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Synopsis 
This  no te  concerns  t he  e n t r o p y  of t he  E h r e n f e s t  u r n  model .  B o t h  B o l t z m a n n  

a n d  Gibbs  en t rop ies  are  discussed.  I t  is shown  t h a t  t h e y  agree  a t  equ i l ib r ium.  The  
B o l t z m a n n  e n t r o p y  shows f l uc t ua t i ons  in  t i m e  whi le  t he  Gibbs  e n t r o p y  is p r o v e d  to  
increase  m o n o t o n i c a l l y  to  i ts  m a x i m u m  (equi l ibr ium) value.  The  concep t s  of equil i-  
b r i u m  assoc ia ted  w i t h  t h e  two  p o i n t s  of v iew are compared .  

I. Introduction. In 1907 P a u l  and T a t i a n a  E h r e n f e s t l )  in- 
troduced a simple probability model designed to illustrate and to clarify 
Boltzmann's proof of the H-theorem. This urn model has attracted con- 
siderable attention 3)-7) both for its heuristic value in statistical mechanics 
and for its mathematical interest as a simple Markoff process. 

This note deals with the entropy of the urn model considered as a physical 
system. Previous discussions have only drawn an analogy between the time 
variation of a quant i ty  peculiar to the Ehrenfest model and the time varia- 
tion of the entropy of a closed system. It  is possible, however, to treat the 
entropy of the urn model itself and this treatment is carried out below. 

The principal result of the analysis is to sharpen the distinction between 
the Boltzmann and the Gibbs definitions of the entropy. These definitions 
essentially coincide for a system in equilibrium because of what L o- 
r e n t z 8) calls "la remarquable insensibilit~ de la formule de Boltzmann". 
The time dependence of the two entropies is quite different: the Boltzmann 
entropy, based on the actual state of the system shows the kind of fluctu- 
ations familiar in discussions of the H-theorem, whereas the Gibbs entropy 
shows a monotonic increase with time, approaching a maximum value in the 
equilibrium state. 

Although these distinctions are not new, and were actually first analyzed 
in detail by  the Ehrenfests in their Enzyklopiidie article 9) 10), the analysis 
has not previously been carried out for the simple system of the Ehrenfest 
urn model. 

II. The urn model and its entropy. The model may  be described in the 
following way. Consider two urns, A and B, and 2R balls, numbered consecu- 
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tively from 1 to 2R,  which are distributed in these two urns. An integer 
between 1 and 2R is chosen at random in such a way that  all these integers 
have equal probabilities of being chosen, and the ball with that  number is 
moved from the urn ir~ which it is located to the other urn. This procedure is 
repeated regularly at intervals of time 3. 

The "macroscopic" state of the system is characterized, at any time, by  
the integer l where R + l is the number of balls then in urn A (and R -- l is 
the number of balls in urn B). It  is evident that  l takes on values from the set 
- - R ,  - - R  + 1 . . . . .  0 . . . . .  R - -  1, R .  In contrast, the "microscopic" state 
of the system is given by  enumerating the numbers of the R + l balls in urn 
A. The word "s ta te"  without further designation will be used to mean 
macroscopic state. 

The basic "equation of motion" of the urn model is a stochastic equation 
since a given initial state determines only the probabilities of the various 
states at a later time s3 (after s repetitions of the process). Let us define 
P(n[m;  s) as the probability that  after s repetitions there are R + m balls 
in urn A, given that  there were R + n balls in urn A initially. The stochastic 
equation is readily seen to be 

R + m + 1 ,~, , R - - m +  1 P ( n [ m - - l ' s - - 1 ) .  (I) 
P(n[m;  s) = 2R  - -  ~-'tnlm + 1 ; s - -  1) + 2R 

This equation expresses the probabilities at time s3 in terms of the probabili- 
ties at time (s --  I) 3. 

The solution of Eq. (1) subject to the initial condition P ( n I m ;  O) = ~5,~,,, 
"has been obtained by  K a c 3). Kac has shown (among other things) that  
for any initial state of the system the distribution eventually approaches 
the stationary or equilibrium distribution given by  

(2R)! 
Po(m) -~ a - -  a Gin. (2) 

(R + m)! (R -- m)! 

Here Po(m) is the equilibrium probability that  urn A contains R + m balls and 
is a normalization constant equal to 2 -2R. We note that  Po(m) is proportional 

to G~ ( =  (2R) I/(R + m) ! (R - -  m) !) where G,n is the number of microscopic 
states all of which correspond to the macroscopic state m. This equilibrium 
distribution is stationary in the sense that  it is unchanged by  the stochastic 
equation, since it is easily verified that  

R + m + l  R - - m ~ - I  
Po(m) = 2 R  P° (m  + I) + 2R P o ( m -  I). (3) 

To summarize, we can say that the Ehrenfest model approaches equilibrium, 
where equilibrium is characterized by  the probability distribution Po(m) for 
the various states m. This implies; of course, that  the state m shows fluctua- 
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tions even at equilibrium which can be calculated from the equillbrmm 
distribution. The mean value and also the most probable value of m at equi- 
librium is zero, corresponding to equal distribution of the balls between urns 
A and B. 

