velocities. And here we may set the problem, not to follow

a particular system through its succession of configurations,
but to determine how the whole number of systems will be

distributed among the various conceivable configurations and

velocities at any required time, when the distribution has

been given for some one time. The fundamental equation
for this inquiry is that which gives the rate of change of the

number of systems which fall within any infinitesimal limits

of configuration and velocity.
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Such inquiries have been called by Maxwell statistical.

They belong to a brandi of mechanics which owes its origin to

the desire to explain the laws of tliermodynamics on mechan-

ical principles, and of which Clausius, Maxwell, and Boltz-

mann are to be regarded as the principal founders. The nrst

inquiries in this field were indeed somewhat narrower in their

scope than that which has been mentioned, being applied to

the particles of a system, rather than to independent systems.

Statistical inquiries were next directed to the phases (or con-

ditions with respect to configuration and velocity) which

succeed one another in a given system in the course of time.

The explicit consideration of a great number of systems and

their distribution in phase, and of thé permanence or alteration

of this distribution in thé course of time is perhaps first found

in Boltzmann's paper on the Zusammenhang zwischen den

Satzen uber das Verhalten mehratomiger Gasmoleküle mit

Jacobi's Princip des letzten Multiplicators (1871).

But although, as a matter of history, statistical mechanics

owes its origin to investigations in thermodynamics, it seems

eminently worthy of an independent development, both on

account of the elegance and simplicity of its principles, and

because it yields new results and places old truths in a new

light in departments quite outside of thermodynamics. More-

over, the separate study of this branch of mechanics seems to

afford the best foundation for the study of rational thermody-

namics and molecular mechanics.

The laws of thermodynamics, as empirically determined,

express the approximate and probable behavior of systems of

a great number of particles, or, more precisely, they express

the laws of mechanics for such systems as they appear to

beings who have not the fineness of perception to enable

them to appreciate quantities of the order of magnitude of

those which relate to single particles, and who cannot repeat

their experiments often enough to obtain any but the most

probable results. The laws of statistical mechanics apply to

conservative systems of any number of degrees of freedom,
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and are exact. This does not make them more dinicult to

establish than the approximate laws for systems of a great

many degrees of freedom, or for limited classes of such

systems. The reverse is rather the case, for our attention is

not diverted from what is essential by the peculiarities of the

system considered, and we are not obliged to satisfy ourselves

that the effect of the quantities and circumstances neglected

will be negligible in the result. The laws of thermodynamics

may be easily obtained from the principles of statistical me-

chanics, of which they are the incomplète expression, but

they make a somewhat blind guide in our search for those

laws. This is perhaps the principal cause of the slow progress

of rational thermodynamics, as contrasted with the rapid de-

duction of the consequences of its laws as empirically estab-

lished. To this must be added that the rational foundation

of thermodynamics lay in a branch of mechanics of which

the fundamental notions and principles, and the characteristic

operations, were alike unfamiliar to students of mechanics.

We may therefore confidently believe that nothing will

more conduce to the clear apprehension of the relation of

thermodynamics to rational mechanics, and to the interpreta-

tion of observed phenomena with reference to their evidence

respecting the molecular constitution of bodies, than the

study of the fundamental notions and principles of that de-

partment of mechanics to which thermodynamics is especially
related.

Moreover, we avoid the gravest difficulties when, giving up

the attempt to frame hypotheses concerning the constitution

of material bodies, we pursue statistical inquiries as a branch

of rational mechanics. In the present state of science, it

seems hardly possible to frame a dynamic theory of molecular

action which shall embrace the phenomena of thermody-

namics, of radiation, and of the electrical manifestations

which accompany the union of atoms. Yet any theory is

obviously inadequate which does not take account of all

these phenomena. Even if we confine our attention to the
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phenomena distinctively thermodynamic, we do not escape

difliculties in as simple a matter as the number of degrees

of frecdorn of a diatomic gas. It is well known that while

theory would assign to the gas six degrees of freedom per

molécule, in our experiments on specific heat we cannot ac-

count for more than five. Certainly, one is building on an

insecure foundation, who rests his work on hypotheses con-

cerning the constitution of matter.

Difficulties of this kind have deterred the author from at-

tempting to explain the mysteries of nature, and have forced

him to he contented with the more modest aim of deducing

some of the more obvious propositions relating to thé statis-

tical branch of mechanics. Hère, there can be no mistake in

regard to thé agreement of the hypotheses with the facts of

nature, for nothing is assumed in that respect. The only
error into which one can fall, is the want of agreement be-

tween the premises and the conclusions, and this, with care,

one may hope, in the main, to avoid.

Thé matter of the present volume consists in large measure

of results which have been obtained by the investigators

mentioned above, although thé point of view and the arrange-

ment may be different. These results, given to the public

one by one in thé order of their discovery, hâve necessarily,
in their original presentation, not been arranged in the most

logical manner.

In the first chapter we consider the general problem which

has been mentioned, and find what may be called the funda-

mental equation of statistical mechanics. A particular case

of this equation will give the condition of statistical equi-

librium, i. e., the condition which thé distribution of the

systems in phase must satisfy in order that the distribution

shall be permanent. In the general case, the fundamental

equation admits an integration, which gives a principle which

may be variously expressed, according to the point of view

from which it is regarded, as the conservation of density-in-

phase, or of extension-in-phase, or of probability of phase.
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In the second chapter, we apply this principle of conserva-

tion of probability of phase to the theory of errors in thé

calculated phases of a system, when thé determination of thé

arbitrary constants of the integral equations are subject to

error. In this application, we do not go beyond tlie usual

approximations. In other words, we combine the principle

of conservation of probability of phase, which is exact, with

those approximate relations, which it is customary to assume

in the theory of errors."

In the third chapter we apply the principle of conservation

of extension-in-phase to the integration of the differential

equations of motion. This gives Jacobi's last multiplier,"

as has been shown by Boltzmann.

In the fourth and following chapters we return to the con-

sideration of statistical equilibrium, and connne our attention

to conservative systems. We consider especially ensembles

of systems in which the index (or logarithm) of probability of

phase is a linear function of the energy. This distribution,

on account of its unique importance in the theory of statisti-

cal equilibrium, 1 have ventured to call canonical, and the

divisor of the energy, the modulus of distribution. The

moduli of ensembles have properties analogous to temperature,

in that equality of the moduli is a condition of equilibrium
with respect to exchange of energy, when such exchange is

made possible.

We find a differential equation relating to average values

in the ensemble which is identical in form with the funda-

mental differential equation of thermodynamics, the average
index of probability of phase, with change of sign, correspond-

ing to entropy, and the modulus to temperature.
For the average square of thé anomalies of thé energy, we

find an expression which vanishes in comparison with the

square of the average energy, when the number of degrees
of freedom is indefinitely increased. An ensemble of systems
in which the number of degrees of freedom is of the same

order of magnitude as the number of molecules in the bodies
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with which we experiment, if distributed canonically, would

therefore appear to human observation as an ensemble of

systems in wbich all have the same energy.
We meet with other quantities, in the development of the

subject, which, when the number of degrees of freedom is

very great, coincide sensibly with the modulus, and with the

average index of probability, taken negatively, in a canonical

ensemble, and which, therefore, may also be regarded as cor-

responding to temperature and entropy. The correspondence

is however imperfect, when the number of degrees of freedom

is not very great, and there is nothing to recommend these

quantities except that in definition they may be regarded as

more simple than those which have been mentioned. In

Chapter XIV, this subject of thermodynamic analogies is

discussed somewhat at length.

Finally, in Chapter XV, we consider the modification of

the preceding results which is necessary when we consider

systems composed of a number of entirely similar particles,

or, it may be, of a number of particles of several kinds, all of

each kind being entirely similar to each other, and when one

of the variations to be considered is that of the numbers of

the particles of the various kinds which are contained in a

system. This supposition would naturally have been intro-

duced earlier, if our object had been simply the expression of

the laws of nature. It seemed desirable, however, to separate

sharply the purely thermodynamic laws from those special

modifications which belong rather to thé theory of the prop-

erties of matter.

J. W. G.

NEWHAVEN,December,1901.
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ELEMENTARY PRINCIPLES IN

STATISTICAL MECHANICS

CHAPTER I.

GENERAL NOTIONS. THE PRINC1PLE OF CONSERVATION

OF EXTENSION-IN-PHASE.

WE shall use Hamilton's form of the equations of motion for

a system of n degrees of freedom, writing ql, for the

(generalized) coordinates, ~i, for the (generalized) ve-

locities, and

~1 ~ql ~2 ~~2 -i- Fn CZqn~i + + (1)

for thé moment of the forces. We shall call the quantities

the (generalized) forces, and the quantities

defined by the équations

~t! ~p /n\
~i=–, ~=-4-, etc., (2)L.1

~g'I
)

dq2

where e? denotes the kinetic energy of the system, the (gen-

eralized) momenta. The kinetic energy is here regarded as

a function of the velocities and coordinates. We shall usually

regard it as a function of thé momenta and coordinates,*
il'

and on this account we denote it by €p. This will not pre-

vent us from occasionally using formulse like (2), where it is

sufficiently evident the kinetic energy is regarded as function

of the f~'s and q's. But in expressions like < where the

denominator does not determine the question, the kinetic

The useof the momentainstead of the velocitiesas independentvariabtes
is the characteristic of Hamilton's methodwhich gives his equations of motion
their remarkable degree of simplicity. We shall find that the fund&mental
notions of statistical mechanicsare most easily defined,and are expressed in
the most simple form, when thé momenta with thé coordinates are used to
describe the state of a system.
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energy is aiways to be treated in the differentiation as function

ofthe~'sandf~'s.
We have then

de, de, L'

~==~' ~=-~+~
b etc. (3)

JI dq

These equations will hold for any forces whatever. If the

forces are conservative, in other words, if thé expression (1)
is an exact differential, we may set

~=- ~==- etc., (4)
<~i

where Eqis a function of the coordinates which we shall call

thé potential energy of the system. If we write e for the

total energy, we shall have

e=€p+€ (6)

and equations (3) may be written

de de
etc. (6)~=~' ~=-

The potential energy (e~) may depend on other variables

beside the coordinates ?i. Ws shall often suppose it to

depend in part on coordinates of external bodies, which we

shall denote by < etc. We shall then have for the com-

plete value of the differential of the potential energy

= – 7~ ~i j~. – -~i <~i – Az~~2 – etc., (7)

where A2, etc., represent forces (in the generalized sense)
exerted by the system on external bodies. For the total energy

(e) we shall have

(~e= ~i ~pi + –~i ~yi.

–~ < – Ai ~i – ~2 ~<~ – etc. (8)

It will be observed that the kinetic energy (ep)
in thé

most general case is a quadratic function of the p's (or q's)

It will be observed, that although we call
t

the potential energy of the

system which we are considering, it is really so defined as to inelude that

energy which might be described as mutual to that system and external

bodies.
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involving also the q's but not thé <t's that thé potential energy',

when it exists, is function of the g's and a's and that the

total energy, when it exists, is function of the p's (or q's), thé

q's, and thé a's. In expressions like < thep's, and not

thé q's, are to be taken as independent variables, as has already

been stated with respect to thé kinetic energy.

Let us imagine a great number of independent systems,

identical in nature, but differing in phase, that is, in their

condition with respect to configuration and velocity. The

forces are supposed to be determined for every system by the

same law, being functions of the coordinates of the system

o,, <7n either alone or with the coordinates < a~, etc. of

certain external bodies. It is not necessary that they should

be derivable from a force-function. The external coordinates

o~, a2, etc. may vary with the time, but at any given time

have fixed values. In this they differ from thé internai

coordinates ql, which at the same time have different

values in the different systems considered.

Let us especially consider the number of systems which at a

given instant fall within specified limits of phase, viz., those

for which

Fi' < ~i < ~i", $'i' < ?i < ?i",

P2' < ~2 < ?/ < ?2 <
?/

< < F/~ f ?/ < ?. < ?/~

the accented letters denoting constants. We shall suppose
the differences p~ "_Pi~ ?i" – ?i~ etc. to be infinitesimal, and

that the systems are distributed in phase in some continuons

manner,* so that the number having phases within the limits

specified may be represented by

D (Fl" -) (F." ~) (?!" ?/) (?." ?/), (10)

In strictness, a finite number of systems cannot be distributed contin-

uously in phase. But by increasing indefinitely the number of systems, wc

may approximate to a continuous law of distribution, such as is here
described. To avoid tedious circumlocution, language like the above may
be allowed, although wanting in precision of expression, when the sense in
whieh it is to be taken appears sufficiently clear.
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or more brieny by

~i. dpn dql ~7., (Il)

where D is a function of the p's and q's and in general of t also,

for as time goes on, and the individual systems change their

phases, the distribution of the ensemble in phase will in gén-

éral vary. In special cases, thé distribution in phase will

remain unchanged. These are cases of statistical equilibrium.

If we regard all possible phases as forming a sort of exten-

sion of 2 n dimensions, we may regard the product of differ-

entials in (11) as expressing an element of this extension, and

D as expressing the density of the systems in that élément.

We shall call thé product

dpl ~i. ~y~ (12)

an element of ex~MStOM-tM-pAasc,and D the density-in-phase

of the systems.
It is evident that the changes which take place in the den-

sity of the systems in any given element of extension-in-

phase will depend on the dynamical nature of the. systems

and their distribution in phase at the time considered.

In the case of conservative systems, with which we shall be

principally concerned, their dynamical nature is completely

determined by the function which expresses the energy (c) in

terms of the p's, q's, and a's (a function supposed identical

for all the systems) in the more general case which we are

considering, the dynamical nature of the systems is deter-

mined by the functions which express the kinetic energy (e~)
in terms of the p's and q's, and the forces in terms of thé

q's and a's. The distribution in phase is expressed for the

time considered by D as function of the p's and q's. To find

the value of ~D/~ for the specified element of extension-in-

phase, we observe that the number of systems within thé

limits can only be varied by systems passing thé limits, which

may take place in 4 n different ways, viz., by the pl of a sys-

tem passing the limit pl', or the limit or by thé f~ of a

system passing the limit ql', or the limit qi etc. Let us

consider these cases separately.
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In the first place, let us consider the number of systems

which in the time dt pass into or out of the specified element

by passing the limit pl'. It will be convenient, and it is

evidently allowable, to suppose dt so small that the quantities

Pl dt, il dt, etc., which represent the increments of pl etc.,

in thé time dt shall be infinitely small in comparison with

the infinitesimal differences pl" – etc., which de-

termine the magnitude of the element of extension-in-phase.
The systems for which passes the limit p/ in the interval

dt are those for which at the commencement of this interval

thé value of lies between p~ and pl' Pl dt, as is evident

if we consider separately the cases in which Pl is positive and

negative. Those systems for which lies between these

limits, and the other p's and <s between the limits specified in

(9), will therefore pass into or out of the element considered

according as p is positive or negative, unless indeed they also

pass some other limit specified in (9) during the same inter-

val of time. But the number which pass any two of these

limits will be represented by an expression containing the

square of dt as a factor, and is evidently negligible, when dt

is sufficiently small, compared with the number whioh we are

seeking to evaluate, and which (with neglect of terms contain-

ing dt2) may be found by substituting dt for pl" p/ in

(10) or for dpl in (11).

The expression

.D~t ~2. dpn ~?i dqn (13)

will therefore represent, according as it is positive or negative,

the increase or decrease of the number of sy stems within the

given limits which is due to systems passing the limit A

similar expression, in which however 2) and p will have

slightly different values (being determined for p/' instead of

pl'), will represent the decrease or increase of the number of

systems due to the passing of the limit p/ The difference

of the two expressions, or

dpl <~ <~ dqn dt (14)
<tpi
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will represent algebraically the decrease of thé number of

Systems within the limits due to Systems passing thé limits

and p/\

Thé decrease in the number of systems within the limits

due to systems passing the limits and < may be found in

the same way. This will give

(')~

d <~
dpl

+
dql

dpl dp~ dq, dq~ dt (15)

for the decrease due to passing the four limits ~i", <~i".

But since the equations of motion (3) give

+ = 0, (16)
<~i ~?i

the expression reduces to

/<~D (Z7) j j.,

(~
+

<~ ~)
(~)

If we preux 2 to denote summation relative to the suinxes

!?, we get the total decrease in the number of systems

within the limits m the time e~. That is,

(~ +

=

– <ZZ)~pi. ~~i. (18)

~dD~ dD dD )@
or

~L"Udt 'PI q,

where the sumx applied to the dinerential coefficient indicates

that thé ~'s and <~s are to be regarded as constant in the differ-

entiation. Thé condition of statistical equilibrium is therefore

2~~+~~=0. (20)
\t

p
~i

O. (20)

If at any instant this condition is fulnlled for ail values of the

p's and q's, (<~jP/<)p~ vanishes, and therefore the condition

will continue to hold, and the distribution in phase will be

permanent, so long as the external coordinates remain constant.

But the statistical equilibrium would in général be disturbed

by a, change in the values of the extemal coordinates, which
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would alter the values of the p's as determined by equations

(3), and thus disturb thé relation expressed in the last equation.

If we write equation (19) in thé form

(~ ~+2~+~=0,
(21)dt

~t~
dt

c~
= (21)

it will be seen to express a theorem of remarkable simplicity.

Since .D is a function of t, pj, .?“, <~ < its complète

differential will consist of parts due to the variations of all

these quantities. Now the first term of thé equation repre-
sents thé increment of D due to an increment of t (with con-

stant values of the p's and q's), and the rest of the first member

represents the increments of 2) due to increments of the p's

and q's, expressed by dt, dt, etc. But these are precisely
the increments which the p's and q's receive in the movement

of a system in the time dt. The whole expression represents

the total increment of -D for thé varying phase of a moving

system. We have therefore the theorem

an ensemble of mechanical systems !~eMtM<ï~<'K nature and

SM~'eC~to forces determined by identical laws, but distributed

in phase in any continuous manner, the density-inphase is

constant in time for the varying phases of a moving system

provided, that the forces of a system are funetions of its co-

ordinates, either alone or with the ~)Ke.*

This may be called the principle of conservation of density-

in-phase. It may also be written

(~).=~
0, (22)

where a, h represent the arbitrary constants of the integral

equations of motion, and are suffixed to the differential co-

Thé condition that the forces J~ Fn are functions of ql, and

at,(!ete., which last are functions of thé time, is analytically equivalent
to the condition that jFi, .jF*t, are functions of ~j, .çn and thé time.
Explicit mention of the external coordinates, al, a2, etc., has becn made in
the preceding pages, because our purpose will require us hereafter to eon-
sider these coordinates and the connected forces, Al, A2, etc., which repre-
sent the action of the systems on external bodies.
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efficient to indicate that they are to be regarded as constant

in the differentiation.

We may give to this principle a slightly different expres-
sion. Let us call the value of the integral

f.f~<Z~
(23)

taken within any limits the extension-in-phase within those

limits.

~FAe~ the phases bounding an extension-in-phase vary Mt

the course of time according to the dynamical laws of a system

subject to forces whieh are functions of the coo'y~p'Ma~s either

alone or with the time, the value of the ea'~KSt'CM-t'K-pAasethus

bounded remains constant. In this form the principle may be

called the principle of conservation of e~~msMm-pAase. In

some respects this may be regarded as the most simple state-

ment of the principle, since it contains no explicit reference

to an ensemble of systems.
Since any extension-in-phase may be divided into infinitesi-

mal portions, it is only necessary to prove the principle for

an infinitely small extension. The number of sy stems of an

ensemble which fall within the extension will be represented

by the integral

< ~) a~i
~i

If the extension is infinitely small, we may regard D as con-

stant in the extension and write

Z) t <~i
c~i c~

for the number of systems. The value of this expression must

be constant in time, since no systems are supposed to be

created or destroyed, and none can pass the limits, because

the motion of the limits is identical with that of the systems.

But we have seen that D is constant in time, and therefore

the integralthe integtal

< ~i
~i dq",
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which we have called the extensi.on-i.n-pha.se, is also constant

intime.*

Since the system of coordinates employed in thé foregoing

discussion is entirely arbitrary, thé values of thé coordinates

relating to any conhguration and its immediate vicinity do

not impose any restriction upon thé values relating to other

configurations. Thé fact that tlie quantity which we have

called density-in-phase is constant in time for any given sys-

tem, implies therefore that its value is independent of thé

coordinates which are used in its evaluation. For let the

density-in-phase as evaluated for thé same time and phase by
one system of coordinates be -D/, and by another System -D~.
A system which at that time has that phase will at another

time have another phase. Let the density as calculated for

this second time and phase by a third system of coordinates

be jPg". Now we may imagine a system of coordinates whieh

at and near the first configuration will coincide with the first

system of coordinates, and at and near thé second configuration

will coincide with the third system of coordinates. Tins will

give Dl' = Dg". Again we may imagine a system of coordi-

nates which at and near thé first configuration will coincide

with thé second system of coordinates, and a.t and near the

If we regard a phase as represented by a point in space of 2n dimen-
sions, the changes which take place in the course of time in our ensembleof

systems will be represented by a current in such space. This current will
be steady so long as the external coordinates are not varied. In any case
the current will satisfy a law which in its various expressions is analogous
to the hydrodynamic law which may be expressed by tlie phrases eonsert'a-
tionof volumesor conservationo/'densityabouta mo~'i'Kypoint, or by thé equation

~+~+~-0 O.
(/~

The analogue in statistical mechanicsof this equation, viz.,

~+~+~+'~+,tc.=0,
~i 1 <i ~2 "?22

may be derived directly from equations (3) or (6), and may suggest such
theorems as have been enunciated, if indeed it is not regarded as making
them intuitively evident. Thé somewhat lengthy demonstrations given
above will at least serve to give precision to the notions invoh'ed, and

familiarity with their use.
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second configuration will coincide with the third system of

coordinates. This will give jD~' = J~. We have therefore

J9/ == 1.

It follows, or it may be proved in the same way, that the

value of an extension-in-phase is independent of the System

of coordinates which is used in its évaluation. This may

easily be verified directly. If QI, Qn are two

systems of coordinates, and the cor-

responding momenta, we have to prove that

f.f~=~f~i.ei.(24)

when the multiple integrals are taken within limits consisting
of the same phases. And this will be evident from the prin-

ciple on which we change the variables in a multiple integral,
if we prove that

<p., ei, Qn) 1 ~g.
d(pl, -1.. ?~)

1 i)

where the first member of the equation represents a Jacobian

or functional déterminant. Since all its elements of the form

e~/d~ are equal to zero, the determinant reduces to a product
of two, and we have to prove that

~(jPi,) d(Ql, .<?.) 1. (26)
~(~i.) ~(?i~- "~)

We may transform any element of the nrst of these deter-

minants as follows. By equations (2) and (3), and in

view of the fact that the ~'s are linear functions of the q's
and therefore of the p's, with coefficients involving the q's,

so that a differential coefficient of the form d (),d~ is function

of the q's alone, we get

The form of the équation
d f~p c~ (~p

dpv~& <~Q~dry

in (27) reminds us of the fundamental identity in the differential calculus

relating to the order of differentiation with respect to independentvariables.
But it willbe observed that here the variables Q.tand pyare na<independent
and that the proof dependson the linear relation between tlie (~'sand the p's.



IS AN INVARIANT. 13

c~

r=l <~

_r\ (27)
<l~er<

(27)

'<~</
But since ?~~ 2 ),–But since q~

r=:l\tK~~G~~r~r

~=~. (28)
~e. ~e.

Therefore,

~(~, ~) <Z(~, ~) d(ql, ?,)
(29)

~i,) ~(Qi, e.) ~(<?.<?.)'
(29)

The equation to be proved is thus reduced to

d(qi, -?.) ~(<?i, e.) (30)
~i,) ~(?i,)

which is easily proved by the ordinary rule for the multiplica-
tion of determinants.

The numerical value of an extension-in-phase will however

depend on thé units in which we measure energy and time.

For a product of the form dp dq has the dimensions of energy

multiplied by time, as appears from equation (2), by which

the momenta are defined. Hence an extension-in-phase has

the dimensions of the nth power of the product of energy
and time. In other words, it has thé dimensions of the nth

power of action, as the term is used in the principle of Least

Action.'

If we distinguish by accents the values of the momenta

and coordinates which belong to a time t', the unaccented

letters relating to the time t, the principle of the conserva-

tion of extension-in-phase may be written

~i.
~~i. dqn

= ~pi'
~p/~i' (31)

or more briefly

f.f~i.
dq..

==f.f~/
(32)
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the limiting phases being those which belong to the same

systems at the times t and t' respectively. But we have

identically

J- l J Pl qn'~

for such limits. The principle of conservation of extension-in-

phase may therefore be expressed in thé form

-?'.) i (33)
~(Pi')

= 1.

This equation is easily proved directly. For we have

identically

~(~i, ~) <~(pt, .?.) ~(pi", .)

~(~ ~) <~(~i" ?.') ~(~ ?“')

where the double accents distinguish the values of the momenta

and coordinates for a time t". If we vary t, while t' and t"

remain constant, we have

~(~t, ?.) <Z(~i", ~") ~(~i,)
.g~dt ~(~ ~') ~(~i' <?.') dt ~(Pi" ?.")

Now since the time t" is entirely arbitrary, nothing prevents

us from making t" identical with t at the moment considered.

Then the determinant

~Cpi. -)

<~(Fi", ~)

will have unity for each of the elements on the principal

diagonal, and zero for ail the other elements. Since every

term of the determinant except the produet of the elements

on the principal diagonal will have two zero factors, the differen-

tial of the determinant will reduce to that of the product of

these elements, i. e., to the sum of the differentials of these

elements. This gives the equation

d ~(~i ,$'“) ~i ~p~ ~?i
dt ~(pi' ~') ~P ~i"dt l Ï~ïf) 71,p-,Îl dl- '11 dqn

Now since t = the double accents in thé second member

of this equation may evidently be neglected. This will give,
in virtue of such relations as (16),
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d ~(~ = o
~</(~)

which substituted in (34) will give

d ~(~ljj~"L == o
~~(pi'?,/)

The determinant in this equation is therefore a constant, the

value of which may be determined at the instant when t =

when it is evidently unity. Equation (33) is therefore

demonstrated.

Again, if we write a, h for a system of 2 n arbitrary con-

stants of the integral equations of motion, pl, ~i, etc. will be

functions of a, A, and t, and we may express an extension-

in-phase in the form

f.f~ (35)
J J ~(<t, /t)

da. ;)

If we suppose the limits specified by values of a, h, a

system initially at the limits will remain at the limits.

The principle of conservation of extension-in-phase requires

that an extension thus bounded shall have a constant value.

This requires that the determinant under the integral sign

shall be constant, which may be written

~(~) = 0. (36)dt d(a, h)

This equation, which may be regarded as expressing the prin-

ciple of conservation of extension-in-phase, may be derived

directly from the identity

~1) ?.) ~(Pl, ?n) ~(~ ?.')

~(~ A) ~(~i', ?“') ~) A)

in connection with equation (33).

Since the coordinates and momenta are functions of a, h,

and t, the determinant in (36) must be a function of the same

variables, and since it does not vary with the time, it must

be a function of a, h alone. We have therefore

~=func.A). (37)
d(a, h)

= une. a,



It is the relative numbers of systems which fall within dif-

ferent limits, rather than the absolute numbers, with which we

are most concerned. It is indeed only with regard to relative

numbers that such discussions as the preceding will apply
with literal precision, since the nature of our reasoning implies
that the number of systems in the smallest element of space
which we consider is very great. This is evidently inconsist-

ent with a finite value of the total number of systems, or of

the density-in-phase. Now if the value of -D is infinite, we

cannot speak of any definite number of systems within any
finite limits, since all such numbers are infinite. But the

ratios of these infinite numbers may be perfectly definite. If

we write N for the total number of systems, and set

P =
D

(38)~=~, (38)

P may remain finite, when -ZVand -D become infinite. The

integral

J r .< r -P <~i
(39)

taken within any given limits, will evidently express the ratio

of the number of systems falling within those limits to the

whole number of systems. This is the same thing as the

probability that an unspecified system of the ensemble (i. e.

one of which we only know that it belongs to the ensemble)
will lie within the given limits. The product

-P~i. (40)

expresses the probability that an unspecified system of the

ensemble will be found in the element of extension-in-phase

dpl < We shall call P the eoe~ezem~ of probability of the

phase considered. Its natural logarithm we shall call the

index o/'joyo~& of the phase, and denote it by the letter ??.

If we substitute NP and -Ve'' for -D in equation (19), we get

ldP (_dP
· dP

~),=-(~).di'
=

7-p Pl+ dql \1.)
p,q Pl jll

and
@),=-

·and
dt

= -:s
d PI

dql
91 (42)

dt pQ dpl dq~

16 CO~V~-E~F~r/O~ 0F
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2

The condition of statistical equilibrium may be expressed

by equating to zero thé second member of either of these

equations.
The same substitutions in (22) give

(~

Ct,i
and

(~

That is, the values of P and like those of ~), are constant

in time for moving systems of the ensemble. From this point
of view, the principle which otherwise regarded has been

called the principle of conservation of density-in-phase or

conservation of extension-in-phase, may be called the prin-

ciple of conservation of the coefficient (or index) of proba-

bility of a phase varying according to dynamical laws, or

more briefly, the principle of conservation of probability of

phase. It is subject to the limitation that the forces must be

functions of the coordinates of the system either alone or with

the time.

The application of this principle is not limited to cases in

which there is a formai and explicit reference to an ensemble of

systems. Yet the conception of such an ensemble may serve

to give precision to notions of probability. It is in fact cus-

tomary in the discussion of probabilities to describe anything
which is imperfectly known as something taken at random
from a great number of things which are completely described.
But if we prefer to avoid any reference to an ensemble
of systems, we may observe that the probability that the

phase of a system falls within certain limits at a certain time,
is equal to the probability that at some other time the phase
will fall within the limits formed by phases corresponding to

the first. For either occurrence necessitates the other. That

is, if we write P' for the coefficient of probability of the

phase at the time < and P" for that of the phase
y/ at the time r,

0
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f.f~ =J' J'.P"
(45)

where the limits in the two cases are formed by corresponding

phases. When the integrations cover infinitely small vari-

ations of the momenta and coordinates, we may regard and

jP" as constant in the integrations and write

f f. f<Zp/
=

jP'f.f~pi"
<

Now the principle of the conservation of extension-in-phase,
which has been proved (viz., in the second démonstration given

above) independently of any reference to an ensemble of

systems, requires that the values of the multiple integrals in

this equation shall be equal. This gives

=

With reference to an important class of cases this principle

may be enunciated as follows.

When the differential equations of motion are exactly known,

but the constants of the integral equations !?Kpe~gc~~ deter-

mined, the eoe~cMm~ of probability of any phase at any time is

equal to the eoe~MgM~ of probability of the corresponding phase
at any other time. By corresponding phases are meant those

which are calculated for different times from the same values

of the arbitrary constants of the integral equations.
Since the sum of the probabilities of ail possible cases is

necessarily unity, it is evident that we must have

au

f.f~=l, (46)

phaaeaJe

where the integration extends over all phases. This is indeed

only a different form of the equation

ail

~=f.fz)<<

phaaea

which we may regard as defining N.
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The values of the coefficient and index of probability of

phase, like that of the density-in-phase, are independent of the

system of coordinates whieh is employed to express thé distri-

bution in phase of a given ensemble.

In dimensions, thé coefficient of probability is the reciprocal.

of an extension-in-phase, that is, the reciprocal of the nth

power of the product of time and energy. Tlie index of prob-

ability is therefore affected by an additive constant when we

change our units of time and energy. If the unit of time is

multiplied by <~and the unit of energy is multiplied by c,, ail

indices of probability relating to systems of n degrees of

freedom will be increased by the addition of

n log c, + n log Ce. (47)



CHAPTER II.

APPLICATION OF THE PRIX CIPLE OF CONSERVATION

OF EXTENSION-IN-PHASE TO THE THEORY

OF ERRORS.

LET us now proceed to combine the principle which ha,s been

demonstrated in the preceding chapter and which in its differ-

ent applications and regarded from different points of view

has been variously designated as the conservation of density-

in-phase, or of extension-in-phase, or of probability of phase,

with those approximate relations which are generally used in

the theory of errors.'

We suppose that the differential equations of the motion of

a system are exactly known, but that the constants of the

integral equations are only approximately determined. It is

evident that the probability that the momenta and coordinates

at the time t' fall between the limits p/ and + d~ ql' and

+ < etc., may be expressed by thé formula

(48)

where ?/ (the index of probability for the phase in question) is

a function of the coordinates and momenta and of the time.

Let ()/, Pl', etc. be the values of the eoordinates and momenta

which give thé maximum value to ?/, and let the general

value of ?/ be developed by Taylor's theorem according to

ascending powers and products of the differences pl' -?/,

g~~ – etc., and let us suppose that we have a sufficient

approximation without going beyond terms of the second

degree in these differences. We may therefore set

= o F' (49)

where c is independent of thé differences pl' Pi', g/ – C/,

etc., and is a homogeneous quadratic function of these
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differences. The terms of the first degree vanish in virtue

of thé maximum condition, which also requires that j~" must

have a positive value except when all the differences men-

tioned vanish. If we set

C = e", (50)

we may write for the probability that the phase lies within

the limits considered

Ce- (51)

C is evidently the maximum value of the coefficient of proba-

bility at the time considered.

In regard to the degree of approximation represented by

these formulée, it is to be observed that we suppose, as is

usual in thé theory of errors,' that the determination (ex-

plicit or implicit) of the constants of motion is of such

precision that thé coefficient of probability e~ or 6'e'~ is

practically zero except for very small val'.ies of thé differences

– _P~, – etc. For very small values of these

differences the approximation is evidently in general sufficient,

for larger values of these differences the value of (7e" will

be sensibly zero, as it should be, and in this sense the formula

will represent the facts.

We shall suppose that the forces to which the system is

subject are functions of the coordinates either alone or with

the time. The principle of conservation of probability of

phase will therefore apply, whioh requires that at any other

time (t") the maximum value of the coefficient of probability

shall be the same as at the time < and that the phase

(P~, ()~, etc.) which has this greatest probability-coefficient,

shall be that which corresponds to the phase (P/, QI', etc.),

i. e., which is calculated from thé same values of the constants

of the integral equations of motion.

We may therefore write for the probability that the phase

at the time t" falls within the limits p~" and + ~p~, g~

and gj~ + ~< etc.,

<7e- (52)
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where C represents the saine value as in the preceding

formula, viz., the constant value of the maximum coefficient

of probability, and is a quadratic function of the différences

Fi" ~i~ ?i" Ci"' etc., the phase (~ @i" etc.) being that

which at thé time t" corresponds to the phase (-P/, 61') etc.)

at the time t'.

Now we have necessarily

f..f
<7e-

= f" f
Ce-F"<~i" == 1, (53)

when the integration is extended over all possible phases.

