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Field Intensity and Flux Density 
Abstract 

The calculus of diflerential forms clari3es the 
relationship between field intensity and flux density and 
provides intuitive pictures of Ampere's and Faraday's 
laws, the curl operation, the Poynting vector, and 
boundary conditions. These and other advantages over 
vector analysis make differential forms an optimal tool 
for teaching electromagnetics. 

troduction 

There are several areas of electromagnetic field 
theory which nearly every student finds difficult. 
Students often wonder, for example, why two vectors are 
required to represent a single field, or are unable to 
visualize the curl operation. These areas of difficulty are 
not fundamentally more complicated than other 
principles of electromagnetics, but are made obscure by 
the language used to express EM theory, vector analysis. 
There is another language for teaching electromagnetics 
which makes these concepts clearer and more intuitive: 
the calculus of differential forms. 

Differential forms clarify the relationship 
between field intensity and flux density and provide 
intuitive pictures of Ampere's and Faraday's laws, the 
curl operation, the Poynting vector, and boundary 
conditions. While we have chosen to focus this paper on 
the visual advantages of differential forms, the notation 
also eliminates much of the memorization of identities, 
derivative formulas, and theorems required for students 
to compute using vector analysis. Deschamps [l] was 
among the first to suggest the use of differential forms as 
a teaching tool in engineering; Burke [2] is an active 
advocate in the physics community. Our own classroom 
experience not only supports but has helped us to refine 
the points we hope to make in this paper, that the 
calculus of differential forms makes electromagnetic field 
theory easier for students to visualize, understand, and 
apply. 

Associated with the electric field intensity vector 
E is the flux density vector, D = € E .  Graphically, D 
does not add to a student's understanding of the nature of 
the electric field, since the vectors differ only by a scale 
factor. One might justify the existence of the extra D 
vector by noting that E and Dare not parallel in an 
anisotropic media, but there is a more fundamental 
reason than this. 

In the commonly used alternative graphical 
representation of a vector field, the spacing between 
lines, rather than their length, represents the strength of 
a field. This picture, which has long been used to 
illuminate flux density, is not really a picture of a vector 
field---it is the picture of a differential form. The two 
pictures used to represent different types of vector fields 
hint at the true natures of field intensity and flux density. 
After introducing differential forms and the exterior 
product, we show that field intensity and flux density 
become differential forms of different degrees. 

Figure 1. (a) The l-form dx (b) The 2-form dx dy. 
Tubes in the z direction are formed by the superposition 
of the surfaces of dx and the surfaces of dy. (c) The 3- 
form dxdydz, with three sets of sufaces that create 
boxes. 
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A. Differential Forms; Exterior Product 
The calculus of differential forms is the calculus 

of quantities that can be integrated. The degree of a form 
is the dimension of the region over which it is integrated, 
so that in R there are 0-forms, 1-forms, 2-forms and 3- 
forms. 

1-forms are integrated over paths, and are 
represented graphically by surfaces, [3] as in Fig. la.. 
The surfaces of dx, for example, are perpendicular to the 
x axis, infinite in the y and z directions, and spaced a unit 
distance apart. The general 1-form is 
E,& + Ezdy + E,dz with dual vector 
EIS + E , j  + E32. 

2-forms are integrated over surfaces. The 
general 2-form is 
D,dy A dz + D,dz A dx + D3dx A dy, with dual 

vector 0,: + D 2 i  + D,?. . The wedge represents the 
exterior product, which is anticommutative, so that 
d x A d y = - d y / \ d x a n d  d x ~ d x = O .  Wedges are 
often dropped for compactness. Graphically, 2-forms are 
tubes (Fib. lb). The greater the coefficients of 2-form, 
the narrower and more dense the tubes. 

A 3-form pdx A dy A dz is a volume element, 
represented by boxes (Fig. IC). The greater the 
magnitude of a 3-form’s coefficient, the smaller and more 
closely spaced are the boxes. Finally, a 0-form is a 
function. Forms of degree greater than three vanish by 
the anticommutativity of the exterior product. 

Because field intensities are always integrated 
over paths, the electric and magnetic field intensities 
become 1-forms, denoted by E and H. Since flux 
quantities are integrated over surfaces, the electric and 
magnetic flux densities D and B are 2-forms. 
Graphically, the 1-form E shows that the electric field 
assigns potential difference to a path. Each surface of E 
crossed by a path represents an increase or decrease in 
potential. This viewpoint on the electric field is already 
familiar; differential forms simply provide the 
mathematical framework. The 2-form D illustrates the 
relationship of the electric field to sources: tubes of D 
represent flux from positive to negative charges. The 
physical nature of these quantities is now encoded in the 
mathematical objects themselves, rather than in the 
choices of operators and integrals that act on them. The 
importance of the graphical representations for 1 -forms 
and 2-forms will become more apparent when we show 
in the next section how forms allow Maxwell’s laws to be 
visualized. 

