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. 1. Introduction. Wright (14), Feller (2) and others have proposed various stochastic

models of genetics to study the fluctuations of gene frequency under the influence of
" mutation and selection. One of their simplest models has the following structure.
here are a fixed number N of gametes each of which may be of two types a or A.
he process X(n), n = 0,1,2, ... which is assumed to have stationary transitions, is
¢ said to be in state j when there are j gametes of type a, and N —j of type 4. Let v,
i denote the probability that immediately after formation an @ gamete mutates into
n A gamete and let y, denote the probability of an 4 gamete mutating into an a
¢ gamete. Hach of the gametes of the next generation is independently formed by
F making a random selection from the gametes of the present generation. The pro-
[ bability of a particular gamete in the next generation being of type @ is then

;P,i:%r(l*%)-i-(l—jv)?z (j=0,1,...,N) (1)
_andoftypeA
q}.:ﬁﬁﬁ(l_;%)u_«/g) (j=0,1,...,N),

‘Where J represents the state of the process. Roughly speaking, the chance of a
8 matlng resulting in a gamete of a prescribed kind for the next generation is propor-
b tional to the fraction of these gametes present in this generation allowing for mutation
& - effects.
The make-up of the population in the next generation is determined by N in-
dependent binomial trials with probability p; and g; that the outcome at each trial
! . will be an a- -gamete or A-gamete, respectively. Hence, the one-step transition
probablhty matrix is

}?ik: (g)pi‘kQ)ﬁk (j:kIO’ 1:“°’N)' (2)

This Markoff chain was analysed by Feller (2) who calculated its eigenvalues and
. determined the rates of convergence of the process to the steady-state distribution

:" (which appears to be unknown). In the case o, = &, = 0, fixation occurs in a population
. of a single type of gamete.

' Letting N > oo suitably, Wright and later Feller derived a diffusion process whose

solution involves the Jacobi polynomials. The limit analysis was done heuristically.

T This research was supported by National Science Foundation Grants G-9669 and G-6332.
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Kimura (9) considered a slight variant of model (2) formulated as follows: each
chromosome consists of 7 sub-units and suppose that a mutation has occurred in one
of them. The sub-units duplicate to produce 2n, which divide at random into two
daughter chromosomes of n sub-units. We trace a single line of descent. The state
B, (1 =0,1,...,n) in each generation designates the number of mutant sub-units
contained in the cell. The transition probabilities are given by

(Bi) (:Zn—:}i)

q n—7

P, =/ e )T
()

If n is very large, the proportion of mutant sub-units —i/n (0 < @ < 1) is regarded
as a continuous variable. Let ¢(x,¢) be the probability density of x at time ¢. If oz
is the amount of change in x per generation, then

E(dx) = 0,

(2a)

<

=

B((02)?) = 2(1—2)/(2n—1)

and E((dz)*) = o(1/n) for k > 3. A continuous approximation used to obtain ¢(x,t)
is furnished by the forward diffusion equation

9p(,1) 1 o
o = oen—1)a o —) (@ D),

where ¢(x, t) has the initial distribution function d(x — 1/n) and § is the Dirac function.

Moran (10) devised a continuous time Markoff chain model to study the same
phenomenon. This model applies to a population where breeding and mortality occur
continuously in time and the generations overlap. In contrast, Wright’s model refers
to a situation of a fixed duration of life and a fixed breeding season so that generations
are kept distinet.

The formulation of the model is as follows: there are N gametes which are either
of type a or A. Again, the number X (t) of a-gametes at time ¢ represents the state of
the process and the total population size remains constant. Thus X (¢)/N is the fraction
of a-gametes in the population at time {. A change of state occurs when a single in-
dividual reproduces and is replaced by a new individual.

It is assumed that the probability that the state changes during the time interval
(t,t+dt) is Adt + o(dt). Furthermore, it is assumed that the probability of two or more
matings occurring in a time intervalof span d¢ is o(dt). We postulate that the mechanism
of mating has the following structure. At the occurrence of mating an individual from
the population is selected at random to be fertilized. Another individual also chosen
at random, does the fertilizing, is called the fertilizer (self-fertilization is allowed) and
this individual dominates the outcome. More precisely, if an A-gamete fertilizes an
a-gamete or an A-gamete the result is always an A-gamete. A similar situation prevails
when an a-gamete acts as fertilizer; in this case an a-gamete is always produced. Im-
mediately following fertilization the progeny may mutate into the other type of
gamete. Let y, denote as before the probability that an a-gamete mutates to an
A-gamete and let y, denote the probability of an A-gamete mutating into an a-gamete.