It will be allowable to set ± ce for the limits of all the cocir-

dinates and momenta, not because these values represent the

actual limits of possible phases, but because the portions of

the integrals lying outside of the limits of ail possible phases

will have sensibly the value zero. With ± oc for limits, the

equation gives

= =
1, (S4)

w"

where/~ is the discriminant of J~, and/" that of 7' This

discriminant is therefore constant in time, and like C an abso-

lute invariant in respect to the system of coordinates whioh

may be employed. In dimensions, like C~, it is the reciprocal

of the 2nth power of the product of energy and time.

Let us see precisely how the functions FI and F" are related.

The principle of the conservation of the probability-coefficient

requires that any values of the coordinates and momenta at the

time t' shall give the function the same value as the corre-

sponding coordinates and momenta at the time t" give to

Therefore F~ may be derived from FI by substituting for

p/, their values in terms of gi". Now we

have approximately

This term is used to denote the determinant having for elements on the

principal diagonal the coefficientsof the squares in the quadratic function

F', and for its other elements the halves of thé eoenicientsof the products

in F'.
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,ypf ,7~'y 1

=
+

(55)(55)

d ~-9 n1(Pl d Q"r

Q.11),

(55)

?.' <?.' = (~i" ~i") + (?~'

and as in -?'" terms of higher degree than the second are to be

neglected, these equations may be considered accurate for thé

purpose of the transformation required. Since by equation

(33) the eliminant of these equations has the value unity,

the discriminant of will be equal to that of as has

already appeared from the consideration of the principle of

conservation of probability of phase, which is, in fact, essen-

tially thé same as that expressed by equation (33).
At the time < the phases satisfying the equation

.F' = k, (56)

where k is any positive constant, have the probability-coeffi-

cient (7e~ At the time t", the corresponding phases satisfy

the equation
= k, (57)

and have the same probability-coefficient. So also the phases

within the limits given by one or the other of these equations

are corresponding phases, and have probability-coefficients

greater than C'e" while phases without these limits have less

probability-coefficients. The probability that the phase at

the time t' faits within the limits = k is the same as the

probability that it faits within the limits F" = k at thé time t",

since either event necessitates the other. This probability

may be evaluated as follows. We may omit the accents, as

we need only consider a single time. Let us denote thé ex-

tension-in-phase within the limits .F = k by U, and the prob-

ability that the phase falls within these limits by R, also the

extension-in-phase within the limits .F = 1 by Ul. We have

then by definition

.F=it:

~=f.f~i.
(58)
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~=t k

=f. f'C
(59)

F=i I

"J*' 'J~' (60)

But since F is a homogeneous quadratic function of the

différences

~1 – ~D ~2 – ~) .?-.–

we have identically
~=&

J~(~~
~) ~(?. 9.)

kF=k

=f.fA"~(~
~) ~(y, ~)

-F=l

= /J~,
~) ~(~ <?,.).

That is C'=A"!7i, (61)

whence d U = !7i MA" (62)

But if k varies, equations (58) and (59) give

jF'=it-)-<H;

<ZÏ7=f.f~
(63)

F=k
j'=~)-<fit

= f. fc'<~pi (64)
~=~

Since the factor C'e" has the constant value Ce"* in the

last multiple integral, we have

dR = C <r'~ P' = C U, Me-* dk, (65)

= C Ililn 6-~1 + A +
+ +

j~~i~)
+ const. (66)

We may determine th~ .constant of intégration by the condition

that R vanisTlës with k. This gives
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== C {? C ~i )? <r'Yl + A + + + ~– (67)Il = C 0 r;T¡0 1 + le + +
L~r~/

(67)

We may determine thé value of thé constant by thé con-

dition that ==: 1 for k == ce. This gives (7 = 1, and

/f-
7~ = 1

.1
+ &

+
+

~~),
(68)

lc'l'

~=(~-
(69)

L

It is worthy of notice that the form of these equations de-

pends only on the number of degrees of freedom of the system,

being in other respects independent of its dynamical nature,

except that the forces must be functions of the coordinates

either alone or with the time.

If we write

~4
for the value of k wbich substituted in equation (68) will give

== the phases determined by the equation

~=~ (70)

will have the following properties.

The probability that the phase falls within the limits formed

by these phases is greater than the probability that it falls

within any other limits enclosing an equal extension-in-phase.

It is equal to the probability that the phase falls without the

same limits.

These properties are analogous to those which in thé theory

of errors in the determination of a single quantity belong to

values expressed by A ± a, when A is the most probable

value, and a the 'probable error.'



CHAPTER III.

APPLICATION OF THE PRINCIPLE OF CONSERVATION OF

EXTENSION-IN-PHASE TO THE INTEGRATION OF THE

DIFFERENTIAL EQUATIONS OF MOTION.*

WE have seen that the principle of conservation of exten-

sion-in-phase may be expressed as a differential relation be-

tween the coordinates and momenta and the arbitrary constants

of the integral equations of motion. Now the integration of

the differential equations of motion consists in the determina-

tion of these constants as functions of the coordinates and

momenta with the time, and the relation afforded by the prin-

ciple of conservation of extension-in-phase may assist us in

this determination.

It will be convenient to have a notation which shall not dis-

tinguish between the coordinates and momenta. If we write

for the coordinates and momenta, and a h as be-

fore for the arbitrary constants, the principle of which we

wish to avail ourselves, and wbich is expressed by equation

(37), may be written

~=func. (.). (71)
d(a, h)

= une. a, 7

Let us first consider the case in which the forces are deter-

mined by the coordinates alone. Whether the forces are

conservative' or not is immaterial. Since the differential

equations of motion do not contain the time (<) in the finite

form, if we eliminate dt from these equations, we obtain 2 M – 1

equations in )*< and their differentials, the integration
of which will introduce 2 n 1 arbitrary constants which we

shall call b A. If we can effect these integrations, the

See Boltzmann: "Zusammenhang zwischen den Sa.tzenüber das Ver-

halten mehratomiger Gasmolecüle mit Jacobi's Princip des letzten Multi-

plicators. Sitzb. der Wiener Akad., Bd. LXIII,Abth. 11.,S. 679,(1871).



TB~o~y 0F INTEGRATION. 27

remaining constant (a) will then be introduced in the final

intégration, (viz., that of an equation containing ~,) and will

be added to or subtracted from in thé intégral équation.

Let us have it subtracted from t. It is évident then that

=-“ etc. (72)~«.
= 1'1' J

~M
= 7'2' etc.

Moreover, since &, and t – œ are independent functions

of f~, ~n' thé latter variables are functions of thé former.

Thé Jacobian in (71) is therefore function of &, h, and

t – a, and since it does not vary with it cannot vary with a.

We have therefore in the case considered, viz., where thé

forces are functions of the coordinates alone,

= tune. (&, A). (73)
6<(&, A)

Now let us suppose that of the first 2 M – 1 integrations we

have accomplished ail but one, determining 2~–2 arbitrary

constants (say c, ~) as functions of leaving & as

well as a to be determined. Our 2~–2 nnite equations en-

able us to regard ail the variables and ail functions

of these variables as functions of two of them, (say and f~,)

with the arbitrary constants c, A. To determine we

have the following equations for constant values of c, A.

~7-1 Q~
~i == – + –

~a. <?

dr, da
<Z~ “

??* = -,– œa + –, MO,
c~t ~o

whence
~(~-i, r~) db

0'~ ~i ,x
whence ––– <?==--– <i +

–
~2. (74)

~(œ,6) ~<t

Now, by the ordinary formula for the change of variables,

J~~ =f

=f-f~J J ~(a, A)
a

r f~i,) ~(c,A)
= t < "VT~–––– -~––––– ~3 ~n)

J J < A) ~(~, 7-2,.)
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where the limits of the multiple intégrais are formed by the

same phases. Henee

d(rl, ~) a'(''i) ~) ~(e, A)
(75)

J(~, b) A) ,y
'°~

With the aid of tliis equation, which is an identity, and (72),

we may write equation (74) in the form

(Z(ri,) ~(c,A)

d(a, .A) ~(!-g,r~)
db r2 drl ri dr2.

The séparation of the variables is now easy. The differen-

tial equations of motion give and in terms of r2n

The integral equations already obtained give c, h and

therefore the Jacobian d(c, A)/~(fg, r.~), in tenns of

the same variables. But in virtue of these same integral

equations, we may regard funetions of f~~ as funetions

of ri and with the constants c, h. If therefore we write

the equation in the form

~A)"
db

~A) _~L~~)_
dr2,

(77)

~(r.) ~(fs,)

the coefficients of <7~ and may be regarded as known func-

tions of ri and with the constants c, h. The coefficient

of db is by (73) a function of b, h. It is not indeed a

known funetion of these quantities, but since c, h are

regarded as constant in the equation, we know that the first

member must represent the differential of some function of

& for which we may write b'. We have thus

== ~A) ~A) (78)

~(''3!) ~(?'8,i!n)

which may be integrated by quadratures and gives 6~as func-

tions of ri e, A, and thus asfunctionof ri r~.

This integration gives us the last of the arbitrary constants

which are functions of the coordinates and momenta without

the time. The final integration, which introduces the remain-
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ing constant (a), is also a quadrature, since tlie equation to

be integrated may be expressed in thé form

= F (rl) drl.

Now, apart from any such considerations as !iave been ad-

duced, if we limit ourselves to tlie changes which take place
in time, we have idcntically

c~i – y'i 6~?' =0,

and and y~ are given in terms of ?-j, r2n by the differential

equations of motion. When we have obtained 2 K – 2 integral

equations, we may regard r2 and rl as known functions of ri
and r2. The only remaining difficulty is in integrating this

equation. If the case is so simple as to present no diniculty,
or if we have the skill or the good fortune to perceive that thé

multiplier

1

~(c,) (79)

C~ji, ?-“.)

or any other, will make the first member of the equation an

exact differential, we have no need of the rather lengthy con-

siderations which have been adduced. The utility of the

principle of conservation of extension-in-phase is that it sup-

plies a multiplier' which renders the equation integrable, and

which it might be difficult or impossible to find otherwise.

It will be observed that the function represented by is a

particular case of that represented by b. The system of arbi-

trary constants a, b', e h lias certain properties notable for

simplicity. If we write &' for b in (77), and compare the

result with (78), we get

<~i ~) 1.
d(a, b, c, A)

Therefore the multiple integral

~o, <M'
~c ~A (81)
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taken within limits fonned by phases regarded as contempo~
raneous represents the extension-in-phase within those limits.

The case is somewhat different when the forces are not de-

termined by the eoordinates alone, but are functions of the

coordinates with the time. All the arbitrary constants of thé

integral equations must then be regarded in thé general case

as functions of ~n' and t. We cannot use the princi-

ple of conservation of extension-in-phase until we have made

2 M – 1 integrations. Let us suppose that the constants b, h

have been determined by integration in terms of T'i, ~n' and

t, leaving a single constant (a) to be thus determined. Our

2 n 1 finite equations enable us to regard all the variables

r1, as functions of a single one, say
For constant values of b, h, we have

7 <i

~i=~~+~i~. (82)

Now

drl dr, dr,~ dr, dr2.
J' =J'

<?

=f"-ft"J J <Z(~, A)da
dh

r r~i ~) ~(~ ,7..
= t t '~7–––––t~T 'jT~––––––~ ~2 ")

J J ~(&, A) d(r2, ~,)
da dra dr2",

where the limits of the intégrais are formed by the same

phases. We have therefore

A-i .r~) d(b, A)
(83)

~A) ~)'
<

by which equation (82) may be reduced to the form

~=~–– (84)d(a, h) d(b, h) d(b, lb)

d'(~f~) ~2,)

Now we know by (71) that the coefficient of da is a func-

tion of a, Therefore, as &, A are regarded as constant

in the equation, the first number represents the differential
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of a function of a, h, which we may denote by a'. We

have then

d 1 d==–?7T––––7T'~l – –TTT––––T~~~) /o~
~(&A) ~(6,A)

dt,
(85)

6<!(~) ~'2,)

which may be integrated by quadratures. In this case we

may say that thé principle of conservation of extension-in-

phase has supplied the multiplier'

1

d(b, h) (86)

d(~)

for thé integration of the equation

~ri ;1 dt = 0. (87)

The system of arbitrary constants < 5, has evidently
the same properties which were noticed in regard to the

system a, b',



CHAPTER IV.

ON THE DISTRIBUTION IN PHASE CALLED CANONICAL,

IN WHICH THE INDEX OF PROBABILITY IS A LINEAR

FUNCTION OF THE ENERGY.

LET us now give our attention to the statistical equilibrium

of ensembles of conservation systems, especially to those cases

and properties which promise to throw light on the phenom-
ena of thermodynamics.

The condition of statistical equilibrium may be expressed
in the form*

dP dP~)==~
where P is the coefficient of probability, or the quotient of

the density-in-phase by the whole number of systems. To

satisfy this condition, it is necessary and sufficient that P

should be a function of the p's and q's (the momenta and

coordinates) which does not vary with the time in a moving

system. In all cases which we are now considering, the

energy, or any function of the energy, is such a function.

P = func. (e)

will therefore satisfy the equation, as indeed appears identi-

cally if we write it in the form

S f~J~~ =o\<~i<~i(~pi~i/ °
There are, however, other conditions to which P is subject,

which are not so much conditions of statistical equilibrium, as

conditions implicitly involved in the definition of the coeffi-

See equations (20),(41),(42),alsothe paragraph followingequation (20).
The positions of any external bodies whieh can affect thé systems are here
supposed uniform for all the systems and constant in time.
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3

cient of probability, whether tlie case is one of equilibrium
or not. Tfiese are that P sliould be single-valued, and

neither negative nor imaginary for any phase, and that ex-

pressed by equation (46), viz.,

all

f.J'7~=l.
(89)

phases,ls

These considerations exclude

P = e x constant,

as well as

P = constant,

as cases to be considered.
The distribution represented by

~=log~=~, (90)

or
~–f

~)

where e and are constants, and 0 positive, seems to repre-
sent the most simple case conceivable, since it has the property
that when the system consists of parts with separate energies,

thé laws of the distribution in phase of the separate parts are

of the same nature,- a property which enormously simplifies
thé discussion, and is the foundation of extremely important

relations to thermodynamics. The case is not rendered less

simple by the divisor 0, Ça quantity of the same dimensions as

e,) but the reverse, since it makes the distribution independent
of the units employed. The negative sign of e is required by

(89), which détermines also the value of 1~ for any given

0, viz.,
)~ !tU f

==~J~s (92)

phases

When an ensemble of systems is distributed in phase in the

manner described, i. e., when the index of probability is a
R



34 CANONICAL D/~77~7VO~V

linear function of the energy, we shall say that tlie ensemble 1s

c(7Mo/;<ea~<~<8<?'<&M~t;<and shall call thé divisor of thé energy

(0) t)ie modulus of distribution.

Thé fractional part of an ensemble canonically distributed

which lies within any given limits of phase is therefore repre-
sented by the multiple integral

t~-f

J.Je (93)

taken within those limits. We may express the same thing

by saying that the multiple integral expresses the probability
that an unspecified sy stem of the ensemble (i. e., one of

which we only know that it belongs to the ensemble) falls

within the given limits.

Since thé value of a multiple integral of the form (23)

(which we have called an extension-in-phase) bounded by any

given phases is independent of the system of coordinates by
which it is evaluated, thé same must be true of the multiple

integral in (92), as appears at once if we divide up this

integral into parts so small that the exponential factor may be

regarded as constant in each. The value of is therefore in-

dependent of the system of coordinates employed.
It is evident that might be defined as thé energy for

which tlie coefficient of probability of phase bas the value

unity. Since however this coefficient has the dimensions of

the inverse nth power of the product of energy and time,*
the energy represented by i~ is not independent of the units

of energy and time. But when these units have been chosen,
the definition of will involve the same arbitrary constant as

e, so that, while in any given case the numerical values of

or e will be entirely indefinite until the zero of energy has

also been fixed for the system considered, the différence – e

will represent a perfectly definite amount of energy, which is

entirely independent of the zero of energy which we may
choose to adopt.

See Chapter I, p. 19.
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It is eviclent that thé canonical distribution is entirely deter-

mined by thé modulus (considered as a quantity of energy)

and the nature of thé system considered, since when equation

(92) is satisfied the value of thé multiple intégral (93) is

independent of the units and of tlie coordinates employed, and

of thé zero chosen for the energy of the system.

In treating of the canonical distribution, we sliall always

suppose the multiple integral in equation (92) to have a

finite value, as otherwise thé coefficient of probability van-

ishes, and the law of distribution becomes illusory. This will

exclude certain cases, but not such apparently, as will affect

the value of our results with respect to their bearing on ther-

modynamics. It will exclude, for instance, cases in which the

system or parts of it can be distributed in unlimited space

(or in a space which has limits, but is still infinite in volume),

while the energy remains beneath a finite limit. It also

excludes many cases in which the energy can decrease without

limit, as when the system contains material points whieh

attract one another inversely as the squares of their distances.

Cases of material points attracting each other inversely as the

distances would be excluded for some values of 0, and not

for others. The investigation of such points is best left to

the particular cases. For the purposes of a general discussion,

it is sufficient to call attention to the assumption implicitly

involved in the formula (92).*
The modulus 0 has properties analogous to those of tem-

perature in thermodynamics. Let the system ~4 be defined as

one of an ensemble of systems of m degrees of freedom

distributed in phase with a probability-coefficient

e @
It willbe observed th~t similar limitations exist in thermodynamics. In

order that a mass of gas can be in thermodynamie equilibrium, it is necessary
that it be enclosed. There isno thermodynamie equilibriumof a (finite)mass
of gas in an infinite space. Again, that two attracting particles sliould be
able to do an infinite amount of work in passing from one configuration
(which is regarded as possible) to another, is a notion which, although per-
fectly intelligible in a mathematical formula, is quite foreign to our ordinary
conceptionsof matter.
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and the system B as one of an ensemble of systems of n

degrees of freedom distributed in phase with a probability-

coemcient

'f~
e 0

which has the same modulus. Let .< ~i, pm be the

coordinates and momenta of and ~~+n'Pm+i Fm+n

those of Now we may regard the systems A and B as

together forming a system (7, having '/? + ? degrees of free-

dom, and the coordinates and momenta ~i, ~m+n<.Pr ~Nt-n-

The probability that the phase of the system (7, as thus defined,

will fall within the limits

<Zpi, <~+, ~i,

is evidently the product of the probabilities that the systems
~4 and B will each fall within the specified limits, viz.,

~+~
.g~e 0 t/pi ~i

We may therefore regard (7 as an undetermined system of an

ensemble distributed with the probability-coefficient

~(~~
.gg.

60,

an ensemble which might be defined as formed by combining

each system of the nrst ensemble with each of the second.

But since e~ + e~ is the energy of the whole system, and

and are constants, the probability-coemcient is of the

général form which we are considering, and the ensemble to

which it relates is in statistical equilibrium and is canonically

distributed.

This result, however, so far as statistical equilibrium is

concerned, is rather nugatory, since conceiving of separate

systems as forming a single system does not create any in-

teraction between them, and if the systems combined belong to

ensembles in statistical equilibrium, to say that the ensemble

formed by such combinations as we have supposed is in statis-

tical equilibrium, is oniy to repeat the data, in different
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words. Let us therefore suppose that in forming tlie system
C we add certain forces acting between A aud -B, and having
thé force-function – e~g. The energy of the system <7is now

EA+ <~ + ~.B! and an ensemble of such systems distributed

with a density proportional to

e
S

would be in statistical equilibrium. Comparing this with thé

probability- coefficient of C given above (95), we see that if

we suppose e~ (or rather the variable part of this term when

we consider all possible configurations of thé systems ~4 and Z')

to be infinitely small, the actual distribution in phase of C

will differ infinitely little from one of statistical equilibriurn,
which is equivalent to saying that its distribution in phase
will vary infinitely little even in a time indefinitely prolonged.*
The case would be entirely différent if ~4 and .S belonged to

ensembles having different moduli, say 0~ and OB. The prob-

ability-coefficient of C' would then be

~.i-~
,"o7~~7', (97)

which is not approximately proportional to any expression of

the form (96).
Before proceeding farther in the investigation of the dis-

tribution in phase which we have called canonical, it will be

interesting to see whether thé properties with respect to

It will be observed that the above conditionrelating to the forces which
act between the different systems is entirely analogous to that whieh must
hold in the corresponding case in thermodynamics. The most simple test
of the equality of temperature of two bodies is that they remain in equilib-
rium when brought into thermal contact. Direct thermal contact implies
molecular forces acting between the bodies. Now thé test will fail unless
the energy of these forces can be neglected in comparison with thé other

energies of thé bodies. Thus, in the case of energetie chemical action be-
tween the bodies, or when the number of particles affected by thé forces

acting between the bodies is not negligible in comparison with thé whole
number of particles (as when the bodies have thé form of exeeedinglythin
eheets), thé contact of bodies of thé same temperature may produce con-
siderable thermal diaturbance, and thus fail to afford a reliable criterion of
the equality of temperature.



8 07WM D/.S'?Vi;66'?TOA~

statistical equilibrium which have been described are peculiar

to it, or whether other distributions may have analogous

properties.
Let and be the indices of probability in two independ-

ent ensembles which are each in statistical equilibrium, then

will be thé index in thé ensemble obtained by combin-

ing each system of thé first ensemble with each system of thé

second. This third ensemble will of course be in statistical

equilibrium, and the function of phase ?/ + will be a con-

stant of motion. Now when infinitesimal forces are added to

the compound systems, if ?/ + ??" or a function differing

infinitesimally from this is still a constant of motion, it must

be on account of the nature of the forces added, or if their action

is not entirely specified, on account of conditions to which

they are subject. Thus, in the case already considered,

?/ + ?)" is a function of the energy of the compound system,

and the infinitesimal forces added are subject to the law of

conservation of energy.
Another natural supposition in regard to the added forces

is that they should be such as not to affect the moments of

momentum of the compound system. To get a case in which

moments of momentum of the compound system shall be

constants of motion, we may imagine material particles con-

tained in two concentric spherical shells, being prevented from

passing the surfaces bounding the shells by repulsions acting

always in lines passing through the common centre of the

shells. Then, if there are no forces acting between particles in

different shells, the mass of particles in each shell will have,

besides its energy, the moments of momentum about three

axes through the centre as constants of motion.

Now let us imagine an ensemble formed by distributing in

phase the system of particles in one shell according to the

index of probability

J
e <"1 Mi! MS

~QO-.

~"0+~+H;+~'0ü¡n2nS

where e denotes the energy of the system, and Nj, Mg, its

three moments of momentum, and thé other letters constants.
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In like manner let us imagine a second ensemble formed by

distributing in phase the System of particles in thé other shell

according to thé index

1 E' Wlf
+

W3'

2 11a

where the letters have similar significations, and @, n~ i23
thé same values as in thé preceding formula. Each of thé

two ensembles will evidently be in statistical equilibrium, and

therefore also the ensemble of compound Systems obtained by

combining each system of the first ensemble with each of thé

second. In this third ensemble the index of probability will be

~+~+~~+~+~+~+~, 1 (100)
&/1

+
z

+
&2g

)

where the four numerators represent functions of phase which

are constants of motion for the compound systems.
Now if we add in each system of this third ensemble infini-

tesimal conservative forces of attraction or repulsion between

particles in different shells, determined by thé same law for

all the systems, the functions &~+ & m~ + and mg + <Mg'
will remain constants of motion, and a function differing in-

finitely little from el + e~ will be a constant of motion. It

would therefore require only an infinitesimal change in the

distribution in phase of the ensemble of compound systems to

make it a case of statistical equilibrium. These properties are

entirely analogous to those of canonical ensembles.* il<

Again, if thé relations between the forces and the coordinates

can be expressed by linear equations, there will be certain

normal types of vibration of which the actual motion may
be regarded as composed, and thé whole energy may be divided

It wouldnot be possible to omit the term relating to energy in thé above
indices, since without this term thé condition expressed by equation (89)
cannot be satisfied.

The consideration of the above case of statistical equitibrium may he
made the foundation of thé theory of thé thermodynamic equitibriunt of
rotating bodies,–a. subject whichha.sbeen treated by Maxwell in his memoir
"On Boltzmann's theorem on the average distribution of energy in a system
of material points." Cambr. Phil. Trans., vol. XII, p. 547, (1878).
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into parts relating separately to vibrations of thèse différent

types. These partial energies will be constants of motion,

and if such a system is distributed according to an index

which is any function of the partial energies, thé ensemble will

be in statistical equilibrium. Let the index be a linear func-

tion of the partial energies, say

(101)01 Un

Let us suppose that we have also a second ensemble com-

posed of systems in which the forces are linear functions of

the coordinates, and distributed in phase according to an index

which is a linear function of the partial energies relating to

the normal types of vibration, say

Since the two ensembles are both in statistical equilibrium,

the ensemble formed by combining each system of thé first

with each system of the second will also be in statistical

equilibrium. Its distribution in phase will be represented by

the index

El c. ci' C.1
~L. (103)~'1

·

fn ~1 'm m

and the partial energies represented by the numerators in the

formula will be constants of motion of the compound systems
which form this third ensemble.

Now if we add to these compound systems infinitésimal

forces acting between the component systems and subject to

the same general law as those already existing, viz., that they

are conservative and linear functions of the coordinates, there

will still be n + m types of normal vibration, and n + m

partial energies which are independent constants of motion.

If ail the original n + m normal types of vibration have differ-

ent periods, the new types of normal vibration will differ infini-

tesimally from the old, and thé new partial energies, which are

constants of motion, will be nearly the same functions of

phase as thé old. Therefore the distribution in phase of the
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ensemble of compound systems after tlie addition of thé sup-

posed infinitesimal forces will differ infinitesimally from one

which would be in statistical equilibrium.
The case is not so simple when some of tlie normal types of

motion have thé same periods. In this case thé addition of

infinitesimal forces may completely change thé normal types
of motion. But the sum of the partial energies for all thé

original types of vibration which have any saine period, will

be nearly identical (as a function of phase, i. e., of thé coordi-

nates and momenta,) with thé sum of thé partial energies for

the normal types of vibration which have the same, or nearly
the same, period after the addition of tlie new forces. If,

therefore, the partial energies in the indices of the first two

ensembles (101) and (102) which relate to types of vibration

having the same periods, have the same divisors, the saine will

be true of the index (103) of thé ensemble of compound sys-

tems, and the distribution represented will differ infinitesimally
from one which would be in statistical equilibrium after thé

addition of the new forces.*

The same would be true if in the indices of each of the

original ensembles we should substitute for thé term or terms

relating to any period which does not occur in the other en-

semble, any funetion of the total energy related to that period,

subject only to thé general limitation expressed by equation

(89). But in order that the ensemble of compound systems

(with the added forces) shall always be approximately in

statistical equilibrium, it is necessary that the indices of the

original ensembles should be linear functions of those partial

energies which relate to vibrations of periods common to thé

two ensembles, and that the coefficients of such partial ener-

gies should be the same in the two indices.-)-j-

It is interesting to compare the above relations with the laws respecting
the exchange of energybetween bodies by radiation, although thé phenomena
of radiations lie entirely without the scope of thé present treatise, in which
the discussionis limited to systems of a finitenumber of degrees of freedom.

t The above may perhaps be BufBcientlyillustrated by thé simple case
wheren = 1 in each system. If the periods are different in thé two systems,
they may be distributed according to any funetions of the energies but if
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The properties of canonically distributed ensembles of

systems with respect to the equilibrium of the new ensembles

which may be formed by combining each system of one en-

semble with each system of another, are therefore not peculiar
to them in thé sense that analogous properties do not belong
to some other distributions under special limitations in regard
to thé systems and forces considered. Yet the canonical

distribution evidently constitutes the most simple case of the

kind, and that for which the relations described hold with the

least restrictions.

Retuming to the case of the canonical distribution, we

shall find other analogies with thermodynamic systems, if we

suppose, as in the preceding chapters,* that thé potential

energy (e~) dépends not only upon the coordinates ql
which détermine thé configuration of the system, but also

upon certain coordinates a~ a2, etc. of bodies wbich we call

external, meaning by this simply that they are not to be re-

garded as forming any part of the system, although their

positions affect the forces which act on thé system. The

forces exerted by the system upon these external bodies will

be represented by ~e~ – ~e~< etc., while ~/c~,

Je, represent all the forces acting upon the bodies

of the system, including those which depend upon the position
of the external bodies, as well as those which depend only

upon the configuration of the system itself. It will be under-

stood that < depends only upon <~i, < pi, ,?“, in other

words, that the kinetic energy of the bodies which we call

external forms no part of the kinetic energy of the system.
It follows that we may write

~L==~=- (104)<~i 6~1

although a similar equation would not hold for differentiations

relative to the internai coordinates.

the periods are the same they must be distributed canonically with same
modulus in order that the compound ensemble with additional forces may
be in statistical equilibrium.

See especiallyChapter I, p. 4.
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We always suppose these external coordinates to IuLve thé

same values for all systems of any ensemble. lu tlie case of

a canonical distribution, 2. e., when the index of probability
of phase is a linear function of the energy, it is évident tliat

the values of the external coordinates will affect the distribu-

tion, since they affect the energy. In thé équation
aU f

by which may be determined, the external cocirdinates, al

< etc., contained implicitly in e, as well as 0, are to be re-

garded as constant in the integrations indicated. Thé équa-
tion indicates that is a funetion of these constants. If we

imagine their values varied, and the ensemble distributed

canonically according to their new values, we have by
differentiation of the equation

or, multiplying by 0 e~ and setting

+ ~0 = ~0 f. fée
dp, dy.

+ ~) =
phMes

4' ail e

'~J"-J~

~J J

s
~pt <~?. etc., (106)

––=~1, ––=~, etc.,

+ ~t -~l
6 ~)i dqn

'y~
dpz (105)

1 ail
E

i y
E

6~6

dcti

all

~3 2

+
(~J .J

e s e~~ + etc. (107)

phases·ls

phases

phases

È

ail tf'–f

phases

all ~-c

phases

“
"f

phMea
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Now the average value in the ensemble of nny quantity

(which we shall denote in general by a horizontal line above

the proper symbol) is decermined by the equation

~n E

~=~6~ (108)
nhases

Comparing this with the preceding equation, we have

= ~0 – ~0 – ~i ~ai J~ (fsz – etc. (109)

Or, since '~J = (HQ)

and
= (111)

c~ = <?) – Ji ~ai – Z;j – etc. (112)

Moreover, since (111) gives

– = 0 + <?), (113)
we have also

dé = – 0 <Z);– c~a~ – ~s – etc. (~14)

This equation, if we neglect the sign of averages, is identi-

cal in form with the thermodynamie equation

~e + ~tt ~~t + ~2 ~2 + etc.
== –––––––~––––––

1 (115))

or
de = T~ – Ai dal ~2 da2 etc., (US)

which expresses the relation between the energy, tempera-

ture, and entropy of a body in thermodynamic equilibrium,
and the forces which it exerts on external bodies, a relation

which is the mathematical expression of the second law of

thermodynamics for réversible changes. The modulus in thé

statistical equation corresponds to température in the thermo-

dynamic equation, and the average index of probability with

its sign ~~ysgci! corresponds to entropy. But in the thermo-

dynamic equation the entropy (?;) is a quantity which is
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only defined by thé equation itself, and incompletely deiined

in that thé equation only deterrnines its differential, and thé

constant of integration is arbitrary. On tlie other Iiand, the

in the statistical equation lias been completely defined as

the average value in a canonical ensemble of systems of

the logarithm of thé coefficient of probability of phase.
We may also compare equation (112) with tlie thermody-

oamic equation

~=–T–~t~ai–Sij–etc., (117)

where represents the function obtained by subtracting the

product of thé temperature and entropy from tlie energy.
How far, or in what sense, the similarity of thèse équations

constitutes any demonstration of the thermodynamic equa-

tions, or accounts for the behavior of material systems, as

described in the theorems of thermodynamics, is a question
of which we shall postpone the consideration until we have

further investigated thé properties of an ensemble of systems
distributed in phase according to the law which we are cou-

sidering. The analogies which have been pointed out will at

least supply the motive for this investigation, which will

naturally commence with the détermination of the average
values in the ensemble of the most important quantities relating
to the systems, and to thé distribution of thé ensemble with

respect to the different values of these quantities.



CHAPTER V.

AVERAGE VALUES IN A CANONICAL ENSEMBLE

OF SYSTEMS.

IN the simple but important case of a sy stem of material

points, if we use rectangular coordinates, we have for thé

product of the differentials of the coordinates

<~a*i<~yit~Si dxv <~y~

and for the product of the differentials of the momenta

ml ~1 ml ~t ml ~i ??“<~a;mv dy M.~t~

The produet of these expressions, which represents an element

of extension-in-phase, may be briefly written

M.1dxl mv ~t, (~.Ci O~t,

and the integral

~-f

f
t e Mti <~a*t mp ~a'i. (118)

will represent thé probability that a system taken at random

from an ensemble canonically distributed will fall within any

given limits of phase.
In this case

e=e~+~Mi~+~
2

(119)

and

t~–e t~–f, mi.< m~ 2

e"= e' 6'"2a' <T'28'. (120)

The potential energy (e~) is independent of the velocities,

and if the limits of integration for the coordinates are inde-

pendent of the velocities, and the limits of the several veloci-

ties are independent of each other as well as of the coordinates,
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the multiple integral may be resolved into the product of

integrals
'f' m,.)-~ m~~

f. fe~t. fe" fg (121)

This silows tha.t the probability that thé connguration lies

within any given limits is independent of the velocities,

and that the probability that any component velocity lies

within any given limits is independent of the other component

velocities and of the configuration.
Since

_m~

f~m~~i ~rm~ (122)
t/ –ûo

and

~i~

< ?Mia~ e ml ~i == V~ wn @', (123)

the average value of the part of the kinetic energy due to the

velocity xl' which is expressed by the quotient of these inte-

grals, is 0. This is true whether the average is taken for

the whole ensemble or for any particular configuration,
whether it is taken without reference to the other component

velocities, or only those systems are considered in which the

other component velocities have particular values or lie

within specified limita.

The number of coordinates is 3 v or M. We have, tlierefore,
for the average value of the kinetic energy of a system

ep=~@==~MO. (124)

This is equally true whether we take the average for the whole

ensemble, or limit thé average to a single configuration.
The distribution of the systems with respect to their com-

ponent velocities follows the law of errors the probability
that the value of any component velocity lies within any given
limits being represented by thé value of thé corresponding

integral in (121) for those limits, divided by (2 7r m @)~,
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which is the value of the same integral for infinite limits.

Thus the probability that the value of xi lies between any

given limits is expressed by

,n 1,.12

(~)' (~

The expression becomes more simple when the velocity is

expressed with reference to the energy involved. If we set

.-f~~%ml
i

XI,(2-0)\2@/

the probability that s lies between any given limits is
expressed by

1 F

~J.
S ds. (126)

Here s is the ratio of the component velocity to that which

would give the energy @ in other words, 82 is thé quotient
of the energy due to the component velocity divided by @.

The distribution with respect to the partial energies due to

the component velocities is therefore thé same for ail the com-

ponent velocities.

The probability that the configuration lies within any given
limits is expressed by the value of

.3~ (2~-0) f. f s dx, (127)

for those limits, where M dénotes the product of all the

masses. This is derived from (121) by substitution of the

values of the integrals relatihg to velocities taken for infinite

limits.

