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the classical equations of motion. The results of the 
previous section show that computed rates for the A + A - products case should not be compared to the classical 
integrated rate law (6), but rather to the one derived below. 

Considering a small, fixed number of molecules is 
equivalent to setting 6ni = 0 in (31) or (32), or simply s = 
1 in (35). In either case the rate law is 

-1 dn -- = (2kIn/u2)n(n - 1 )  
u d t  (37) 

where we remove the average notation from n to emphasize 
that it is fixed and use u rather than V as a reminder that 
small volumes are required in order for reaction to be 
observed with a small number of molecules. Equation 37 
is readily integrated by the separation-of-variables method 
to 

In ( L, n - 1  = In ( L, n - 1  0 + (2kIII/u)t (38) 

in place of (6). For large n,  the logarithms in (38) can be 
expanded to give l / n  and l / n o ,  such that (38) becomes (6) 
upon multiplication by u. Numerically, the difference 
between -In ( 1  - l / n )  and l / n  is 5% for n = 10 and 1% 
for n = 50. Whether these differences are important de- 
pends upon the nature of the computer simulation. 

Discussion 
The results obtained from the arguments presented 

above do not change any of the working equations of 
chemical kinetics; nor have we been able to conceive of any 
experients that could test the theoretical results. 

The gain for the theory of chemical kinetics is therefore 
entirely conceptual. Explicit but approximate considera- 
tion of the magnitudes of diffusion and reaction rates 
showed that chemical reaction can proceed either faster 
or more slowly than dissipation of local concentration 
fluctuations for conditions typical of chemical kinetics 
experiments. Accordingly, an investigation of whether 
these fluctuations may affect the interpretation of ma- 
croscopic rate measurements in terms of microscopic 
models was required. Reassuringly, this investigation led 
to the conclusion that the conventional rate laws and in- 
tegrated rate laws for the three cases tested proved to be 

completely correct, although for case I11 the conventional 
derivation itself was found to be incorrect. 

It is certain that other cases exist in which the effects 
of fluctuations must prove not to average out to the con- 
ventional results. There are many possible elaborations 
of the ones we tested which could be considered to this end. 
One would of course again have to consider whether ex- 
perimental conditions exist where the magnitude and 
dissipation rates of the fluctuations permit these effects 
to occur in the real world. It is possible that computer 
experiments might prove to be an easier route to testing 
such possible conclusions than laboratory experiments, but 
there are complex but important reaction mechanisms 
where fluctuations are already known to play decisive roles 
in chemical kinetics. These include initiation of polym- 
erization, population genetics, and explosion; extensive 
experimental and theoretical work has been done on them. 
Amplification of fluctuations by chemical reaction clearly 
does not occur, however, for the schematic elementary 
reactions considered here. It is possible that extensions 
of the method of investigation used in the present work 
may permit identification of criteria for instability toward 
fluctuations that would be useful in a wide range of con- 
texts. Stability tests for more complicated systems are at 
present most effectively carried out by qualitative analysis 
of equivalent dynamical  system^.'^ 

Finally, the geometric difficulties in computing the rate 
of dissipation of concentration fluctuations suggest that 
this apparently overlooked topic of fluctuation dynamics 
may well be of sufficient interest to be worth investigating 
in depth. 
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The Brownian motion equation is solved for the cases of diffusive motion out of a rectangular parallelepiped 
and a sphere, assuming equal diffusion coefficients inside and outside the boundary surfaces. Averaging over 
a uniform initial internal distribution provides probability functions which are required to describe the dissipation 
of local concentration fluctuations. 

Introduction 
Local concentration fluctuations in a macroscopically 

homogeneous solution are readily discussed in equilibrium 
statistical mechanics, most conveniently in the grand en- 
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semble formalism, and found to be described as to mag- 
nitude by 

((6n)')em = (n)em (1)  
where ( n)ens is the ensemble average number of molecules 
in a system and 6ni is the difference between ni, the (in- 
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stantaneous) number of molecules in system i, and (n)-.I 
From a dynamic point of view, the value of 6ni in a par- 
ticular (small) subvolume i of a macroscopically homoge- 
neous solution fluctuates about zero in a random manner 
and at  a rate that depends upon the size and shape of the 
subvolume and upon the diffusion coefficient of the 
molecules. 