— — e —————
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.. If mating occurs at time ¢, the conditional probability of the event

X(t+) = X(0)+1

;(the a-camete population increases; only increases of magnitude + 1 are possible) is

& )

: J)J ~ IV (1=L)y, where X(#)=3j. (3)

(1*1\')33(1—71)+(1 N) ( N)ve W (t) =7

:We reason this formula in the following manner: The a-gamete population size‘ can
:erllafge only if an A-gamete is fertilized and transforms into an a—gam_e.te. bl_ncre
| matings occur at random, the chance of selecting an 4 -gamete when X () =jis1—j[N.
Now if an a-gamete fertilizes the selected A-gamete the outcome is a, new a-gumete
i)rovided no mutation occurs. The first term in (3) is the probability of. this con-
tingency. Another combination which also gives rise to a new a-gamete 15 that an
3 A-gamete fertilizes an A-gamete and the progeny mutates into an a-gamete. The
1 gecond term in (3) is the probability of this contingency.

| In a similar way we find that the probability of the event

X(t+)=X({)—1

| under the condition of a mating at time # is
J —-j - J where X(t) = 3. (4)
L(=%) a-roe3m| 0 =
b The stochastic process described above is recognized as an example of a birth and
" death process (5) with birth rates

NI s VA (5)
b= (g [y ()

d death rates ilg . __j B 6
nd de ’”’J':)‘N [*’\‘; /1+(]. N,) (1 ’)!2)] (6)

L

corresponding to an a-gamete population of size j, 0 < j < N. )
§ For a complete discussion of birth and death processes we refer the reader to (4), (5).
It is shown in (4) that the transition probability function of the process

Byt) = Pr{X(t)=j| X(0)=1}

£ can be represented in the form

By(t) = f et Ry() Ry(x) dip(@), (7)
0
« where _ _ oAy A1 k=1,2,..),
I: Ty = 1’ Ty = Sy fl ee e ( 3 = )
}“ and R, (x) are a system of polynomials determined by the recursion relations
1 Ry(x) =1, R_(x)=0, } ®)
— xRy () = — (A4 pug) Bp(@) + A By (%) + By () (B =0,1,...)

Here A, and g, are defined in (5) and (6). Since Ay = 0 there exists ox_ﬂy the finite
system Ry(x), R,(x), ..., Ry(x) which are orthogonal with respect to a unique measure
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/(x) with exactly N + 1 points of increase and with total mass one. The measure () is
called the spectral measure of the process and the spectrum of the process is identifieq
with the spectrum of .

We shall identify the measure 17 and the polynomials R,(x) (¢ = 0,1,..., N) for the
birth and death process at hand. The polynomials R;(x) are expressible in terms of
the dual Hahn polynomials whose properties are deseribed in §2. From the repre.
sentation (7) and our knowledge of the properties of R;(x) we then derive varioyg
probabilistic consequences.

In §3 we display the representation formula (7) for the transition matrix. [t s
necessary to distinguish four cases. In Case 1 we assume that Y1, Ys > 0 and
L=7y;1—7v2 > 0. Here the two linear factors contained in the formula of the birth anq
death rates (5) and (6) oppose each other, one exhibiting attraction, the other repulsion
towards the same end state. Case 2 is characterized by the conditions v, 7, > 0 and
I —v;—7, < 0and now the two linear factors extend their force in the same direction,
In Case 3 (y1,7, > 0, 1 =y, +7,) the birth and death rates are linear. The associate
polynomials are expressed in terms of the familiar Krawtchouk polynomials. In Case 4,
71 = Y2 = 0, the process manifests two absorbing states corresponding to fixation in
homozygous populations of a- of A-gametes.