Very similar results may be obtained in the general case of

a conservative system of n degrees of freedom. Since &pis a

homogeneous quadratic function of the p's, it may be divided

into parts by the formula

ep
1p, e~

+
CZEp

(128)
~=~+~

(128)



ENSEMBLE OF ~F~?'S'. 49

where e might be written for Ep in the differential coefficients

without affecting the signification. Thé average value of thé

first of these parts, for any given configuration, is expressed

by the quotient

< r+"- < r+"
c <~i.

t/ ––00t/ ––<B "~1
––––––––––~––––––––– (129)

/*+oo ~'+œ
'–– dpl dpn

(129)

< )
6 ~pi

Now we have by integration by parts

)j/–f )i/–f
~t- 00

-––
~g /}- œ '––

t –oo~i<' M~,–
d =

0t/ f –œe c~t. (130)-00 Ple
dplPl

dPl = @
00

e e dpl' (130)

By substitution of this value, the above quotient reduces to

–, which is therefore the average value of ~i–~ for the
~i

given configuration. Since this value is independent of the

configuration, it must also be tlie average for the whole

ensemble, as might easily be proved directly. (To ma.ke

the preceding proof apply directly to the whole ensemble, we

Iiave only to write dpl dqn for dpl «~~ in the multiple

integrals.) This gives M. @ for the average value of the

whole kinetic energy for any given configuration, or for

the whole ensemble, as has already been proved in the case of

material points.
The mechanical significance of the several parts into which

the kinetic energy is divided in equation (128) will be appar-
ent if we imagine that by the application of suitable forces

(different from those derived from Eq and so much greater
that the latter may be neglected in comparison) the system
was brought from rest to the state of motion considered, so

rapidly that the configuration was not sensibly altered during
the process, and in such a manner also that the ratios of the

component velocities were constant in thé process. If we

write

~1~1.+7~~
4
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for the moment of thèse forces, we have for thé period of their

action by equation (3)

de~ cle, de,
~=-+~=-~+~.W

«71 "i
-f- I

~t x
-I- 1

The work doue by thé force may be evaluated as follows

/+J'

where the last term may be cancelled because thé configuration
does not vary sensibly during the application of thé forces.

(It will be observed that the other terms conttin factors which

increase as the time of the action of the forces is diminished.)
We have therefore,

~i~i=~?i~=J~fp~i.
(131)

For since the p's are linear functions of thé q's (with coeffi-

cients involving the q's) the supposed constancy of the q's and

of the ratios of the q's will make thé ratio ~1/~1 constant.

Thé last integral is evidently to be taken between the limits

zero and the value of pl in the phase originally considered,

and the quantities before the integral sign may be taken as

relating to that phase. We have therefore

<~ = ~1 ?i = ~i (132)~W
d2~ 2n W 2~~

]1¡
» 13.,

That is the several parts into which thé kinetic energy is

divided in equation (128) represent the amounts of energy
communicated to the system by thé several forces

under the conditions mentioned.

The following transformation will not only give the value

of the average kinetic energy, but will also serve to separate
thé distribution of the ensemble in configuration from its dis-

tribution in velocity.
Since 2 e~,is a homogeneous quadratic function of the jt/s,

which is incapable of a negative value, it can always be ex-

pressed (and in more than one way) as a sum of squares of



J?A~BM.BZ/? OF .S'r.ST'7?~.5. 51

linear functions of the p's.* Thé coefficients in thèse linear

functions, like those in thé quadratic function, must be regarded
in thé général case as functions of thé q's. Let

2€~=M~+M~+~ (133)

wliere ul M~are such linear functions of the p's. If we

write

~(Fi ~.)
~(Mi un)

for the Jacobian or determinant of the differential coefficients

of thé form <<~M, we may substitute

</(M, M,))
Ul'" U"

for dpn

under the multiple integral sign in any of our formulse. It

will be observed that this determinant is function of thé q's
alone. Thé sign of such a determinant depends on thé rela-

tive order of the variables in the numerator and denominator.

But since the suffixes of thé u's are only used to distinguish
these functions from one another, and no especial relation is

supposed between a p and a Mwhich have the same suffix, we

may evidently, without loss of generality, suppose the suffixes

so applied that the determinant is positive.
Since the u's are linear functions of the jo's, when the in-

tegrations are to cover ail values of thé p's (for constant q's)
once and only once, they must cover all values of thé u's once

and only once, and the limits will be ± oo for all thé M's.

Without the supposition of the last paragraph the upper limits

would not always be + oo as is evident on considering the

effect of changing the sign of a M.. But with the supposition
which we have made (that thé déterminant is always positive)
we may make the upper limits + oo and thé lower oo for all

the M's. Analogous considerations will apply where thé in-

tegrations do not cover all values of thé p's and therefore of

The reduction requires only the repeated application of thé process of

'completing ttie square' used in the solution of quadratic equations.
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thé u's. The integrals may always be taken from a less to a

greater value of a u.

The general integral which expresses the fractional part of

the ensemble which falls within any given limits of phase is

thus reduced to the fonn

J~
dq". (134)

,l UI 1· n/

For the average value of the part of the kinetic energy
which is represented by ~M~, whether the average is taken

for the whole ensemble, or for a given connguration, we have

therefore

+~, ü12

t
J- ~O$)~ O' (135)Ul

,.+~

(21T@)! 2

r-
1

–00

and for the average of the whole kinetic energy, ~M.@, as

before.

The fractional part of the ensemble which lies within any

given limits of configuration, is found by integrating (134)
with respect to the u's from oo to + oo This gives

`~-f' d )

(2~)~J-~ ~77~
(136)

111' n)

which shows that the value of the Jacobian is independent of

the manner in which 2~ is divided into a sum of squares.
We may verify this directly, and at the same time obtain a

more convenient expression for the Jacobian, as follows.

It will be observed that since the u's are linear functions of

the p's, and the p's linear functions of the q's, the u's will be

linear functions of the q's, so that a differential coefficient of

the form du/dq will be independent of the q's, and function of

the q's alone. Let us write ~p~/<~M~for the general element

of the Jacobian determinant. We have
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~e du,

du, <~MC~y~ du, r~l du, t~

C

d2e

du~\ d

de duy
(137)r=l dqz duy dq2 ~7)

Therefore

.) ~~(M,M~)
~(M, ~) ~(~ ~) ~38)

and

/d(p,)Y
~Y =

~) (139)
\(~(M,Mj/ ~(~?J/ ~)

These determinants are all functions of the q's alone.* The

last is evidently the Hessian or determinant formed of the

second differential coefficients of the kinetic energy with re-

spect to Weshall denote it by aq. Thé reciprocsd

determinant

~(?i ?~)

~(~)'

which is the Hessian of the kinetic energy regarded as func-

tion of the p's, we shall denote by A~
If we set

+~

+00
e = < f e A, < ri

+*° +*° –"1~ –

= f. f e == (2~0)~, (140)

and == ~p, (Ml)

It willbe observedthat the proofof (137)dependsonthe linearretation

betweenthe M'aandq's,whichmakes constantwith respectto the differ-
a?t

entiationshèreconsidered.Comparenoteonp. 12.
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the fraetional part of the ensemble whieh lies within any

given limits of couiiguration (136) may be written

“ ~4~~ E_H t

<<e
8 d! (142)

where the constant may be determined by the condition

that the integral extended over all configurations bas the value

unity.*

In the simple but important case in which A, is independent of the </s,

and e, a. quadratic function of the ~'s, if we write Ea for the least value of e,

(or of <) consistent with the given values of the external eoôrdinates, the

equation determining may be written

+~ +~

e =
./<!

e ~i

-00 -m

If we denote by ?/, ?;/ the values of <~ ,<?“ which give its least value

<<t,it is evident that
– <“ is a homogenous quadratic function of the differ-

ences ~i – <y/, etc., and that ~i, t~ may be regarded as the differentials

of these différences. The evaluation of this integral is therefore analyticaUy

similar to that of the integral

+°° +~ –*?

y.e 6~1.

–00 –M

for which we have found the value Ap' (2~6)!. By the same method, or

by analogy, we get

=(~)~
e

e

c
(2".e)~,

where A,, is the Hessian of the potential energy as function of the ~s. It

will be observed that A~ depends on the forces of the system and is independ-

ent of the masses, while d~ or its reciprocal Ap depends on the masses and

is independent of the forces. While each Hessian depends on the system of

coordinates employed, the ratio ~<; is the same for ail Systems.

Multiplying the last equation by (140), we have

ed ~(r
1

a

~=(î:)~

For the average value of the potential energy, we have

+00 -t-tO '<

y- -(~ ~)
e ~i.

– –00 –00

c<!
–

c<t = ––––––––––––––––––––––––

+<a +M <

·

y.e ~t.
–co –ao
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When an ensemble of systems is distributed in configura-

tion in thé manner indicated in this formula, i. e., when its

distribution in configuration is thé same as that of an en-

semble canonically distributed in phase, we shall say, without

any reference to its velocities, that it is eaMOKtca~y distributed

in COK/t~M~a~OM.
For any given configuration, the fractional part of the

systems which lie within any given limits of velocity is

represented by the quotient of the multiple intégral

CI

< r < y e @e~t

or its equivalent J Jt

t.fe

e -2E12

A~

taken within those limits divided by tlie value of the same

integral for the limits ± œ. But the value of the second

multiple integral for the limits ± oo is evidently
1 n

A~(2~-<N)~.2.
We may therefore write

“ ~p–~

f < e 0
~<i. dun, (143)

Thé evaluation of this expressionis similar to that of

+M +M

y.y~e dpl ~p~
–CO –00

-t-tC +00 _~P_

y..ye
00-00

which expresses the average value of the Mnetic energy, and for which we

have found the value n n 0. We have accordingly
1

€9– =n S-

Adding the equation

~=~e,

wehave – tn = 9.
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r~"

or
J'"J~ A,~p, (144)

~–~p

or again
f" f~ dq", (145)

for the fractional part of the Systems of any given configura-

tion which lie within given limits of velocity.

When systems are distributed in velocity according to these

formulae, i. e., when the distribution in velocity is like that in

an ensemble which is canonically distributed in phase, we

shall say that they are canonically distributed tK velocity.

The fractional part of the whole ensemble which falls

within any given limits of phase, which we have before

expressed in the form

<~i ~~i (146)

may also be expressed in the form

~-e

f.fe~A,~i. (147)
-1.



CHAPTER VI.

EXTENSION IN CONFIGURATION AND EXTENSION

IN VELOCITY.

THE formulae relating to canonical ensembles in the closing

paragraphs of the last chapter suggest certain general notions

and principles, which we shall consider in this chapter, and

which are not at all limited in their application to the canon-

ical law of distribution.*

We have seen in Chapter IV. that the nature of the distribu-

tion which we have called canonical is independent of the

system of coordinates by which it is described, being deter-

mined entirely by the modulus. It follows that thé value

represented by the multiple integral (142), which is the frac-

tional part of the ensemble which lies within certain limiting

configurations, is independent of the system of coordinates,

being determined entirely by the limiting configurations with

the modulus. Now as we have already seen, represents

a value which is independent of the system of coordinates

by which it is defined. The same is evidently true of

-~p by equation (140), and therefore, by (141), of

Hence the exponential factor in the multiple integral (142)

represents a value which is independent of the system of

coordinates. It follows that the value of a multiple integral
of the form

f.fA,~ (148)

These notions and prineiples are in fact such as a moretogical arrange-
ment of thé aubject wonidplace in connectionwith those of Chapter I., to

which they are ctosely related. The strict requirementsof togical order

have been sacrinced to thé natural development of the subject, and very
elementary notions have been left until they have presented themselves in
the study of the leading problems.



58 EXTENSION 7.V COAV/C~iy/O~V

is independent of the system of coordinates which is employed
for its evaluation, as will appear at once, if we suppose thé

multiple integral to be broken up into parts so small that

thé exponential factor may be regarded as constant in each.

In the same way the formulae (144) and (145) which express
thé probability that a system (in a canonical ensemble) of given

configuration will fall within certain limits of velocity, show

that multiple integrals of the form

J\J\
(149)

or
J.J'A, dql (150)

relating to velocities possible for a given configuration, when

the limits are formed by given velocities, have values inde-

pendent of the system of coordinates employed.
These relations may easily be verified directly. It has al-

ready been proved that

~(~, ~) <~ ~) ~(< ~)

~i,) ~(9i, 9.) ~(9i, .<?,.)

where pj, p~ and
Q, (~, .Pj ,?“ are two

systems of coordinates and momenta.* It follows that

f.f(~y~
i Cd\~1

f ·

· · x%nll ~E

d

Jl d(ql, qn) li
dql dq"

j j \~i, ?j

= r.. ~Y~
=f f( d(pl, p,~)

d(qi, q.) dQ, dQ~
j j

·
~(~ ?,j ~(ei, · 9.)

=r ~)~~(~)\)\~ dQn
J"JW(~?.)/ ~)~ ~?'1, <?,.)/

r~i,) ·''J'"J~d(Ql,Q.)J

See equation (29).
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and

f.f~y~
j j~);

1 n

=
r. ~)Y~),

r~,Pl7 P,~ )

d(rIl7 · ~lni

di,, dp~

j j ~(~j~ d(~

= r

~Y~YV~)Y~
di)~

J 'Jv~i,)/(~)/~(~
~rn ~J~n

CL(p17.Pn~ r~'(~17·rn ~Ll4vl7·i~n~

=f.f~Y~
j J\~i,)/ l

The multiple integral

t~i
~~i (151)

which may also be written

< A,~i
~~i. (152)

and which, when taken within any given limits of phase, has

been shown to have a value independent of the coordinates

employed, expresses what we have called an extension-in-

~<Me.* In like manner we may say that the multiple integral

(148) expresses an extension-in-configuration, and that the

multiple integrals (149) and (150) express an extension-in-

velocity. We have called

a~pt ~~i. (153)

which is equivalent to

A,~i. ~~i (154)

an element of extension-in-phase. We may call

A~ (155)

an element of extension-in-configuration, and

A~~ (156)

SeeChapter I, p. 10.



60 EXTENSION /,V CONFIGURATION

or its equivalent

A, (157)

an element of extension-in-velocity.

An extension-in-phase may always be regarded as an integral

of elementaiy extensions-in-configuration multiplied each by

an extension-in-velocity. This is evident from the formulae

(151) and (152) which express an extension-in-phase, if we

imagine the integrations relative to velocity to be first carried

out.

The product of the two expressions for an element of

extension-in-velocity (149) and (150) is evidently of the same

dimensions as the product

~i. F.?i.

that is, as the nth power of energy, since every product of the

fonn Pl qi has the dimensions of energy. Therefore an exten-

sion-in-velocity has the dimensions of the square root of the

nth power of energy. Again we see by (155) and (156) that

the product of an extension-in-configuration and an extension-

in-velocity bave the dimensions of the nth power of energy

multiplied by the nth power of time. Therefore an extension-

in-configuration has the dimensions of the nth power of time

multiplied by the square root of the nth power of energy.

To the notion of extension-in-configuration there attach

themselves certain other notions analogous to those wbich have

presented themselves in connection with the notion of ex-

tension-in-phase. The number of systems of any ensemble

(whether distributed canonically or in any other manner)

which are contained in an element of extension-in-conngura~

tion, divided by the numerical value of that element, may be

called thé d~MSz~-ïM-fOM/~M.r~MM. That is, if a certain con-

figuration is specified by the coordinates ~n' and the

number of systems of which the coordinates fall between the

limits q1 and + dq1, ,</“ and qn + dq" is expressed by

~A,~ dqn, (158)
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Dq will be the density-in-configuration. And if we set

~==~' (159)

where Ndenotes, as usual, the total number of systems in thé

ensemble, thé probability that an unspecified system of thé

ensemble will fall within the given limits of configuration, is

expressed by

e~A~ < (160)

We may call the coefficient of probability of the configura-

tion, and the index of probability of the configuration.

The fractional part of the whole number of systems which

are within any given limits of configuration will be expressed

by the multiple integral

f.f<~A~
(161)

The value of this integral (taken within any given configura-

tions) is therefore independent of the system of coordinates

which is used. Since the same has been proved of the same

integral without the factor e~, it follows that the values of

and Dg for a given configuration in a given ensemble are

independent of the system of coordinates which is used.

The notion of extension-in-velocity relates to systems hav-

ing the same configuration.* If an ensemble is distributed

both in configuration and in velocity, we may confine our

attention to those systems which are contained within certain

infinitesimal limits of configuration, and compare the whole

number of such systems with those which are also contained

Except in some simple cases, such as a system of material points,we
cannot comparevelocities in oneconfiguration with velocities in another, and

speak of their identity or differenceexcept in a sense entirely artificial. We

may indeed say that we call the velocities in one configuration the same as

those in another when the quantities qi, .</“ have the same values in the

two cases. But this signines nothing until the system of eoordinates has
been defined. We might identify the velocities in the two caseswhich make
the quantitiespt,pn the same in each. This again would signify nothing
independentlyof the systemof eoordinates employed.
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within certain infinitesimal limits of velocity. The second

of thèse numbers divided by thc first expresses thé probability
that a system which is only specified as falling within thé in-

finitesisnal limits of configuration shall also fall within tlie

infinitesimal limits of velocity. If the limits with respect to

velocity are expressed by thé condition that thé momenta

shall fall between thé limits and ~+< and

+ dp", the extension-in-velocity within those limits will be

Ap~~ f~,

and we may express the probability in question by

e' ~p,. (162)

This may be regarded as denning ~p.
The probability that a system which is only specified as

having a configuration within certain infinitesimal limits shall

also fall within any given limits of velocity will be expressed

by the multiple integral

~J'e""A~
(163)

or its equivalent ~l'lt r.

f e''p~p~dpi dp", (163)

J'J'<~A~ (164)

taken within the given limits.

It follows that the probability that the system will fall

within the limits of velocity, <~ and ~j + and

q" + c~ is expressed by

e" (165)

The value of the intégrais (163), (164) is independent of
the system of coordinates and momenta which is used, as is

also the value of the same intégrais without the factor

e~; therefore the value of must be independent of thé

system of coordinates and momenta. We may call b the

coefficient of probability of velocity, and the index of proba-

bility of velocity.
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Comparing (160) and (162) ~-ith (40), we get

e~~ = = 6" (166)

or ~+~=7;. (167)

That is the product of the coefficients of probability of con-

figuration and of velocity is equal to the coefficient of proba-

bility of phase; the sum of the indices of probability of

configuration and of velocity is equal to thé index of

probability of phase.
It is evident that e~ and have the dimensions of the

reciprocals of extension-in-configuration and extension-in-

velocity respectively, i. e., the dimensions of < e~~ and e~ï,

where t represent any time, and e any energy. If, therefore,

the unit of time is multiplied by c~, and the unit of energy by

c,, every will be increased by thé addition of

n log c, + ~M log ce, (168)

and every by the addition of

~logc. (169)

It should be observed that thé quantities which have been

called ~<6H.SM!M-'M!coM/~M?'c~tOK-and extension- in-velocity are

not, as the terms might seem to imply, purely geometrical or

kinematical conceptions. To express their nature more fully,

they might appropriately have been called, respectively, the

dynamical measure of the extension configuration, and'thé

~yMa.m.Mo' measure of the extension in velocity. They depend

upon the masses, although not upon thé forces of the

system. In the simple case of material points, where each

point is limited to a given space, the extension-in-connguration
is the product of the volumes within which the several points
are confined (these may be thé same or different), multiplied

by the square root of the cube of the product of the masses of

the several points. The extension-in-velocity for such systems
is most easily defined as thé extension-in-configuration of

systems which have moved from thé same configuration for

the unit of time with the given velocities.

Compare (47) in Chapter I.
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In the general case, the notions of extension-in-configuration
and extension-in-velocity may be connected as follows.

If an ensemble of sirnilar systems of M degrees of freedom

have the same configuration at a given instant, but are distrib"

uted throughout any finite extension-in-velocity, the same

ensemble after an infinitesimal interval of time ~< will be

distributed throughout an extension in configuration equal to

its original extension-in-velocity multiplied by S<

In demonstrating this theorem, we shall write < for

the initial values of the coordinates. The final values will

evidently be connected with the initial by the equations

ql ?i' = ?'i~ q" ?.'= ?. (170)

Now the original extension-in-velocity is by definition repre-

sented by thé integral

f ..J'
(171)

where the limits may be expressed by an equation of the form

-P'(?i,?.)=0. (172)

The same integral multiplied by the constant 0<" may be

written

f.f~ d(~ 8<), c!(?.8<), (173)

and the limits may be written

~(?i. 9.) = /(?i S~, 9. St) = 0. (174)

(It will be observed that as well as A~ is constant in the

integrations.) Now this integral is identically equal to

J\ ..J'A~ <~ <~) d(q" g.O, (175)

or its equivalent

J'J'd~, (176)

with limits expressed by the equation

y(~?.-?./)=0. (177)
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But thé systems which initially had velocities satisfying thé

equation. (172) will after thé interval have conngurations

satisfying equation (177). Therefore the extension-in-con-

figuration represented by the last intégral is that which

belongs to thé systems which originally had the extension-in-

velocity represented by thé integral (171).

Since the quantities which we have called extensions-in-

phase, extensions-in-configuration, and extensions-in-velocity

are independent of the nature of the system of coordinates

used in their definitions, it is natural to seek definitions which

shall be independent of the use of any coordinates. It will be

sufficient to give the following definitions without formai proof

of their equivalence with those given above, since they are

less convenient for use than those founded on systems of co-

ordinates, and since we shall in fact have no occasion to use

them.

We commence with the definition of extension-in-velocity.

We may imagine n independent velocities, of which a

system in a given configuration is capable. We may conceive

of the system as having a certain velocity F~ combined with a

part of each of these velocities F~ By a part of is

meant a velocity of the same nature as but in amount being

anything between zero and F~. Now all the velocities which

may be thus described may be regarded as forming or lying in

a certain extension of which we desire a measure. The case

is greatly simplified if we suppose that certain relations exist

between the velocities F~ t~ viz that the kinetic energy
due to any two of these veloeities combined is the sum of thé

kinetic energies due to the velocities separately. In this case

the extension-in-motion is the square root of the product of

the doubled kinetie energies due to the n velocities

taken separately.
The more general case may be reduced to this simpler case

as follows. The velocity F~ may always be regarded as

composed of two velocities F~' and F~ of which 1~' is of

the same nature as (it may be more or less in amount, or

opposite in sign,) while F~ satisfies the relation that the
5
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kinetic energy due to and F~" eombined is the sum of thé

kinetic energies due to thèse velocities taken separately. And

thé velocity may be regarded as compounded of three,

V3", of which Fg' is of the same nature as Vi, Va"
of thé same nature as while Fg'~ satisfies thé relations

that if combined either with or F~' the kinetie energy of

the combined velocities is the sum of thé kinetic energies of

the velocities taken separately. When all the velocities

i~ F,, have been thus decomposed, the square root of the

product of the doubled kinetic energies of the several velocities

VI ~2"' ~g~' etc., will be the value of the extension-in-

velocity which is sought.
This method of evaluation of the extension-in-vel ocity which

we are considering is perhaps the most simple and natural, but

the result may be expressed in a more symmetrical form. Let

us write e~ for the kinetic energy of the velocities J~ and V2
combined, diminished by the sum of the kinetic energies due

to thé same velocities taken separately. This may be called

the mutual energy of the velocities F~ and F~. Let the

mutual energy of every pair of the velocities V,, be

expressed in the same way. Analogy would make e~ represent
the energy of twice )~ diminished by twice the energy of F~,
i. e., e~ would represent twice the energy of Fi, although thé

term mutual energy is hardly appropriate to this case. At all

events, let e~ have this signification, and e22 represent twice

the energy of F~, etc. The square root of the determinant

Su en e~
~21 ~22 €;)“

1~i~2 .e~

represents the value of the extension-in-velocity determined as

above described by the velocities F~
The statements of the preceding paragraph may be readily

proved from the expression (157) on page 60, viz.,

A~ ~i. (Z~

by which the notion of an element of extension-in-velocity was



AND EXTENSION /jV P'~Z~C'/rr. 67

originally defined. Since J,, in this expression represents

thé déterminant of which thé général element is

d2E

the square of the preceding expression represents the determi-

nant of which the general element is

~e

j ~y, f~
<d~

Now we may regard the differentials of velocity d' <~c,as

themselves infinitesimal velocities. Then thé last expression

represents the mutual energy of these velocities, and

~'e

represents twice the energy due to the velocity dqt.
The case which we have considered is an extension-in-veloc-

ity of the simplest form. All extensions-in-velocity do not

have this form, but all may be regarded as composed of

elementary extensions of this form, in the same manner as

all volumes may be regarded as composed of elementary

parallelepipeds.

Having thus a measure of extension-in-velocity founded, it

will be observed, on the dynamical notion of kinetic energy,

and not involving an explicit mention of coordinates, we may

derive from it a measure of extension-in-configuration by the

principle connecting these quantities which has been given in

a preceding paragraph of this chapter.
The measure of extension-in-phase may be obtained from

that of extension-in-configuration and of extension-in-velocity.

For to every configuration in an extension-in-phase there will

belong a certain extension-in-velocity, and the integral of the

éléments of extension-in-configuration within any extension-

in-phase multiplied each by its extension-in-velocity is the

measure of the extension-in-phase.



CHAPTER VII.

FARTHER DISCUSSION OF AVERAGES IN A CANONICAL

ENSEMBLE 0F SYSTEMS.

RETURNING to the case of a canonical distribution, we have

for the index of probability of configuration

= (178)

as appears on comparison of formulae (142) and (161). It

follows inuaediately from (142) that thé average value in the

ensemble of any quantity u which depends on the configura-
tion alone is given by the formula

M== <Me A~~i (179)

config.

where the integrations cover all possible configurations. The

value of is evidently determined by the equation

all “
e

==J .j e s~ (180)

config.

By differentiating thé last equation we may obtain results

analogous to those obtained in Chapter IV from the equation

-i
6 S

==f .J 6 ~<~i
J~.

phases

As the process is ideiitical, it is sufficient to give the results

<~=~d'@––~(~-–etc., (181)
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or, since == + 0~, (182)

and = <~ + ~e + O~, (18.3)

= Q(~ – ~(~Ot – ~2 – etc. (184)

It appears from tliis equation that the differential relations

subsisting between the average potential energy in an ensem-

ble of systems canonically distributed, the modulus of distri-

bution, the average index of probability of configuration, taken

negatively, and the average forces exerted on external bodies,

are equivalent to those enunciated by Clausius for thé potential

energy of a body, its temperature, a quantity which lie called

the disgregation, and thé forces exerted on external bodies.*

For the index of probability of velocity, in thé case of ca-

nonical distribution, we have by comparison of (144) and (163).
or of (145) and (164),

%=~" (1~)o

which gives = '~–~ (186)

we have also == M0, (187)

and by (140), ~=–~@log(2~-0). (188)

From these equations we get by differentiation

<=~0, (189)

and e~, = 0 ~p. (190)

The differential relation expressed in this equation between

the average kinetic energy, the modulus, and the average index

of probability of velocity, taken negatively, is identical with

that given by Clausius ~oct'8citatis for thé kinetic energy of a

body, the temperature, and a quantity which he called thé

transformation-value of the kinetic energy.')- The relations

==~9+ f = '?? +

Pogg.Ann., Bd. CXVI, S. 73, (1862) ibi.1., Bd. CXXV, S. 353, (18(}5).
Seealso Boltzmann, Sitzb. der Wiener Aknd..Bd. LXin, S. 728,(1871).

t Verwandlungswerthdes Warmcinhattes.
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are also identical with those given by Clausius for thé corre-

sponding quantities.

Equations (112) and (181) show that if or i~ is known

as function of @ and < a~, etc., we can obtain by diS'ereutia-

tion e or e~, and ~1~, -~1; etc. as functions of the same varia-

bles. We have in fact

f=~-@~=~-0~. (191)

~=~-0~=~-8~. (192)Ef `Y4 ~4 (192)

The corresponding equation relating to kinetic energy,

~=~-0~=~-0~. (193)
p Y'P O yÎP Y'P

O
@

which may be obtained in the same way, may be verified by
the known relations (186), (187), and (188) between the

variables. We have also

~=~ (194)
A1 ~~1 d~i'

194
<~ 6~

etc., so that the average values of the external forces may be

derived alike from '~r or from

The average values of the squares or higher powers of the

energies (total, potential, or kinetic) may easily be obtained by

repeated differentiations of ~p, or E, e, 6p, with

respect to 0. By equation (108) we have

all Ë~

~=J.J< (195)
phases

and differentiating with respect to 0,

aU )!'–f

dU au \E

rs

02~ E + Od0)
e ~Edpl ° dq~u (196)

â=/J'('Ê)-
phases

whence, again by (108),

tie e~ – e <~
-=-+- @='@~'
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Or
~=<). (197)or E"= 02

â(~
+ E if¡ 0 --c- (197)

Combining this with (191),

~?~=(,)'

In precisely the same way, from the equation

~an

e,=J.Je~
A~yi. (199)

config.

we may obtain

?='ë=~)'
(~E2 =

0 dO O~ d -02 (200)

In the same way also, if we confine ourselves to a particular

configuration, from the equation

~~u

€;=J.Je~~A/~i. (201)
veloc.

we obtain

~=~+~=(~y-
>

which by (187) reduces to

= + M)
(~.2.

(203)

Since this value is independent of the configuration, we see

that the average square of the kinetic energy for every configu-
ration is the same, and therefore the same as for the whole

ensemble. Hence may be interpreted as the average either

for any particular configuration, or for thé whole ensemble.

It will be observed that the value of this quantity is deter-

mined entirely by the modulus and the number of degrees of

freedom of the system, and is in other respects independent of

the nature of the system.
Of especial importance are the anomalies of the energies, or

their déviations from their average values. The average value



72 ~FE.R~C'Ë' ~1Z<7Ë'&' IN A C.lA~V/C.iZ

of tliese anomalies is of course zero. The natural measure of

such anomalies is tlie square root of their average square. Now

C-~=?-~ (204)

identically. Accordingly

2 di f~C

~=~=-
<~

~70 dU2

In like manner,

(,"r:y-e~=-@s~ (206)
de

·

~=@~=-e~=~o~.
2. (207)P -p dU cl0 ,~2

Hence

C-~ = (<, ~)' +(~ (208)

Equation (206) shows that the value of ~@ can never be

negative, and that the value of c~(~ or ~/f~@ can never

be positive.*
To get an idea of the order of magnitude of these quantities,

we may use the average kinetic energy as a term of comparison,
this quantity being independent of the arbitrary constant in-

volved in the definition of the potential energy. Since

In the case discuased in the note on page 54, in which the potential
energy is a quadratic funetion of the q's, and A~independent of the q's,we
should get for the potential energy

(~=~f~,

and for the total energy

(e-t~=ne~.
We may also write in this case,

<=~ 2

(e.€~ n'

(t-~ _1

(<-<<.)-' n'
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~=~0,

(e? 2_

e?
it

~=~~ (210)
?

(210)

(e-2 ~2~2~
M~ ? M~

These equations show that when the number of degrees of

freedom of the systems is very gréât, the mean squares of the

anomalies of the energies (total, potential, and kinetic) are very

small in comparison with thé mean square of thé kinetie

energy, unless indeed the differential coefficient c~Cp is

of the same order of magnitude as M. Such values of f~/t~,
can only occur within intervals (cp" – 6p') which are of thé or-

der of magnitude of n-1, unless it be in cases in which e~ is in

general of an order of magnitude higher than < Postponing
for the moment the consideration of such cases, it will be in-

teresting to examine more closely the case of large values of

< within narrow limits. Let us suppose that for e~ and

6p" thé value of <~ /(~p is of the order of magnitude of unity,

but between these values of e~very great values of thé differ-

ential coefficient occur. Then in the ensemble having modulus

@~ and average energies < and e~ values of c~sensibly greater

than c~ will be so rare that we may call them practically neg-

ligible. They will be still more rare in an ensemble of less

modulus. For if we differentiate tlie equation

~-–@–

regarding e, as constant, but 0 and therefore as variable,

we get

/A _1.~ ~–~ /oio\

(d,~Q\
-1 d~q ~G~ Eg (212)

~0~ 0 ~@

whence by (192)

/A /21Q\
CdOIEQ-

êq (213)
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That is, a diminution of thé modulus will diminish thé proba-

bility of all configurations for which the potential energy exceeds

its average value in thé ensemble. Again, in thé ensemble

having modulus @)' and average energies ep' and values of

<~sensibly less than e~ will be so rare as to be practically neg-

ligible. They will be still more rare in an ensemble of greater

modulus, since by the same equation an increase of thé

modulus will diminish the probability of conngurations for

which the potential energy is less than its average value in

the ensemble. Therefore, for values of (E)between 0' and @~,
and of ep between €p' and pp", thé individual values of Eqwill

be practically limited to the interval between e~ and e~.
In the cases which remain to be considered, viz., when

~e~Cphas very large values not confined to narrow limits,
and consequently the differences of the mean potential ener-

gies in ensembles of different moduli are in general very large

compared with the differences of the mean kinetic energies, it

appears by (210) that the anomalies of mean square of poten-
tial energy, if not small in comparison with the mean kinetic

energy, will yet in general be very small in comparison with

differences of mean potential energy in ensembles having
moderate differences of mean kinetic energy, the exceptions

being of the same character as described for the case when

(~ /~p is not in general large.
It follows that to human expérience and observation with

respect to such an ensemble as we are considering, or with

respect to systems which may be regarded as taken at random

from such an ensemble, when the number of degrees of free-

dom is of such order of magnitude as the number of molécules

in the bodies subject to our observation and experiment, e e,

6p, – <~ would be in general vanishing quantities,
since such experience would not be wide enough to embrace

the more considerable divergencies from the mean values, and

such observation not nice enough to distinguish the ordinary

divergencies. In other words, such ensembles would appear
to human observation as ensembles of systems of uniform

energy, and in which the potential and kinetic energies (sup-
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posing that there were means of measuring thèse quantities

separately) had each separately uniform values.* Exceptions

might occur when for particular values of the modulus thé

differential coefncient takes a very large value. To

human observation the effect would be, that in ensembles in

which @ and e? had certain critical values, 6~ would be in-

deterininate within certain limits, viz., tlie values which would

correspond to values of @ and <?pslightly less and slightly

greater than the critical values. Such indeterminateness cor-

responds precisely to what we observe in experiments on thé

bodies which nature presents to us.tf
To obtain general formulae for the average values of powers

of the energies, we may proceed as follows. If h is any posi-
tive whole number, we have identically

all
E all r

J .J
~e

O~J .J
~e s~ dq", (214)

pttMea phmea

z. e., by (108),

~7d
e~e a=@_/€~e s\. (215)

A

Hence
~~=(o~s,

(216)

<
1ft

and
~=~(')

(217)

This impliea that the kinetic and potential energiesof individual systems
would each separately have values sensibly constant in time.

t As an example, we may take a system consisting of a fluid in a cylinder
under a weighted piston, with a vacuum between the piston and the top of
thé cylinder, which is etosed. The weighted piston is to be rc~arded as a
part of the system. (This is formally necessary in order to satisfy the con-
dition of the invariability of the external coordinates.) It is évident that at
a certain temperature, viz., when the pressure of saturated vapor balances
the weight of thé piston, there is an indeterminateness in thé values of thé
potential and total energies as funetions of the temperature.
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For = 1, this gives

–ë)
<~

which agrees with (191).

