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1 Introduction.

The general problem we are concerned with in this lecture is the existence and unicity
of solutions of a linear di�erential equation. For example, does the equation

y′′ + ω2y = sin t

y(0) = y′(0) = y(1) = y′(1) = 0

has a solution ? And if yes, how unique is this solution ? The answer to this particular
question is straightforward, because we can explicitly construct the answer. Very often
however, we don't know the exact analytical answer, but we are very interested to know
if it can exist. For example, the dynamics of an order parameter ( such as the local
magnetism at temperatures below the curie temperature) is given by the landau equation1

∂u

∂t
= u− u3 +

∂2u

∂x2
+ ε

where ε is the external applied �eld. At ε = 0, the above equation has a stationary
solution

u0(x) = tanhx

In the presence of the �eld ε 6= 0, we can look for a perturbation solution to the �rst
order u(x, t) = u0(x) + εu1(x, t) [complete later]

∗Lanczos has written a book in the 60's on linear di�erential operators which I �nd very thoughtful.

The following notes are a short introduction to part of his book. I have slightly modernized his

vocabulary, specially because he used heavily the matrix formalism and I �nd personally that the

view is more beautiful if we stay at the level of operators without explicitly writing down their matrix

representation.
1which is just the least order expansion of the free energy as a function of the order parameter
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2 Solvability of an algebraic linear system.

Let us suppose that we have m linear equations for m unknowns. We can shorten the
notation by writing

Ax = b (1)

where A is an m × m matrix, x an m−dimensional vector of unknown, and b an
m−dimensional vector of known quantities. We can operate one more layer of abstraction
: Let us think of A as a linear operator sending a vector of a vectorial m−dimensional
space E into another one ; moreover, let us suppose that we have equipped E with a scalar
product 〈x|y〉. For our purpose here, this could be just the usual product 〈x|y〉 =

∑
i xiyi

where xi and yi are the component of x, y in a given basis. But the detail of the scalar
product is not important, what we want is to have a scalar product de�ned over the
space E . Now, we de�ne the adjoint operator A† operator such as〈

A†x|y
〉
def= 〈x|Ay〉

Practically speaking, the matrix of A† is given by exchanging row and columns of the
matrix of A. But let us not forget that a matrix is just a representation of an operator,
its picture. The adjoint operator plays a fundamental role in linear operator theory.
The Kernel of an operator A, called ker(A) is the set of all vector u such that Au = 0. It

can easily be shown that ker(A) is a subspace of E , generated by eigen vectors associated
to the 0 eigen values. With all these de�nitions in hand, we are know in a position to
answer to existence and unicity question.

1. Existence. Let suppose that u ∈ ker(A†). We can take the scalar product of u with
the right and left hand of (1)

〈u|Ax〉 =
〈
A†u|x

〉
= 0 = 〈u|b〉

So, the right hand side has to be orthogonal to every vector in Ker(A). System (1) has
a solution only if

b ⊥ ker(A†)

and so the kernel of the adjoint operator provides the existence condition.

2. Unicity. Let us suppose that x1 and x2 are solution of (1). Then, A(x1 − x2) = 0,
which means that

x1 − x2 ∈ ker(A)

The solution of the linear system is therefore of the form x + u, where x is a particular
solution and u∈ ker(A). The kernel of the operator provides the unicity.
An important case appear for symmetric systems2 where A† = A ; then the operator

provides both for existence and unicity.

2we are only concerned here by vector spaces de�ned over reals. Generalization to complexes is trivial
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Rectangular systems. An important generalization is the case for rectangular matrices.
If we have n equation and m unknowns, what are the existence and unicity conditions ?
We can again write our system as

Ax = b (2)

but this time, we suppose that we have two vectorial spaces E1(m-dimension) and
E2(n−dimension) with A : E1 → E2. The operator A has a n × m matrix represen-
tation. Again, we suppose that both spaces come equipped with an inner product and
we de�ne once again the adjoint operator by〈

A†x|y
〉
def= 〈x|Ay〉

Note however that the left hand side is a scalar product in E1 and the right hand side
a scalar product in E2 ! practically, A†'s matrix is obtained by exchanging rows and
columns of A and is therefore an m× n matrix.
We can now repeat every word of our above discussion.

• System (2) has a solution if b ∈ ker(A†).

• The general solution of (2) is written x + u, where x is a particular solution and
u ∈ ker(A).

3 Hilbert Space.

Functions can be considered as vectors, and the function space a vector space. We know
how to de�ne addition, multiplication by a scalar, we have a 0 vector, ... If we restrict
ourselves to square integrable functions over an interval [a, b] (which can be in�nite), we
even have a scalar product :

〈f |g〉 =
∫ b

a
f(x)g(x)dx

Solving a di�erential equation f ′′(x) = β(x) can be written in operatorial notation as

Af = β

where A refers to the second derivation operator Af = f ′′. Whatever we said for linear
systems can be repeated here (even though the space is of in�nite dimension) if we pay
close attention to boundary conditions. And this is a big if.
A di�erential equation without boundary conditions is like a rectangular system. This

can be seen by writing down a discrete version of the di�erential equation over a grid with
N points ; doing that, we realize that there is N unknown, but only N−r equations, where
r is the degree of the equation. So a di�erential equation without boundary conditions is
undetermined and its solution belongs to a subspace of the Hilbert space. For example,
y′′ + ω2y = 0 will have as solution y(t) = C1 cos(ωt) + C2 sin(ωt) : the solution is a

linear combination of the two vectors cos(ωt) and sin(ωt), or worded di�erently, belongs
to the subspace generated by these two vectors. It's only when we provide at least two
boundary conditions that a unique solution can be speci�ed.
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3.1 Homogeneous boundary conditions.