Section 4 is devoted to discussing some probabilistic consequences of the repre-
sentation. We determine the rates of convergence of the transition probability function
P;(t) to the stationary distribution in Cases 1, 2 and 3; the rate of convergence to homo-
zygosity in Case 4. These results are immediate once the spectrum of the process is
known, which is the case here. Moran (10) obtained some of these results. We also
characterize the direction of convergence of F;(t) to the limiting probabilities 7, in
Cases 1, 2 and 3. This depends on the sign of the polynomials By(x) at the smallest
positive value in the spectrum.

In paragraph 2 of this section we write out some formulas for recurrence time and
absorption time distributions. We close by discussing several limit behaviours as
N —co. In this way we derive a diffusion process associated with each of the discrete
models. The details are made explicit for Cases 1 and 4 but the methods are applicable
to the other cases also. The derived processes are essentially the same as those dealt
with by Feller (2) and Kimura (9); they emerge very naturally from our set up and the
limit procedure is completely rigorous. The limit relations for the probability functions
have their counterpart in a classical limit relation which takes the Hahn polynomials
into the Jacobi polynomials (1).

Moran has developed various extensions (12), (13) of these models involving diploid
and bisexual populations. These are processes whose state space is now naturally
described by at least two variables. Moran also has dealt (11) with the original haploid
model as formulated above where there exists a definite selectivity factor. We shall
return in another publication to a discussion of these processes exploiting the methods
developed here.

2. The Hahn polynomials and their dual system. For ready reference we review
some of the properties of the Hahn polynomials and their dual system. We refer the
reader to (8) for detailed discussion and proofs. Some new results are included which
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¥ where (c)y =1, (¢); = c(c+1)...(c+k—1) for k> 1 and N > n. These polynomials
ka,re orthogonal with respect to the measure which has jumps at x = 0,1,..., N —1 of

E a+x b+i’\’74—1—.’,€)

;': . )= plx;a,b N‘)=( v ) Nol—w (x=0,1,2,...,N—1).

_Z_' .()(x = plx; a,0, 4 N Ya+t B

1 N_l) |

"In addition to a standard recurrence formula they also satisfy a difference equation

. —0,@u() = D) Quly— V) —[B) + D)1 Q) + B Quly + 1), (10)

| where Bly) = (N—1—y)(a+1+y), D@y)=yN+b-y), (1)
w, =nn+a+b+1)

:; and (10) is valid for n = 0,1, ..., N — 1 and all complex values of y.

fo Let Pux,a,b; N) = P(x) (k=0,1,...,N—1), (12)

.denote the finite system of N polynomials determined by the recurrence formula

—AB(X) = D(k) B_(A) = [D(k) + B(k)] P(A) + B(k) Py 1 (A)
(k=0,1,..,N-1), (13)

 with the initial condition Py(d) = 1. Since D(0) = B(N —1) = 0, the terms involving

¢ P (A)and Py ,()) are to be ignored. By comparison with the difference equation (10)

g o have B(w,; a,b, N) = Q,(k; a,b; N).
The polynomials 7, are orthogonal with respect to the measure ¥ with jumps at the
points w, = k(k+a+b+1) (k= 0,1,..., N —1) of magnitudes
Uin = Y nl(a, b, N)
N-1
k Lb+1) Pk+a+1)Pk+a+b+1)
B 'N+a+b+/e) Fla+ ) @+b+1)  DE+b+1)D(k+1)
( k

(2k+a+b+1) ‘
a+b+1l (14)

If a4+ = —1, the above formula for ¢, is indeterminate and is to be taken = 1.)

i .. . a0t (Ve — 13
& The normalizing constant, €', chosen so that C' Xy, = 1is

o [(b+N—1\ [[N+a+b
= '(}(0, {?,,f),i\r’) 7‘( N-1 N-—-1 )
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A variant of the recurrence law (13) needed below will now be obtained.
The Hahn polynomials are well defined for complex a, b, x provided a + — 1, _ 2,
-, =N, and satisty (10) forall z if o > — 1 and b > —1. Hence (10) is also satisfieq
by analytic continuation for all a, b with a 4 -1, -2, ..., —N. Suppose @ < — N,
{ —N a ; .
h < — N and let H-:—(,-’\-‘+b'—}-l),] ’
i r where a',b’ > —1. (14q)
b=—(N+a' +1),)
Then consulting (11), we have
D(x) = —2(a' +1+42),
Bla)=—(N-1-2)(N+V —z), (15)
W, = —w, = —n2N+a' +b +1—n).
The difference equation (10) reduces to
=0 @(x) = 2@+ 142) Q@ — 1)+ (N — 1 —2) (N + b’ —2) @ (x+1)
—[2(@’ +14+2)+ (N =1 —2) (N + b —2)] Q@) (16)
and @, (x) = @, (x; a,b, N) is given explicitly by (9) as before.