3 

Maxwell’s Laws 

Consider the simplest example to which 
Ampere’s law is applied, that of an infinite line current. 
The vector picture, shown in Fig. 2a, is often used as the 
fundamental example of a field with curl. The obvious 
question which many students encounter is, “why does 
the field appear to curl away from the wire?” With 
vectors, an imaginary ‘‘paddle wheel” must be placed in 
the field and an argument given as to why the wheel does 
not rotate. There is a much better way than Fig. 2a to 
visualize curl. In fact, a!; we will show, Ampere’s law and 
the curl become so intuitive using differential forms that 

1 3 )  1 1 3 1  

Figure 2. (a) Magnetic field intensity due to an infinite 
line current. (b) Ampere’s law using forms: tubes of 
current produce magnetic field surjiaces. 

these concepts can be introduced to students first and 
used to motivate Gauss’s law and the divergence. 

A. Maxwell’s Laws Using Forms 

Faraday’s and Ampere’s laws written using 
differential forms are 
f E = - I - B ,  d f H = j ( - D + J )  d (1) 

dt P A dt P A 

where P is a closed path, A is a surface bounded by P, 
and J is the electric current density 2-form. 

Integration of forms has a simple graphical 
interpretation. Neglecting the obvious complications due 
to the orientations of differential forms and regions of 
integration, the integral of a 1-form over a path is simply 
the number of surfaces pierced by the path. The integral 
of a 2-form over a surface is the number of tubes passing 
through the surface. The integral of a 3-form over a 
volume is the number of boxes inside the volume. 

Graphically, Ampere’s law states that the 

number of tubes of dlisplacement current - D  and 

electric current J passing through a closed loop is equal 

d 

dt 
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Figure 3. Gauss’s law: boxes of electric charge produce 
tubes of electric flu. 

to the number of surfaces of the magnetic field 
intensityl-form pierced by the loop. Thus, tubes of 
current produce magnetic field surfaces, as illustrated in 
Fig. 2b. 

A 1-form has nonzero curl at locations where 
different surfaces meet. While Fig. 2a is confusing to 
students because the vector field seems to rotate away 
from the current source, Fig. 2b shows clearly that 
surfaces converge only along the tubes of current, so that 
the field has a curl only at the source. 

Not only do forms clarify Ampere’s and 
Faraday’s laws, but they also elucidate the close 
connection between this pair of laws and Gauss’s laws for 
the electric and magnetics fields. We write using forms, 

j D =  JP9 
S V 

f B = O  
S 

where S is a closed surface, Vis the interior of S, and p is 
the electric charge density 3-form. Graphically, the first 
of these laws shows that boxes of electric charge density 
produce tubes of electric flux density (Fig. 3). A cross 
section of this picture is the usual “flux” representation 
of the field, in which spacing between lines gives the 
strength of the field. Gauss’s law for the magnetic field 
shows that tubes of magnetic flux density never end. 

The concept of curl is usually much more 
difficult for students to grasp than that of divergence. A 
comparison of Figs. 2b and 3 shows that with differential 
forms Ampere’s and Faraday’s laws become as intuitive 
as Gauss’s laws. Not only are both pairs of laws equally 
easy to visualize, but the conceptual unity between them 
is revealed. 

Energy and Power 

The Poynting vector S = E x H represents flow 
of power rather than intensity of a field. It is a different 
type of quantity than E or H, just as D and E are 
different, and yet all these quantities have the same 
mathematical representation as vectors. Although it is 
clear from the definition that S is perpendicular to E and 

i 1 3 i t ‘ , 

Figure 4. {a) The Poynting vector S=E x H. {b) The 
surfaces of the I-forms E and H form the sides of the 
tubes of the Poynting powerflow 2-form S = E A H . 

H, the vector picture in Fig. 4a does not provide any 
intuition as to the relationship between the directions of 
E, H, and S. Expressing these quantities as differential 
forms provides added insight. 
As Fig. 4b shows, the surfaces of the 1-forms E and H 
form the sides of the tubes of the Poynting 2-form S .  
Power flows along these tubes. This gives a clear 
geometrical interpretation of the fact that the direction of 
power flow is orthogonal to both E and H. In a similar 
way, the surfaces of E and H join with the tubes of D and 
B to form boxes of the energy density 3-form 

1 
2 

w =-(E AD+ H A  B ) .  

Boundary Conditions 

Consider the usual vector representation of the 
boundary condition on the magnetic field, 

n X (HI - H2). The expressions for this and the other 
boundary conditions are easy to apply, but Fig 5 has no 
clear physical interpretation. Differential forms provide a 
more appealing picture of boundary conditions. 