With this background we can now formulate the definitions of the entropy 
for the Ehrenfest system. Consider first the entropy according to Boltzmann's 
relation: the entropy is proportional to the logarithm of the number of micro- 
scopic states compatible with t h e  given macroscopic state. From the dis- 
cussion above we can then write for S, the Boltzmann entropy of the system 
in s ta te  m, 

$ = In G m = In ((2R)!/(R + m)! (R --  m)l) (4) 

where S is expressed in units of Boltzmann's constant k. Using Stirling's 
approximation for the factorials S can be written as 

S = -- (R + m) in (R + m) -- (R -- m) In (R -- m) + constant. (5) 

We notice that  the entropy defined by Eq. (4) depends on ~:he actual state of 
the system, i.e. on the single parameter m. In previous discussions of the 
Ehrenfest model the time variation of m was taken as indicative of the time 
variation of the entropy, and we see that  this point of view is appropriate 
when S is the entropy. 

Let us now define the entropy from the Gibbsian standpoint. Here we take 
account of the stochastic natur.e of the system from the outset, and therefore 
we define an entropy S in terms of the probabilities for finding the system in 
states m. If we abbreviate the symbol P(n]m; s) defined above as Pm then S 
is defined as 

S = -- X~=_~ P,~ In (Pro~Gin) = -- Zm Pm in P,~ + Z,~ P,n in G,~. (6) 

In the usual Gibbsian terminology of ensembles Pm can be expressed as 
follows. Imagine many replicas of the Ehrenfest urns each of which initially 
has R + n balls in its A urn. Then Pm is the fraction of the total number 
of urn models which at time sr have R + m balls in their A urns. 

The second form of Eq. (6) shows us the general relationship between S 
and S. We see that  S is the average of S, (Z,~ P,~ In G,~), plus a term 
(-- Z m P,~ In Pro) which measures the extent to which the various states are 
occupied. 

III .  The entropy at equilibrium. Let us now compare the two entropy 
definitions for the equilibrium state of the system. We must first point out, 
however; tha t  the two concepts of equilibrium state are different. From the 
Boltzmann point of view the equilibrium state is indeed a state, i.e. a macro- 
scopic state, of the urn model. I t  is that  state for which the entropy $ is a 
maximum. The equilibrium state is then the state m = 0, co_I~es.pon.d.ing_ tq 
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equal numbers of balls in the two urns. Since this state means, in probabili ty 
language, P m =  (~m0, a distribution which is not a stat ionary solution of the 
basic stochastic equation, Eq. (1), it follows that there will be departures 
from the equilibrium state, i.e. fluctuations about equilibrium. 

From the Gibbs standpoint equilibrium is characterized by  a probability 
distribution rather than by  a particular state. It is that  distribution for which 
S is a maximum, and this is readily seen to be the distribution P,~ = Po(m) 
= ~ Gin. This distribution is stationary in time so that  once it is reached it 
persists. Since, however, equilibrium corresponds to a probability distribution 
rather than a state, we now have fluctuations at equilibrium, fluctuations 
which are, so to speak, a part of our concept of equilibrium. 

Now let us write down the values of the two entropies, S and S, at equili- 
brium to show that, despite the rather considerable difference in meaning, 
the values of Seq and S~,, are essentially the same. 

For S we have the expression 

S.~ ---- In Go = In (2R) !/R !R ! = 2R In 2. (7) 

For S we can write the expression 

S.~ = -- (ln oc) Xm Po(m) -= 2R In 2. (8) 

Hence, if R is large enough to just ify the use of Stirling's formula, the 
two entropies have precisely the same value at equilibrium. It is only for the 
non-equilibrium case that  the difference in viewpoint is reflected in a diffe- 
rence in the behaviour of S and S, and to this case we now turn our attention. 

IV. Time dependence o/the entropy. We begin by considering the entropy S 
which is a function of the actual state of the system (i.e. the number of balls 
in urn A) as this state changes with time. Since the variation of the state m 
with time is determined by the stochastic equation, Eq. (1), S is a stochastic 
function, a function of the stochastic variable m. We may point out that  it 
follows from Eq. (5) that  S actually depends only on Im], which is clear from 
the symmetry of the problem with respect to urns A and B. The kind of 
variation shown by  S is made evident by  the experimental results of SchrS- 
dinger and Kohlrausch who actually carried ou t  the Ehrenfest lottery. Their 
results have recently been replotted by  T e r H a a r 11). We have not made 
any new calculations here because previous results suffice to establish the 
important points. 