Let S;(A) = Si(A, a’,b", N) comprise the polynomial system obeying the recurrence
relation

—ASKA) = = D(k) Sy (A) + [D(k) + B(k)] Sk(A) — B(k) Sy (A), (17)
Sy(A) = 1 where D(k) and B(k) are now defined by (15). By comparison with (16),
we see that Sy, a/ b, N) = Q,(k; a,b, N) (18)

and a, b are connected to a’, b’ according to (14 a).

The polynomials (9) can be regarded as a discrete analogue of the infinite system of
Jacobi polynomials. Similarly, the difference equation (10) can be regarded as a
discrete approximation of the differential equation satisfied by the Jacobi polynomials.

3. Representation formula for the Moran genetic model. The background prepara-
tions are now complete and we return to the study of the Moran probability model
set forth in § 1. We distinguish four cases.

Case 1. y1,7, > 0, 1—y,—v, > 0. Some appropriate transformations on (8) and
comparison with (10) show that

Ri(cw,) = Q (k; a,b,N+1) (n,k=0,1,..., N), (19)
where the right-hand side is (9) with
a4 = -3;3/2 _—‘l, ]): -‘?y}-’lff'—l,.
L=y =72 I—v1=7, | (20)
L—y—,
W, =nn+a+b+1), = A{- \/7112 ’}’z) I

The representation formula (7) reduces to

N
Fij(t) = m; 3 exp (—cw, t) R;(co,) Ry(cw, )y no1p(050,0, N+1) (4,5, = 0,1,..., N),
n=0
(21)
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£ where R;(A)aregivenin (19), 4, yisexpressedin (14), p(0;a, b, N + 1)is the normalizing

' constant for i, and

- .; _Ahe Ay

i
Jyfls - J

Case 2. v3, Y2 > 0, 7, +7vs—1 > 0. Comparison of (8) with (16) shows that

R(cwl) = Silcw),) = @ (k; a,b, N +1), (22)
'3 where the right-hand side is (9) with
a=—(N+b'+2), b=—(N+a"+2), \
po NMi-w) o Neyw) o Atn- | -
Yitya—1 Yit7.—1 N® }
w, = n(2N +a’+0"+3 —n).

" The representation formula (7) reduces to

N

P;,(t) = ﬂj E BXP ( _Cw;z,) Si(G(U;l)Sj(C(r),;) yfr-rz,.\-'-i IP(OJ @, b!AT + ]-)s (7’7 = 0: l: [EEF] i\r); (‘24)
3 n=0

4 where the various symbols are defined explicitly in (22) and (23), ¥, (a2, b, N)
being expressed in (14).

i

b Case3. y1+y.=1,71,72 > 0. The birth and death rates become linear in j rather
L than quadratic,
47&?2

A= g

. . A .
(N=3), p;= ’L,\;g(lf"l’a)ﬂ-

The polynomials R, (x) are now identified in terms of the Krawtchouk polynomials.
Specifically,

Az . .
R, (Ng—) = K, (x; 75, V),

i where K, (x; p, N) denote the Krawtchouk polynomials normalized so K, (0; p, N) = 1;
§ see(1). The representation formula (7) takes the form

_ N An)\ . e - Ay g .
I)z)(t) =Tj 240 exp (_ sz) K n(l; Vs N } I"n(.y; Vo 1\’) ?ffn,_-\"'ﬂ (35)

N ) N vs \"
-‘J, r — s ||\ —-n ] -— o n . — . 2 .
P = () B2 (J) (7 7l)

. Cased. y, = y, = 0. The homozygous states j = 0,7 = N act as absorbing barriers.
To analyse this case we appeal to a standard method in the theory of birth and death
processes for converting a reflecting barrier process into an absorbing barrier process
((5), p. 384). Consider the reflecting barrier process on the state space 0,1,..., N —1
characterized by the birth and death rates

. E+1\ /k+1 o Kk k o
M=A(1* N_) (,N ) pE= 2y (1_1\5) (k=0,1,....,N—1).