One would think that the dissipation rate of these 
fluctuations would have been thoroughly investigated, as 
have dissipations of other fluctuating quantities.2 This 
appears not to be the case, however, probably because this 
rate is dependent upon the shape of the system (the vol- 
ume element) considered and because there seems to be 
little experimental impetus to deal with the theory in exact 
form. Early in this century there was such an impetus, 
in connection with quantitative microscopic observations 
of Brownian motion in colloidal solutions. A theory of 
concentration fluctuations applicable to the experimental 
geometries which were used for collecting the fluctuation 
data was indeed developed by Smoluchowski, who also 
applied it to discuss the experimental d a h 3  Aside from 
his work we have not been able to find any further exact 
investigations of concentration fluctuations, nor solutions 
to the corresponding diffusion problems, in the literature. 
This may be due in part to the practice, attributed to, but 
as far as we can tell not explicitly introduced by, OnsagerPB 
of linearizing the equations of transport which underlie the 
approach of fluctuating variables to their equilibrium 
values. To prevent misunderstanding of the object of the 
present development, we avoid the terms “relaxation”, with 
its connotation of exponential decay, and the equivalent 
“regression” used by Onsager, in favor of “dissipation” of 
concentration fluctuations. The applicability of expo- 
nential decay functions is discussed later. 

In connection with a study of the effects of local con- 
centration fluctuations upon chemical reaction ratese it 
became necessary to consider the dissipation rates of 
concentration fluctuations in three-dimensional geometry, 
which, since it is not particularly appropriate for use with 
microscopes, was not done by Smoluchowski. The corre- 
sponding diffusion problems for spherical and Cartesian 
geometry are cumbersome to solve and not fully developed 
in the standard treatises.7*8 Since there may be applica- 
tions for the intermediate and final results in other areas 
of physical chemistry, we present the analysis and final 
equations here in some detail. 

Smoluchowski’s Formulation of Concentration 
Fluctuation Dissipation 

The basic question addressed by Smoluchowski was the 
following. Suppose that one observes a small volume u out 
of a large volume V containing N solute molecules, such 
that the average number of solute molecules present in u, 
when the observation is continued for a long time, is (n) 
= N(u/V).  At a given instant the difference between the 
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actual number n present in u and the average number is 
6n = n - (n). How does 6n evolve, on the average, in time? 
This question requires two assumptions for ita resolution: 
one about the initial distribution of the n molecules in u 
and the N - n molecules in V - u, and one about the 
correlations of the motions of the molecules. Smolu- 
chowski assumed that the distribution of molecules is 
everywhere random, or equivalently that the probability 
distribution is uniform, and that the motions of all mol- 
ecules are independent. These assumptions reduce the 
problem to a combinatorics one, which he solved to get a 
set of complicated probability functions for the evolution 
of 6n. He then showed that these functions can be reduced, 
by very involved but exact operations, to remarkably sim- 
ple formulas for the average concentration changes. These 
are 

(2) 

= 2 ( n ) ( P ( V -  u,tlu,to)) (3) 
where <P(V- u,tlu,to)) is the average probability that an 
individual solute molecule, of the no which are located 
somewhere within u at  time to, will be located outaide this 
volume a t  a later time t. 

Equation 2 confirms one’s anticipation that while this 
is intrinsically a first-order process, i.e., that (an) is pro- 
portional to the fluctuation (n - (n)) with a negative 
proportionality “constant”, the fact that (P(V - u,tlu,to) ) 
is a function of time-rather than a rate constant as would 
pertain to a true first-order chemical reaction-generates 
a more complicated function of time than simple expo- 
nential decay. Evaluation of the average “escaped” 
probability (P(V-  u,tlu,to)) enables (2)  to become an ex- 
plicit dissipation equation. Smoluchowski did this for two 
cases corresponding to the microscope observations: an 
infinite slab, where diffusion only in the perpendicular 
coordinate changes n, and a cylinder with reflecting end 
walls, where only radial diffusion changes n. For the first 
case he obtained, setting to = 0 