From (215) we have also

P=~+0~=(.+<
l' (219)

~=(~~)"
(220)

In like manner from the identical équation

<7 r

j..J~~==e~J..Je-.~A~
oonag. conSg.'

(221)

7

we get Q
=

e
( p2 (222)weget ~=")'

and
~=(~+~~)"

~)I),nd ¡;
=

q +
/N Eq' (223)

With respect to thé Idnetic energy similar equations will

hold for averages taken for any particular configuration, or

for thé whole ensemble. But since

-"0,
~-2

thé equation

d\,
?==(~+~~)~

(224)

reduces to

~= (~
+ ~)

<"
= ~)"~ (225)p 2 ïïo- 22 2 d0'
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We have therefore

?=6+~

?=~~)G~)~

s

~28)"?
r~K)

The average values of the powers of the anomalies of the

energies are perhaps most easily found as follows. We have

identically, since e is a function of 0, while e is a function of

the ~3's and q's,

ali f

~). 'J*~
~Pl,

=

phasestttJJJe

r -n -L

f.. J (e e)' h (e e)~ O'~J~
~i, (229)

phases

e., by (108),

r__ _'<'i r_ ~i

~~L~ ~j=L~r

In the case diseussed in the note on page 64we may easily get

(~ =
(<< + 0' ~) (7,'=' j'

Il

whicb,with – 2 0,

gives
(.y.= (~ + o~) (~(~+~~)~0.

Hence (~ e~)~=

Aga.in
(e f~)" = (~ + <~ ~@) (<

-fa)~ l'

whichwith e – <<.= tt0

gives
\?t–i

(< f<.)~ = ~0 + 0~~
(e e.)' = t!

~n 0+0~~
8.

`

––– r(n-t-/i)henee (e-~)"=-e".
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or since by (218)
1/1

~=.

d dË
')' + = (~ 0' e

d de

(T~J~= 0~ ~7€ + A (6-'6)~ (231)(E dU (e E)' + /t (e E) h-1 D2

In precisely the same way we may obtain for the potential

energy
d dÉq

(232)(Eq ~)~ = @~ (,, ~)~ + A (., e,)~ 0~ (232)

By successive applications of (231) we obtain

(e e)~ = De

(e e)" =- D~

(E e)*
= Z~e + 3 (D~)~

(E e/
= Z''e + 10Z'eZ''e

(E E)6 = Z)~ + 15D~Z~e + 10 (D~ + 15 (D~ etc.

where D represents the operator e2 ~@. Similar expres-
sions relating to the potential energy may be derived from

(232).
For the kinetic energy we may write similar equations in

which the averages may be taken either for a single conngura-
tion or for the whole ensemble. But since

~6p N.
de 2

the general formula reduces to

(Ep <~
=0~

+
~A@~ -i (233)

or

(6~
~,)~

20
(€

2 A
(€p €p)~

2A
(6~ ~)~

ep~+i
n e~O

ept
h n

epA
11 n

(234)
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But since identically

(~)°_ 1, (~e)'_() 0,
e~ e

thé value of thé con'esponding expression for any index will

be indepeudent of <E)and the formula reduces to

~r~Y' + ~f~~Y" (235)=
'EP €p 7

(235)

we have therefore

~Y_i ~Y__8
\J'

~Y-o ~~Y
CP

~~– ~2
ep

It will be observed that when or e is given as function of

@, all averages of the form e~ or (e–e)~ are thereby deter-

In theCMediscussedintheprecedingfoot-noteswegeteasily

(~)''=(~)".

and (~~?=(~
\~–€t,~ fp

Forthetotalenergywehavemthiscase

\<=< "?- K\€ h-1

~r~~T i
/Y_36

~-j \j

/t\s 2
t=––)=–,etc.

\t-€
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mined. So also if or is given as function of @, ail

averages of the form e~ or (Eq
–

~)~ are detennined. But

€=€– ~M0.

Therefore if any one of thé quantities e, eg is known

as function of @, and ? is also known, ail averages of any of

the forms mentioned are thereby determined as functions of

thé same variable. In any case all averages of thé form

~~Y
`

are known in terms of n alone, and have thé same value

whether taken for the whole ensemble or limited to any

particular configuration.
If we differentiate the equation

~f-

J .J dp, d~ = 1 (236)
phases

with respect to al, and multiply by @, we have

r
t4-E

~jls-.Ê;]'
<~

Cial da,
13 dp¡ d'ln = O. (237)

Differentiating again, with respect to œ with respect to e~,
and with respect to 0, we have

r ~r~ ~e i/~ ~Y')' “

J C~2'~

d2E

de )2J

'~oE

j-"j L~?~)J'=~

f ff~
1~~ deW~ ~\1J J Ldai~la2 dcelda~

+
O du, de Jl da2 da /2J J j_d!&iJ<7~ daid~ 0\t~i d~t~\das d~/J

~-f

e s <~i. = 0, (239)

f rr ~ewi~ '1
J J[

d'~p

+ ( dp de 1 d~p If eJ J j_da~0 \~i ~J \@~@ 0" /J

!<

e (~i. = 0. (240)
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'1 i
6

T he multiple intégrais in the last four equations represent tlie

average values of the expressions in the brackets, which wc

may tlierefore set equal to zéro. Thé first gives

d~ (le
~1~ (~41)

~=~=-

as already obtained. With this relation and (191) we get

from the other equations

(~=~=~ (242))
\<~ ~i \~<l ~M;/

(AI il) (A2 -12)
d-26 E d2,p

(j~ ~)

=@~=e~ (243)
\~ii (/< J \«Mi ~i/

(~)(€-e)=-0~,=~=-(E
<i<~8 d@

We may add for comparison equation (205), which might be

derived from (236) by differentiating twice with respect to 0

es
2

o~
di

(244)(~=-<~=~. (244)

The two last equations give
–––––––––– ~7/)~––––

(~)(6-e)=–(e- (245)
de

If i~ or € is known as funetion of @, al, etc., (e – e)~ may
be obtained by differentiation as function of the same variables.

And if or or is known as function of 0, < etc.,

(~ – -) (e – e) may be obtained by dISerentiation. But

(~4~ – ~4~~and (~ – ~4j) (A2 ~) cannot be obtained in any

similar manner. We have seen that (e–e)~ is in général a

vanishing quantity for very great values of n, which we may

regard as contained implicitly in @ as a diviser. The same is

true of (~ – J~) (e e). It does not appear thatwe can

assert the same of (~ – ~4~~ or (~ – j[~ (~4~ – J~), since
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~~Ja.~ may be very great. The quantities ~6/<œ~ and <a~

belong to the class called elasticities. The former expression

represents an elasticity rneasured under thé condition that

while M.~is varied the internal coordinates ~j, qn all remain

fixed. The latter is an elasticity measured under the condi-

tion that when al is varied the ensemble remains canonically

distributed within thé sa,me modulus. This corresponds to

an elasticity in physics measured under the condition of con-

stant temperature. It is evident that the former is greater

than the latter, and it may be enormously greater.
The divergences of the force from its average value are

due in part to thé differences of energy in the systems of the

ensemble, and in part to the differences in the value of

thé forces which exist in sy stems of the same energy. If we

write .Zi~ for the average value of Ar in sy stems of the

ensemble which have any same energy, it will be determined

by the equation
~–f

f-f-i-
(246)= ~––––––– (246)

e s
<~i

where the limits of integration in both multiple intégrais are

two values of the energy which differ infinitely little, say e and

e + de. This will make the factor e 0 constant within the

limits of integration, and it may be cancelled in the numerar

tor and denominator, leaving

f-"f- ~i
~=~L_~–––––– (247)If

J -J
<~i. dq"

where the integrals as before are to be taken between e and

e + <~€. -~t is therefore independent of 0, being a function

of the energy and the external coordinates.
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Now we have identically

=
(~ 37~) + (TTi, ~i),

where ~t, – ~4 Je denotes the excess of the force (tending to

increase ~) exerted by any system above the average of such

forces for systems of the same energy. Accordingly,

(~4~ == (Ai !.)' + 2 (Ai Zi~)(~, -~) + (Z~, ~i~.

But the average value of (~i – ~e) (~c – ~i) for systems

of the ensemble which have the same energy is zero, since for

such systems the second factor is constant. Therefore the

average for the whole ensemble is zero, and

(.4~ = (~-i~ + (~k-~i)< (248~

In the same way it may be shown that

(~ ~) (6 6) = (Z~ ~) (e 6). (249)

It is evident that in ensembles in which the anomalies of

energy e e may be regarded as insensible the same will be

true of the quantities represented by ~'e – ~i-
The properties of quantities of thé form .~f will be

farther considered in Chapter X, which will be devoted to

ensembles of constant energy.
It may not be without interest to consider some general

formulae relating to averages in a canonical ensemble, which

embrace many of the results which have been given in this

chapter.
Let u be any function of the internai and external coordi-

nates with the momenta and modulus. We have by definition

“
M

= f f Me s ~pi (250)

phases

If we differentiate with respect to @, we have

&n )t–f
~M /M M .M 0'

~=J-"J(~+@~)~
phases
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</M < M(~ M
or

~+~~)'

Setting u = 1 in tins equation, we get

< ~–e
o'O"ëT''

and substituting this value, we have

O'M O~M M€ Medu du ûe uE
t0''<~ (~~0~

or @~ == Me = (M M) (e e). (252)<~@ M@

If we differentiate equation (250) with respect to a (which

may represent any of tlie external coordinates), and write A

for the force we get

an ~–~
<~M /M M~ M.\ et'

~=j-"j~+ë~+e~~
phaMB

OT
<~M dtf M !t-4 /nc«\or
da da 4-– da

+
– (253))

Setting M = 1 in this equation, we get

=

Substituting this value, we have

a!M d'M M~! M~f
(254)~=~+-@- ~)

or @–~ – @ –~ = ~Z – M~f = (M – M) (~i – ~). (255)or
dcc dcc

= u~l -UÀ= (U -U) (255)

Repeated applications of the principles expressed by équa-
tions (252) and (255) are perhaps best made in the particular
cases. Yet we may write (252) in this form
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(e + j~ (M M) = 0, (256

where -D represents the nperator @~d d0.

Hence

(€+~/(M–<~=0, (257)

where A is any positive whole number. It will be observed.

that since e is not function of 0, (e + j9)'' may be expanded by

the binomial theorem. Or, we may write

(e + Z') M= (e + D) M, (258)

whence (e + ~)'' M= (é + -D)'' M. (259)

But the operator (e + Z~)' although in some respects more

simple than the operator without the average sign on thé e,

cannot be expanded by the binomial theorem, since e is a

function 01 @ with the external coordinates.

So from equation (254) we have

(~
+

~)
=

whence
(~

+
~Y'(M

M) = 0 (261)

.nd (~~=~+~ (262)and
\@ o~~

\J~

u
\0 d~~

1l\h

u, (262)

whence +
-~Y'M = + -~Y~. (2C3)

\0 da~ \0 d~/

The binomial theorem cannot be applied to thèse operators.

Again, if we now distinguish, as usual, the several external

coordinates by suffixes, we may apply successively to the

expression M–M any or all of the operators

e+0~, ~+€)~ ~+0-L.
etc. (264)d@ ct~ d~j
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as inany times as we choose, and in any order, thé average
value of the result will be zero. Or, if we apply thé same

operators to u, and finally take the average value, it will be thé

same as the value obtained by writing the sign of average

.-iepa.ra.tely as u, and on e, etc., in ail the operators.
If « is independent of the momenta, formulae similar to

the preceding, but having fq in place of e, may be derived

from equation (179).



CHAPTER VIII.

ON CERTAIN IMPORTANT FCNCTIONS OF THE

ENERGIES 0F A SYSTEM.

IN order to consider more particularly the distribution of a

canonical ensemble in energy, and for other purposes, it will

be convenient to use the following definitions and notations.

Let us denote by t~the extension-in-phase below a certain

limit of energy which we shall call e. That is, let

F==J'J'
(265)

the integration being extended (with constant values of the

external coordinates) over ail phases for which the energy is

less than the limit e. We shall suppose that the value of this

integral is not infinite, except for an infinite value of the lim-

iting energy. This will not exclude any kind of system to

which the canonical distribution is applicable. For if

J J eJ J
e

0
Cl~'y f~ln

taken without limits has a finite value,* the less value repre-
sented by

E

6 ~J.Jdpt.d~

taken below a limiting value of 6, and with the e before the

integral sign representing that limiting value, will also be

finite. Therefore the value of which differs only by a

constant factor, will also be finite, for finite e. It is a func-

tion of e and thé external coordinates, a continuous increasing

This is a necessary condition of the canonical distribution. See
Chapter IV, p. 36.
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funetion of c, which becomes infinité with e, and vanishes

for thé smallest possible value of e, or for e = – co, if thé

energy may be diminished without limit.

Let us also set
</

log (266)

The extension in phase between any two limits of energy, e'

and e", will be represented by thé intégral

f 6~ de. (267)
'~e

And in général, we may substitute e~~e for (~ dqn in a

2n-fold integral, reducing it to a simple integral, whenever

the limits can be expressed by the energy alone, and the other

factor under the integral sign is a function of the energy alone,

or with quantities which are constant in the integration.
In particular we observe that the probability that the energy

of an unspecified system of a canonical ensemble lies between

the limits e' and e" will be represented by the integral

~î.,

e 0 (268)

and that the average value in the ensemble of any quantity
which only varies with the energy is given by thé equation t

C=30 ,),–f1
'–––+

M=)
M6~ de, (269)

~=0

where we may regard the constant as determined by the

équation t
~=°o £

–+~

e ~=f

e s
<Ze, (270)

F=0
In regard to the lower limit in these integrals, it will be ob-

served that F~= 0 is equivalent to the condition that the

value of e is the least possible.

Compareequation (93). t Compareequation (108).
t Compareequation (92).
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In like manner, let us denote by F~ thé extension-in-configu-
ration below a certain limit of potential energy whieh we may
call e~. That is, let

~=f.fA~ (271)

thé integration being extended (with constant values of thé

external coordinates) over all configurations for which thé

potential energy is less than c~. F~ will be a function of Eq
with the external coordinates, an increasing function of e~,
which does not become infinite (in such cases as we shall con-

sider*) for any finite value of e~. It vanishes for thé least

possible value of e~, or for = – oo if can be diminislied

without limit. It is not always a continuous function of e~.
In tact, if there is a finite extension-in-configuration of con-

stant potential energy, the corresponding value of Vq will

not include that extension-in-eonnguration, but if <?~be in-

creased infinitesimally, the corresponding value of F,, will be

increased by that finite extension-in-configuration.
Let us also set

~=Iog~. (272)
deq

The extension-in-configuration between any two limits of

potential energy e/ and e~ may be represented by the integral

J~ e~ (273)

whenever there is no discontinuity in the value of P~ as

funetion of <~ between or at those limits, that is, when-

ever there is no finite extension-in-eonfiguration of constant

potential energy between or at the limits. And in général,

with the restriction mentioned, we may substitute e~' de, for

A~ dql dqn in an n-fold integral, reducing it to a simple

integral, when the limits are expressed by thé potential energy,

and the other factor under the integral sign is a function of

If Vqwere infinite for finite values of €“ ~would evidently be infinite
for finite values of e.
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the potential energy, either alone or with quantities which are

constant in the integration.

We may often avoid the inconvenience occasioned by for-

mulae becoming illusory on account of discontinuities in thé

values of as function of e~ by substituting for the given

discontinuous function a continuous function which is practi-

cally equivalent to the given function for thé purposes of the

evaluations desired. It only requires infinitésimal changes of

potential energy to destroy the finite extensions-in-configura-

tion of constant potential energy which are the cause of the

difficulty.
In the case of an ensemble of sy stems canonically distributed

in configuration, when F, is, or may be regarded as, a continu-

ous function of eq (within the limits considered), the proba-

bility that the potential energy of an unspecified system lies

between the limits c/ and e~ is given by the integral

~f ~9

(274)

where may be determined by the condition that the value of

the integral is unity, when the limits include all possible
values of e, In the same case, the average value in the en-

semble of any function of the potential energy is given by the

equation

~==0

M= f Me
'a

de,. (275)

~=.00

When F~ is not a continuous function of we may write t~
for ë* in these formulae.

In like manner also, for any given configuration, let us

denote by Fp the extension-in-velocity below a certain limit of

kinetic energy specified by 6p. That is, let

F,==f.fA~ (276)
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thé intégration being extcnded, with constant values of the

coordinates, both internai and external, over all values of the

momenta. for which the kinetic energy is less than the limit <

Fp will evidently be a continuons increasing function of €p
which vanislies and becomes infinite with Let us set

log
P

The extension-in-velocity between any two liniits of kinetic

energy e,/ and e~ may be represented by the integral

fe~
(278)

And in general, we may substitute e~" <~€pfor A~ ~?~

or A~ dql d-q,, in an n-fold integral in whicli tlie coordi-

nates are constant, reducing it to a simple integral, when the

limits are expressed by the kinetic energy, and the other factor

under the integral sign is a function of the kinetic energy,

either alone or with quantities which are constant in the

integration.
It is easy to express Fp and <~)pin terms of 6p. Since A~,is

function of the coordinates alone, we have by definition

= A,
(279)

the limits of the integral being given by e?. That is, if

6p=~(~), (280)

the limits of the integral for e~ = 1, are given by the equation

~(~)-~ (281)

and the limits of the intégral for = a~, are given by the

équation
(282)~(~)=~. (282)

But since J~ represents a quadratic function, this equation

may be written

Ff~=l 1 (283)
ft &

(283)
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Thé value of Fp may also be put in the form

~=~y~
(284)

Now we may détermine Fp for €p = 1 from (279) where thé

limits are expressed by (281), and Fp for ep = from (284)

taking the limits from (283). The two integrals thus deter-

mined are evidently identical, and we have

(~~=~(~~1
~)

n

t. e., 1~, varies as e~. We may therefore set

n n

~=C'e~, ~=~

1
(286)

where C' is a constant, at least for fixed values of the internai

coordinates.

To determine this constant, let us consider the case of a

canonical distribution, for which we have

r~+~

< e

En
+ 4n

~=1,
Jo

–"
where e~ = (27r0)

Substituting this value, and that of e~? from (286), we get

n
fp n n

~T~=(2~,

n n
_1

n

~f~~<~=~~

n

~r(~=(2~,
(287)

n

r-
"-r(~+i)'

Having thus determined the value of the constant C, we may
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substitute it in the général expressions (286), and obtain the

folio wing values, which are perfectly général:

M

VP
(`~ vr Ep)2

(288)
~=r~

~=~~

It will be observed that the values of Fp and ~p for any

given €“ are independent of the configuration, and even of the

nature of the System considered, except with respect to its

number of degrees of freedom.

Returning to the canonical ensemble, we rnay express the

probability that the kinetic energy of a System of a given

configuration, but otherwise unspecified, falls within given

limits, by either member of the following equation

J-=~(~).

Since this value is independent of the coordinates it also

represents the probability that the kinetic energy of an

unspecified system of a canonical ensemble falls within the

limits. The form of the last intégral also shows that the prob-

ability that the ratio of the kinetic energy to the modulus

Very similar values for e'< T~,and e~'may be found in the same
way in the case diseussedin the preceding foot-notes (see pages 54,72,77,and

79),in whieh is a quadratie funetion of thé ~*s,and A,~independentof theq's.
In this case we have

V- ~<~

r(~+i)''

~)~)~
i

-<,A~ r(~)
>

~(2~)")''
n

\A,7 rfn+l)
f

~)° (.)' t.
"\A~ r(~)
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falls within given limits is independent also of the value of

the modulus, being detennined entirely by the number of

degrees of freedom of the system and the limiting values

of the ratio.

The average value of any function of the kinetic energy,

either for the whole ensemble, or for any particular configura-

tion, is given by

M=–~–f"M<r~

*(29i)

@ r (~ ?)

t70

Thus:

~°'=~ ~+~">0; 1(292)

n

~ra.r(M~-

z
(~YP r (~ n -+ 1) r (2 n)

(2 ~rO) (293)

The corresponding equation for the average value of any function of

the potential energy, when this is a quadratic fnnction of the ~'s, and A~ is

independent of the q's, is

1
-V~

"=~"r<i y"~
~)"td

e~rf~M)-~ Ea

76e (Eq Eq.)3 dEq.

In the same case, the average value of any function of the (total) energy is

given by the equation

1 -1~
– i 0 \"––1 T

''=ë.~(.)~~
Henee in this case

_l'(nt-i-~n) n) 1

~~=~ ~~>

(.-t~=.)0"
if ~+~>0.

~~=~r=e,

~=', if .>2,
~,0'

and =
®

if n > 1.

If n = 1, = 2Tr and c~/We = 0 for any value of e. If n = 2, the case is

the same with respect to

t This equation has already been proved for positive integral powers of

the kinetic energy. See page 77.



0F THE .E~VE~/A'~ o~ ~r-STT?~. 95

If = 2, e~~= 2 Tr, and ~~)p'(7e~0, for any value of e~
The de6nitions of V, F~, and give

where the integrations cover ail phases for which the energy
is less than the limit e, for whicb thé value of ~is sought.
This gives

and .jï~

where l~pand e~ are connected with F~ by the equation

€p+ = constant ==e. (300)

If ? > 2, €~ vanishes at thé upper limit, i. e., for €p= 0, and

we get by another differentiation

We may also wiite

e~p r(n-l). "1 if n 1 1; (294)=
~M

if ~> 2;

~=~=/

~i~'
~')

g-~p (..) ~Qg~

F=f~-f7;
(297)

E

-F=
t

I~~F~, (298)

F,!=00

~=0

~=o

€9=~e

y=f
T~ (302)

~9=00

fq=c
e~

== F
e~+~ (303)

~=o
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etc., when is a continuous function of eq commencing with

the value
= 0, or when we choose to attribute to a

fictitious continuity commencing with the value zero, as de-

scribed on page 90.

If we substitute in thèse equations the values of Pp and e~

which we have found, we get

n
~=~< ê n

~=r(~)J~
9V =

in+ +
~=0

Eq) d~, (304)

n

~=~J'(~)~
(305)

r,=o

where e~ may be substituted for d F~ in the cases above

described. If, therefore, M is known, and F~ as function of

e~, F'and e~ may be found by quadratures.
It appears from these equations that Vis always a continu-

ous increasing function of e, commencing with the value V=

0, even when this is not thé case with respect to Vz and e~.
The same is true of < when M > 2, or when n = 2 if F~ in-

creases continuously with from thé value F~ = 0.

Thé last equation may be derived from thé preceding by

differentiation with respect to e. Successive differentiations

give, if h < n + 1,

h E4=Eh

n
n_ E4=E

n-%l

~=r(,
(306)

~=0
p

~=0

is therefore positive if A<(~M+1. It is an in-

creasing function of e, if A < ~M. If e is not capable of

being diminished without limit, ~e~ vanishes for thé

least possible value of e, if A < ~M.

If n is even,
nT7~

~(2~(F~
(307)

t~

(30î)
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.lue, su

7

n

That is, IrQh f. of E7,as
1 a-r~z

~of fThat Is, Fj, is thé same function of f~, as ––“ of e.

(2~

When n is large, approximate formulae will be more avail-

able. It will be sufficient to indicate the method proposed,
without precise discussion of thé limits of its applicability or

of the degree of its approximation. For the value of g~ cor-

responding to any given e, we have

<9=f f E

=
f~"+~

= f~~ ~e,, (308)

~=o 0

where the variables are connected by the equation (300).
The maximum value of <~p+ <~ is therefore characterized by
the equation

~=~ (309)
~€p

The values of 6pand determined by this maximum we shall

distinguish by accents, and mark the corresponding values of

functions of Cpand Eqin the same way. Now we have by

Taylor's theorem

.(~(~
</>p= </>/+

d4EP
(ep + +

de:: 2 2
P + etc. (310)

~+(~')'(.(~')'<+-.
(311)

If the approximation is sufficient without going beyond the

quadratic terms, since by (300)

€p'
=

(eq e/),

we may write

+-r~Y~~Yi~=~

12

~=~+~fe~ (312)

–M

where the limits hâve been made ± oofor analytical simplicity.
This is allowable when the quantity in the square brackets

has a very large negative value, since the part of thé intégral
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corresponding to other than very small values of e~ e,' may

be regarded as a vanishing quantity.

This gives

~/+~ r l ~13~e
1>= e1>p'+1>'q

/Y.Y 1~V~/J

or

~=~'+~+~og(2~og[-(~)'-(~)']-
(314)

From this equation, with (289), (300) and (309), we may

determine the value of <~corresponding to any given value of

e, when is known as function of

Any two systems may be regarded as together forming a

third system. If we have V or <~given as function of e for

any two systems, we may express by quadratures P"and ~) for

the system formed by combining the two. If we distinguish

by the suffixes ( )i, ( )z ( )i2 the quantities relating to

the three systems, we have easily from the definitions of these

quantities

~=ff~~=fr~ri=fri<~=f~e~,
(3i5)

= ~~1~ = ~'<Z = f~+~, (316)

where the double integral is to be taken within the limits

'Fi = 0, Pz = 0, and 6~+6~= en,

and the variables in the single integrals are connected by the

last of these equations, while the limits are given by the first

two, which characterize the least possible values of f~ and e2

respectively.
It will be observed that these equations are identical in

form with those by which F'and <~are derived from V, or <

and P~ or < except that they do not admit in the general

case those transformations which result from substituting for

t~, or the particular funetions which these symbols always

represent.
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Similar formulae may be used to derive F~ or < for thé

compound sy stem, when one of thèse quantities is known

as function of thé potential energy in each of thé systems
combined.

The opération represented by such an equation as

e ~12=
t e ~i

e <t€ir

is identical with one of the fundamental operations of the

theory of errors, viz., that of finding the probability of an error

from the probabilities of partial errors of which it is made up.
It admits a simple geometrical illustration.

We may take a horizontal line as an axis of abscissas, and lay
off ei as an abscissa measured to the right of any origin, and

erect e~t as a corresponding ordinate, thus determining a certain

curve. Again, taking a different origin, we may lay off ~2 as

abscissas measured to the left, and determine a second curve by

erecting the ordinates e* We may suppose the distance be-

tween the origins to be e~, the second origin being to thé right
if 6~ is positive. We may determine a third curve by erecting
at every point in the line (between the least values of ei and <~)
an ordinate which represents the product of the two ordinates

belonging to the curves already described. The area between

this third curve and the axis of abscissas will represent the value

of e~M. To get the value of this quantity for varying values

of e12, we may suppose the first two curves to be rigidly con-

structed, and to be capable of being moved independently. We

may increase or diminish c~ by moving one of thèse curves to

the right or left. The third curve must be constructed anew

for each different value of f~.



CHAPTERIX.

THE FUXCTION AND THE CANONICAL DISTRIBUTION.

IN this chapter we shall return to thé consideration of thé

canonical distribution, in order to investigate those properties
which are especially related to the function of thé energy
which we have denoted by <

If we denote by N, as usual, thé total number of systems
in the ensemble,

d,–f

--+<1> cle~e
-'– s

-j-~ (~e

will represent the number having energies between the limits

e and e ~e. The expression

(317)

represents what may be called the density-in-energy. This

vanishes for e = oc, for otherwise the necessary equation

e ==ced/–p
–––+'<'

e~ <Ze=l 1 (318)
r=o0

could not be fulfilled. For the same reason the density-in-

energy will vanish for e = oo, if that is a possible value of

the energy. Generally, however, the least possible value of

the energy will be a finite value, for which, if n > 2, will

vanish,* and therefore the density-in-energy. Now thé density-

in-energy is necessarily positive, and since it vanishes for

extreme values of the energy if n > 2, it must have a maxi-

mum in such cases, in which the energy may be said to have

Seepage 96.
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its most common or most probable value, and which is

determined by thé equation

~1~
~-@-

This value of <7<<~eis also, when n > 2, its average value

in thé ensemble. For we have identically, by integration by

parts,

t=CO )jf–f ,),–t C=~
6=00 )~–f

.=[~"]~.r~~
(~

v-o
dE

e
0

de = e e

+ 0,

13
0 dE. t )

~=0 ~~0 r:=0

If n > 2, the expression in the brackets, which multiplied by N

would represent the density-in-energy, vanishes at the limits,

and we have by (269) and (318)

= 1 (321)«€ 0

It appears, therefore, that for systems of more than two degrees
of freedom, the average value of a~e in an ensemble canoni-

cally distributed is identical with the value of the same differ-

ential coefficient as calculated for the most common energy
in thé ensemble, both values being reciprocals of thé modulus.

Hitherto, in our consideration of the quantities F, F~ Fp, <

<~ptwe have regarded the external coordinates as constant.

It is evident, however, from their clefinitions that ]~and cp are

in general functions of the external coordinates and thé energy

(e), that F~ and <~ are in general functions of the external

coordinates and the potential energy (~). V, and cpp we have

found to be functions of the kinetic energy (ep) alone. In the

equation

,f, t=eoCO t– –-+~
e

o==<

e
s

ck, (322)

V=O

by which may be determined, @ and the external coordinates

(contained implicitly in f~) are constant in the integration.
The equation shows that i~ is a function of thèse constants.
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If their values are varied, we shall have by differentiation, if

M>2,

~(-+â~)=~
~=e

€=CO t f~~

+ f~ e" + f~ e' + etc. (323)-E-
J<~i i

e -~+`T de +
J~ z

e-0+~ de -f-etc. (323)

~~o t~=o

(Since e~ vanishes with F, when n > 2, there are no terms due

to the variations of the limits.) Hence by (269)

+ == + + +
(324)

or, since
@

= (325)

~=~0-@~0~etc. (326)
</<~ ~a~

Comparing this with (112), we get

S~ Zi etc. ~n
––=–, -,–==–, etc. (<M'7
(~i @

e

<~ 0

The first of these equations might be written*

_A~
/~x (328)

\f,a \<, \~l/a,?

but must not be confounded with the equation

(~Y =-~ (~) )4~@
(329)

\~iA,~ We/s \~i/

which is derived immediately from the identity

(~ =-(~) (~ a (330)
\<~l/~<t \a\s a

See equations (321) and (104). Suffixes are here added to the differential

coefficients, to make the meaning perfectly distinct, although the same quan-

titiea may be written elsewhere without thé suiExes, when it is believed that

there is no danger of misapprehension. The suffixes indicate the quantities

which are constant in the differentiation, the single letter a standing for ail

the letters a~ a2, etc., or all except the one which is explicitly varied.
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Moreover, if we eliminate from (326) by die équation

<~ = Of~ + ~@ + <~e, (331)

obtained by differentiating (325), we get

= – 0 – e – @ <~t;j– etc., (332)dé = Od~ 0-- dal 0
d~

da2 etc., (332)

or by (321),

= ~e + ~i + + etc. (333)<~€ ~<~t tt«ij

Except for the signs of average, the second member of this

equation is the same as that of the identity

= ~€ + ~ai + da2 + etc. (334)<~€ ~&i as~

For the more precise comparison of these equations, we may

suppose that the energy in the last equation is some definite

and fairly representative energy in the ensemble. For this

purpose we might choose the average energy. It will per-

haps be more convenient to choose the most common energy,
which we shall denote by eo. The same sumx will be applied
to functions of the energy determined for this value. Our

identity then becomes

= (S)~
+

(~
+

(Ë)~
+ etc. (335)

f0 1 0 2 0

It has been shown that

1

~=~=@'
~36)

when M > 2. Moreover, since the external coordinates have

constant values throughout the ensemble, the values of

<< d'(~/(~, etc. vary in the ensemble only on account

of the variations of the energy (e), which, as we have seen,

may be regarded as sensibly constant throughout the en-

semble, when n is very great. In this case, therefore, we may

regard the average values

<~)
etc.,

da
etc.,

~i' <
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as practically equivalent to the values relating to the most

common energy

etc.
~~J.'

In this case also <~6is practically equivalent to <~€Q. We have

therefore, for very large values of n,

– = <~o (337)

approximately. That is, except for an additive constant, –

may be regarded as practically equivalent to when the

number of degrees of freedom of the system is very great.
It is not meant by this that the variable part of 7; + <~ is

numerically of a lower order of magnitude than unity. For

when n is very great, 7? and <~ are very great, and we can

only conclude that the variable part of + <~ois insignifi-

cant compared with the variable part of )) or of ~o, taken

separately.
Now we have already noticed a certain correspondence

between the quantities 0 and and those which in thermo-

dynamics are called temperature and entropy. The property

just demonstrated, with those expressed by equation (336),

therefore suggests that the quantities ~) and d!e/~ may also

correspond to the thermodynamic notions of entropy and tem-

perature. We leave the discussion of this point to a sub-

sequent chapter, and only mention it here to justify the

somewhat detailed investigation of the relations of these

quantities.
We may get a clearer view of the limiting form of the

relations when the number of degrees of freedom is indefi-

nitely increased, if we expand the function <~ in a series

arra,nged according to ascending powers of e c~. This ex-

pansion may be written

.=~(~)~~).
Y' </>0 +

(ZE 0
(E eo) +

\CLE 0
+

dE8 0
13

+ etc.

(338)

Adding the identical equation
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– E
~–eo e–6o

0 @ 0 f

we get by (336)

tÿ
°

E
Y'

-EO ,+
II/`V\/

_(E
EoO2

_`Y _l..E
Eo

+ et,.

~~=~(~(~)~'+- L-

(339)

Substituting this value in

"~+~

ps
€~

which expresses the probability that the energy of an unspeci-
fied system of the ensemble lies between the limits e' and e",

we get

~~0
(d2~)

(.0)2

L3

etc.

Ep)~~
etC..(S)~(S).

e~

When thé number of degrees of freedom is very great, and

e e~in consequence very small, we may neglect thé higher

powers and write*

~-f. (f-fa)~

~-+~(~e 0

J -e(~2~)`~E2
0 `El de. (341)

É

This shows that for a very great number of degrees of

freedom thé probability of déviations of energy from thé most

probable value (~) approaches thé form expressed by the

'la,w of errors.' With this approximate law, we get

If a higher degree of accuracy is desired than is afforded bythis formula,
it may be multipliedby thé series obtainedfrom

~r~e
dES0

by the ordinary formula for thé expansion in series of an exponential func-
tion. There would be no especial analytical difficultyin taking account of

a moderate number of terms of such a series, which would commence

1 +
(< (< '.)' .to

'+\3~+\ 0 !4
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.ï-.

\A/
=

?==.

(T~y~
(343)

whence

'~+~=~og~~=-~og(2~(r~). (344)

Now it has been proved in Chapter VII that

–– 2 ~e-e
(E E)

MQ'ep
EP

We have therefore

~+~=~+~=-~og(2~(7~)=-~og~ ~€p

(345)

approximately. The order of magnitude of – ~'o is there-

fore that of log n. This magnitude is ma.inly constant.