¢ where now

(26)




306 SAMUEL KARLIN AND JAMES McGREGOR

The corresponding polynomial system is I, (Aw,/N%) = @, (k; 0,0, N) which obey the
recurrence law (10) with @ = b = 0, and w, = n(n + 1). We form the polynomials

Aw,, , Aw, o {Aw,
]in (7:’{:"}_) = A?: 77;:‘ [[\’k +1 (_j\}?‘) =0 I (7;\4734)]
N2n

N2 A i Qulle+13.0,0, ) = @, (k; 0,0, N)

A —w,
J\rg )I?'E; T'r;(; § na T D) oy
= N1 @ualk LLN=1) (k=0,1,...,N—2) (27)

valid for » = 0,1,..., N —1. The last identity is proved-in (6). The polynomials (27)
satisfy the usual recursion relation (8) with birth and death rates respectively

: k4+1\ [k+1
A=t = (1— N N

This is a process exhibiting an absorbing state at — 1 and at N — 1.

In carrying out the operations of (27) it transpires that the states of the process
are shifted so that state — 1 now is identified with the zero state of the original process
and is ignored in our set-up and similarly state N —1 (also ignored) corresponds to
state N in the original formulation. Here P,(f) can be interpreted as the conditional
probability of transitions from i to j in time ¢ without absorption having occurred in
the intervening time. Whenever the process occupies states 0 or N —2 then with
probability y,dt and Ay_,dt absorption takes place in the next df time units into the
— 1 and N —1 state, respectively. The representation formula (7) has the form

),\ k=01, . N—2).

N-1 A A A Aw,, _ .
Py(t) = oy exp[— e W, ﬁ] IIE(:.—f-j n)n) I%(W*E wn) O Vo np(0:0,0,N), (28)
n=1 + 4 4 LY
where w,, = n(n+1) and i, y is defined in (14) with @ = b = 0.
There are two further cases (y, =0, 0 <y, < 1; 7, = 0, 0 < 9, < 1) which can be
handled by the methods of Case 4 above. We do not enter into details.

4. Applications of the representation formulu. With the aid of the representation
formula and the properties of the associated orthogonal polynomials we may deduce
several probabilistic consequences. Three topics will be discussed which are typical
of our method.

(@) Rates of convergence to the stationary distributions. In Cases 1, 2 and 3 the process

tends to a stationary distribution

lim P(t) = Cm; (5 =0,1,...,N),

t—w

AgAy . A
where P e =

Hafls - Yy

A;, gy are the appropriate birth and death rates, and (' is a normalizing constant.

r
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nspection of the representation formula reveals that the rate of approach is governed
y the smallest positive point in the spectrum of the ¢ measure. This is the second

- value in the spectrum when a stationary distribution exists. Specifically the rate of

approach is of the order of magnitude exp [ —cw, ¢], where ¢ and w, are defined in (20)
for Case 1, (23) for Case 2, and (25) for Case 3. Actually, we can as well ascertain the

direction of approach to the limit stationary probabilities. For example, we clearly

i infer by examination of the representation formula that F,(t) = Cm; for ¢ sufficiently
large if and only if R (cw;) R;(cw,)Z0, where R; denotes the relevant polynomial

& gystem defined in (8). In particular, we always have R, (cw,) < 0 and hence

By yq(t) < Cmy_y for tlarge. (29)

.‘j_ In fact, more is true. We know by (3) that F,;(¢) is unimodal as a function of ¢t. This fact
¢ combined with (29) implies that (29) holds indeed for all {. More generally, let
£ 0 <jo < N—1bedetermined as the first j value for which ;(cw,) < 0. Now, the theory

E of orthogonal polynomials tells us that £ (cw,) > 0 forj < j,and E,(cw;) < 0forj > j,.

.. Then F(t) < Cm; for all ¢ provided j > j,. On the other hand, Fy(t) > Cmr; for ¢ suffi-
L ciently large and j < j,.

We conclude this paragraph by noting the rate of convergence for the model of

Case 4. In fact, examination of (28), reveals that the rate of fixation is of the order of

i magnitude exp [ — (24/N?)¢] as ¢ — co.