(P(V - u , t l u ,~ ) )  = erfc(8) + [I - e + ’ ] / j W 2  (4 )  
where P2 = h2/4Dt,  h is the slab thickness, and D the 
diffusion coefficient, and for the second case 

(P(V - u, t lu ,~ ) )  = e - 2 @ ’ [ 1 ~ ( 2 ~ ~ )  + 1 ~ ( 2 ~ ~ ) 1  (5 )  

where Io and Il are Bessel functions of imaginary argument 
and h becomes the cylinder radius. We now evaluate the 
average escaped probability in three dimensions. 

Solution in  Cartesian Geometry 

equation 

(an) = ((n) - no)(P(V - u,tlu,to)> 

Our starting point is the fundamental Brownian motion 

for the probability that a solute molecule with x coordinate 
xo  at  time t o  = 0 will have x coordinate between x and 1: + dx at  time t? Since diffusive motion is independent 
in each direction, the three-dimensional probability density 
equation is 
P(X,Y,Z, t lXO,YO,ZO,O) = 

( 4 ~ D t ) - ~ / ~  exp(-[(x - xo)2 + (y - yo)2 + ( z  - ~ ~ ) ~ ] / 4 D t )  
(7) 

It is convenient first to find the probability that a molecule 

(9) A. Einstein, Ann. Phys. (4), 17, 649 (1905). 
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starting with x coordinate somewhere in the range a,b-ie., 
with a < xo < b-is still within a,b at time t ;  this is the 
integral of (6) over the range 

P,(in,tlxo,O) = 1b(47rDt)-1/2 exp(-[x - xo12/4Dt) dx 
(8) 

Scalin the x axis to (4Dt)ll2 units and defining a’ = a/  
(4Dt)’Y2 and x( = ~ ~ / ( 4 D t ) ’ / ~  leads straightforwardly to 

P,(in,tlxo,O) = ‘/[erf(b’- x { )  - erf(a’- x i ) ]  (9) 
We require the average nonescaped probability. In 

general this would be 

where f(xo)/(b - a) is a normalized distribution function 
giving the probability of starting between xo and xo + dxo. 
By our basic assumption of the solute molecules having 
random starting locations, it is uniform and so f(xo) is set 
to unity. To make the integration of (10) simple, (9) can 
be converted to the complementary error function 

Px(in,tlxo,O) = l/z[erfc(a’- x ( )  - erfc(b’- x d ) ]  (11) 
whereupon utilizing the first repeated integral of the error 
functionlo 

iR erfc z = 1- erfc t dt  = e22/7r1/2 - z erfc z (12) 

one obtains directly 

(P,(in,tlin,O)) = erf /3 - (1 - e-@’)/@d2 

P = b’- a’= (b - ~ ) / ( 4 D t ) ’ / ~  

(13) 
where 

(14) 
(From (14) we immediately have the average escaped 

probability in the x coordinate alone 
(P,(out,tlin,O)) = 1 - (P,(in,tlin,O)) = 

-t (1 - e-@2)/p7r1/2 (15) 

which is also Smoluchowski’s result for escape from an 
infinite slab.) 

For the three-dimensional situation, the joint probability 
of the molecule having at  time t the coordinates x,y,z 
within the ranges a, C x < b,, ay < y < by, az C z < b, eves 
the average probability of the molecule remaining within 
the Cartesian volume u = (b, - a,)(b, - a,)(b, - az). This 
joint probability is the product of the three corresponding 
forms of (15) 
(P(u,tlu,O)) = (P,(in,tlin,O)) (P,(in,tlin,O)) X 

i C x w  

erfc 

(P,(in,tJin,O)) = n [erf P ,  - (1 - e-@I”)//3i7r1/2] (16) 

If the molecule is not within u, it must be within V - u, 
so by completeness 
(P(V - u,tlu,O)) = 1 - (P(u,t(u,O)) = 

1 - , n [erf Pi - (1 - e-@?)/&~l /~]  (17) 

Equation 17 is the desired general result for use with 
(2) and (3) to compute the time evolution of concentration 
fluctuations in three-dimensional Cartesian geometry. 