The order of magnitude of ~7 + <~o log n is that of unity.
The order of magnitude of <~o, and therefore of – is that

of m.*

Equation (338) gives for the first approximation

~=(S)~=-~

(~)(e-)=~~=~
(347))O dEp

~~=~=~
(~ ~0)2=

(E ~2
0)

2

2 ~EP
(348)

The members of the last equation have the order of magnitude
of n. Equation (338) gives also for the first approximation

~f.
<~

0'

Compare (289),(314).
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whence

1

(c E,
=

z
= 1, (349)

(~==(~~=-~

2
2/ 2

dii

o(f.-Eo/=-1, (349)
(~Y~~=-~=-~y ~0«le 0 de2 (E-Eo)

=
(E EO)de2

(3uO)
\«'€ e/ \o 0 (6-~ \~7. 0

This is of thé order of magnitude of n.
It should be observed that thé approximate distribution of

the ensemble in energy according to thé law of errors is

not dependent on thé particular form of thé function of thé

energy which we have assumed for the index of probability

(~). In any case, we must have

<=co

f~~e=l,
(351)

~~o0

where e''+~ is necessarily positive. This requires that it

shall vanish for e = co and also for e = – ce if this is a possi-
ble value. It has been shown in the last chapter that if e has

a (finite) least possible value (which is thé usual case) and

n > 2, e~ will vanish for that least value of e. In general

therefore + <~ will have a maximum, which determines the

most probable value of the energy. If we denote this value

by eo, and distinguish the corresponding values of the func-

tions of the energy by the same suffix, we shall have

~+(~=0.
(352)

~€~ \~€~

The probability that an unspecified system of the ensemble

We shall find hereafter that the equation

(S-~)"

i
dc e

is exact for any value of n greater than 2, and that the equation

~Y-
\fF<'ë7

is exact for any value of n greater than 4.
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faits within any given limits of energy (e' and 6") is repre-

sented by
€~

~"+~6.
e'

If we expand and in ascending powers of e eo,without

going beyond the squares, the probability that the energy falls

within the given limits takes the form of the law of errors'

r~~ +~~ i~

~+~~L~<~oJ

2 dE. (353)

CI

This gives

,[~(~@)J.
(~

and ~=
[-?).-(S).]"

~1'

We shall have a close approximation in general when the

quantities equated in (355) are very small, i. e., when

(356)

is very great. Now when n is very great, ~tt/f~ is of the

same order of magnitude, and the condition that (356) shall

be very great does not restrict very much the nature of the

function

We may obtain other properties pertaining to average values

in a canonical ensemble by the method used for the average of

<< Let u be any function of the energy, either alone or

with @ and the external coordinates. The average value of u

in the ensemble is determined by the equation

~=°°

M=fM6~<
(357)

V=O
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Now we have identically

<=QO tL–e )~-f t~OO

~~M M
+

-a+~, r(u a+~i

f

U

u àe-)
e de

[n__+ 1 (358)
j~-o+~~

e 0
'–t.-

13e
J

y=o ~=o

Therefore, by the preceding equation

~–f e=co
du M

+
e~ r cr~~i

*(359)~-@+~=L~
e 0

] ~59)de O
+ u ~e

zce

.lv-oIj
~(359)

~=0

If we set u = 1, (a value which need not be excluded,) the

second member of this equation vanishes, as shown on page

101, if M > 2, and we get

~=s. <~ )

as before. It is evident from the same considerations that the

second member of (359) will always vanish if n > 2, unless u

becomes infinite at one of the limits, in which case a more care-

ful examination of the value of the expression will be necessary.

To facilitate the discussion of such cases, it will be convenient

to introduce a certain limitation in regard to the nature of the

system considered. We have necessarily supposed, in all our

treatment of systems canonically distributed, that the system
considered was such as to be capable of the canonical distri-

bution with the given value of thé modulus. We shall now

suppose that the system is such as to be capable of a canonical

distribution with any (finite) modulus. Let us see what

cases we exclude by this last limitation.

A more general equation, which is not limited to ensemblescanonically
distributed, is

~M "a~ f~ r ,r~T='°+ M + u – =
Me' ]<=00T, dc -d £~ 1L J~o

where ?)dénotes,M usual, the index of probability of phase.
t The termfinite applied to thé modulus is intended to exclude thé value

zero as well as infinity.
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The impossibility of a canonical distribution occurs when

the equation
t=cc-T

e~=f e ~e (361)
V=O

fails to determine a finite value for Evidently the equation

cannot make an infinite positive quantity, the impossibility

therefore occurs when the equation makes = – ce Now

we get easily from (191)

d~=-
Ë

dO.

If the canonical distribution is possible for any values of 0,

we can apply this equation so long as the canonical distribu-

tion is possible. The equation shows that as 0 is increased

(without becoming infinite) – cannot become infinite unless

e simultaneously becomes infinite, and that as 0 is decreased

(without becoming zéro) – cannot become infinite unless

simultaneously becomes an infinite negative quantity. The

corresponding cases in thermody namics would be bodies which

could absorb or give out an infinite amount of heat without

passing certain limits of temperature, when no external work

is done in the positive or negative sense. Such infinite values

present no analytical difficulties, and do not contradict the

general laws of mechanics or of thermodynamics, but they

are quite foreign to our ordinary experience of nature. In

excluding such cases (which are certainly not entirely devoid

of interest) we do not exclude any which are analogous to

any actual cases in thermoclynamics.

We assume then that for any finite value of 0 the second

member of (361) has a finite value.

When this condition is fulfilled, the second member of

(359) will vanish for u = e"~ F: For, if we set e' = 2Q,

_f m < -4.
e's F=

e''s fe ~a fe
e e

r=o f=o
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where denotes the value of i~-for tlie modulus 0~. Since

the last member of this formula vanishes for e = ce, thé

less value represented by thé first member must also vanish

for the same value of e. Therefore thé second mernber of

(359), wbich differs only by a constant factor, vanishes at

the upper limit. Thé case of thé lower limit remains to be

considered. Now
f 6 f–– y –r<~

e 0~~ 8 de.

t~=0
The second member of this formula evidently vanishes for

the value of e, which gives F== 0, whether this be finite or

negative infinity. Therefore, the second member of (359)
vanishes at thé lower limit also, and we have

Y V
1-e F-e _+e F-=0,?€ 0 <M

or e F=0. (362)

This equation, which is subject to no restriction in regard to

the value of M.,suggests a connection or analogy between the

function of the energy of a system which is represented by
e"~ F' and the notion of temperature in thermodynamics. We

shall return to this subject in Chapter XIV.

If n > 2, the second member of (359) may easily be shown

to vanish for any of thé following values of u viz.: ~), e~, e,

e" where m denotes any positive number. It will also

vanish, when M~> 4, for u = c~)/d~, and when n > 2A for

u = e" F/<~€ When the second member of (359) van-

ishes, and n > 2, we may write

1\ M c~M

~=~-Q=-
(363)de OJ de O de'

We thus obtain the following equations
Ifn > 2,

.7~r\ i

(~)~)=<=-
(364)
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~(~)=~=-
(e e ) dE 0 de 0 dE (365)

w
do -:r dcp eo(J

or
~=~ (366)CLE CZE O

~~)=~
~)

~(S-~=~-S=-
(368)

If n > 4,

7~Tv /v i T~~v
z

(~-@) =~) -~=-~)-de 0 de 02 dE'

IfM>2A,

-F~~ 1 -~d:"F'_ -F
< 0~

e e
'F~~

e
'a~

~+' F 1
or

-~=0' (370)

–A 1
whence e-0

dE,,+, 1 (371)~ence = (371)

Giving h the values 1, 2, 3, etc., we have

1
if n 2~=e' ~~>S,

~.7~&Y -t

~+~) =~ '~>~

as already obtained. Also

o~ ~A /f~\a 1

~+~~+(~)==ë.' ~~>
~72)

This equation may also be obtained from équations (252) and (321).
Comparealso equation (349)whiehwas derived by an approximative method.

t Compareequation (350),obtained by an approximative method.
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8

If F~ is a continuous increasing function of e~,commencing

with = 0, thé average value in a canonical ensemble of any
function of e~, either alone or with thé modulus and tlie exter-

nal cooidinates, is given by equation (275), which is identical
with (357) except that e, and have the suffix ( )~. The

equation may be transformed so as to give an equation iden-

tieal witli (359) except for thé suffixes. If we add thé same

suffixes to equation (361), thé finite value of its members will

determine thé possibility of thé canonical distribution.

From these data, it is easy to derive equations similar to

(360), (362)-(372), except that the conditions of their valid-

ity must be differently stated. T he equation

e 'F,=0

requires only the condition already mentioned with respect to

F~. This equation corresponds to (362), which is subject to

no restriction with respect to the value of n. We may ob-

serve, however, that jF will always satisfy a condition similar

to that mentioned with respect to

If F~ satisfies the condition mentioned, and e~ a similar

condition, i. g., if e~ is a continuous increasing function of <

commencing with the value e~" = 0, equations will hold sim-

ilar to those given for the case when ? > 2, viz., similar to

(360), (364)-(368). Especially important is

<~< 1

d€0'

If F~, e~ (or <~F,), ~F~ all satisfy similar conditions,
we shall have an equation similar to (369), which was subject
to the condition n > 4. And if <~F,e~ also satisfies a

similar condition, we shall have an equation similar to (372),
for which the condition was n > 6. Finally, if VQand A suc-

cessive differential coefficients satisfy conditions of the kind

mentioned, we shall have equations like (370) and (371) for
which the condition was n > 2 A.
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These conditions take the place of those given above relat-

ing to n. In tact, we might give conditions relating to the

differential coefficients of similar to those given relating to

the differential coefficients of F~, instead of the conditions

relating to n, for the validity of équations (360), (363)-(372).

This would somewhat extend the application of the equations.



CHAPTER X.

ON A DISTRIBUTION IN PHASE CALLED MICROCANONI-

CAL IN WHICH ALL THE SYSTEMS HAVE

THE SAME ENERGY.

AN important case of statistical equilibrium is that in which

all systems of the ensemble have thé same energy. We may
arrive at thé notion of a distribution which will satisfy the

necessary conditions by thé following process. We may

suppose that an ensemble is distributed with a uniform den-

sity-in-phase between two limiting values of thé energy, </ and

e~, and with density zero outside of those limits. Such an

ensemble is evidently in statistical equilibrium according to

the criterion in Chapter IV, since the density-in-phase may be

regarded as a function of the energy. By diminishing thé

difference of e' and e", we may diminish the differences of

energy in the ensemble. The limit of this process gives us

a permanent distribution in which the energy is constant.

We should arrive at the same result, if we should make thé

density any function of the energy between the limits e' and

e", and zero outside of those limits. Thus, the limiting distri-

bution obtained from the part of a canonical ensemble

between two limits of energy, when the difference of the

limiting energies is indefinitely diminished, is independent of

the modulus, being determined entirely by the energy, and

is identical with the limiting distribution obtained from a

uniform density between limits of energy approaching the

same value.

We shall call the limiting distribution at which we arrive

by this process microcanonical.

We shall find however, in certain cases, that for certain

values of the energy, viz., for those for whicb e~ is infinite,
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this process fails to define a limiting distribution in any such

distinct sense as for other values of thé energy. The dimculty
is not in the process, but in thé nature of the case, being

entirely analogous to that which we meet when we try to find

a canonical distribution in cases when becomes infinite.

We have not regarded such cases as affording true examples
of thé canonical distribution, and we shall not regard thé cases

in which e~ is infinite as affording true examples of tiie micro-

canonical distribution. Weshall in tact find as we go on that

in such cases our most important formulae become illusory.
The use of formulae relating to a canonical ensemble which

contain e~de instead of 6~ dqn, as in the preceding chapters,
amounts to the consideration of the ensemble as divided into

an infinity of microcanonical éléments.

From a certain point of view, the microcanonical distribution

may seem more simple than the canonical, and it has perhaps

been more studied, and been regarded as more closely related

to the fundamental notions of thermodynamics. To.this last

point we shall return in a subsequent chapter. It is sufficient

here to remark that analytically the canonical distribution is

much more manageable than the microcanonical.

We may sometimes avoid difficulties which the microcanon-

ical distribution presents by regarding it as the result of the

following process, which involves conceptions less simple but

more amenable to analytical treatment. We may suppose an

ensemble distributed with a density proportional to

_<T

e

where m a.nd are constants, and then diminish indefinitely

the value of the constant m. Here the density is nowhere

zero until we come to the limit, but at the limit it is zero for

ail energies except e'. We thus avoid the analytical compli-

cation of discontinuities in the value of the density, which

require the use of integrals with inconvenient limits.

In a microcanonical ensemble of systems the energy (e) is

constant, but the kinetic energy (6p) and the potential energy



ALL .S'F.S'7~M.S /4FE' THE SAME .EWE.RCY. 117

(€“) vary in the different systems, subject of course to the con-

dition

€~+~=e= constant. (37.3)

Our first inquilies will relate to the division of energy into

thèse two parts, and to thé average values of functions of Ep
and e,

We shall use the notation M~ to denote an average value in

a microcanonical ensemble of energy e. An average value

in a canonical ensemble of modulus @, which has hitherto

been denoted by -M,we shall in this chapter denote by 'Mjg,to

distinguish more clearly the two kinds of averages.
The extension-in-phase within any limits which can be given

in terms of pp and may be expressed in the notations of the

preceding chapter by the double intégral

J'J'

taken within those limits. If an ensemble of systems is dis-

tributed within those limits with a uniform density-in-phase,

the average value in the ensemble of any function (u) of the

kinetic and potential energies will be expressed by the quotient

of integrals

f~M~~

ff~<~

Since d Fp = e'~ ~€p, and d'6p = ~e when e~ is constant, the

expression may be written

f~Me~

ff~

To get the average value of u in an ensemble distributed

microcanonically with the energy c, we must make the in-

tegrations cover thé extension-in-phase between the energies
e and e + de. This gives
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~-€ e

~<M<~dF,
cleJ ·u

e~p d V~

–~ ~j=oML = ––––––––––
u = EY-E~=eE

~F,

~=o

But by (299) the value of the integral in the denominator

is e~. We have therefore

t~e

~L=~fM~
(374)

~=o 0

where e~ and F~ are connected by equation (373), and u, if

given as function of ep, or of Epand e~, becomes in virtue of

the same equation a function of e~ alone.

We shall assume that e~ bas a finite value. If n > 1, it is

evident from equation (305) that e~ is an increasing function

of e, and therefore cannot be infinite for one value of e without

being infinite for all greater values of e, which would make

– infinite.* When ? ~> 1, therefore, if we assume that e~

is finite, we only exclude such cases as we found necessary

to exclude in the study of the canonical distribution. But

when n = 1, cases may occur in which the canonical distribu-

tion is perfectiy applicable, but in wbich the formulae for the

microcanonical distribution become illusory, for particular val-

ues of e, on account of the infinite value of e~. Such failing

cases of the microcanonical distribution for particular values

of the energy will not prevent us from regarding the canon-

ical ensemble as consisting of an infinity of microcanonical

ensembles, t

See équation (322).
t An exa.mpteof the failing case of the microcanonical distribution is

afforded by a material point, under the influenceof gravity, and constrained
to remain in a vertical circle. The failing case otcura when the energy is

just sufficientto carry the material point to the highest point of the circle.

It willbe observed that the difficulty is inherent in thé nature of thé case,
and is quite independent of the mathematical formulae. The nature of the

difficulty is at once apparent if we try to distribute a finite number of
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From the last equation, with (298), we get

~=<

e~<=~f~~F~=e'F:
(375)

~=o

But by equations (288) and (289)

6"~ F, (376)n

Therefore

<~ T= e"
= (377)

Again, with the aid of equation (301), we get

Eq=E

~=~7~
(378)

~6p< J </€p <& (378)

~=0

if n > 2. Therefore, by (289),

~.=(~)~
"->~ (379)

These results are interesting on account of the relations of

the functions e~ F' and to the notion of temperature in

thermodynamics, a subject to which we shall return here-

after. They are particular cases of a general relation easily
deduced from equations (306), (374), (288) and (289). We

have
Eq=E

~=r~'
~<de,'

F,=0
d,p

q, l < :3n +

The equation may be written

-F -F., ~p,-e-~ _d''
Y e ('e-~p d'`

v~ e~ndY~-='
e

j'
e

deh

=

r,=o

13

dEl

13
d~.

material points with this particular value of the energy as nearly as possible
in statistical equilibrium, or if we ask What is the probability that a point
taken at random from an ensemble in statistical equilibrium with this value
of the energy will be found in any specified part of thé eircte?
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We have therefore

rG~) ::¡.:c¡¡c ( )e
~r(~-A+'i)~

,E

if ~< M + 1. For example, when n is even, we may make

h =
,J M,which gives, with (307),

(2~6- ( F,)~
= r(~) € c.

)

Since any canonical ensemble of systems may be regarded
as composed of microcanonical ensembles, if any quantities
u and v have the same average values in every microcanonical

ensemble, they will have the same values in every canonical

ensemble. To bring equation (380) formally under this rule,

we may observe that the first member being a function of e is

a constant value in a microcanonical ensemble, and therefore

identical with its average value. We get thus the general

equation

~=~=-~Er` ©
e p

de~h I r (~~a h, -f- 1) En~© O 3$.,

if h < + 1.* The equations

0 = ~P~ = e- = (383)

1
/?1 ° d~ =

d`bn I = ~z 1)
=-=n (384)

@-2 2

may be regarded as particular cases of thé general equation.
The last equation is subject to the condition that n > 2.

The last two equations give for a canonical ensemble,

if ? > 2,

(l-~)~e~=l-
(385)

The corresponding equations for a microcanonical ensemble

give, if n > 2,

(l-=~
(386)

n~
~E

e~E d log Y' (386)

See equation (282).
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whieh shows that dcp d log F' approaches thé value unity

when n is very great.

If a system consists of two parts, having separate energies,
we may obtain equations similar in forrn to the preceding,
which relate to tlie system as thus divided.* We shall

distinguish quantities relating to the parts by letters witli

suSixes, the same letters without suffixes relating to tlie

whole system. Thé extension-in-phase of thé whole system
within any given limits of the energies may be represented by
the double integral 1

J~F~

taken within those limits, as appears at once from thé defini-

tions of Chapter VIII. In an ensemble distributed with

uniform density within those limits, and zero density outside,

the average value of any function of <~and e~ is given by the

quotient

ffM~Ft~

J'J~<~

which may also be written t

ffM~e~F,

ff~e~F,

If we make the limits of integration e and e + de, we get the

If this condition is rigorousiy fulfilled,the parts will have no influence
on each other, and the ensemble formed by distributing the whole micro-

canonically is too arbitrary a conception to have a real interest. The prin-
cipal interest of the equations which we shall obtain will be in cases in
which the condition is approximately fulfilled. But for the purposes of a
theoretical discussion, it is of course convenient to make such a condition
absolute. CompareChapter IV, pp. 35ff., where a similar condition is con-
sidered in connection with canonical ensembles.

t Where the analytical transformations are identical in form with thoae
on the preceding pages, it does not appear necessary to give all the ateps
with the same détail.
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average value of u in an ensemble in which the whole system
is microcanonically distributed in phase, viz.,

<~<

'M)<=e'fM~'<Z~, (387)

~o

where < and F~ are connected by the equation

+ = constant = e, (388)

and u, if given as function of ei, or of 61 and e~, becomes in

virtue of the same equation a function of e2 alone.*

Thus

6~),=e~F,,
(389)

V,=O

F = ~t. = e~'F,).. (390)

This requires a similar relation for canonical averages

0 ==e~e == e~Fja = <F~. (391)

Again
<2=<

~~f~ (392)~i E J ~ei
t~=o

But if ni > 2, e~ vanishes for F~ = O,t and

~=< e~c

~~=~ f~=
f~F,. (393)~e ~ej J ~t

~,=0 ~=o

Hence, if M~> 2, and Kz > 2,

~~=~1
(394)de ~61 jf J6

In the applications of the équation (387),we cannot obtain all thé results

corresponding to thoae which we have obtained from equation (374),because
~'pis a known function of fp,while ~'i must be treated as an arbitrary func-
tion of ~t, or nearly so.

t See Chapter VIII, equations (305)and (318).
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and ~1 ~9~and –
– –

– (ù~U)
M 6f€Ja Q'€ije)U d~~

We have compared certain functions of the energy of thé

whole system with average values of similar functions of

the kinetic energy of thé whole system, and with average

values of similar functions of tlie whole energy of a part of

the system. We may also compare the same functions with

average values of the kinetic energy of a part of the system.

We shall express the total, kinetic, and potential energies of

the whole system by e, €p,and e~, and the kinetic energies of the

parts by e~ and E2p. These kinetic energies are necessarily sep-

a.rate we need not make any supposition concerning potential

energies. The extension-in-phase within any limits which can

be expressed in terms of e~, e~, e2pmay be represented in the

notations of Chapter VIII by the triple intégral

fff~<

taken within those limits. And if an ensemble of sy stems is

distributed with a uniform density within those limits, thé

average value of any function of Eq,e~, E2pwill be expressed

by the quotient

fff~P~~1~J J .l
udT i~d~dY

fff~F,

or ff~Me~ded~dl~Oj.

fff~d6~

To get the average value of u for a microcanonical distribu-

tion, we must make the limits e and e + de. The denominator

in this case becomes e~ de, and we have

f,=€ ~p=f-f~

= e'~ ~<
(396)

r-o f.'=o
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where <~p, F~p, and F~ are connected by the equation

~tp + e~p+ = constant = e.

Accordingly

<s~

<~ F~L = ~~J' Y' ~i~ =
(397)

!=0 f~~=0

and we may write

~F=<T~.=7~.=~=~,
(398)Y

ni n2

and

0 = <T~ = a = 6"~ e =
e~a

=
(399)O=e ~Y®=e vili 0 =

M~ M~
(399)

Again,
if

M~ > 2,

~=€ f~=€–t~

s=~f

E

r
q

~o ~o
Eq=E

de"' -o de d~6

=~T~=~~=~.
(400)

= e
J <~p

= e
<~e ~e

~=0

Hence, if ~> 2, and M~> 2,

_d~l~71,1 d~zN I
-1\ n2 ` ~I1

~=~=~

~~=~==~=~=~~)~O de la dE,P le dEZPa P a e

We cannot apply the methods employed in the preceding

pages to thé microcanonical averages of the (generalized)
forces ~4~ A2, etc., exerted by a system on external bodies,

since these quantities are not functions of the energies, either

kinetic or potential, of the whole or any part of the system.
We may however use the method described on page 116.
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Let us imagine an ensemble of systems distributed in phase

according to thé index of probability

(e-~
7

where e' is any constant whicii is a possible value of thé

energy, except only thé least value which is consistent with

the values of the external coordinates, and e and <Mare other

constants. We have therefore

au
_(~~

j Je ~=1, (403)

phases

an (<)2

or e
'=~

~i. (404)

phases

-e
~~°° ('

or again e
= f de. (405)

F=0

From (404) we have

de-c

ail

e et
(£-)2

phases

'=~
(<)',

=J 2~r),e
(406)

V=O

where 'Z~c denotes the average value of in those systems
of the ensemble which have any same energy e. (This
is the same thing as the average value of in a microcanoni-

cal ensemble of energy e.) The validity of the transformation

is evident, if we consider separately thé part of each integral
which lies between two infinitesimally differing limits of

energy. Integrating by parts, we get
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t– .+~r=~

,–=-Z~e ev=~000était L Jr=o

--£')<=00 (.)

)+`Y

J'(~)~dE
-i- de dE

e dE. (407)

~=o

Differentiating (405), we get

f=eo (t-~)' (<)~

r~ ~~)
(408)

da-, da,
e de e

da,
~o

(408)
6~1 Jo.~i &Mi/

t~O ~=0

where e~ denotes the least value of e consistent with the exter-

nal coordinates. The last term in this equation represents the

part of <~6'a!~ which is due to the variation of the lower

limit of the integral. It is evident that the expression in the

brackets will vanish at the upper limit. At the lower limit,

at which ep = 0, and <~has the least value consistent with the

external coordinates, the average sign on ~e is superfluous,

as there is but one value of A1 which is represented by

< Exceptions may indeed occur for particular values

of the external coordinates, at which < receive a finite

increment, and the formula becomes illusory. Such particular

values we may for the moment leave out of account. The

last term of (408) is therefore equal to the first term of thé

second member of (407). (We may observe that both vanish

when ? > 2 on account of the factor g~.)

We have therefore from these equations

t=ec
ff-f~

J'S)~––
y=o0 ~=o

.=00

(.)2 +Y'or

f?~+~=0.
(409)

J\Je de M Q~i/
~=o

That is the average value in the ensemble of the quantity

represented by the principal parenthesis is zero. This must
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be true for any value of <u. If we diminish M, thé average
value of the parenthesis at the limit when <Mvanislies becomes

identical with thé value for e = e'. But this may be any value

of the energy, except thé least possible. We have therefore

dfli ~E d~ d~ = 0 (410)~+3T~=0, (410)6<e
+

ae a~

unless it be for the least value of thé energy consistent with

the external coordinates, or for particular values of thé ex-

ternal coordinates. But tlie value of any term of this equa-

tion as determined for particular values of the energy and

of the external coordinates is not distinguishable from its

value as determined for values of thé energy and external

coordinates indefinitely near those particular values. The

equation therefore holds without limitation. Multiplying

by e~, we get

+ 411ae </€ dal dal <~i

The integral of this equation is

-n 'Î' dV+
~=~+~ (412)

where -F~ is a function of the external coordinates. We have

an equation of this form for each of the external coordinates.

This gives, with (266), for the complete value of the differen-

tial of F

~=6'~e + (~~ ~1)~1 + (< ~)<~ + etc., (413)

or

d V'= e*~(de + ~e ~i + ~tc + etc.) FI ~<ti – – etc.

(414)

To determine the values of the funetions jF~, etc., let

us suppose a~, etc. to vary arbitrarily, while e varies so

as always to have the least value consistent with the values

of the external coordinates. This will make F'= 0, and

<~F'= 0. If n < 2, we shall have also e~ = 0, which will

give
1~=0, ~=0, etc. (415)
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The result is the same for any value of n. For in the varia-

tions considered thé kinetic energy will be constantly zero,
and the potential energy will have thé least value consistent

with the external coordinates. The condition of the least

possible potential energy may limit tlie ensemble at each in-

stant to a single configuration, or it may not do so but in any
case the values of Al, etc. will be the same at each instant

for all thé systems of the ensemble,* and the equation

<<'ë-)- ~4~~ + ~a~ij + etc. = 0

will hold for the variations considered. Hence the functions

FI, -F~, etc. vanish in any case, and we have the equation

d F = e~e + <~ ~i + e~~ + etc., (416)

or d log V <~6
+ ~1-~a.i + ~a.~e!~ + etc.

(4I7)or log F
=. ––––––––––,

(417)

or again

= e'~ F log F ~j, etc. (418)

It will be observed that the two last equations have the form

of the fundamental differential equations of thermoclynamics,
~– corresponding to temperature and log to entropy.

We have already observed properties of e' F'suggestive of an

analogy with temperature. t The significance of these facts

will be discussed in another chapter.
The two last equations might be written more simply

de + It~e + '~f ~a;! + etc.
u,

6-~

~e = e – ~i )f ~i – 3~e ~s~ – etc.,

and still have the form analogous to the thermodynamic

equations, but 6~ has nothing like the analogies with tempera-

ture which we have observed in e" F.

This statement, as mentioned before, may have exceptions for particular
values of the external coordin~tes. This will not invalidate the reasoning,
which has to do with varying values of the external coordinates.

t See Chapter IX, page 111; also this chapter, page 119.
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CHAPTER XI.

MAXIMUM AND MINIMUM PROPERTIES OF VARIOUS DIS-

TRIBUTIONS IN PHASE.

IN the following theorems we suppose, as always, that thé

systems forming an ensemble are identical in nature and in

the values of the external coordinates, which are here regarded

as constants.

Theorem Z If an ensemble of systems is so distributed in

phase that the index of probability is a function of the energy,

the average value of the index is less than for any other distri-

bution in which the distribution in energy is unaltered.

Let us write for the index which is a function of the

energy, and + A?) for any other which gives the same dis-

tribution in energy. It is to be proved that

an ail

f.f(~+
~)

>f.f~"
(419)

phases phases

where is a function of the energy, and A~ a function of thé

phase, which are subject to the conditions that

all
r

au
r

f. fe'
dpl

==f.f~ = 1,
(420)

phases phases

and that for any value of the energy (e')

t=~+<~ e=~+C~

f. fe"+~
dpl

=f.
dq". (421)

e~=e~ €==e~

Equation (420) expresses the general relations which ?/ and

+ A?; must satisfy in order to be indices of any distributions,

and (421) expresses the condition that they give the same

distribution in energy.
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Since i.s a function of thé energy, and may therefore be re-

garded as a. constant within thé limits of integration of (421),
we may multiply by under the integral sign in both mem-

bers, which gives

f=t~+t/f* f=~+~

J J ~e'i
dqn

= '1
~n-

<=f' 6~:€~
J

Since this is true within thé limits indicated, and for every
value of e', it will be true if the integrals are taken for all

phases. We may therefore cancel the corresponding parts of

(419), which gives

au

J'J'A ~t
c~, > 0. (422)

phases

But by (420) this is equivalent to

ail

f. f(A~" + 1 ~")e"<~t. dqn > 0. (423)

phasesla

Now A~ e~ + 1 e~ is a decreasing function of A~ for nega-
tive values of A~, and an increasing function of A?; for positive
values of A~. It vanishes for A~ = 0. The expression is

therefore incapable of a negative value, and can have the value
0 only for A?y= 0. The inequality (423) will hold therefore

unless A?? = 0 for all phases. The theorem is therefore

proved.
Theorem JX If an ensemble of systems is canonically dis-

tributed in phase, the average index of probability is less than
in any other distribution of the ensemble having the same

average energy.
For the canonical distribution let the index be (~ –

e)/@,
and for another having the same average energy let the index
be (-~ – e)/@ + A?;, where A~ is an arbitrary function of the

phase subject only to the limitation involved in thé notion of

the index, that



.M~/Att/Af AND M/.V/M PROPERTIES. 131

au ))/–< ail ~–f

~f' ~Pl <~?..==J" ~1 = 1,
phases phases

(424)
and to that relating to the constant average energy, that

ail tt,–f
+~

aU
r

jL–t
'-+~ '––

t
ee s

~p~ = < t e e s (425)
phases phases

It is to be proved that

aU
e

~–t

/>
>

phases

all
~-t

J'A~
phases

Now in virtue of the first condition (424) we may cancel the

constant term /@ in the parentheses in (426), and in virtue

of the second condition (425) we may cancel the term €/<").
The proposition to be proved is thus reduced to

ail t~-f––+~
f .<A~e s ~>0,

phases

which may be written, in virtue of the condition (424),
au ~–t

f.f(A~e~
+ 1 e~)~~ d~ > 0. (427)

phases

In this form its truth is evident for the same reasons which

applied to (423).
Theorem III If @ is any positive constant, the average

value in an ensemble of the expression ?y -}- e (") (~ denoting
as usual the index of probability and e the energy) is less when

the ensemble is distributed canonically with modulus 0, than

for any other distribution whatever.

In accordance with our usual notation let us write

(-<~ – e)/@ for the index of the canonical distribution. In any
other distribution let the index be (~ – e) 0 + A~.
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In the canonical ensemble ~+6/0 has the constant value

i~- 0 in thé other ensemble it has thé value <E)-)- A?;.

Thé proposition to be proved may therefore be written

au ~–c

~<J'J(~
y

phases
where

~+A~
y~r

J -Je

ee

~=J.J~=1.
(429)

phases phases

In virtue of this condition, since 0 is constant, the propo-
sition to be proved reduces to

au ~– <
v~r+

0< t.tA~e (430)

phasesJe

where the démonstration may be concluded as in the last

theorem.

If we should substitute for the energy in the preceding
theorems any other function of the phase, the theorems, MtM-

~ts mutandis, would still hold. On account of the unique

importance of the energy as a function of the phase, thé theo-

rems as given are especially worthy of notice. When the case

is such that other functions of the phase have important

properties relating to statistical equilibrium, as described

in Chapter IV,* the three following theorems, which are

generalizations of the preceding, may be useful. It will be

sufficient to give them without demonstration, as the principles
involved are in no respect different.

Theorem IV If an ensemble of sy stems is so distributed in

phase that the index of probability is any function of -Fj,

etc., (these letters denoting functions of the phase,) the average
value of the index is less than for any other distribution in

phase in which the distribution with respect to the functions

jF~, etc. is unchanged.

See pages 37-41.
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Theorem V. If an ensemble of systems is so distributed

in phase that the index of probability is a linear function of

etc., (thèse letters denoting functions of thé phase,) thé

average value of the index is less than for any other distribu-

tion in which the functions J~, etc. have the same average
values.

Theorem VI. The average value in an ensemble of systems
of jF (where denotes as usual the index of probability and

F any function of the phase) is less when the ensemble is so

distributed that + F is constant than for any other distribu-

tion whatever.

Theorem F77. If a system which in its different phases
constitutes an ensemble consists of two parts, and we consider

the average index of probability for the whole system, and

also the average indices for each of the parts taken separately,
the sum of the average indices for the parts will be either less

than the average index for the whole system, or equal to it,

but cannot be greater. The limiting case of equality occurs

when the distribution in phase of each part is independent of

that of the other, and only in this case.

Let the coordinates and momenta of the whole system be

~l S~ pl of which ql <~ relate to one

part of the system, and $~ Fm+i. to the other.

If the index of probability for the whole system is denoted by
the probability that the phase of an unspecified system lies

within any given limits is expressed by the integral

J'6"~
(431)

taken for those limits. If we set

J'J*~ ~+t ~~9-~1. = e~ (432)

where the integrations cover all phases of the second system,
and

f.fe''(~i.
<~ <~ == e" (433)
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where thé integrations cover all phases of the first system,
the integral (431) will reduce to the form

f. fë"'
t~pt ~p, < (434)

when the limits can be expressed in terms of the coordinates

and momenta of the first part of the system. The same integral
will reduce to

f.
< <~ (435)

when the limits can be expressed in terms of the coordinates

and momenta of the second part of the system. It is evident

that ~i and are the indices of probability for the two parts
of the system taken separately.

The main proposition to be proved may be written

< ~1
e''1 dpl o!~

+ ~e"'
<+i.