(b) Recurrence and first passage distributions. We indicate two examples. Consider

" the models corresponding to Cases 1, 2 or 3. Appealing to a general theorem (5) we
* know that the Laplace transform of the first passage time from state 7 to state j > 7 is
i R,(—s)/R;(—s) where R; denotes the polynomial system of the process. This formula
. may be used routinely to get moments and other properties of the first passage dis-

~ tribution. In our case this is all the more useful since we have identified R,(.). Using

' the symmetry relation

o . ), (x; b,a, N)
)‘,\" — 11— \ — _vn .. A
@n HObN) = o N1 ba, V)

\ valid for the polvnomials (9), we possess an analogous formula for the Laplace trans-
& form of the first passage time from i to j < 4.

Consider now the model of Case 4 where —1 and N — 1 represent absorbing states.

.. - We can write immediately the probability distribution of the time of absorption into
state — 1 following the rules of (5), § 6. Thus, s, P, (¢) is the density function of fixation

TR TEIL RO

- ona-gametes where ¢ denotes the initial state. We will refer to this fact in the following
§ paragraph. Similarly, the density function of the absorption time for fixation in state
:: N—1is Ay , P, v ,4(t). The functions P(t) and P; y_,(f) are known explicitly by (27).

(¢) Limiting diffusion processes. By using the known limiting relations

Im@,(N—-1)z; a,b,N)=P,(1—2x; a,b), (30)

N—w

where P (.; a,b) denotes the renormalized Jacobi polynomials

PLo(x)[PR2(1) =

F(-nn+atb+l,a+1,(1-2)),
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we can now let N — o0 and obtain a diffusion process. This can be done for each of the
models studied in § 3 but we will limit our discussions to the case of models 4 and 1.

We begin with model 4. Let x and % denote arbitrary real numbers for whicp
0 <z y <1 We determine ¢, j < N and N increasing to infinity preserving the
relationship ¢ = [Nz]and j = [Ny] where the square brackets signify as customary the
integral part of the number bracketed. Inspection of (26) shows that A¥ 7 ~ Az(1 —x)
as N — oo and by virtue of (27) and (30) we have

H('y2) ~ Nal-a) Py(1- 205 1,1) (8 - c0), (31)
Similarly, o .
”j(' [\;’:') ~ Ny(l—y) P, 4(1=2y51,1) (N —c0). (32)
In the same way we obtain that
1
(33)

T Ny(1—y)

1t is essential at this point to relate the parameter A (which is the rate of mating in
the whole population) with the size of the population. Since mating involves selecting
a pair at random it is justifiable to postulate that A = «/N® where N? is the number of
possible pairs.

Now starting with (28) and taking account of (31), (32) and (33) we obtain

lim NP;(t) = p(t; 2, y)

N—xo
1 el ) )
= > et D (1l —2) P (1 —22; 1,1)]

y(l—y) =1
X[y(l=y) L (1 =2y; L, 1)]nn+1)(2n+1). (34)

This limit assertion follows by virtue of dominated convergence with the aid of the
crude estimates
|Qu("r” < (:_)+n)2n ("C:(}:I!:‘V*])

Yy, =0(m) (n=1).

The reader should consult (7) where a similar limit procedure is carried out with
complete details.
It follows from (34) that

lim > Pty = J'vz p(t; x, y) dy.
N-»o Nv,<j<Nwv, Uy

In particular p(/; x,7) may be interpreted as the density function of a Markoff

process whose realizations desecribe the fluctuation of the gene frequency of type

a-gametes in an infinite population. More precisely if the proportion of a-gametes at

time 0 is @ then p(t; x,y) denotes the density function of the proportion of a-gametes

in the population at time ¢. The points 0 and 1 act as absorbing barriers. The density

s
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o plt; x,y) satisties the forward diffusion equation and backward diffusion equation

: respectively op 2 ] _ .
— — ) 30¢
2 ~é;yzly( npls (
(r-l: — (] —2) ij" (355)

which can be checked directly with reference to the differential equation satisfied by
P,(x; 1,1). The boundary condition in (355) is p(t; 0,) = p(t,1,y) = 0.