When dealing with di�erential equations, we have to consider a di�erential operator
and a certain amount of boundary conditions. Now, consider the di�erential equation
A.y(x) = h(x) (where A is a di�erential operator) with the boundary condition y(0) = 1.
We can see it as the operator A acting on the space of functions with this particular
boundary conditions and try to repeat all the arguments we had on linear operator. We
get into a serious problem however : the space F of functions f(x) with the condition
f(0) = 1 is not a vectorial space. Speci�cally, if f, g ∈ F , then f + g /∈ F , because f + g
will have a boundary condition equal to 23.
Let us now consider the same equation A.y(x) = h(x), but this time with the boundary

condition y(0) = 0. We can be happy again, because the space F of functions f(x) with
the condition 0 is a vectorial space. From now on, we will consider homogeneous (i.e.
= 0 ) boundary conditions. We will come back later to the general boundary conditions.
We can repeat then whatever we said in previous sections on linear operators and

kernels. Let us �rst de�ne the adjoint operator and its associated boundary condition.
By our previous de�nition,

(f,Ag) def= (A†f, g)

we will ask the minimum boundary conditions for the adjoint operator in order to satisfy
the above equality. This will de�ne on which space the adjoint operator acts.

Example 1. Let us consider the operator D = d/dx with no boundary condition, acting
on the space F1 of (su�ciently smooth) functions de�ne on the interval [0, 1]. We have
to �nd the operator A† and the space F2 it acts upon, by using the de�nition. Let's
suppose that g ∈ F1 and f ∈ F2 are two arbitrary function. Then∫ 1

0
f(x).

d

dx
g(x).dx = [f(x)g(x)]10 −

∫ 1

0

(
d

dx
f(x)

)
.g(x).dx

We �rst of all note that the adjoint operator is A† = −d/dx. Moreover, because F1 is free
of boundary conditions, we have to choose F2 as the space of functions with boundary
conditions f(0) = f(1) = 0.
Let us know consider the di�erential equation Ag(x) = η(x) where η(x) is a known

function. Does this equation has a solution ? Is it unique ? We know that the existence
is given by the condition η(x) ⊥ ker(A†). The equation A†f(x) = 0 with the speci�ed
boundary conditions has no other solution than f(x) = 0 ; therefore, the existence con-
dition is always ful�lled. The unicity is provided by ker(A) which includes all functions
g(x) = Cte ; therefore, the solution of Ag = η(x) exists and is de�ned up to a constant.

Example 2. Study the solvability of the equation

y′′ + y = η(x)
3To be precise the function space with general boundary conditions is an a�ne space, a space where

we have lost the origin. The di�erence of two elements of an a�ne space belongs to a vectorial space.
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with the boundary conditions y(0) = y′(0) = y(1) = y′(1) = 0.
It is not di�cult to see that the adjoint operator associated to A = d2/dx2 + 1with

the above boundary conditions is A† = d2/dx2 + 1 with no boundary conditions. The
equation A†f(x) = 0 has two independent solution cos(x) and sin(x) and the existence
condition η(x) ⊥ ker(A†) yields∫ 1

0
η(x) sin(x)dx = 0∫ 1

0
η(x) cos(x)dx = 0

To rephrase it in physicist language : an harmonic oscillator at rest at time t = 0
submitted to a force η(t) will be back to its original condition at time t = 1 i� the force
η ful�lls the above two conditions.
The unicity condition on the other hand is ful�lled.

3.2 General boundary conditions.

Existence. We want to investigate the solvability of the equation

Ag(x) = η(x) (3)

with boundary conditions g(k)(xi) = αki. Let us consider the same equation, with
the same boundary conditions but homogeneous : g(k)(xi) = 0 ; then we can de�ne
as usual the adjoint operator (with its speci�ed boundary condition) and its kernel

ker(A†
homogen

). Now, Let us take the scalar product of eq.(3) with u(x) ∈ ker(A†
homogen

).
Then,

〈u(x)|η(x)〉 = 〈u(x)|Ag(x)〉 = boundary terms (4)

The scalar product of u(x) and Ag(x) is not zero, because A here possess all the real
boundary terms. The scalar product however will now be de�ned by these known bound-
ary conditions. Equation (4) is the new solvability condition. Let us look at a simple
example to set the idea.
Consider the equation y′ = η(x) with boundary conditions y(0) = a; y(1) = b. The

homogeneous adjoint operator is −d/dx with no boundary conditions and therefore, its
kernel contains constant functions f(x) = C. We will no take the scalar product of
elements of the kernel, mainly the function f(x) = 1 with both side of eq(3), having in
mind that operator A acts on functions with the real prescribed boundary conditions.

〈1|η(x)〉 =
∫ 1

0
η(x)

= 〈1|Ag(x)〉

=
∫ 1

0
1.

(
d

dx
g(x)

)
dx

= g(1)− g(0)
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This di�erential equation is solvable only if∫ 1

0
η(x)dx = b− a

Unicity. what we did above can be repeated for the unicity. Consider the operator
Ahomogen . Any solution of eq(3) is de�ned up to a function v(x) ∈ ker(Ahomogen).
The demonstration is trivial.
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