For the special case of a cubic box, P, = Py = P, = P and 

(P(V - u,tlu,O)) = 1 - [erf P - (1 - e-@2)/p7r1/2]3 (18) 

ICXY,Z 

(10) M. Abramowitz and I. A. Stegun, “Handbook of Mathematical 
Functions”, Dover, New York, 1965, Section 72. 
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Figure 1. Escaped probabiilty function for cubic geometry. The fine 
lines indicate the asymptotic forms, (19) and (20), the dashed line is 
for exponential decay according to 1 - &’’, T = (b  - aJ214D, and 
the dotted line Is for exponentlei decay with T = ( b  - e) ID .  

It is a universal function of time, scaled as F2 = 4Dt/(b 
- u ) ~ ,  (cf. eq 14) shown in Figure 1. Equation 18 is re- 
markably well described by the asymptotic forms 

(19) 

(20) 
for small P (long time). Equation 19 is accurate to better 
than 3% for > 1.0, better than 1% for B > 1.5, and better 
than 1 ppt for B > 2.0. Equation 20 is accurate to better 
than 8% for /3 < 1.0, better than 1% for B < 0.6, and better 
than 1 ppt for @ < 0.4. 

We can compare (18) with the simple t D  estimate for 
cubic geometry derived earlier: namely, t D  = 5X2/48D = 
5(b - ~ ) ~ / 4 8 D .  The corresponding value of B is X(4t$)-1/2 
= (12/5)1/2 = 1.55 (eq 14), for which ( P ( V -  u,t)u,O)) is 
0.737. A fluctuation ani decreases in cubic geometry to 
0.737 ani, on the average, in the time t D  that was used 
previously to characterize the dissipation of concentration 
fluctuations. 

Solution in Spherical Geometry 
The sum of squares appearing in the exponent of (7) has 

the meaning of the squared magnitude of the vector from 
x,y,z to xo,yo,zo, which is in spherical geometry Ir - rot2, 
where ro is the vector locating the solute molecule at time 
to = 0 and r is the vector locating it a t  time t. The 
Brownian motion equation describing the diffusive motion 
from ro to r is thus 

P(r,6,4,tlro,60,40,0)P sin 13 d4 d6 dr = 
( 4 ~ D t ) - ~ / ~  exp[-lr - ro12/4Dt]P sin6 d$ d6 dr (21) 

Equation 21 provides the probability that a particle which 
starts at ro will move to a volume element located at  r after 
time t. To obtain the total probability that a molecule 
which starts a t  ro will a t  time t still be somewhere within 
a sphere of radius p centered a t  the origin, we integrate 
over that sphere to obtain after straightforward substitu- 
tions and integrating by parts 

( P ( V -  u,tlu,O)) = 1 - (1 - 1//3*’/2)* 

(P(V - u,tlu,O)) = 1 - (/3/a1/2)* 

for large /? (short time) and 
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Figure 2. Escaped probability function for spherical geometry. The 
fine line indicates the asymptotic form (27), the dashed line is for 
exponential decay with 7 = d2/4D,  and the dotted line is for expo- 
nential decay with 7 = d2 /D .  

where r,,' = ro/(4Dt) l l2 ,  and p' = p/(4Dt)'J2. 
Equation 22 provides the time evolution of the proba- 

bility that a given molecule initially ro away from the origin 
is also within p of the origin at the time t .  To obtain the 
average nonescaped probability for all values of ro, we 
require in analogy to (10) the normalized weighting 
function 

f(ro) dro = (3r02/p3) dro = (3r0'2/p'3) dr,,' (23) 

corresponding to a uniform probability of ro locating a 
solute molecule within a volume element anywhere inside 
the sphere. Then the average nonescaped probability 
density is given by 

(P(u,tlu,O)) = 

exp[-(p' - r{)2]] + l/[erf(p' + r,,') + erf(p' - r,,')] dr,,' 