,l .l J

f.e" (436)

where the first integral is to be taken over all phases of the first

part of the system, the second intégral over all phases of the

second part of the system, and the last integral over all phases
of the whole system. Now we have

J'=l,
(437)

J .J e'' dpl
dq" = 1, (437)

f.f."<~
dqm= 1, (438)

and
f.fe"~+i

dq"= 1, (439)

where the limits cover in each case all the phases to which the

variables relate. The two last equations, which are in them-

selves évident, may be derived by partial integration from the

first.
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It appears from thé definitions of and that (436) may

also be written

f. e"~i. + j e"d~

J'e"
(440)

or
~–~i–~)e''<t.0,

where the integrations cover all phases. Adding the equation

f.f6"+'=l,
(441)

which we get by multiplying (438) and (439), and subtract-

ing (437), we have for the proposition to be proved
ail

f ..J'[(~
~i ~) 6" + e"~ e"] d~ 0. (442)

phases

Let

M= – ~i – ~ij. (443)

The main proposition to be proved may be written

au

f. f(Me"
+ 1 e")e'"+~i. 0. (444)

phases·lA

This is evidently true since the quantity in the parenthesis is

incapable of a negative value.*il< Moreover the sign = can

hold only when the quantity in the parenthesis vanishes for

ail phases, i. e., when u = 0 for ail phases. This makes

== + for all phases, whieh is the analytical condition

which expresses that thé distributions in phase of the two

parts of the system are independent.
Theorem VIII If two or more ensembles of systems which

are identical in nature, but may be distributed differently in

phase, are united to form a single ensemble, so that thé prob-

ability-coefficient of the resulting ensemble is a linear fonction

SeeTheorem I, where this is proved of a similar expression.
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of the probability-coefficients of the original ensembles, the

average index of probability of thé resulting ensemble cannot

be greater than thé saine linear function of thé average indices

of the original ensembles. It can be equal to it only when

the original ensembles are similarly distributed in phase.
Let P~, etc. be thé probability-coefficients of the original

ensembles, and P that of the ensemble formed by combining

them; and let Nz, etc. be the numbers of systems in the

original ensembles. It is evident that we shall have

P el Pl + c, P, + etc. = 2 (cl Pi), (445)

jy .y
where

~~2~ ~~i'27''
etc. (446)

The main proposition to be proved is that

au
r

ail

J .J~ log S pi~- -J~ log Pl ~i. ~J
phases L phases -)

(447)
au

or f. f[2 (ci-Pi log Pi) P log .P] dpl 0. (448)

phases·la

If we set

01 = Pi log Pi Pl log P Pi + P

will be positive, except when it vanishes for Pl = P. To

prove this, we may regard Pl and P as any positive quantities.
Then

(~).=~
P,

~Pi~ P Pi'

Since Ql and <<~ vanish for Pl = P, and the second

differential coefficient is always positive, Ql must be positive

except when Pl = P. Therefore, if Q2, etc. have similar

definitions,

2 (CIQ,) 0. (449)
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Butsince S(cijPi)=-P

and 2<*i=l,

2 (~ Qi) = 2 (c, Pl log Pl) P log P. (450)

This proves (448), and shows that thé sign = will hold only

when

Pl = P, = P, etc.

for all phases, i. e., only when the distribution in phase of the

original ensembles are all identical.

Theorem IX. A uniform distribution of a given number of

systems within given limits of phase gives a less average index

of probability of phase than any other distribution.

Let ??be the constant index of the uniform distribution, and

?; + A~ the index of some other distribution. Since thé num-

ber of sy stems within the given limits is the same in thé two

distributions we have

f.fe"+~
dpl

=J\ ..J'~
dpl J?., (451)

where the integrations, like those which follow, are to be

taken within the given limits. The proposition to be proved

may be written

f.. J'~ +
A~) e~"

> <
d~, (452)

or, since is constant, .fif,

f.f(~
+ A~) e~t. >f.f~i.

(453)

In (451) also we may cancel the constant factor e' and multiply

by the constant factor (?? + 1). This gives

J\ ..J'(~
+ 1) e~ dp~ dq. =~ J~

+ 1) dpl

The subtraction of this equation will not alter thé inequality

to be proved, which may therefore be written

.(0~
1) e 0 dpl dq" >

dp~ dq"
f.f(A~ 1)

dp~ >J"J"-
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or
f. f(~<~ e~"

+ 1) > 0. (454)

Since the parenthesis in this expression represents a positive

value, except when it vanishes for A~ = 0, the intégral will

be positive unless A~ vanishes everywhere within thé limits,

which would make the difference of the two distributions

vanish. The theorem is therefore proved.



CHAPTER XII.

ON THE MOTION OF SYSTEMS AND ENSEMBLES OF SYS-

TEMS THROUGH LONG PERIODS OF TIME.

AN important question which suggests itself in regard to any
case of dynamical motion is whether the system considered

will return in the course of time to its initial phase, or, if it

will not return exactly to that phase, whether it will do so to

any required degree of approximation in the course of a suffi-

ciently long time. To be able to give even a partial answer

to such questions, we must know something in regard to the

dynamical nature of the system. In the following theorem,
the only assumption in this respect is such as we have found

necessary for the existence of the canonical distribution.

If we imagine an ensemble of identical systems to be

distributed with a uniform density throughout any finite

extension-in-phase, the number of the systems which leave

the extension-in-phase and will not return to it in thé course

of time is less than any assignable fraction of the whole

number; provided, that the total extension-in-phase for the

systems considered between two limiting values of thé energy
is finite, these limiting values being less and greater respec-

tively than any of the energies of the first-mentioned exten-

sion-in-phase.
To prove this, we observe that at the moment which we

call initial thé systems occupy the given extension-in-phase.
It is evident that some systems must leave the extension

immediately, unless all remain in it forever. Those systems
which leave the extension at the first instant, we shall call

the front of the ensemble. It will be convenient to speak of

this front as generating the extension-in-phase through which it

passes in the course of time, as in geometry a surface is said to
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generate the volume through which it passes. In equal times

thé front générâtes equal extensions in phase. This is an

immédiate conséquence of the principle of conservation oj

ë~g/tSM~t-p/MM, unless indeed we prefer to consider it as

a slight variation in thé expression of that principle. For in

two equal short intervals of time let the extensions generated
be ~i and B. (We make tlie intervals short simply to avoid

the complications in thé enunciation or interpretation of thé

principle which would arise when the saine extension-in-phase
is generated more than once in the interval considered.) Now

if we imagine that at a given instant Systems are distributed

throughout tlie extension A, it is evident tliat the saine

systems will after a certain time occupy the extension .S,

which is therefore equal to A in virtue of the principle cited.

The front of thé ensemble, therefore, goes on generating

equal extensions in equal times. But these extensions are

included in a finite extension, viz., that bounded by certain

limiting values of the energy. Sooner or later, therefore,

thé front must generate phases which it has before generated.
Such second generation of the same phases must commence

with the initial phases. Therefore a portion at least of the

front must return to the original extension-in-phase. The

same is of course true of the portion of the ensemble which

follows that portion of the front through the same phases at

a later time.

It remains to consider how large the portion of the ensemble

is, which will return to the original extension-in-phase. There

can be no portion of the given extension-in-phase, the systems
of which leave the extension and do not return. For we can

prove for any portion of the extension as for the whole, that

at least a portion of the systems leaving it will return.

We may divide the given extension-in-phase into parts as

follows. There may be parts such that the systems within

them will never pass out of them. These parts may indeed

constitute the whole of the given extension. But if the given
extension is very small, these parts will in general be non-

existent. There may be parts such that systems within them
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will all pass out of thé given extension and ail return within

it. The whole of thé given extension-in-phase is mu.d.c up of

parts of thèse two kinds. This does not exclude thé possi-

bility of phases on thé boundaries of such parts, such that

systems starting with those pliases would leave thé extension

and never return. But in the supposed distribution of an

ensemble of systems with a uniform density-in-phase, such

systems would not constitute any assignable fraction of thé

whole number.

These distinctions may be illustrated by a very simple

example. If we consider the motion of a rigid body of

which one point is fixed, and which is subject to no forces,

we find three cases. (1) Thé motion is periodic. (2) The

system will never return to its original phase, but will return

infinitely near to it. (3) The system will never return cither

exactly or approximately to its original phase. But if we

consider any extension-in-phase, however small, a system

leaving that extension will return to it except in thé case

called by Poinsot singular,' viz., when the motion is a

rotation about an axis lying in one of two planes having
a fixed position relative to the rigid body. But ail such

phases do not constitute any true e~KSMM-zM-Mse in the

sense in which we have defined and used the term.*

In the same way it may be proved that the systems in a

canonical ensemble which at a given instant are contained

within any finite extension-in-phase will in general return to

An ensemble of systems distributed in phase is a less simple and ele-

mentary conception than a single system. But by the considération of

suitable ensembles instead of single systems, we may get rid of the incon-

venienceof having to consider exceptions formed by particular cases of thé

integral equations of motion, these cases simply disappcaring when the

ensemble is substituted for the single system as a subject of study. This

is especially true when the ensemble is distributed, as in the case called

canonical, throughout an extension-in-pit~se. In a less degree it is true of

the microcanonical ensemble,which does not occnpyany extension-in-phase,
(in the sense in whichwe hâve used the term,) although it is convenient to

regard it as a limiting case with respect to ensembleswhich do, as we thus

gain for the subject some part of the analytical simp'icity whichbelongs to
the theory of ensembles whichoccupy true extensions-in-phase.
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that extension-in-phase, if they leave it, the exceptions, i. e.,

thé number which pass out of the extension-in-phase and do

not return to it, being less than any assignable fraction of the

whole number. In other words, thé probability that a system
taken at random from the part of a canonical ensemble which

is contained within any given extension-in-phase, will pass out

of that extension and not return to it, is zero.

A similar theorem may be enunciated with respect to a

microcanonical ensemble. Let us consider the fractional part
of such an ensemble which lies within any given limits of

phase. This fraction we shall denote by It is evidently
constant in time since the ensemble is in statistical equi-

librium. The systems within the limits will not in general
remain the same, but some will pass out in each unit of time

while an equal number come in. Some may pass out never

to return within the limits. But thé number which in any
time however long pass out of the limits never to retum will

not bear any finite ratio to the number within the limits at

a given instant. For, if it were otherwise, let f denote the

fraction representing such ratio for the time T. Then, in

the time T, the number which pass out never to return will

bear the ratio ~F to the whole number in the ensemble, and

in a time exceeding ?'/(y.F) the number which pass out of

thé limits never to return would exceed the total number

of systems in the ensemble. The proposition is therefore

proved.
This proof will apply to the cases before considered, and

may be regarded as more simple than that which was given.
It may also be applied to any true case of statistical equilib-
rium. By a true case of statistical equilibrium is meant such
as may be described by giving the general value of the prob-
ability that an unspecified system of the ensemble is con-
tained within any given limits of phase.*

An ensemble in which the systems are material points constrained ta
move in vertical circtea, with just enough energy to carry them to the
highest points, cannot afford a true example of statistical equilibrium. For
any other value of the energy than the critical value mentioned,we might
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Let us next consider whether an ensemble of isolated

systems lias any tendency in thé course of time toward a

state of statistical equilibrium.

There are certain functions of phase which are constant in

time. The distribution of the ensemble with respect to the

values of these functions is necessarily invariable, that is,

the number of sy stems within any limits which can be

specified in terms of these functions cannot vary in the course

of time. The distribution in phase which without violating

this condition gives the least value of the average index of

probability of phase (??) is unique, and is that in which thé

in various ways describe an ensemble in statistical equilibrium, while the

same language applied to the critical value of the energy would fail to do

so. Thus, if we should say that the ensemble is so distributed that the

probability that a system is in any given part of the circle is proportioned

to tlie time which a single system spends in that part, motion in either direc-

tion being equally probable, we should perfectly define a distribution in sta-

tistical equilibrium for any value of ttie energy except the critical value

mentioned above, but for this value of the energy ail the probabilities in

question would vanish unless the highest point is included in the part of the

cirele eonsider~d, in which case tlie probability is unity, or forms one of its

limits, in whieh case the probability is indeterminate. Compare the foot-note

on page 118.

A still more simple example is afforded by the uniform motion of a

material point in a straight line. Here the impossibility of statistical equi-

librium is not limited to any particnlar energy, and the canonical distribu-

tion as well as the microcanonical is impossible.

These examples are mentioned here in order to show tlie necessity of

caution in the application of the above prineiple, with respect to the question

whether we have to do with a true case of statistical equilibrium.
Another point in respect to which caution must be exercised is that the

part of an ensemble of whieh the theorem of the return of systems is asserted

should be entirely defined by limits within whieh it is contained, and not by

any such condition as that a certain function of phase shall have a given

value. This is necessary in order that the part of the ensemble which is

considered should be any assignable fraction of the whole. Thus, if we have

a canonical ensemble consisting of material points in vertical circles, the

theorem of the return of systems may be applied to a part of the ensemble

defined as contained in a given part of the circle. But it may not be applied
in all cases to a part of the ensemble defined as contained in a given part
of the circle and having a given energy. It would, in fact, express thé exact

opposite of the truth when the given energy is tlie critical value mentioned

above.
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index of probability (?;) is a function of the functions men-

tioned.* Jt is therefore a permanent distribution,')' and the

only permanent distribution consistent with the invariability

of thé distribution with respect to the functions of phase

which are constant in time.

It would seem, therefore, that we might find a sort of meas-

ure of the déviation of an ensemble from statistical equilibrium

in the excess of the average index above the minimum which is

consistent with the condition of the invariability of the distri-

bution with respect to the constant functions of phase. But

we have seen that the index of probability is constant in time

for each system of the ensemble. The average index is there-

fore constant, and we find by this method no approach toward

statistical equilibrium in the course of time.

Yet we must here exercise great caution. One function

may approach indefinitely near to another function, while

some quantity determined by the first does not approach the

corresponding quantity determined by thé second. A line

joining two points may approach indefinitely near to the

straight line joining them, while its length remains constant.

We may find a closer analogy with the case under considera-

tion in the effect of stirring an incompressible liquid.$ In

space of 2 n dimensions the case might be made analyti-

cally identical with that of an ensemble of systems of n

degrees of freedom, but the analogy is perfect in ordinary

space. Let us suppose the liquid to contain a certain amount

of coloring matter which does not affect its hydrodynamic

properties. Now the state in which the density of the coloring

matter is uniform, i. e., the statt. of perfect mixture, which is

a sort of state of equilibrium in this respect that the distribu-

tion of the coloring matter in space is not affected by thé

internai motions of the liquid, is characterized by a minimum

See Chapter XI, Theorem IV.

t SeeChapter IV, SM6init.

t By liquid is here meant the continuons body of theoretical hydrody-

nanucs, and not anything of the molecular structure and molecular motions

of real liquide.
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orcung
10

value of thé average square of thé density of thé colormg

matter. Let us suppose, however, that tlie coloring mat.t.et' is

distributed with a variable density. If we give tlie liquid any
motion whatever, subject only to the liydr<jdynamic law of

incompressibility, it may be a steady flux, or it may varv
with thé time, -the density of thé eoloring matter at any
same point of the liquid will be unchanged, and the average

square of this density will therefore be unchanged. Yet no

fact is more familiar to us than that stirring tends to bring a

liquid to a state of uniform mixture, or uniform densities of

its components, which is characterized by minimum values

of thé average squares of these densities. It is quite true tliat

in the physical experiment the result is hastened by tlie

process of diffusion, but the result is evidently not dependent
on that process.

The contradiction is to be traced to thé notion of the ~e~s~y
of the coloring matter, and the process by which this quantity
is evaluated. This quantity is the limiting ratio of the

quantity of the coloring matter in an element of space to the

volume of that element. Now if we should take for our ele-

ments of volume, after any amount of stirring, the spaces

occupied by the same portions of the liquid which originally

occupied any given system of elements of volume, the densi-

ties of the coloring matter, thus estimated, would be identical

with the original densities as determined by the given system
of elements of volume. Moreover, if at the end of any finite

amount of stirring we should take our elements of volume in

any ordinary form but sufficiently small, the average square
of the density of the coloring matter, as determined by such

element of volume, would approximate to any required degree
to its value before the stirring. But if we take any element

of space of fixed position and dimensions, we may continue

the stirring so long that the densities of the colored liquid
estimated for these nxed elements will approach a uniform

limit, viz., that of perfect mixture.

The case is evidently one of those in which the limit of a

limit has different values, according to the order in which we
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apply the processes of taking a limit. tf treating tlie éléments

of volume as constant, we continue ttie stirring indetinitely,
we get a uniform density, a result not affeeted by making tlie

elements as small as we choose but if treating thé amount of

stirring as nnite, we diminish indefinitely tlie elements of

volume, we get exactly tlie same distribution in density as

before the stiiTing, a result which is not affeeted by eon-

tinuing tlie stirring as long as we choose. Thé question is

largely one of language and définition. One may perhaps be

allowed to say that a finite amount of stirring will not affect

thé mean square of thé density of the coloring matter, but an

infinite amount of stirring may be regarded as producing a

condition in which the mean square of the density bas its

minimum value, and the density is uniform. We may cer-

tainly say that a sensibly uniform density of the colored com-

ponent may be produced by stirring. Whether thé time

required for this result would be long or short depends upon
the nature of the motion given to the liquid, and the fineness

of our method of evaluating the density.
All this may appear more distinctly if we consider a special

case of liquid motion. Let us imagine a cylindrica.1 mass of

liquid of which one sector of 90° is black and the rest white.

Let it have a motion of rotation about the axis of the cylinder
in which the angular velocity is a function of the distance

from the axis. In the course of time the black and the white

parts would become drawn out into thin ribbons, which would

be wound spirally about the axis. The thickness of these rib-

bons would diminish without limit, and the liquid would there-

fore tend toward a state of perfect mixture of the black and

white portions. That is, in any given element of space, the

proportion of the black and white would approach 1: 3 as a limit.

Yet after any finite time, the total volume would be divided

into two parts, one of which would consist of the white liquid

exclusively, and the other of the black exclusively. If the

coloring matter, instead of being distributed initially with a

uniform density throughout a section of the cylinder, were

distributed with a density represented by any arbitrary func-
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tion of the cylindrical coordinates r, e and z, thé effect of tlie

same motion continued indefinitely would be an approach to

a condition in which thé density is a function of ?* and z alone.

In this limiting condition, thé average square of the density
would be less than in thé original condition, when thé density
was supposed to vary with although after any finite time

thé average square of the density would be the same as at

first.

If we limit our attention to the motion in a single plane

perpendicular to thé axis of the cylinder, we have something
which is almost identical with a diagrammatic representation
of the changes in distribution in phase of an ensemble of

systems of one degree of freedom, in which the motion is

periodic, the period varying with the energy, as in thé case of

a pendulum swinging in a circular arc. If the coordinates

and momenta of the systems are represented by rectangu-
lar coordinates in the diagram, the points in the diagram

representing the changing phases of moving systems, will

move about the origin in closed curves of constant energy.
The motion will be such that areas bounded by points repre-

senting moving systems will be preserved. Thé only differ-

ence between the motion of the liquid and the motion in thé

diagram is that in one case the paths are circular, and in the

other they differ more or less from that form.

When the energy is proportional to j~ + the curves of

constant energy are circles, and the period is independent of

the energy. There is then no tendency toward a state of sta-

tistical equilibrium. The diagram turns about the origin with-

out change of form. This corresponds to the case of liquid

motion, when the liquid revolves with a uniform angular

velocity like a rigid solid.

The analogy between the motion of an ensemble of sy stems
in an extension-in-phase and a steady current in an incompres-
sible liquid, and the diagrammatic representation of the case

of one degree of freedom, which appeals to our geometrieal in-

tuitions, may be sufficient to show how the conservation of

density in phase, which involves the conservation of the
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average value of thé index of probability of phase, is consist-

ent with an approach to a limiting condition in which tliat

average value is les.s. We might perhaps fairly infer from

such considerations as have been adduced that an approach
to a limiting condition of statistical equilibrium is tlie general

rule, when the initial condition is not of that character. But

thé subject is of such importance that it seems desirable to

give it farther considération.

Let us suppose that the total extension-in-phase for the

kind of system considered to be divided into equal elements

(-0 F') which are very small but not infinitely small. Let us

imagine an ensemble of systems distributed in this extension

in a manner represented by the index of probability which

is an arbitrary function of the phase subject only to the re-

striction expressed by equation (46) of Chapter I. We shall

suppose the elements D to be so small that ?y may in gen-
eral be regarded as sensibly constant within any one of them

at the initial moment. Let the path of a system be defined as

the series of phases through which it passes.
At the initial moment (~) a certain sy stem is in an element

of extension D VI. Subsequently, at the time < the same

system is in the element D V". Other systems which were

at first in .D~' will at the time t" be in .Z)]t~, but not all,

probably. The systems which were at first in jD will at

the time <" occupy an extension-in-phase exactly as large as at

first. But it will probably be distributed among a very great
number of the elements (DV) into which we have divided

the total extension-in-phase. If it is not so, we can generally
take a later time at whieh it will be so. There will be excep-
tions to this for particular laws of motion, but we will con-

fine ourselves to what may fairly be called the general case.

Only very small part of the systems initially in will

be found in jPJ~~ at the time t", and those which are found in

D V" at that time were at the initial moment distributed

among a very large number of elements D P~

What is important for our purpose is thé value of the

index of probability of phase in the element -DF'" at the time
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In the part of -DF~ occupied by systems which at thé

time were in 2)!~ thé value of will be the same as its

value in D F' at thé time i", which we shall call In thc

parts of D F'" occupied by systems whicli at t' were in élé-

ments very near to D we may suppose the value of 7; to

vary little from We cannot assume this in regard to parts
of D P~ occupied by systems whieh at t' were in elements

remote from -DF~. We want, therefore, some idea of thé

nature of the extension-in-phase occupied at t' by the Sys-
tems which at <" will occupy D F' Analytically, thé prob-

lem is identical with finding the extension occupied at <"

by thé systems which at <' occupied D F'. Now the systems
in D F'" which lie on thé same path as the system first con-

sidered, evidently arrived at Z~ t~ at nearly thé same time,

and must have left -D F'~ at nearly the same time, and there-

fore at were in or near .DF' We may therefore take ?/ as

the value for these systems. The same essentially is true of

systems in jPF'~ which lie on paths very close to thé path

already considered. But with respect to paths passing through

2) F'' and -D F' but not so close to the first path, we cannot

assume that the time required to pass from 7) F'' to D F'" is

nearly the same as for the first path. Thé difference of the

times required may be small in comparison with t"-t', but as

this interval can be as large as we choose, the difference of the

times required in the different paths has no limit to its pos-
sible value. Now if the case were one of statistical equilib-

rium, the value of would be constant in any path, and if ail

the paths which pass through D F~' also pass through or near

-PF' the value of ?y throughout -DF'~ will vary little from

')/. But when the case is not one of statistical equilibrium,
we cannot draw any such conclusion. The only conclusion

which we can draw with respect to thé phase at <' of the sys-
tems which at <" are in D F~ is that they are nearly on the

same path.
Now if we should make a new estimate of indices of prol)-

ability of phase at the time < using for this purpose thé

elements D F, that is, if we should divide thé number of
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systems in D F", for example, by thé total number of systems,
and also by the extension-in-phase of thé élément, and take

tlie logarithm of thé quotient, we would get a number which

would be less than tlie average value of for the systems
within D P"" based on thé distribution in phase at thé time )!

Hence the average value of for thé whole ensemble of

systems based on thé distribution at t" will be less than thé

average value based on the distribution at t'.

We must not forget that there are exceptions to this gen-
eral rule. These exceptions are in cases in which the laws

of motion are such that systems having small differences

of phase will continue always to have small differences of

phase.
It is to be observed that if the average index of probability in

an ensemble may be said in some sense to have a less value at

one time than at another, it is not necessarily priority in time

which determines the greater average index. If a distribution,

which is not one of statistical equilibrium, should be given

for a time t', and the distribution at an earlier time <" should

be defined as that given by the corresponding phases, if we

increase the interval leaving t' fixed and taking t" at an earlier

and earlier date, the distribution at t" will in general approach
a limiting distribution which is in statistical equilibrium. The

determining difference in such cases is that between a definite

distribution at a definite time and the limit of a varying dis-

tribution when the moment considered is carried either forward

or backward indefinitely. t
But while the distinction of prior and subsequent events

may be immaterial with respect to mathematical fictions, it is

quite otherwise with respect to the events of the real world.

It should not be forgotten, when our ensembles are chosen to

illustrate the probabilities of events in the real world, that

See Chapter XI, Theorem IX.
t Onemay compare the kinematical truism that when two points are

moving with uniform velocities, (with thé single exception of thé case where
the relative motion is zero,) their mutual distance at any definite time is less
than for t = oo,or < = – co.
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while thé probabilities of subsequent events may often be

determined from the probabilities of pri(u' events, it is rarely

thé case that probabilities of prior events can be determined

from those of subsequent events, for we are rarely justified in

excluding the considération of thé antécédent probability of

thé prior events.

It is worthy of notice that to take a system at random from

an ensemble at a date chosen at random from several given

dates, t', t", etc., is practically thé same thing as to take a sys-
tem at random from thé ensemble composed of ail thé Systems
of the given ensemble in their phases at thé time t', together
with the same systems in their phases at tlie time t", etc. By
Theorem VIII of Chapter XI this will give an ensemble in

which the average index of probability will be less than in

the given ensemble, except in the case when thé distribution

in the given ensemble is the same at the times < < etc.

Consequently, any indefiniteness in the time in which we take

a system at random from an ensemble bas thé practical effect

of diminishing the average index of the ensemble from which

the system may be supposed to be drawn, except when the

given ensemble is in statistical equilibrium.



CHAPTER XIII.

EFFECT OF VARIOUS PROCESSES ON AN ENSEMBLE OF

SYSTEMS.

IN the last chapter and in Chapter 1 we have considered thé

changes which take pince in the course of time in an ensemble

of isolated systems. Let us now proeeed to consider the

changes which will take place in an ensemble of systems under

external influences. These external influences will be of two

kinds, thé variation of thé eoordinates which we have called

external, and the action of other ensembles of systems. The

essential difference of the two kinds of influence consists in

tins, that the bodies to which the external coordinates relate

are not distributed in phase, while in thé case of interaction

of thé systems of two ensembles, we have to regard the fact

that both are distributed in phase. To find the effect pro-
duced on the ensemble with which we are principally con-

cerned, we have therefore to consider single values of what

we have called external coordinates, but an infinity of values

of thé internal coordinates of any other ensemble with which

there is interaction.

Or, to regard the subject from another point of view, –

the action between an unspecified system of an ensemble and

the bodies represented by the external coordinates, is the

action between a system imperfectl.y determined with respect
to phase and one whieh is perfectly determined while the

interaction between two unspecified systems belonging to

différent ensembles is the action between two systems both of

which are imperfectly determined with respect to phase.*
We shall suppose the ensembles which we consider to be

distributed in phase in the manner described in Chapter I, and

In the development of thé subject, we shaH find that this distinction

corresponds to the distinction in thermodynamics between mechanical and
thermal action.
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represented by the notations of that chapter, especially by thé

index of probability of phase (~). There are therefore 2 /t

independent variations in the phases which constitute tlie

ensembles considered. Tins excludes ensembles like thé

microcanonical, in which, as energy is constant, there are

only 2 n 1 independent variations of phase. Tins seems

necessary for tlie purposes of a general discussion. For

although we may imagine a microcanonical ensemble to have

a permanent existence when isolated from external influences,
the effect of such influences would generally be to destroy the

uniformity of energy in the ensemble. Moreover, since the

microcanonical ensemble may be regarded as a limiting case of

such ensembles as are described in Chapter I, (and that in

more than one way, as shown in Chapter X,) the exclusion is

rather formai than real, since any properties which belong to

the microcanonical ensemble could easily be derived from those

of thé ensembles of Chapter I, which in a certain sense may
be regarded as representing the general case.

Let us first consider thé effect of variation of the external

coordinates. We have already had occasion to regard these

quantities as variable in the differentiation of certain equations

relating to ensembles distributed according to certain lawss

called canonical or microcanonical. That variation of the

external coordinates was, however, only carrying the atten-

tion of the mind from an ensemble with certain values of the

external coordinates, and distributed in phase according to

some general law depending upon those values, to another

ensemble with different values of the external coordinates, and

with the distribution changed to conform to these new values.

What we have now to consider is thé effect which would

actually result in the course of time in an ensemble of systems

in which the external coordinates should be varied in any

arbitrary manner. Let us suppose, in the first place, that

these coordinates are varied abruptly at a given instant, being

constant both before and after that instant. By the definition

of thé external coordinates it appears that this variation does

not affect the phase of any system of the ensemble at the time
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when it takes place. Therefore it does not affect the index of

probability of phase (~) of any System, or thé average value

of the index (?/) at tliat time. And if these quantities are

constant in time before thé variation of thé external coordi-

nates, and after that variation, their constancy in time is not

interrupted by that variation. In fact, in thé demonstration

of thé conservation of probability of phase in Chapter I, the

variation of the external eoordinates was not excluded.

But a variation of the external coordinates will in general
disturb a previously existing state of statistical equilibrium.

For, although it does not affect (at the first instant) the

distribution-in-phase, it does affect the condition necessary for

equilibrium. This condition, as we have seen in Chapter IV,

is that the index of probability of phase shall be a function of

phase wbich is constant in time for moving systems. Now

a change in the external coordinates, by changing the forces

which act on the systems, will change the nature of the

functions of phase which are constant in time. Therefore,

the distribution in phase which was one of statistical equi-
librium for the old values of the external coordinates, will not

be such for the new values.

Now we have seen, in the last chapter, that when the dis-

tribution-in-phase is not one of statistical equilibrium, an

ensemble of systems may, and in general will, after a longer or

shorter time, come to a state which may be regarded, if very
small differences of phase are neglected, as one of statistical

equilibrium, and in which consequently the average value of

the index (?;) is less than at first. It is evident, therefore,
that a variation of the external coordinates, by disturbing a

state of statistical equilibrium, may indirectly cause a diminu-

tion, (in a certain sense at least,) of the value of ?;.

But if the change in the external coordinates is very small,

the change in the distribution necessary for equilibrium will

in general be correspondingly small. Hence, the original dis-

tribution in phase, since it differs little from one which would

be in statistical equilibrium with the new values of the ex-

ternal coordinates, may be supposed to have a value of i¡
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which differs by a small quantity of the second order from

thé minimum value wliieli characterizes thé state of statistical

equilibrium. And thé diminution in thé average index result-

ing in thé course of time from the very small change in the

external coordinates, cannot exceed this small quantity of

the second order.

Hence also, if the change in the external coordinates of an

ensemble initially in statistical equilibrium consists in suc-

cessive very small changes separated by very long intervals of

time in which thé disturbance of statistical equilibrium be-

comes sensibly effaced, thé final diminution in the average
index of probability will in general be negligible, although the

total change in the external coordinates is large. Thé result

will be the same if the change in the external coordinates

takes place continuously but sufficiently slowly.
Even in cases in whieh there is no tendency toward the

restoration of statistical equilibrium in the lapse of time, a varia-

tion of external coordinates which would cause, if it took

place in a short time, a great disturbance of a previous state

of equilibrium, may, if sufficiently distributed in time, produce
no sensible disturbance of the statistical equilibrium.

Thus, in the case of three degrees of freedom, let the systems
be heavy points suspended by elastic massless cords, and let thé

ensemble be distributed in phase with a density proportioned
to some function of the energy; and therefore in statistical equi-
librium. For a change in the external coordinates, we may
take a horizontal motion of the point of suspension. If this

is moved a given distance, the resulting disturbance of the

statistical equilibrium may evidently be diminished indefi-

nitely by diminishing the velocity of the point of suspension.
This will be true if the law of elasticity of the string is such

that the period of vibration is independent of the energy, in

which case there is no tendency in thé course of time toward

a state of statistical equilibrium, as well as in the more general
case, in which there is a tendency toward statistical equilibrium.

That something of this kind will be true in général, thé

following considerations will tend to show.



156 EFFECT OF VARIOUS P~<9C/?.S'.S'7?.S'

We define a path as the series of phases through which a,

system passes in thé course of time when thé external eo-

ordinates have fixed values. When tlie external eoordinates

are varied, paths are changed. The path of a phase is the

path to which that phase belongs. With reference to any
ensemble of systems we shall denote by -Z~p the average value

of thé density-in-phase in a path. This iniplies that we have

a measure for comparing different portions of the path. Wee

shall suppose the time required to traverse any portion of a

path to be its measure for thé purpose of determining this

average.
With this understanding, let us suppose that a certain en-

semble is in statistical equilibrium. In every element of

extension-in-phase, therefore, the density-in-phase -D is equal
to its path-average Dfp. Let a sudden small change be made

in the external coordinates. The statistical equilibrium will be

disturbed and we shall no longer have D = TTjp everywhere.
This is not because D is changed, but because ~fp is changed,
thé paths being changed. It is evident that if D > .2?~, in

a part of a path, we shall have D <; T~p in other parts of the

same path.

Now, if we should imagine a further change in the external

coordinates of the same kind, we should expect it to produce

an effect of the same kind. But the manner in which the

second effect will be superposed on thé first will be different,

according as it occurs immediately after the first change or

after an interval of tune. If it occurs immediately after the

first change, then in any element of phase in which the first

change produced a positive value of D 27jp the second change
will add a positive value to the first positive value, and where

jP – 'Z7Lwas negative, the second change will add a negative
value to the first negative value.

But if we wait a sufficient time before making the second

change in the extemal coordinates, so that systems have

passed from elements of phase in which D 'ZTjpwas origi-

nally positive to elements in which it was originally negative,
and vice versa, (the systems carrying with them the values
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of -D-Y~) the positive values of ~-j~p caused by tlie

second change will be in part superposed on negative values

due to the first change, and vice versa.

The disturbance of statistical equilibrium, therefore, pro-
duced by a given change in thé values of thé external co-

ordinates may be very much diminished by dividinp' thé

change into two parts separated by a suffieient interval of

time, and a sufficient interval of time for this purpose is one

in which the phases of the individual systems are entirely
unlike the nrst, so that any individual system is differently
affected by the change, although the whole ensemble is af-

fected in nearly the same way. Since there is no limit to thé

diminution of the disturbance of equilibrium by division of

the change in the external coordinates, we may suppose as

a general rule that by diminishing the velocity of the changes
in the external coordinates, a given change may be made to

produce a very small disturbance of statistical equilibrium.
If we write t/ for the value of thé average index of probability

before the variation of thé external coordinates, and ?/' for the

value after this variation, we shall have in any case

as the simple result of the variation of the external coordi-

nates. This may be compared with the thermodynamic the-

orem that the entropy of a body cannot be diminished by
mechanical (as distinguished from thermal) action.*

If we have (approximate) statistical equilibrium between

the times t' and <~ (corresponding to and ~'), we shall have

approximately -f 1/
7==?~r

which may be compared with the thermodynamic theorem that

the entropy of a body is not (sensibly) affected by mechanical

action, during which the body is at each instant (sensibly) in

a state of thermodynamic equilibrium.

Approximate statistical equilibrium may usually be attained

Thé correspondencestowhich thé reader's attention is called are between
<;and entropy, and betweena and temperature.
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by a sufficiently slow variation of the external coordinates,

just as approximate thermodynamic equilibrium may usually

be attained by suHicient slowness in the mechanical opérations

to which thé body is subject.

We now puas to thé consideration of the effect on an en-

semble of systems which is produced by thé action of other

ensembles with which it is brought into dynamical connec-

tion. In a previous chapter we have imagined a dynamical

connection arbitrarily created between the systems of two

ensembles. We shall now regard the action between the

systems of the two ensembles as a result of the variation

of the external coordinates, which causes such variations

of the internai coordinates as to bring the systems of thé

two ensembles within the range of each other's action.