A. The Interior Product 
The interior product of 1-forms is defined (in 

dXldX = dyJdy = dyldy = 1. Other combinations, 
such as dxJdy 

rectangular coordinates) bY 

, yield zero. For 1-forms and 2-forms, 

A dX) = -dy](dX A dy) = dX 
&I(& A dy) = -dZl(dy A dZ) = dy 

dyl(dy A dz) = -&l(dz A dx) = dz 
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Graphically, the interior product removes the 
surfaces of the form on the right of the product from 
those of the form on the left. 

B. Boundary Conditions Using Forms} 

Boundary conditions on the electromagnetic 
field can be written using the operator nln A dz where 
n is the 1-form f,dx+f,dy+ f,dz normalized so 

that nln = 1 f is a function that vanishes along a 
boundary. As proved in [4], 

nl(n A [E,  - E , ] )  = o 

n l ( n ~ [ H ,  -H,] )= J S 

A [Dl - D,]) = Ps 

nl(n A [B, - B,] )  = 0 

where subscripts represent values above (f > 0) and 

below (f < 0) the boundary, J ,  is the surface current 

density 1-form, and p, is the surface charge density 2- 

I 
Figure 5: Sugace current density on a 

and 

form. All the expressions use the same operator 
nln = 1. The physical difference between field intensity 
and flux density boundary conditions is no longer 

3 ,  : 

Figure 6. {a) The field discontinuity H ,  - H ,  , which 

has the same intersection with the boundary as J ,  . {b) 

The exterior product IZ A ( H ,  - H,)yieZds tubes with 

sides perpendicular to the boundmy. (c) The interior 
product with n removes the sufaces parallel to the 
boundary, leaving su$aces that intersect the boundary 
along the lines representing the l-form J ,  

contained in the choice of cross product versus dot 
product, but in the degrees of the forms used to represent 
the field quantities. 

These expressions for boundary conditions have 
a simple geometric interpretation. The discontinuity 
HI - H 2 ,  for exampk, is a 1-form with surfaces that 

intersect the boundary (along the lines of the 1-form J ,  
(Fig. 6a). From the fields above and below a boundary 
one knows immediately what sources lie on the boundary. 

In the expression for J , ,  the exterior product 

n A (HI  - H , )  creates tubes with sides perpendicular 
to the boundary (Fig. 6b). The interior product 

n ] ( n  A [HI  - H , ] )  removes the surfaces parallel to the 

boundary that were added by the exterior product, as 
shown in Fig.6~. The total effect of the operator nln A is 
to select the component of H ,  - H ,  with surfaces 
perpendicular to the boundary. 

The 1-form ~ r ,  is natural both mathematically 
and geometrically as a representation of surface current 
density. The expression for current through a path P is 

Z = I J,y  .(hXds^) (3) 
P 

where fi is  a surface normal and ŝ  is tangent to the 
path. This simplifies to 
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P 

in terms of the 1-form J ,  . We will not discuss in detail 
the remaining boundary conditions, but they have similar 
advantages over their vector counterparts. 

Conclusion 

There are other areas of electromagnetics that 
are streamlined and clarified by the use of forms. We 
have not discussed the exterior derivative, which replaces 
the gradient, curl, and divergence operators and requires 
no memorization or table of formulas for use in 
curvilinear coordinates, nor the generalized Stokes’ 
theorem, which is a single, simple relationship having 
the fundamental theorem of calculus, the vector Stokes 
theorem, and the divergence theorem as special cases. 
Nearly all of the common identities and formulas of 
vector analysis are replaced by algebraic rules that are 
easy for students to remember. The references, especially 
[5] provide more comprehensive treatments. Differential 
forms simplify more advanced applications, such as 
Green functions [6]. Ease of computation and clarity of 
expressions will likely extend to future applications of 
differential forms in applied EM theory. 

In 1992, we began inserting short segments on 
differential forms into beginning, intermediate, and 
graduate EM course. Since the Fall semester of 1995, we 
have shifted entirely to differential forms in the 
beginning course. Student evaluations have been nearly 
unanimously positive. The most common response has 
been that pictures of forms help students understand 
electromagnetics. Ideally, preparatory calculus and 
physics courses would also employ differential forms. 
The simple correspondence between forms and vectors 

allows forms to be taught with little loss in understanding 
of materials using traditional methods. 

There are other formalisms for 
electromagnetics: bivectors, tensors, quaternions, spinors, 
higher Clifford algebras, and so on. None of these offer 
as optimal a combination of clear relationship to 
traditional vector analysis, ease of presentation, 
concreteness, and intuitive graphical representation as 
differential forms. In light of the simple relationship 
between differential forms and vectors, establishing the 
calculus of differential forms as the primary language for 
electromagnetics would not only be desirable but feasible 
as well. 
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