(24) 
I 

which integrates tediously but straightforwardly to 

(P(u,tJu,O)) = erf y + [ ( 2 / y 2  - ~ ( 1 -  e 3  - 2 1 / y d 2  
(25) 

where y = 2p' = 2p/(4Dt)'I2 = d/ (4Dt)1 /2  is the diameter 
d scaled by (4Dt)lI2. For the average escaped probability 
then 
( P ( V -  u,tlu,O)) = 1 - (P(u,tlu,O)) = 

1 - erf y - [(2/r2 -1)(1 - e-Y? - 2 ] / y ~ ~ / ~  (26) 

which is shown as function of scaled time in Figure 2. For 
large y (short time) the asymptotic form 

(P(V - u,tlU,O)) ( 3  - 2 / ~ ~ ) / y ~ ' / ~  (27 )  

is useful, as it describes the first 75% of the dissipation 
(for y > 1.8) to better than 5 ppt. The series expansions 
required to obtain a small-y result converge too slowly to 
provide a useful formula. 

Our earlier estimatee for the characteristic dissipation 
time of concentration fluctuations in spherical geometry 

0 a2 O L  0.6 0.8 10 12 
B' 

Figure 3. Escaped probability functions for a sphere (solid Ilne) and 
for a cube (dashed line) of equal volume. The dotted line shows the 
rate for diffusive loss from a sphere of the same diameter under the 
radiative boundary condition, for which reentry does not occur. 

tD = 7d2/96D corresponds to y = 1.852 and (P( V - u,tlu,O)) 
= 0.741, very nearly the same as the 0.737 value obtained 
above for cubic geometry. 

We wish to compare the rate of diffusive loss of mole- 
cules from a sphere to that from a cube of equal volume. 
The diameter of such a sphere is then related to the side 
length of the cube by d = (6/?r)'I3 A. Scaling the sphere 
size to the cube size this way then provides the purely 
geometrical escaped probability comparison shown in 
Figure 3. 

The classical diffusion equation for spherical geometry 
has been solved for the escape of molecules from a sphere 
into a vacuum, i.e., with the boundary condition that the 
concentration is held at zero outside the sphere, the initial 
concentration within, ci, being unif0rm.l' The average 
concentration c is given by 

I .  I 

and the average escaped probability becomes3 
(P(V - U,t(U,O)) = 1 - c / q  = 

r I 

6 " 1  -k2T2Dt 
?r2 k = l k 2  

1 - - E- exp1 7 1 (29) 

This solution, again with the diameter scaled to permit 
comparison with a cube of equal volume, is also shown in 
Figure 3. 

Discussion 
Our original motivation was to provide exact (P(V - 

u,tlu,O) ) functions for scaling diffusive dissipation of con- 
centration fluctuations to rates of chemical reaction. The 
result, i.e., eq 18 and 26 and their asymptotic forms eq 19, 
20, and 28, serve this intended function. As the numerical 
results show, the simple estimates based upon average 
diffusion distances were not misleading. It would have 
been misleading to use the radiative boundary condition 
solution (29) for comparison, for it is three times faster 
than the solution (30) of the real dissipation equation. 
[The difference between (29) and (261, incidentally, rep- 
resents the probability as function of time that molecules 

(11) H. Dunwald and C. Wagner, 2. Phys. Chern. B 24, 53 (1934). 
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which left the sphere, one or more times, returned and then 
left again to be outside at time t.] But correct accounting 
for the characteristic difference between diffusion and 
reaction rates, in that the former are initially infinite, as 
well as going from an order-of-magnitude estimate to exact 
solutions have both left our original conclusions about 
relative rates unchanged. 