Initially, we suppose that we have two separate ensembles

of systems, El and E2. The numbers of degrees of freedom

of the systems in the two ensembles will be denoted by M~and

K~ respectively, and the probability-coefficients by et' and e~.

Now we may regard any sy stem of the first ensemble com-

bined with any system of the second as forming a single

system of + n2 degrees of freedom. Let us consider the

ensemble (jE~) obtained by thus combining each system of the

first ensemble with each of the second.

At the initial moment, which may be specified by a single

accent, the probability-coefficient of any phase of the combined

systems is evidently the product of the probability-coefficients
of the phases of which it is made up. This may be expressed

by the equation,

e~' = e' e~ (455)

or = + (456)

which gives = + '?/-
1

(457)

The forces tending to vary the internai coordinates of the

combined systems, together with those exerted by either

system upon the bodies represented by the coordinates called

SeeChapter IV, page 37.
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external, may be derived from a single force-function, witicli,

taken negatively, we sliall call tlie potentiai energy- of the

combined systems and denote by e~. Hut we suppose tliat

initially none of thé Systems of thé two ensembles jFi and

j~ corne witliin range of each other's aecion, so tliat the

potential energy of thé combined system falls into two parts

relating separately to thé systems which are combined. The

same is obviously true of the kinetic energy of tlie combined

compound sy stem, and therefore of its total energy. This

may be expressed by the equation

<~ = €/ + € (458)

which gives €i/ = e/ + € (459)

Let us now suppose that in the course of time, owing to the

motion of the bodies represented by thé coordmates called

external, the forces acting on the systems and consequently
their positions are so altered, that the Systems of thé ensembles

and J~ are brought within range of each other's action,

and after such mutual influence has lasted for a time, by a

further change in the external coordinates, perhaps a return

to their original values, the systems of the two original en-

sembles are brought again out of range of each other's action.

Finally, then, at a time specified by double accents, we shall

have as at first

ei~ = + y (460)

But for the indices of probability we must write

+ (461)

The considerations adduced in the last chapter show that it

is safe to write

~12" (462)
We have therefore

+ ~i' + (463)

which may be compared with the thermodynamic theorem that

See Chapter XI, Theorem VII.
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the thermal contact of two bodies may increase but cannot

diminish the sum of their entropies.
Let us especially consider thé case in which the two original

ensembles were both canonically distributed in phase with the

respective moduli < and < We have then, by Theorem III

of Chapter XI,

Eir 1_ Elll
(464)

I
I)

~+~~+~ ~5)

Whence with (463) we have

E'
j. <

@, + + @; ~~)

Or
Ë"-f'

En + eZrr
e2j 0. 467or '–~ + ~'–~ > 0. (467))or

@i@Hl

1
+

@i;@1012
O.

If we write W for the average work done by the combined

systems on the external bodies, we have by the principle of

the conservation of energy

= €i," = e~ d" + (468)

Now if Wis negligible, we have

ei' (e," €) (469)

and (467) shows that the ensemble which has the greater
modulus must lose energy. This result may be compared to

the thermodynamic principle, that when two bodies of differ-

ent temperatures are brought together, that which has thé

higher temperature will lose energy.
Let us next suppose that the ensemble is originally

canonically distributed with the modulus but leave thé

distribution of the other arbitrary. We have, to determine

the result of a similar process,

+ +

rr

@2 Oz
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ttiUtL

11

-r
Hence + + (470)Ilence

0,
< qll

O20,
(470)

whieh may be written

(471)r¡l r¡l =
O2

This may be compared with the thermodynamic principle that

when a body (which need not be in thermal equilibrium) is

brought into thermal contact with another of a given tempéra-

ture, the increase of entropy of the first cannot be less (alge-

braically) than the loss~)f heat by thé second divided by its

temperature. Where ~F is negligible, we may write

E rr E r

~+~

1

Oa Oa

Now, by Theorem III of Chapter XI, the quantity

~1 + z
(473)

has a minimum value when the ensemble to which and e~

relate is distributed canonically with the modulus @~. If the

ensemble had originally this distribution, the sign < in (472)
would be impossible. In fact, in this case, it would be easy to

show that the preceding formulae on which (472) is founded

would all have the sign = But when the two ensembles are

not both originally distributed canonically with thé same

modulus, thé formulae indicate that the quantity (473) may
be diminished by bringing the ensemble to which El and

relate into connection with another which is canonically dis-

tributed with modulus 0~, and therefore, that by repeated

operations of this kind the ensemble of which the original dis-

tribution was entirely arbitrary might be brought approxi-

mately into a state of canonical distribution with the modulus

@~. We may compare this with the thermodynamic principle

that a body of which the original thermal state may be entirely

arbitrary, may be brought approximately into a state of ther-

mal equilibrium with any given temperature by repeated con-

nections with other bodies of that temperature.
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Let us now suppose that we have a certain number of

ensembles, jE~, El -E~, etc., distributed canonically with thé

respective moduli 0~,0~8~, etc. By variation of thé exter-

nal coordinates of the ensemble let it be brought into

connection with and then let the connection bc broken.

Let it then be brought into connection with jE~, and then let

that connection be broken. Let this process be continued

with respect to the remaining ensembles. We do not make

thé assumption, as in some cases before, that the work connected

with the variation of the external coordinates is a negligible

quantity. On the contrary, we wish especially to consider

thé case in which it is large. In the final state of the ensem-

ble -E'Q, let us suppose that thé extemal coordinates have been

brought back to their original values, and that the average

energy (e~) is the same as at first.

In our usual notations, using one and two accents to dis-

tinguish original and final values, we get by repeated applica-
tions of the principle expressed in (463)

+ ~i' + + etc. + ~i" + + etc. (474)

But by Theorem III of Chapter XI,

cil E'
1

+
+ (475)

Oo Oo

+ + (476)0', 0.1
-ll Il ~I

E2
2
if

E:
21

(477)
+

+

etc.
O=

ete.

Ë il
El// Ë" '£1

I
Ell Ezl

Hence ~+~+~+etc.~+~+~+etc. (478)Hence
0. @1 02

etc. _>
@o @t Oj!

etc. (478)

or, since €o' = €“

U E21 E21/ etC. (479)
.s.~+~"+~.

~)

If we write IF for the average work done on the bodies repre-
sented by the external coordinates, we have



ON AN ~A~J/~z~' OF .s'y.s'r~s. 163"»

+ 6," + etc. = (480.

If ~Q, El, and are thé only ensembles, we have

~–~(~ (481)Ot 02(fl` Élrr~, (481)~i

It will be observed that the relations expressed in thé last

three formulae between W, €j € – 6~ etc., and <-)j,

0~, etc. are precisely those which hold in a Carnot's cycle for

the work obtained, the energy lost by the several bodies which

serve as heaters or coolers, and their initial températures.
It will not escape the reader's notice, that while from one

point of view the operations which are hère described are quite

beyond our powers of actual performance, on account of the

impossibility of handling thé immense number of systems
which are involved, yet from another point of view the opera-
tions described are the most simple and accurate means of

representing what actually takes place in our simplest experi-
ments in thermodynamics. The states of the bodies whicb

we handle are certainly not known to us exactly. What we

know about a body can generally be described most accurately
and most simply by saying that it is one taken at random

from a great number (ensemble) of bodies which are com-

pletely described. If we bring it into connection with another

body concerning which we have a similar limited knowledge,
the state of the two bodies is properly described as that of a

pair of bodies taken from a great number (ensemble) of pairs
which are formed by combining each body of the first en-

semble with each of the second.

Again, when we bring one body into thermal contact with

another, for example, in a Carnot's cycle, when we bring a

mass of fluid into thermal contact with some other body from

which we wish it to receive heat, we may do it by moving the

vessel containing the fluid. This motion is mathematically

expressed by the variation of the coordinates which determine

the position of the vessel. We allow ourselves for thé pur-

poses of a theoretical discussion to suppose that the walls of

this vessel are incapable of absorbing heat from the fluid.
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Yet while we exclude the kind of action which we call ther-

mal between the fluid and thé containing vessel, we allow thé

kind which we call work in the narrower sense, which takes

place when the volume of the fluid is changed by the motion

of a piston. This agrees with what we have supposed in

regard to the external eoordinates, which we may vary in

any arbitrary manner, and are in this entirely unlike thé co-

ordinates of the second ensemble with which we bring the

first into connection.

When heat passes in any thermodynamic experiment between

the fluid principally considered and some other body, it is

actually absorbed and given out by the walls of the vessel,

which will retain a varying quantity. This is, however, a

disturbing circumstance, which we suppose in some way made

negligible, and autually neglect in a theoretical discussion.

In our case, we suppose the walls incapable of absorbing en-

ergy, except through the motion of the external coordinates,

but that they allow the systems which they contain to act

directly on one another. Properties of this kind are mathe-

matically expressed by supposing that in the vicinity of a

certain surface, the position of which is determined by certain

(external) coordinates, particles belonging to the system in

question expérience a repulsion from the surface increasing so

rapidly with nearness to the surface that an infinite expendi-

ture of energy would be required to carry them through it.

It is evident that two systems might be separated by a surface

or surfaces exerting the proper forces, and yet approach each

other closely enough to exert mechanical action on each other.



CHAPTER XIV.

DISCUSSION OF THERMODYNAMIC ANALOGIES.

IF we wish to find in rational mechanics an a priori founda-

tion for the principles of thermodynamics, we must seek

mechanical definitions of temperature and entropy. The

quantities thus defined must satisfy (under conditions and

with limitations which again must be specified in the language

of mechanics) thé differential equation

de = Td~ – Al (Z~i – ~s ~s~ – etc., (482)

where e, T, and denote the energy, temperature, and entropy

of the system considered, and ~f~, etc., thé mechanical work

(in the narrower sense in which the term is used in thermo-

dynamics, i. e., with exclusion of thermal action) done upon
external bodies.

This implies that we are able to distinguish in mechanical

terms the thermal action of one system on another from that

which we call mechanical in the narrower sense, if not indeed

in every case in which the two may be combined, at least so as

to specify cases of thermal action and cases of mechanical

action.

Such a differential equation moreover implies a finite equa-

tion between e, and < a2' etc., which may be regarded
as fundamental in regard to those properties of the system
which we call thermodynamic, or which may be called so from

analogy. This fundamental thermodynamic equation is de-

termined by thé fundamental mechanical equation which

expresses the energy of the system as function of its mo-

menta and coordinates with those external coordinates (a~, a~,

etc.) which appear in the differential expression of thé work

done on external bodies. We have to show the mathematical

operations by which the fundamental thermodynamic equation,
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which in general is an equation of few variables, is derived

from the fundamental mechanical equation, which in thé case

of the bodies of nature is one of an enormous number of

variables.

We have also to enunciate in mechanical terms, and to

prove, what we call the tendency of heat to pass from a sys-
tem of higher temperature to one of lower, and to show that

this tendency vanishes with respect to systems of the same

temperature.
At least, we have to show by a priori reasoning that for

such systems as the material bodies which nature presents to

us, thèse relations hold with such approximation that they
are sensibly true for human faculties of observation. This

indeed is all that is really necessary to establish the science of

thermodynamics on an a priori basis. Yet we will naturally
desire to find the exact expression of those principles of whieb

the laws of thermodynamics are thé approximate expression.

A very little study of the statistical properties of conservative

systems of a finite number of degrees of freedom is sufficient

to make it appear, more or less distinctly, that the general
laws of thermodynamics are the limit toward which the exact

laws of such systems approximate, when their number of

degrees of freedom is indefinitely increased. And the problem
of finding the exact relations, as distinguished from the ap-

proximate, for systems of a great number of degrees of free-

dom, is practically the same as that of finding the relations

which hold for any number of degrees of freedom, as distin-

guished from those which have been established on an em-

pirical basis for systems of a great number of degrees of

freedom.

The enunciation and proof of these exact laws, for systems
of any finite number of degrees of freedom, has been a princi-

pal object of the preceding discussion. But it should be dis-

tinctly stated that, if the results obtained when the numbers

of degrees of freedom are enormous coincide sensibly with

the general laws of thermodynamics, however interesting and

significant this coïncidence may be, we are still far from
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having explained tlie plienomena of nature with respect to

these laws. For, as compared witit thé case of nature, thé

systems which we Itave considered are of an idéal .sunpiifity.

Although our only assumption is that we are cou.sidering
conservative systems of a finite number of degrees of freedom,

it would seem tiiat this is assuming far too mucli, so far as the

bodies of nature are concerned. The phenomena of radiant

heat, which certainly should not be neglected in any complete

system of thennodynamics, and tlie electrical phenomena
associated with thé combination of atoms, seem to show that

the hypothesis of systems of a finite number cf degrees of

freedom is inadequate for the explanation of thé properties of

bodies.

Nor do the results of such assumptions in every détail

appear to agree with experience. We should expect, for

example, that a diatomic gas, so far as it could be treated

independently of the phenomena of radiation, or of any sort of

electrical manifestations, would have six degrees of freedom

for each molecule. But thé behavior of such a gas seems to

indicate not more than five.

But although these difficulties, long recognized by physi-

cists,* seem to prevent, in the present state of science, any

satisfactory explanation of thé phenomena of thermodynamics
as presented to us in nature, the ideal case of systems of a

finite number of degrees of freedom remains as a subject
which is certainly not devoid of a theoretical interest, and

which may serve to point the way to thé solution of the far

more difficult problems presented to us by nature. And if

thé study of the statistical properties of such systems gives

us an exact expression of laws which in the limiting case take

the form of the received laws of thermodynamics, its interest

is so much the greater.
Now we have defined what we have called thé mc~M/Ms (M)

of an ensemble of systems canonically distributed in phase,
and what we have called the index of probability (?;) of any

phase in such an ensemble. It has been shown that between

SeeBoltzmann, Sitzb. der Wiener Akad., Bd. LXIH., S. 418, (1871).
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the modulus (0), the external coordinates (f~, etc.), and the

average values in the ensemble of thé energy (e), the index

of probability (~), and the external forces (~lj, etc.) exerted

by the systems, the following differential équation will hold:

= – @ – ~i </</i – <Jt<s – etc. (483)

This equation, if we neglect the sign of averages, is identical

in form with the thermodynamic equation (482), the modulus

(<9) corresponding to temperature, and the index of probabil-

ity of phase with its sign reversed corresponding to entropy.*
We have also shown that thé average square of thé anoma-

lies of e, that is, of thé deviations of the individual values from

the average, is in general of the same order of magnitude as

the reciprocal of the nurnber of degrees of freedom, and there-

fore to human observation the individual values are indistin-

guishable from the average values when the number of degrees
of freedom is very great.t j- In this case also the anomalies of ~7
are practically insensible. The same is true of thé anomalies of

the external forces (~.i, etc.), so far as these are thé result of

thé anomalies of energy, so that when these forces are sensibly
determined by the energy and the external coordinates, and

the number of degrees of freedom is very great, thé anomalies

of these forces are insensible.

The mathematical operations by which the finite equation
between E, ?;, and a~, etc., is deduced from that which gives
the energy (e) of a system in terms of the momenta (pr .)
and coordinates both internai (qi ~) and external (~, etc.),
are indicated by thé equation

ail f

e
~=~J~ (484)

phases

where ==0~ + e.

We have also shown that when sy stems of different ensem-

bles are brought into conditions analogous to thermal contact,

the average result is a passage of energy from the ensemble

Sec Cha.pterIV, pages 44, 45. t See Chapter VII, pages 73-75.



TV/ET~ODIW~C ANALOGIES. 169

of thé greater modulus to that of thé less, or in case of equal

moduli, tliat we have a condition of statistical equilibrium in

regard to thé distribution of energy.t

Propositions have also been demonstmted analogous to

those in thermodynamics relating to a Carnot's cycle,~ or to

thé tendency of entropy to increa.se,§ especially when bodies

of different temperature are brought into contact. Il
We have thus precisely defined quantities, and rigorously

demonstrated propositions, which hold for any number of

degrees of freedom, and which, when the number of degrees

of freedom (n) is enormously great, would appear to human

faculties as the quantities and propositions of empirical ther-

modynamics.
It is evident, however, that there may be more than one

quantity defined for finite values of n, which approach the

same limit, when n is increased indefinitely, and more than one

proposition relating to finite values of n, which approach the

same limiting form for n = ce.. There may be therefore,

and there are, other quantities which may be thought to have

some daim to be regarded as temperature and entropy with

respect to systems of a finite number of degrees of freedom.

The definitions and propositions which we have been con-

sidering relate essentially to what we have called a canonical

ensemble of systems. This may appear a less natural and

simple conception than what we have called a microcanonical

ensemble of systems, in which all have the same energy, and

which in many cases represents simply the time-ensemble, or

ensemble of phases through which a single system passes in

the course of time.

It may therefore seem desirable to find definitions and

propositions relating to these microcanonical ensembles, which

shall correspond to what in thermodynamics are based on

experience. Now the differential equation

dE = <f~F<J log F- Zi~ da, 3,j, <~ etc., (485)

SeeChapter XIII, page 160. t SeeChapter IV, pages 85-37.

See Chapter XIII, pages 162,163. § See Chapter XII, pages 143-151.

See Chapter XIII, page 159.
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winch bas been demonstratcd in C'hapter X, and wluch relates to

a microcanonical ensemble, ~f~ denoting tlic average value of

~4j in such an ensemble, corre.spond.spreciselyto thé thermody-
namic equation, except for thé sign of average applied to thé

external forces. Hut as thèse forces are not entirely dctcr-

mined by thé energy with the external coordinates, thé use of

average values is entirely germane to the subject, and affords

the readiest means of getting perfectly determined quantities.
These averages, which are taken for a microcanonical ensemble,

may seem from some points of view a more simple and natural

conception than those which relate to a canonical ensemble.

Moreover, the energy, and thé quantity corresponding to en-

tropy, are free from thé sign of average in this equation.
The quantity in the equation which corresponds to entropy

is log F, the quantity being defined as thé extension-in-

phase within which the energy is less than a certain limiting
value (e). This is certainly a more simple conception than the

average value in a canonical ensemble of the index of probabil-

ity of phase. Log has the property that when it is constant

<7e = – ~je <~a.i–- ~je + etc., (486)

which closely corresponds to the thermodynamic property of

entropy, that when it is constant

<Z€== – <Z<~– ~4, + etc. (487)

The quantity in the equation which corresponds to tem-

perature is e~' F, or Je/~ log V. In a canonical ensemble, the

average value of this quantity is equal to the modulus, as has

been shown by different methods in Chapters IX and X.

In Chapter X it has also been shown that if the systems
of a microcanonical ensemble consist of parts with separate

energies, thé average value of e- F'for any part is equal to its

average value for any other part, and to the uniform value

of the same expression for the whole ensemble. This corre-

sponds to thé theorem in the theory of heat that in case of

thermal equilibrium the temperatures of thé parts of a body
are equal to one another and to that of the whole body.
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Since the energies of tlie parts of a body cannot be supposed
to remain absolutely constant, even wliere this is the case

with respect to thé whole body, it is evident that if we regard
thé temperature as a function of thé energy, tiie taking of

average or of probable values, or some other statistical process,
must be used with référence to thé parts, in order to get a

perfectly dehnite value corresponding to tl)e notion of tem-

perature.
It is worthy of notice in this connection that the average

value of the kinetic energy, either in a mierocanonical en-

semble, or in a canonical, divided by one hait thé number of

degrees of freedom, is equal to F, or to its average value,

and that this is true not only of the whole system which is

distributed either microcanonically or canonically, but also

of any part, although the corresponding theorem relating to

temperature hardly belongs to empirical thermodynamics, since

neither the (inner) kinetio energy of a body, nor its number

of degrees of freedom is immediately cognizable to our facul-

ties, and we meet the gravest difficulties when we endeavor

to apply the theorem to the theory of gases, except in the

simplest case, that of thé gases known as monatomic.

But the correspondence between F' or <~e~ log and

temperature is imperfect. If two isolated systems have such

energies that

c&i

d log Vi d log

and the two systems are regarded as combined to form a third

system with energy

612= €i + e~,

we shall not have in general

'~]2 ~i

d log Jlog"Fi d log V2'

as analogy with temperature would require. In fact, we have

seen that

dE~22 CZEx (~f2

~og"~ d log ~L log ~J~'
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where the second and third members of the equation denote

average values in an ensemble in which tlie compound system
is microcanonically distributed in phase. Let us suppose the

two original systems to be identical in nature. Then

El =~=€i~=:e~<

The equation in question would require that

~€t ~€1

d log V, d log 1JTog~log Fi~

i. e., that we get the same result, whether we take the value

of <<~log F~ determined. for the average value of e~ in the

ensemble, or take the average value of c~log J~. This

will be the case where < log F~ is a linear function of

Evidently this does not constitute the most general case.

Therefore the equation in question cannot be true in general.
It is true, however, in some very important particular cases, as

when the energy is a quadratic function of the p's and q's, or

of the ~'s alone.* When the equation holds, the case is anal-

ogous to that of bodies in thermodynamics for which the

specific heat for constant volume is constant.

Another quantity which is closely related to temperature is

~)/<~e. It has been shown in Chapter IX that in a canonical

ensemble, if n > 2, the average value of J<6 is 1/0, and

that the most common value of the energy in the ensemble is

that for which ~/<~e = 1/0. The first of these properties

may be compared with that of c~/Jlog F, which has been

seen to have the average value (E) in a canonical ensemble,

without restriction in regard to the number of degrees of

freedom.

With respect to microcanonical ensembles also, J~/Je has

a property similar to what has been mentioned with respect to

~e/<~log F~ That is, if a system microcanonically distributed

in phase consists of two parts with separate energies, and each

This last case is important on account of its relation to the theory of

gases, although it must in atrictness be regarded as a limit of possible cases,
rather than as a case which is itself possible.
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with more than two degrees of freedom, the average values in

the ensemble of c~c for the two parts are equal to one

another and to the value of same expression for the whole.

In our usual notations

~i <~) ~12

~ei ~€2 jeu ~12

if n1 > 2, and M~> 2.

This analogy with temperature has the same incompleteness
which was noticed with respect to deld log F~ viz., if two sys-
tems have such energies (~ and f~) that

dt~i <~)~

~€1 f~

and they are combined to form a third sy stem with energy

~12= ~1+ €s,

we shall not have in general

~12 ~1

~2 <~6i f~e~

Thus, if the energy is a quadratic function of the p's and q's,
we hâve

<)l Mi – 1 o!<~)2 M~ – 1

~6i €1 <Jes E2

d<~l2 Mi2 – 1 Mt + n2 – 1

<~i2 en €1+62

where nl n2, n12, are the numbers of degrees of freedom of the

separate and combined systems. But

d<~ d~s Mi + ?2 – 2

del ~62 €i + e~

·

If the energy is a quadratic function of the p's alone, the case

would be the same except that we should have nl 7~, M~,
instead of Mi, M~,M~ In these particular cases, the analogy

Seefoot-note on page 93. We have here made the least value of thé
energy consistent with the values of the externat coordinates zero instead
of es, as ia evidently allowable when the external coordinates are supposed
invariable.



174 rm?M/07)rA~MVC' ..iA~ZOC/JP.S'.

between </e/<~log and temperature would be complete, as has

a.h'e.j.dybeen remarked. We should have

~i _€i

<~log~Mt'
1

tJlog~

~t2 6~ de, <a
d log ~2 m~ J log d log V2

f

when the energy is a quadratic function of the p's and <s, and

similar equations with M~, M~, insteacl of M~,M~,K~
when the energy is a quadratic function of the p's alone.

More characteristic of ~/<~e are its properties relating to

most probable values of energy. If a system having two parts
with separate energies and each with more than two degrees
of freedom is microcanonically distributed in phase, the most

probable division of energy between the parts, in a system
taken at random from the ensemble, satisfies the equation

~t_~ (488)
<

which corresponds to the thermodynamic theorem that the

distribution of energy between the parts of a system, in case of

thermal equilibrium, is such that the temperatures of the parts
are equal.

To prove the theorem, we observe that the fractional part
of the whole number of systems which have the energy of one

part (si) between the limits e~ and €~ is expressed by

~12 ~1+~
e te dei,

El

where the variables are connected by the equation

+ s.;= constant = €12.·

The greatest value of this expression, for a constant infinitesi-
mal value of the différence e~' – 6~ determines a value of el,
which we may call its most probable value. This depends on

thé greatest possible value of <j~+ Now if Mj> 2, and

M~> 2, we shall have ~)~= oo for the least possible value of
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and < = – ce for the least possible value of c. Bctween

tliese limits < and <~ will be finite and continuous. IImicc

'i + *~2will have a maximum satisfying thé équation (488).

But if 2, or K~ 2, ~<<~6~ or <6~ may be neg'a-
tive, or zero, for all values of <;j or < and can luu'dly be

regarded as having properties analogous to température.
It is also worthy of notice that if a systeni wbich i.s inicro-

canonically distributed i)i phase lias three parts with separate

energies, and each with more than two degrees of freedom, the

most probable division of energy between these parts satisfies

the equation

That is, this equation gives thé most probable set of values

of 6~, and fg. But it does not give thé most probable
value of e~ or of e~, or of €g. Thus, if the energies are quad-
ratic functions of the p's and q's, the most probable division

of energy is given by thé equation

But the most probable value of €1is given by

while the preceding equations give

These distinctions vanish for very great values of M~,Mg.
For small values of these numbers, they are important. Such

facts seem to indicate that the consideration of the most

probable division of energy among the parts of a system does

not afford a convenient foundation for thé study of thermody-
namic analogies in the case of systems of a small number of

degrees of freedom. The tact that a certain division of energy
is the most probable has really no especial physical importance,

except when the ensemble of possible divisions are grouped so

dt~t C?~ (~a

~€t </Es ~€3

Ml – 1 M~ – 1 Mg – 1

Ci 6i €,

M, – 1 + Mg – 1

€l + €3

Mi – 1 M;; + Mg– 2

el e~+ea
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closely together that thé most probable division may fairly

represent thé whole. This is in general thé case, to a very
close approximation, when n is enormously great it entirely
fails when ? is small.

If we regard ~/c~6 as corresponding to the reciprocal of

temperature, or, in other words, e~e/~<)!)as corresponding to

température, will correspond to entropy. It has been defined

as log (~ Vlde). In the considerations on which its definition

is founded, it is therefore very similar to log K We hâve

seen that t~log approaches the value unity when n is

very gréât.*
To form a differential equation on the model of the thermo-

dynamic equation (482), in which Jf/t~ shall take the place
of temperature, and <~ of entropy, we may write

= (~)
+

(-~)
+

(~~ +
etc., (489)

\<.{~ysa \Mai/a \<t

or ~= ~~+~+~+etc. (490)or
~e

dE
a<ti1 dal «?22 da2

T etc.

With respect to the differential coefficients in the last equa-

tion, which corresponds exactly to (482) solved with respect

to <~y,we have seen that their average values in a canonical

ensemble are equal to 1/0, and the averages of ~4i/@, ~/0,

etc.t We have also seen that ~e/c~ (or ~/<~e) has relations

to the most probable values of energy in parts of a microca-

nonical ensemble. That (~6/~<:<i)~,s, etc., have properties
somewhat analogous, may be shown as follows.

In a physical experiment, we measure a force by balancing it

against another. If we should ask what force applied to in-

crease or diminish al would balance the action of the systems,

it would be one which varies with the different systems. But

we may ask what single force will make a given value of al

the most probable, and we shall find that under certain condi-

tions (~e/o~)~, a represents that force.

See Chapter X, pages 120, 121.

t See Chapter IX, equations (321), (327).
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To rnake thé problem definite, let us consider asystem con-

sisting of thé original system together with anotlier having
thé coordinates (ï~, a2' etc., and forces ~4/, ~4. etc., tending
to increase those coordinates. Thèse are in addition tu thé

forces A2, etc., exerted by thé original system, and are de-

rived from a force-function (–e~') by thé équations

~==. ~=-

I
etc.1

dMi
2

dt~
etc.

For the energy of the whole system we may write

E = e + e,/ + j~t M~+ ~M; + etc.,

and for the extension-in-phase of the whole sy stem within any
limits

< t dpi
< c!ai?K.i<~t~da2 m2r~

or
J e'~e

dal ml a'cti da2 ~3 <~a~

or again
.e~

dE dal ml daz <Z<:zm2

since de = dE, when a!i, al, a2, a2, etc., are constant. If the

limits are expressed by E and E + dE, and al + a~ and

+ dâl, etc., the integral reduces to

6~dE dal ml <~o'jda2m2

The values of al a;, a2 etc., which make this expression
a maximum for constant values of the energy of thé whole

system and of thé differentials dE, dal dal, etc., are what may

be called the most probable values of al al etc., in an ensem-

ble in which the whole system is distributed microcanonically.
To determine these values we have

= 0,

when d(e + e,/ + Htai'' + ?M~< + etc.) = 0.

That is, = 0,
12
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when

( } ~<< + { – t~tt + etc. + ?KtSt t~a, + etc. = 0.
\s \'Ml/.t,<t

This requires a~=0, M~=0, etc.,

and (- =~ (~") =~ etc.
\l/<t,a \<o a

This shows that for any given v alues of E, a,, a2, etc.

( -,– ) ( -,– ) etc., represent the forces (in the gen-\l/~<t d \a d °

eralized sense) which the external bodies would tmve to exert

to make these values of ai, s~, etc., tlie most under
the conditions specified. When the différences of the externa.1

forces which are exerted by the different Systems are negli-

gible,–(~e/(~)~ etc., represent these forces.

It is certainly in the quantities relating to a canonical

ensemble, e, 0, ~4~, etc., o~, etc., that we find the most

complete correspondence with the quantities of the thermody-
namic equation (482). Yet the conception itself of the canon-

ical ensemble may seem to some artincial, and Iiardiy germane
to a natural exposition of the subject; and thé quantities

E,
<~e -,–,

al etc., or e,
~6 de

JTogF' A!~ etc., etc., ore,

etc., o~, etc., which are closely related to ensembles of constant

energy, and to average and most probable values in such

ensembles, and most of which are defined without référence

to any ensemble, may appear the most natural analogues of

the thermodynamic quantities.
In regard to the naturalness of seeking analogies with the

thermodynamic behavior of bodies in canonical or microca-

nonical ensembles of systems, much will depend upon how we

approach the subject, especially upon the question whether we

regard energy or temperature as an independent variable.

It is very natural to take energy for an independent variable

rather than température, because ordinary méchantes furnishes

us with a perfectly defined conception of energy, whereas the

idea of something relating to a mechanical system and corre-
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sponding to temperature is a notion but vaguely denned. New

if the state of a system is given by its energy and the extcntal

coordinates, it is incompletely defined, although its partial défi-

nition is perfectly clear as far as it goes. Tlie ensemble of

phases microcanonieally distributed, with the given values of

thé energy and thé external coordinates, will represent thé im*

perfectly defined system better tlan any other ensemble or

single phase. When we approach the subject from this side,

our theorems will naturally relate to average values, or most

probable values, in such ensembles.

In this case, the choice between thé variables of (485) or of

(489) will be determined partly by tlje relative importance

which is attached to average and probable values. It would

seem that in general average values are tlie most important, and

that they lend themselves better to analytical transformations.

This consideration would give the preference to the system of

variables in which log Vis thé analogue of entropy. Moreover,

if we make ~) the analogue of entropy, we are embarrassed by

the necessity of making numerous exceptions for systems of

one or two degrees of freedom.

On the other hand, the definition of <~may be regarded as a

little more simple than that of log F, and if our choice is deter-

mined by the simplicity of the definitions of thé analogues of

entropy and temperature, it would seem that thé (~ system

should have the preference. In our definition of these quanti-

ties, F' was defined first, and derived from V by differen-

tiation. This gives thé relation of the quantities in the most

simple analytical form. Yet so far as the notions are con-

cemed, it is perhaps more natural to regard Vas derived from

6~ by integration. At ail events, e~ may be defined inde-

pendently of F, and its definition may be regarded as more

simple as not requiring the determination of the zero from

which V is measured, which sometimes involves questions

of a delicate nature. In fact, the quantity may exist,

when the definition of F' becomes illusory for practical pur-

poses, as the integral by which it is determined becomes infinite.

The case is entirely different, when we regard tlie tempera-



180 TW~.WDK.V~MYC .tA~ZOG/E~.

ture as an independent variable, and we have to consider a

system which is described as having a certain temperature and

certain values for the external coordinates. Here also the

state of thé system is not completely defined, and will be

better represented by an ensemble of phases than by any single

phase. What is the nature of such an ensemble as will best

represent the imperfectly defined state ?

When we wish to give a body a certain temperature, we

place it in a bath of the proper temperature, and when we

regard what we call thermal equilibrium as established, we say
that the body has the same temperature as the bath. Per-

haps we place a second body of standard character, which we

call a thermometer, in the bath, and say that the first body,
the bath, and the thermometer, have ail the same temperature.

But the body under such circumstances, as well as the

bath, and the thermometer, even if they were entirely isolated

from external influences (which it is convenient to suppose
in a theoretical discussion), would be continually changing in

phase, and in energy as well as in other respects, although
our means of observation are not fine enough to perceive
these variations.

The series of phases through which the whole system runs

in the course of time may not be entirely determined by the

energy, but may depend on the initial phase in other respects.
In such cases the ensemble obtained by the microcanonical

distribution of the whole System, which includes ail possible
time-ensembles combined in the proportion which seems least

arbitrary, will represent better than any one tune-ensemble

the effect of the bath. Indeed a single time-ensemble, when

it is not also a microcanonical ensemble, is too ill-defined a

notion to serve thé purposes of a general discussion. We

will therefore direct our attention, when we suppose the body

placed in a bath, to the microcanonical ensemble of phases
thus obtained.

If we now suppose the quantity of the substance forming
the bath to be increased, the anomalies of the separate ener-

gies of the body and of the thermometer in the microcanonical
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ensemble will be increased, but not without limit. The anom-

alies of the energy of the bath, considered in comparison with

its whole energy, diminish indefinitely as the quantity of the

bath is increased, and become in a sense negligible, when

the quantity of the bath is sufficiently increased. The

ensemble of phases of the body, and of the thermometer,

approach a standard form as the quantity of the bath is in-

definitely increased. This limiting form is easily shown to be

what we have described as the canonical distribution.

Let us write e for the energy of the whole system consisting
of the body first mentioned, the bath, and the thermometer

(if any), and let us first suppose this system to be distributed

canonically with the modulus 0. We have by (205)

2 2ale-
c~ cZ0

and since
n

and since €p== 0,

de M<~e

~0'"2~

If we write Ae for the anomaly of mean square, we have

(~=(6-

d0
If we set A6)

= -e,

A@ will represent approximately thé increase of @ which

would produce an increase in the average value of the energy

equal to its anomaly of mean square. Now these equations

give
2 Me,,

(~0)"=–––,M «'e

which shows that we may diminish A 0 indefinitely by increas-

ing the quantity of the bath.