First, since, as Kac has proved, every state is bound to recur with probabi- 
lity one, arbitrarily small values of the entropy S are certain to be found. 
Second, since the recurrence time of any state m is proportional to ~/Gm it 
follows that values of S differing from S,q occur more rarely as the difference 
.between S~ ~nd S increases. 
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Roughly speaking, then, S will tend to approach S~, showing fluctuations 
in the approach and will then continue to fluctuate indefinitely. We may  
mention that  (S), the average value of $, i.e. the sum of the values of S in the 
possible states times the respective probabilities of occurrence of these 
states, does not show a monotonically increasing behaviour in time. This can 
easily be seen if one starts from the state m = 0. 

Consider now the time dependence of S. We shall prove that  S increases 
monotonically with time, i.e. tha t  $(s + 1) > S(s). Before writing this out 
explicitly we change variables for convenience. Define 

pro(s) = Pm(s)/G m (9) 

where P,~(s) is the probability that  the system is in state m at time sz and 
pro(S) is the ratio of this probability to the number of microstates compatible 
with m. Our assertion that  S(s + l)>__ S(s) is then equivalent to the 
assertion 

Xm P,n (s + I) G m In pm(S + I) __< Xm pro(S) Gm In pro(S). (10) 

The key to the proof is the observation 13) that the function 9(x) = x In x 
is convex, which means that  q0 (Xi qixi) <- E, qi 9(x~) if Y,i q~ = 1. Now our 
basic Eq. (1) can be rewritten in terms of the p~ to read 

R + m +  1 Gin+ 1 R - - m +  1 Gm 1 
p,,(s + 1 ) -  - -  ~ pm_x(s), (11) 2R G., P"+l(s) + 2R 

an equation which has the general form 

pm(s + I) = Y~, b,,, pt(s) (12) 

where Y.z btm ~--- 1, (12') 

and where Gm blm = Gz brat (13) 

Equations (12') and (13) can be verified directly from the coefficients in 
Eq. (1 1). 

Using the convexity of x In x we obtain from Eq. (11), 

Pm (s + 1) In pm (s + 1) < Y,, b~  p~ (s) In p, (s). (14) 

Multiply Eq. (14) by G,n and sum on m. We obtain 

XmG,np~(s  + 1) lnpm (s + 1) < Etp,(s)  lnp t ( s  ) E,~bzmGm . (15) 

Using Eq. (13) and Eq. (12') the second sum on the right hand side becomes 

Gt Zm bm~ = G~. (16) 

Hence Eq. (15) reduces to Eq. (10) which is our law for the monotonic 
increase of S. We see that  S increases until the equilibrium distribution is 
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reached, which happens eventually (as proved by  Kac), and the entropy S 
then remains constant at its maximum value. 

V. Conclusion. We have shown that the time dependence and the general 
behaviour of the entropy as defined in these two different ways are quite 
different. There is, of course, no contradiction between the two  sets of results. 
Contradictions appear only if one is not careful to distinguish the sense in 
which the word entropy is used in the particular discussion. The purpose of 
this note was to prevent such confusion from arising again by discussing the 
entropy for the Ehrenfest model which is simple enough so the distinctions 
are completely transparent. 

It  is appropriate to conclude with some general remarks on therelationship 
between the two statistical theories of entropy discussed above and thermo- 
dynamics. Thermodynamics makes one clear statement about entropy which 
may  be phrased as follows: an isolated system will always come to equili- 
brium and in doing so will always increase its entropy. Now it is well known 
that the very existence of fluctuation phenomena, typified by  the Brownian 
motion, shows an incompleteness in the thermodynamic statement.  The two 
statistical approaches to the entropy are two alternate ways of reformulating 
the Second Law of Thermodynamics so as to include the existence of fluctu- 
ations. 

In the Boltzmann approach one keeps the idea of a single (macroscopic) 
equilibrium state and one admits forthrightly that  there are violations of the 
Second Law, which becomes a statistical law. As we have seen in our 
example, every fluctuation from the equilibrium state is interpreted as a 
departure from equilibrium which decreases the entropy of the system, and 
such fluctuations, of arbitrarily large magnitude, are certain to occur. One 
saves the thermodynamic idea of the equilibrium state at the price of giving 
up the thermodynamic idea of this state as something achieved once and 
for all. 

In the Gibbs approach the possibility of fluctuations is built, as it were, 
into one's concepts of entropy and equilibrium. The idea that  a system 
comes to equilibrium now means not that  it goes to a single state, but  rather 
that  the probabilities that  the system is in any of its states take on particular 
values. In other words equilibrium is described in the language of probability, 
so that  a system "in equilibrium" is actually moving from one state to another 
governed by  the law determining the probabili ty of finding it in any state. 
Correspondingly the entropy of the system, as we have seen, is a function of 
these probabilities and not of the actual state occupied, a n d  this function 
monotonically approaches its maximum value, the entropy of the equili- 
brium distribution. In this approach the Second Law is kept as a rigorous 
s ta tement  but  the concepts of equilibrium and entropy are made less in- 
tuitive. 
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Clearly either point of view is permissible and takes adequate account of 
the phenomena. One must sacrifice something either way since the simplicity 
of classical thermodynamics is inadequate for a description of a world which 
includes the Brownian motion. 
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