This continuous state diffusion process characterized by the diffusion equation (35)

- should be compared with a model of Kimura (9) described in the introduction of this

Kimura investigates the diffusion model (35) for purposes of making computations

& which are difficult to do directly on the discrete model. The formulae obtained from
B (35) are to be taken as approximately valid. Moreover, the diffusion model (35) as

explained by Kimura merely corresponds to the Markoff chain with matrix (2a) in
- that the mean displacement and the mean variance of displacement coincide. This was
. the main justification offered for its relevance. On the other hand our approach leads
. to (35) in a natural and completely rigorous manner based on the Moran model by

& letting the population size tend to infinity.

In general, it is difficult to evaluate various important distributions of functionals
on the diffusion processes. For example, it would be desirable to calculate the dis-
tribution of the time for absorption into the 0 state (fixation of 4-gametes). As far
as we know this has not been evaluated; Kimura only obtained some approximations.
We now show the strength of our method by determining this distribution explicitly.

As pointed out in paragraph (b) of this section, the probability density of the time of
absorption into state — 1 (i.e. fixation of A-gametes) in the finite population with
initial state 4 is

Gali, 0t = gty Pyft) d.

Let N — o and ¢ = [Nx] in the manner of (34). We obtain the density function of
the absorption time for fixation of A-gametes where the initial a-gamete gene frequency
is x; viz.

o
Pl t) =a(l—x)a ¥ exp[—an(n+ 1)) L, (1 —2z; 1, )n(n+1)(2n+1), (36)
n=1
where £,(.; 1, 1) is the Jacobi polynomial with indicated parameters normalized so
- P(1;1,1) = 1.
By the identical limiting analysis other distributions of the process can be evaluated.
. The success of this method rests on our detailed knowledge of the fine structure of
the underlying discrete birth and death process.

We conclude the paper by indicating as a further application of our method the
nature of the limiting transition density as N — 0 of the mutation model (Case 1)
set forth in § 3. Again, we postulate for the rate of mating A = aN2. Its justification
was indicated earlier in this paragraph. Also we require that the probabilities of
mutation per individual v, and 7y, tend to zero as N - oo so that vy, N — &, and

20 Camb. Philos. 58, 2.
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V2N = k5. (We assume 0 < &, k, < 00.) Thus &, and «, signify the mutation rate of
the whole population per unit time.

Wenow investigate the limit of the terms in (21). Observe from their very definition
that as N — oo

a—>kKky— 1, bh—x—1, |
(37)
W, — -n()’b+.‘(1 -{-K‘J—])’ ¢ —> a[
Combining these limit relations with (30) shows that
Ri(cw,) = @5 a6, N +1) > P (1 223 ky— 1,5, — 1), (38)

where ¢ = [Na], and the right-hand side represents Jacobi polynomials normalize(
at x = 0 to equal 1 (see (1)). We verify directly that as N — o,

by L) Ttk Ptk 4k —1) 20tk iy — 1
PN T Dk Dy + 55— 1)  Dntiy) Dn+1) Kitke—1 7| (39)
(kg +Ky—1) ‘ -
Va b N41)~  Fatke=1)
PO@0 N ~ iy v
Finally, we need to compute A A
! Pty oty
A o
where A~ S (U=y1=72) (N =) (+£),

A oy .
iy~ 1@(1_?’1 =72) J (N + &, —7).

Taking logarithms and executing obvious asymptotic estimates we deduce that
my ~ M N* T pa-1(] —x)a-1) (40)
where M’ is a suitable constant.

We now have available the ingredients to permit N — oo in (21). The interchange of
limit with summation is easily justified since the exponential factor converges like
exp (—n?). 1t follows for i = [yN], j = [xN] that

lim NP,(t) = p(t; y, x)
N-—>w

o
= Ma 11—zt 5 exp [ —an(n+k, +K,— 1) ]
n=1_0
x Pl =2y ky— 1,6, — 1) Py(1— 223 ky— 1.k, — 1)
C(n+xy) D(n+ x4+ K,—1)
e L (2n 4K+ ko — 1
Dn+ k) Tt 1) Rt o)
and M is a suitable constant. This is the transition density function of a diffusion
process in the interval 0 < 2 < 1, where 0 and 1 are reflecting barriers. The backward
equation of the process is
op *p ) 7
where f is an appropriate constant. The stationary distribution of the process is

Caxa1(1 —z )1,

We wish to thank J. Gani, who brought the Moran papers to our attention.
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