Now our canonical ensemble consists of an infinity of micro-

canonical ensembles, whieh differ only in consequence of the

different values of the energy which is constant in each. If

we consider separately the phases of the first body which
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occur in the canonical ensemble of the whole system, these

phases will form a canonical ensemble of thé same modulus.

This canonical ensemble of pliases of the first body will con-

sist of parts whieh belong to thé different microcanonical

ensembles into which the canonical ensemble of the whole

system is clivided.

Let us now imagine that the modulus of the principal ca-

nonical ensemble is increased by 2 A @, and its average energy

by 2 Ae. The modulus of the canonical ensemble of the

phases of the first body considered separately will be increased

by 2A@. We may regard thé infinity of microcanonical en-

sembles into which we have divided thé principal canonical

ensemble as each having its energy increased by 2 A c. Let

us see how the ensembles of phases of the first body con-

tained in these microcanonical ensembles are affected. We

may assume that they will ail be affected in about the same

way, as ail the differences which come into account may be

treated as small. Therefore, the canonical ensemble formed by

taking them together will also be affected in the same way.
But we know how this is affected. It is by the increase of

its modulus by 2AO, a quantity which vanishea when the

quantity of the bath is indefinitely increased.

In the case of an infinite bath, therefore, the increase of the

energy of one of thé microcanonical ensembles by 2Ae, pro-
duces a vanishing effect on the distribution in energy of the

phases of the first body which it contains. But 2Ae is more

than the average difference of energy between thé micro-

canonical ensembles. The distribution in energy of these

phases is therefore the same in the different microcanonical

ensembles, and must therefore be canonical, like that of the

ensemble which they form when taken together.*

In order to appreciate the above reasoning, it should be understood that
the differencesof energy whichoccur in thé canonical ensembleof phases of
the first body are not hère regarded as vanishing quantities. To fix one's
ideas, one may imagine that he haa the fineness of perception to make thèse
differencesseem large. Thé difference between the part of thèse phases
which belong to one microcanonical ensemble of thé whole system and the

part whieh belongs to another would still be imperceptible, when the quan-
tity of the bath is suflicientlyinereased.
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As a général theorem, the conclusion may be expressed in

thé words If a sy stem of a great number of degrees of

freedom is microeanonically distributed in phase, any very

small part of it may be regarded as canonically distributed.*

It would seem, therefore, that a canonical ensemble of

phases is what best represents, with the precision necessary

for exact mathernatical reasoning, the notion of a body with

a given temperature, if we conceive of the temperature as thé

state produced by such processes as we actually use in physics
to produce a given temperature. Since the anomalies of the

body increase with thé quantity of the bath, we can only get
rid of a,U that is arbitrary in thé ensemble of phases which is

to represent the notion of a body of a given temperature by

making the bath infinite, which brings us to thé canonical

distribution.

A comparison of temperature and entropy with their ana-

logues in statistical mechanics would be incomplete without a

consideration of their differences with respect to units and

zeros, and the numbers used for their numerical specification.
If we apply the notions of statistical mechanics to such bodies

as we usually consider in thermodynamics, for which the

kinetic energy is of the same order of magnitude as the unit

of energy, but the number of degrees of freedom is enormous,

the values of 0, e~e/~logF, and ~e/~<~ will be of the same

order of magnitude as 1/m, and the variable part of log
and <~will be of the same order of magnitude as M.fj- If these

quantities, therefore, represent in any sense the notions of tem-

perature and entropy, they will nevertheless not be measured

in units of the usual order of magnitude, – a tact which must

be borne in mind in determining what magnitudes may be

regarded as insensible to human observation.

Now nothing prevents our supposing energy and time in

our statistical formulae to be measured in such units as may

It is assumed-and without this assumption the theorem would have
no distinct meaning-that the part of the ensemble considered may be
regarded as having separate energy.

t See equations (124),(288),(289),and (314) also page 106.
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be convenient for physical purposes. But when these units

have been chosen, thé numerical values of </e/<~IogF,

(~e/(~, log V, <jf),are entirely detennined,* and in order to

compare theui with ternperature and entropy, thé numerical

values of which depend upon an arbitrary unit, we must nrul-

tiply ail values of 0, A'logF, ~e,<~ by a constant (~T),
and divide ail values of 7;, log V; and ~) by the same constant.

This constant is the same for ail bodies, and depends only on

the units of temperature and energy which we employ. For

ordinary units it is of the same order of magnitude as the

numbers of atoms in ordinary bodies.

We are not able to determine the numerical value of .&
as it depends on the number of molecules in thé bodies with

which we experiment. To fix our ideas, however, we may
seek an expression for this value, based upon very probable

assumptions, which will show how we would naturally pro-
ceed to its evaluation, if our powers of observation were fine

enough to take cognizance of individual molecules.

If the unit of mass of a monatomic gas contains v atoms,

and it may be treated as a system of 3 degrees of free-

dom, which seems to be the case, we have for canonical

distribution

ep=§"~

Ê=~- (491)

If we write T for temperature, and <;“for the specific heat of

the gas for constant volume (or rather the limit toward

which this specific heat tends, as rarefaction is indefinitely

increased), we have

dep
(492)~=~ (492)

since we may regard the energy as entirely kinetic. We may
set the 6~, of this equation equal to the ép of thé preceding,

The unit of time only affects the last three quantities, and these oniy
by an additive constant, which disappears (with the additive constant of

entropy), when differences of entropy are compared with their statistical

analogues. Seepage 19.
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where indeed the individual values of which thé average is
taken would appear to hurnan observation as identical. This

gives
~0 2~
~37'

1 2c.
whence

= .–.
· (493)

a value recognized by physicists as a constant independent of
the kind of monatomic gas considered.

We may also express the value of jB"in a somewhat different

form, which corresponds to the indirect method by which

physicists are accustomed to determine the quantity e~. The
kinetic energy due to thé motions of the centers of mass of
the molecules of a mass of gas sufficiently expa.nded is easily
shown to be equal to

§~~

where p and v denote the pressure and volume. The average
value of the same energy in a canonical ensemble of such
a mass of gas is

i

where v denotes the number of molecules in the gas. Equat-

ing these values, we have

.pf=0~ (494)

10~
(495)whence

E=T=~
·

~S)

Now the laws of Boyle, Charles, and Avogadro may be ex-

pressed by the equation
~=~~ (496)

where A is a constant depending only on the units in which

energy and temperature are measured. 1 tlierefore, might
be called the constant of the law of Boyle, Charles, and

Avogadro as expressed with reference to the true number of
molecules in a gaseous body.

Since such numbers are unknown to us, it is more conven-
ient to express the law with reference to relative values. If

we denote by M the so-called molecular weight of a gas, that
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is, a number taken from a table of numbers proportional to

the weights of various molécules and atoms, but having one

of the values, perhaps thé atotuic weight of hydrogen, arbi-

trarily made unity, thé law of Boyle, Charles, a.nd Avogadro

may be written in the more practical form

~~=~T~, (497)

where ~4-'is a constant and m the weight of gas considered.

It is evident that 1 K is equal to the product of the constant

of the law in this form and the (true) weight of an atom of

hydrogen, or such other atom or molecule as may bc given

the value unity in the table of molecular weights.

In the following chapter we shall consider the necessary

modifications in the theory of equilibrium, when the quantity

of matter contained in a system is to be regarded as variable,

or, if the system contains more than one kind of matter,

when the quantities of the several kinds of matter in the

system are to be regarded as independently variable. This

will give us yet another set of variables in the statistical

equation, corresponding to those of the amplified form of

the thermodynamic equation.



CHAPTER XV.

SYSTEMS COMPOSED OF MOLECULES.

THE nature of material bodies is such that especial interc'

attaches to the dynamics of systems composed of a gre.L
number of entirely similar particles, or, it may be, of a greaL
number of particles of several kinds, ail of each kind being

entirely similar to each other. We shall therefore proceed to

consider systems composed of such particles, whether in great
numbers or otherwise, and especially to consider the statistical

equilibrium of ensembles of such systems. One of the varia-

tions to be considered in regard to such sy stems is a variation

in thé numbers of the particles of thé various kinds which it

contains, and the question of statistical equilibrium between

two ensembles of such systems relates in part to thé tendencies

of the various kinds of particles to pass from thé one to the

other.

First of ail, we must define precisely what is meant by
statistical equilibrium of such an ensemble of systems. The

essence of statistical equilibrium is the permanence of the

number of systems which fall within any given limits with

respect to phase. We have therefore to define how the term

phase is to be understood in such cases. If two phases differ

only in that certain entirely similar particles have changed

places with one another, are they to be regarded as identical

or different phases ? If thé particles are regarded as indis-

tinguishable, it seems in accordance with the spirit of the

statistical method to regard the phases as identical. In tact,
it might be urged that in such an ensemble of sy stems as we

are considering no identity is possible between the particles
of different systems except that of qualities, and if particles
of one system are described as entirely similar to one another

and to v of another system, nothing remains on which to base
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thé indentification of any particular particle of the first system
with any particular particle of thé second. And this would

be true, if the ensemble of systems had a simultaneous

objective existence. But it hardly applies to thé creations

of thé imagination. In the cases which we have been con-

sidering, and in those which we shall consider, it is not ollly

possible to conceive of the motion of an ensemble of similar

systems simply as possible cases of the motion of a single

system, but it is actually in large measure for the sake of

representing more clearly the possible cases of the motion of

a single system that we use thé conception of an ensemble

of systems. The perfect similarity of several particles of a

system will not in the least interfere with thé identification

of a particular particle in one case with a particular particle

in another. The question is one to be decided in accordance

with the requirements of practical convenience in the discus-

sion of the problems with which we are engaged.

Our present purpose will often require us to use the terms

phase, JeKs~y-~K-pAasg, stcttistical equilibrium, and other con-

nected terms on the supposition that phases are not altered

by the exchange of places between similar particles. Some

of the most important questions with which we are concerned

have reference to phasés thus defined. We shall call them

phases determined by generic definitions, or briefly, generic

phases. But we shall also be obliged to discuss phases de-

fined by the narrower definition (so that exchange of position

between similar particles is regarded as changing the phase),

which will be called phases determined by specific definitions,

or briefly, specific phases. For the analytical description of

a specific phase is more simple than that of a generic phase.

And it is a more simple matter to make a multiple integral

extend over ail possible specific phases than to make one extend

without repetition over ail possible generic phases.

It is evident that if vi, v2 are the numbers of the dif-

ferent kinds of molecules in any system, the number of specifie

phases embraced in one generic phase is represented by the

continued product [~ j~ and the coefficient of probabil-
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ity of a generic phase is the sum of thé probability-coefficients

of tlie specifie phases which it représente. Wlien these are

equal among themselves, thé probability-coemcient of thé gen-
erio phase is equal to that of thé spécifie phase multiplied by

j~Jf; 1v,. It is also evident that statistical equilibrium

may subsist with respect to generic phases without statistical

equilibrium with respect to specific phases, butnot vice versci.

Similar questions arise where one particle is capable of

several equivalent positions. Does the change frorn one of

these positions to another change thé phase ? It would be

most natural and logical to make it affect thé specific phase,

but not the generic. The number of specific phases contained

in a generic phase would then be /< /f~A, wliere

xl, denote the numbers of equivalent positions belong-

ing to the several kinds of particles. The case in which a is

infinite would then require especial attention. It does not

appear that the resulting complications in the formulae would

be compensated by any real advantage. The reason of tilis is

that in problems of real interest equivalent positions of a

particle will always be equally probable. In this respect,

equivalent positions of the same particle are entirely uniike

the [t~diSerent ways in which v particles may be distributed

in v different positions. Let it therefore be understood that

in spite of the physical equivalence of different positions of

the same particle they are to be considered as constituting a

difference of generic phase as well as of specific. The number

of specific phases contained in a generic phase is therefore

always given by the product )~)~
Instead of considering, as in the preceding chapters, en-

sembles of systems differing only in phase, we shall now

suppose that the systems constituting an ensemble are com-

posed of particles of various kinds, and that they differ not

only in phase but also in the numbers of these particles which

they contain. The external coordinates of ail the systems in

the ensemble are supposed, as heretofore, to have thé same

value, and when they vary, to vary together. For distinction,

we may call such an ensemble a grand eMM~Me, and one in
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which the systems differ ordy in phase a petit e~MH~ A

grand ensemble is therefore composed of a.multitude of petit
ensembles. Thé ensembles which we have hitherto discussed

are petit ensembles.

Let vl, vh, etc., denote the numbers of thé different

kinds of particles in a system, e its energy, and <y~,

Pl, pn its coordinates and momenta. If the particles arc of

the nature of material points, the number of coordinates (M)

of the system will be equal to 3 vl + 3 vh. But if the parti-

cles are less simple in their nature, if they are to be treated

as rigid solids, the orientation of which must be regarded, or

if they consist each of several atoms, so as to have more than

three degrees of freedom, the number of eoordinates of the

system will be equal to the sum of etc., multiplied
each by the number of degrees of freedom of the kind of

particle to which it relates.

Let us consider an ensemble in which the number of

systems having vl, particles of the several kinds, and

having values of their coordinates and momenta lying between

the limits <~and <~ + < and pl + <~p~,etc., is represented

by the expression

n+~i~j. +~ft–< E

Ne e

j". dpi dq", (498)
–––~––

(498)

where N, fl, @, are constants, N denoting the total

number of systems in the ensemble. The expression

n+~ifi. +~"t-<

Ne (499)

il!

evidently represents the density-in-phase of the ensemble

within the limits described, that is, for a phase specifically
defined. The expression

n+~t. +~t~–eE

6 (500)

til- -'t~
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is therefore thé probability-coefficient for a phase specifically
defined. This has evidently thé same value for ail thé

)~t )~ phases obtained by interchanging thé phases of

particles of thé same kind. Thé probability-coefficient for a

generic phase will be !fi times as great, viz.,

~+A't"t. -< f

e (501)

We shall say that such an ensemble as bas been described

is canonically distributed, and shall call thé constant @ its

modulus. It is evidently what we have called a grand ensem-

ble. The petit ensembles of which it is composed are

canonically distributed, according to the definitions of Chapter

IV, since the expression
n+~i. +~<~

e
0

–~–––i––

(502)

L~i [~t

is constant for each petit ensemble. Thé grand ensemble,

therefore, is in statistical equilibrium with respect to specific

phases.
If an ensemble, whether grand or petit, is identical so far

as generic phases are concerned with one canonically distrib-

uted, we shall say that its distribution is canonical with

respect to generic phases. Such an ensemble is evidently in

statistical equilibrium with respect to generic phases, although
it may not be so with respect to specific phases.

If we write H for the index of probability of a generic phase
in a grand ensemble, we have for the case of canonical

distribution

H =
~+~+~ (503)

It will be observed that the H is a linear function of e and

t~, also that whenever the index of probability of

generic phases in a grand ensemble is a linear fnnction of

e, vr, t~ the ensemble is canonically distributed with

respect to generic phases.
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Thé constant H we may regard as determined by the

equation
n+~~t. ~f

r r~ve e

,uh"h-£

~= 2.J .J ~.–– s (504)1
ph&aea '– ~–*

or

_a
au

_<_

c = 2. 2.,
~––~–– f f~ ~~i. (505)

~{h~~

where the multiple sum indicated by 2y~ 2~ includes ail

terms obtained by giving to each of the symbols ~i ail

integral values from zero upward, and the multiple integral

(which is to be evaluated separately for each term of the

multiple sum) is to be extended over ail the (specific) phases
of the system having the specified numbers of particles of thé

vanous kinds. The multiple integral in the last equation is

what we have represented by e See equation (92). We

may therefore write

tl Wt_A-'f'
–––~–––

e s = s~
2.–––,––.

·
(506)

b"-b. VA

It should be observed that the summation includes a term

in which ail the symbols have the value zero. We

must therefore recognize in a certain sense a system consisting
of no particles, which, although a barren subject of study in

itself, cannot weU be excluded as a particular case of a system
of a variable number of particles. In this case e is constant,
and there are no intégrations to be performed. We have

therefore*

~i
e ~=6 i.e., )~==e.

This conclusion may appear a. little atrained. The original definition
of may not be regarded as fairly applying to systema of no degrees of
freedom. We may therefore prêter to regard thèse equationa as deËning

in this case.
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13

The value of e~ la of course zero in this case. But the

value of e~ contains an arbitrary constant, which is generally
determined by considerations of convenience, so that €“ and e

do not necessarily vanish with vh.
Uniess – has a finite value, our formulae become illusory.

We have already, in considering petit ensembles canonically

distributed, found it necessary to exclude cases in which –
has not a finite value.* The same exclusion would here

make – finite for any finite values of This does

not necessarily make a multiple series of the form (506) finite.

We may observe, however, that if for ail values of

– c. + ci t.i, + c~ f (507)

where co, <*i, are constants or functions of @,

11 CQ+(~l+<'l)"l. +(~+<'A)"t

e<
~Yi

ee

0

6

~j~

_n

i. e., e
e

<
0ec e

v1
e

vh

~–

fl Co ~t+<'t ~t+'')i

i. e.~
"ë ë g get. e., e ~ee e e

~i+<'i ~+~

i. e.~ -+.
.+. (508))

The value of – will therefore be finite, when the condition

(507) is satisfied. If therefore we assume that – is finite,

we do not appear to exclude any cases which are analogous to

those of nature.f fi

The interest of the ensemble which has been described lies

in the fact that it may be in statistical equilbrium, both in

SeeChapter IV, page 35.

t If the external coordina.teadetermine a certain volume within which the

system ie confined,the contrary of (507) would imply that we could obtain
an infiniteamount of work by crowding an infinite quantity of matter into a
fuite volume.
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v., .t, ..r ..c __n_L~l~~
respect to exchange of energy and exchange of particles, with

other grand ensembles canonically distnbuted and having the

same values of @ and of the coeScients etc., when the
circumstances are such that exchange of energy and of

particles are possible, and when equilibrium would not sub-

sist, were it not for equal values of thèse constants in the two

ensembles.

With respect to the exchange of energy, the case is exactly
the same as that of the petit ensembles considered in Chapter
IV, and needs no especial discussion. The question of ex-

change of particles is to a certain extent analogous, and may
be treated in a somewhat similar manner. Let us suppose
that we have two grand ensembles canonically distributed

with respect to specine phases, with the same value of the

modulus and of the coenicients and let us consider

the ensemble of ail the systems obtained by combining each

system of the nrst ensemble with each of the second.

The probability-coefficient of a generic phase in the nrst
ensemble may be expressed by

~+~i"/ +~

e (509)

The probability-coefficient of a specine phase will then be

expressed by
~+~+~

~––––!–––'
(510)

h~
(510)

since each generic phase comprises jz~ specine phases.
In the second ensemble the probability-coef&cients of the

generic and specine phases will be

~+j~+~

(511)

~+~t~+~

e
e

and ~12)
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The probability-coefficient of a generic phase in thé third

ensemble, which consists of Systems obtained by regarding
each system of the first ensemble combined with each of the

second as forming a system, will be the product of the proba-

bility-coemeients of the generic phases of the Systems com-

bined, and will therefore be represented by the formula.

n~+~~y. +~e~

e (513)

where H'" = n' + e'~ = e' + e", == + ~i~, etc. It

will be observed that etc., represent the numbers of

particles of the various kinds in the third ensemble, and c'"

its energy; also that fi"' is a constant. The third ensemble

is therefore canonically distributed with respect to generic

phases.
If ail the systems in the same generic phase in the third

ensemble were equably distributed among the t~y [y~ spe-
cinc phases which are comprised in the generic phase, the prob-

ability-coenicient of a specific phase would be

n-+~i~+~f-

e

1..III ®1.1'" (514)
~––'

In fact, however, the probability-coefficient of any specific

phase which occurs in the third ensemble is

o~+~~y.+~~y-~

e

1 1..11. 1.
(515)

~b~b~

which we get by multiplying the probability-coenicients of

specific phases in the nrst and second ensembles. The differ-

ence between the formulae (514) and (515) is due to the fact

that the generic phases to which (513) relates include not

oniy the specific phases occurring in the third ensemble and

having the probability-coefficient (515), but also ail the

speciûc phases obtained from these by interchange of similar

particles between two combined systems. Of these the proba"
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bility-coefficient is evidently zero, as they do not occur in the

ensemble.

Now this third ensemble is in statistical equilibrium, with

respect both to specific and generic phases, since the ensembles

from which it is formed are so. This statistieal equilibrium
is not dependent on thé equality of thé modulus and thé co-eSi-

cients ~.t~, in thé first and second ensembles. It depends

only on the fact that the two original ensembles were separ-

ately in statistieal equilibrium, and that there is no interaction

between them, the combining of the two ensembles to form a

third being purely nominal, and involving no physical connec-

tion. This independence of the systems, determined physically

by forces which prevent particles from passing from one sys-
tem to the other, or coming within range of each other's action,

is represented mathematically by infinite values of thé energy
for particles in a space dividing the systems. Such a space

may be called a diaphragm.
If we now suppose that, when we combine the systems of

the two original ensembles, the forces are so modified that the

energy is ne longer infinite for particles in ail the space form-

ing the diaphragm, but is diminished in a part of this space,

so that it is possible for particles to pass from one system
to the other, this will involve a change in the function e'"

which represents the energy of the combined sy stems, and the

equation e'" = e' + e" will no longer hold. Now if the co-

efficient of probability in the third ensemble were represented

by (513) with this new function e~, we should have statistical

equilibrium, with respect to generic phases, although not to

specific. But this need involve only a trifling change in the

distribution of the third ensemble,* a change represented by

the addition of comparatively few systems in which the trans-

ference of particles is taking place to the immense number

It will be observed that, so far as thé distribution is concerned, very
large and inflnite values of e (for certain phases) amount to nearly thé same

thing,-one representing the total and the other the nearly total exclusion
of the phases in question. An infinite change, therefore, in tlie value of e

(for certain phases) may represent a vanishing changein the distribution.



SYSTEMS COMPOSED OF ~MjECL~~S'. 197 i-

4.7 1. ~L,L_ W L__y~ ,1 ~L.i. 1111,obtained by combining the two original ensembles. Thé

difference between thé ensemble whieh would be in statistical

equilibrium, and that obtained by combining the two original
ensembles may be diminished without limit, while it is still

possible for particles to pass from one system to another. I)t

this sense we may say that thé ensemble formed by combining
the two given ensembles may still be regarded as in a state of

(approximate) statistical equilibrium with respect to generic

phases, when it has been made possible for particles to pass
between the systems combined, and when statistical equilibrium
for specific phases has therefore entirely ceased to exist, and

when the equilibrium for generic phases would also have

entirely ceased to exist, if the given ensembles had not been

canonically distributed, with respect to generic phases, with

the same values of @ and

It is evident also that considérations of this kind will apply

separately to the several kinds of particles. We may diminish

the energy in the space forming the diaphragm for one kind of

particle and not for another. This is the mathematical ex-

pression for a semipermeable" diaphragm. The condition

necessary for statistical equilibrium where thé diaphragm is

permeable only to particles to which the suffix ( )~ relates

will be fulfilled when and @ have thé same values in the

two ensembles, although the other coemcients etc., may be

different.

This important property of grand ensembles with canonical

distribution will supply the motive for a more particular ex-

amination of thé nature of such ensembles, and especially of
the comparative numbers of systems in thé several petit en-

sembles which make up a grand ensemble, and of the average
values in the grand ensemble of some of the most important

quantities, and of the average squares of the deviations from

these average values.

The probability that a system taken at random from a

grand ensemble canonically distributed will have exactiy

vl, particles of the various kinds is expressed by the

multiple integral
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~+~t"t +~A"4"~
“ ~––––ë––––

r.. '–––––
(sic)

phases
J tj3

n+fl"! +~<'

0

or s

t!2 Yh

(517)

L~

This may be ca-lled the probability of the petit ensemble

(t/i, ~). The sum of ail such probabilities is evidently

unity. That is,
~+~1"1. +~"A-'<'

e e
= C")

which agrées with (506).
The average value in the grand ensemble of any quantity

u, is given by the formula

~+~1"1 +~"A-~

––––––0––––––

M==2~S.,f. pL~,–––––––~
(519)

t/ t/ [~i
phases

– ––

If u is a function of alone, i. e., if it has the same

value in ail systems of any same petit ensemble, the formula

reduces to
Q+~ift. +~")t-')'

M6
=

~~–––– (520)

Again, if we write Mignmaand MJ?~~to distinguish averages in

the grand and petit ensembles, we shall have

~+~l"t +~t"A- >G

`[
e

MJg~d= 2. 2., M~M–––-
· (S21)

In this chapter, in which we are treating of grand en-

sembles, M will aiways denote the average for a grand en-

semble. In the preceding chapters, Mhas aiways denoted

the average for a petit ensemble.
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Equation (505), which we repeat in a slightiy different

form, viz.,

~1"1 +~A~E

e'~ =
2~ 2., f. f~–––~–– (522)e

J J

e

~i.)~ IF,,

dl), di.,

phases
–'

shows that n is a function of @ and also of the

external coordinates a~, a~, etc., which are involved implicitly

in e. If we differentiate the equation regarding ail these

quantities as variable, we have

_n
-@/ ~n

~i''i-+~t,-f

f r~+~
°

-j-j ~j.. Vh
phases –'

~~1 +~A~
E

~b phases

+ etc.

~i"i-"+~ E

tU ––––~––––

-J..J~
phasea

etc. (523)

Q

If we multiply this equation by e~, and set as usual J.~

etc., for de/~< – ~6/< etc., we get in virtue of the law

expressed by equation (519),

do H <?)

"@'+@~="@~+~

~i- etc.
+'0'~+'@'~+~-

+~~+~~+~ ~24)
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,1-that is,

= 0+~ s Jt (525)

Since equation (503) gives

n+~+~-€ (526)?

the preceding equation may be written

~H=H~O-3~i–2~i~t. (527)

Again, equation (526) gives

cM + S~i dy + S~i ~i de = 0 dH + H d0. (528)

Eliminating f~H from these equations, we get

~=-@~H+S~i-~i~. (529)

If we set f = e' + 0 H, (530)

<? = de + 0 JH + H <ZO, (531)

we have = H d0 + S d;l – S~i da, (532)

The corresponding thermodynamic equations are

de = T~ + S~i~~i – S Al dal, (533)

= e (534)

(~=–r+S~i~–S.~i<~i. (535)

These are derived from the thermodynamic equations (114)

and (117) by the addition of the terms necessary to take ac-

count of variation in the quantities (~, Mt~, etc.) of the

several substances of which a body is composed. The cor-

respondence of the equations is most perfect when the com-

ponent substances are measured in such units that ml, m2,

etc., are proportional to the numbers of the different kinds

of molecules or atoms. The quantities ~i, etc., in these

thermodynamic equations may be defined as differential coeffi-

cients by either of the equations in which they occur.*

CompareTransactions Connecticut Academy, Vol. III, pages 116ff.
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If we compare the statistical equations (529) and (532)
with (114) and (112), which are given in Chapter IV, and

discussed in Chapter XIV, as analogues of thermody-

namic equations, we find considérable différence. Beside thé

terms corresponding to tlie additional ternis in the thermo-

dynamic equations of this chapter, and beside the fact that

the averages are taken in a grand ensemble in one case

and in a petit in the other, the analogues of entropy, H

and 7;, are quite different in definition and value. We shall

return to this point after we have determined the order

of magnitude of the usual anomalies of vl, vh.

If we differentiate equation (518) with respect to /~i, and

multiply by @, we get

n+~ifi.+~

2. +
.–––~–––

=
0, (536)

\~i b b-

whence <m/u.~ = – t~, which agrees with (527). Differen-

tiating again with respect toul, and to and setting

~0 do

<<~i

=
vZ

o!~

V2

we get
n+~i.+~

(~v
e

+
––0-7-~––

~7)

~+~i"t +~r-'f'

(~)(~)~e

e

.2,~.2,t' ) -–-– + ––––––––– )––j––––,––– = U. (5db)
"1~ 0 h. VA

The first members of these equations represent the average
values of the quantities in the principal parenthèses. ~We
have therefore

(~=~=-@~==@~, (639)
~i ~i

(~1–t~t) (~–~)='–==–@,––-y–=0-~=0 – (540)
<t~l<tjU.S

=
tt~s

=
~1
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From equation (539) we may get an idea of the order of

magnitude of the divergences of t~ from its average value

in thé ensemble, when that average value is great. The

équation may be written

~~=~ (541)
fi )/i 0!i

The second member of this equation will in general be small

when ;1 is great. Large values are not necessarily excluded,

but they must be confined within very small limits with re-

spect to For if

> (542)

t-i fi~

for ail values of between the limits /n/ and we shall

have between the same limits

~~i>~i, (543)

vy

> dt'l> (543)

fi* ~-3

and therefore

~(~)>

(544)

The difference – is therefore numerically a very small

quantity. To form an idea of the importance of such a

difference, we should observe that in formula (498) ~.i is

multiplied by v1 and the product subtracted from the energy.

A very small difference in the value of may therefore be im-

portant. But since @ is always less than the kinetic energy
of the system, our formula shows that – even when

multiplied by or may still be regarded as an insensible

quantity.
We can now perceive the leading characteristics with re-

spect to properties sensible to human faculties of such an en-

semble as we are considering (a grand ensemble canonically

distributed), when the average numbers of particles of the vari-

ous kinds are of the same order of magnitude as the number

of molecules in the bodies which are the subject of physical



.Sy.S"rEAf.S' CO~P06'jED OF MOLECULES. 203

experiment. Although thé ensemble contains systems having
thé widest possible variations in respect to thé numbers of

the particles which they contain, these variations are practi-

cally contained within such narrow limits as to be insensible,

except for particular values of tlie constants of the ensemble.

This exception corresponds precisely to thé case of nature,

when certain thermodynamic quantities corresponding to 0,

/i, etc., which in general determine the separate densities

of various components of a body, have certain values which

make these densities indetermina.te, in other words, when the

conditions are such as determine coexistent phases of matter.

Except in the case of these particular values, the grand en-

semble would not differ to human faculties of perception from

a petit ensemble, viz., any one of the petit ensembles which it

contains in which v2, etc., do not sensibly differ from their

average values.

Let us now compare the quantities H and ?;, the average
values of which (in a grand and a petit ensemble respectively)
we have seen to correspond to entropy. Since

H + ~.n.i. + e
0

t – 6
and

~=-@-'

H-~=~+~+~ (545)

A part of this difference is due to thé fact that H relates to

generic phases and to specific. If we write ~~n for the

index of probability for generic phases in a petit ensemble,

we have

%en=~+log[~ (546)

H = H + log 1 (547)

H-+~log~ (548)

This is the logarithm of the probability of thé petit en-

semble (~i !).* If we set

See formula (517).
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'~O-' ==
%.a, (549)

which corresponds to the equation

~=~ (550)

we have = + 0 log b )~,

and H =
~+~+~ · (551)an H T}gen ~)

This will have a maximum when

~-=. ~=~,
etc. (552)

dy, dy,

Distinguishing values corresponding to this maximum by
accents, we have approximately, when vh are of the

same order of magnitude as the numbers of molecules in ordi-

nary bodies,

H + ~l + j~~A
–

~gen
H ~.n =

––––––––––Q–––––––––––

0 + /~1' + –
'~en'

0

/y(A~ /y~~ /Y(~)'
(d2¡figen)'2O (:Z2¡figen)'p (d2¡figen)'2O2@ 0 (Z~ 20

(553)

_ny(~i)~ ~~nY~ /~y(A~)~
~H-~en~~ \~f~/ l 28 \~iCff27 0 \~V 20

(554)

where
C = n+~ (555)

and A~i=~i–fi', A~=~–~ etc. (556)

This is the probability of the system (~i f/,). The prob-
abilty that the values of lie within given limits is

given by the multiple integral

Strictly speaking, is not determined as function of "i, f., except

for integral values of these variables. Yet we may suppose it to be deter-

mined as a continuous function by any suitable process of interpolation.
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t.
~7 e

20
dvh*

(557)

This shows that the distribution of the grand ensemble with

respect to the values of follows thé la.w of errors

when are very great. Thé value of this integral

for the limits ± co should be unity. This gives
h

~~=1, (558)

or
.C=~log~log(27r0), (559)

~~nY
r

~~Y ~Y
\i~/ '1~/

1

di,12 dvl dv2 dv, dv,)

/Y

r

~~Y ('

~~y

where JP=
V~~J J

~~0)
10 .10. 10 10 10 10 10 10

l .10 10 10

~Y

l

<' ~Y

r

~Y

l

(_cEtftg!)' ( dvadvz) · C dvhz\1/ ~2

/~y

r

~Y.f~'Y

r

\i/

~Y

r

~Y

r

f~Y

1

that is, D C dvi C dvz) ~-dvh
(561)thatis, D=~~ \~J"J
(561)

.10 10 10 10 10 10 10 10

10 10 10 10 10 10 10

ya~Y
r

~~Y
r

~Y

r

\d'fl/ \~2/,Il 1

Now, by (553), we have for the first approximation

H-~==C=~log2)-~Iog(2~@), (562)

and if we divide by the constant to reduce these quanti-
ties to the usual unit of entropy,

H log D h log (2~-0)
'~6.3).

––~– ––––––––– (jb~

Seepage184-186.
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This is evidently a negligible quantity, since K is of the same

order of magnitude as thé number of molecules in ordinary

bodies. It is to be observed that ~genis hère the average in

the grand ensemble, whereas the quantity which we wish to

compare with H is the average in a petit ensemble. But as we

hâve seen that in the case considered the grand ensemble would

appear to human observation as a petit ensemble, this dis-

tinction may be neglected.
The differences therefore, in the case considered, between the

quantities which may be represented by the notations

~tnd' 7 ~"Lrand'~"Lm

are not sensible to human faculties. The difference

~n~ttt~P~Ltt~ 1

and is therefore constant, so long as the numbers vl,
are constant. For constant values of these numbers, therefore,

it is immaterial whether we use the average of or of for

entropy, since this only affects the arbitrary constant of in-

tegration which is added to entropy. But when the numbers

vl, t~ are varied, it is no longer possible to use the index

for specific phases. For the principle that the entropy of any

body has an arbitrary additive constant is subject to limi-

tation, when different quantities of the same substance are

concerned. In this case, the constant being determined for

one quantity of a substance, is thereby determined for ail

quantities of the same substance.

To fix our ideas, let us suppose that we have two identical

fluid masses in contiguous chambers. The entropy of the

whole is equal to the sum of the entropies of the parts, and

double that of one part. Suppose a valve is now opened,

making a communication between the chambers. We do not

regard this as making any change in the entropy, although
the masses of gas or liquid diffuse into one another, and al-

though the same process of diffusion would increase the

~In this paragraph,for greaterdistinctness,Hgen~~ and 7;,?~ 1have

beenwrittenfor thequantitieswhichelsewhereare denotedby H and
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entropy, if the masses of fluid were different. It is évident,

therefore, that it is equilibrium with respect to generic phases,

and not with respect to specific, with which we have to do in

the evaluation of entropy, and therefore, that we must use

the average of H or of and not that of T/, as thé equiva-
lent of entropy, except in the thermodynamics of bodies in

which the number of molecules of the various kinds is

constant.