Equations 18 and 26 also serve as the three-dimensional 
equivalents of Smoluchowski’s one- and two-dimensional 
results (4) and (5).  They can be applied in molecular 
dynamics computations as measures of D.12 

More striking than the difference between radiative and 
diffusive boundary conditions is the difference between 
the solutions for (P(V - u,tlv,O)) and the corresponding 

(12) A. Rahman in “Statistical Mechanics-New Concepts, New 
Problems, New Applications”, S. A. Rice, K. F. Freed, and J. C. Light, 
Eds., Chicago University Press, Chicago, 1972. 

exponential relaxation equations [Figures 1 and 21. As an 
approximation, exponential relaxation with T = d 2 / D  
(spherical case) or T = ( b  - U ) ~ / D  (cubic case) does provide 
a rough guide for the overall course of the dissipation of 
concentration fluctuations. The mathematical form is, 
however, very wrong, and the behavior a t  short and long 
times is far from the truth. It is clearly quite incorrect to 
infer from the extremely small magnitudes of concentra- 
tion fluctuations in macroscopic systems that their dissi- 
pation can be described as exponential relaxation, as one 
would derive by setting (P(V - u,tlu,to)v,to)) = constant 
and (6n)/((n) - n) N (d In n/dt) in (2). “Linearization” 
of the dissipation process has no physical basis. 
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The interactions between hydrophobic species and lipid aqueous dispersions were investigated by highly sensitive 
differential scanning microcalorimetry in order to further examine the solute-solute hydrophobic interaction. 
The hydrophobic species used were quaternary ammonium salts, including tetraalkylammonium salts and 
azoniaspiroalkane salts, and cyclohexanol and some other alcohols. The order of the ability of these salts and 
alcohols to lower the phase-transition temperature and to affect the enthalpy (AH) and the entropy (AS) of 
transition of aqueous dispersions of 1,2-dipalmitoyl-~-3-glycerylphosphatidylcholine (DPPC) from gel to liq- 
uid-crystalline phase was parallel with those of these salta and alcohols for hydrophobic hydration and hydrophobic 
interaction with protein. As these salts or alcohols were added, the changes in AH and AG of the melting from 
gel to liquid-crystalline phase were of opposite sign: that is, AH > 0 and AG < 0 for water-structure makers 
and AH < Q and AG > 0 for water-structure breakers. The observed opposition in sign for AH and AG is in 
parallel with a previously reported characteristic of solute-solute hydrophobic interaction. The modern ideas 
of hydrophobic interaction could help in the interpretation of the physicochemical nature of the phase-transition 
process of aqueous dispersions of DPPC. 

Introduction 
In our previous studiedg on solute-solute hydrophobic 

interaction of protein with hydrophobic species, quaternary 
ammonium salts, including tetraalkylammonium and 
azoniaspiroalkane salts, were used to investigate the effects 
of alkyl chain length and of geometric configuration in 
alkyl-substituted quaternary ammonium salts on their 
interaction with protein. Tetraalkylammonium and azo- 
niaspiroalkane salts contain linear and cyclic alkyl groups 
on quaternary ammonium ions, respectively. We found 
that a change in hydrophobicity, due to the changes in 
alkyl chain length and molecular shape, is responsible for 
a change in solute-solute hydrophobic interaction’p2 
analogous to the previously reported4-’ solute-solvent 

(1) C-H. Chen and D. S. Berns, J. Phys. Chem., 81, 125 (1977). 
(2) C-H. Chen and D. S. Berns, J. Phys. Chem., 82, 2781 (1978). 
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(5) W-Y. Wen, A. Losurdo, C. Jolicoeur, and J. Bioleau, J. Phys. 

(6) W-Y. Wen and U. Daatze, J. Phys. Chem., 81, 177 (1977). 
Chem., 80,466 (1976). 

hydrophobic hydration. Formation of cyclic groups in 
these ions considerable weakens their ability for hydro- 
phobic interaction with protein. 

We also interacted protein with a variety of alcohols 
having known free-energy and enthalpy pairwise-interac- 
tion ~oefficients?.~ These alcohols were found to have the 
same order of abilities for solute-solute hydrophobic in- 
teraction with protein and for self-pairwise interaction 
between alcohol molecules. Thus the stronger the tend- 
ency of an alcohol molecule for pairwise interaction be- 
tween its molecules, the greater its ability for hydrophobic 
interaction with protein. 

Cyclohexanol is one of the most hydrophobic species, 
having a reasonably good solubility in water.8 Comparison 
of thermodynamic parameters for the interactions of cy- 
clohexanol and quaternary ammonium salts with protein 

~~ ~ ~~~~ ~ ~ 
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