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CHAPTER 1

Introduction

Short summary:
Focus on information gained from adsorption, reflection, or transmission of radiation of

solid materials. How light propagate in linear media, what are absorption, dispersion and
attenuation phenomena ? What is a structure factor and what is its relation to pair correlation
functions ?

Long summary:
In the first part, I will focus on the problem of the propagation of an electromagnetic

wave when the wavelength is large (UV, optical, etc.) compared to the interatomic distances.
The problem of polarization of the medium in metals and in semiconductors (Drude, Lorentz,
interband, etc.) will be discussed and surface plasmons which are longitudinal excitations at
the SC-metal interface will be treated. Finally, we will discuss how we can localize light on
length scales smaller than the wavelength (e.g. nanoparticles). This part will be completed
by a section on the Kramers-Kronig relations that link reflectance to absorption. The second
part of the course will focus on phenomena where the incident wavelength is much smaller,
such that matter can be resolved to atomic scales. The problem of structure factors and their
interpretation in terms of correlation functions (neutrons, X, etc.) will be discussed.

(1) Introduction : Microscopic approach to Maxwell’s equations, properties of wave prop-
agation in the vacuum
(a) Wave propagation in the vacuum : Maxwell’s equations;
(b) Equations in Si and cgs units;
(c) Canonical solutions: plane waves, spherical waves;
(d) Polarization for monochromatic plane waves;
(e) Energy;
(f) Wave packet and group velocity.

(2) Electrodynamic of continuous media I : Propagation of electromagnetic waves in a
medium, macroscopic Maxwell equations
(a) Microscopic Maxwell equations;
(b) Spatial and temporal averaging;
(c) Averaged Maxwell equations and introduction to two auxiliary fields P and H;
(d) Matching conditions at interfaces;

(3) Electrodynamic of continuous media II:
(a) Local response for non-magnetic, linear and homogeneous media (permitivity and

and dialectric tensor);
(b) The complex dialectric function and the refractive index N ;
(c) Boundary conditions.

(4) Semi-classical theory for ϵ
(a) Drude absorption for free carriers in metals and semi-conductors;

(i) Assumptions and components of the Drude model;

5



6 CHAPTER 1. INTRODUCTION

(ii) Real and imaginery parts of σ(ω) and ϵ(ω);
(iii) Refractive index
(iv) Plasma frequency.

(b) Lorentz model for insulators;
(i) Dilute limits: the depolarizing field;
(ii) Real and imaginery parts of σ(ω) and ϵ(ω);
(iii) Refractive index

(c) Surface plasmons at dialectric-metal interfaces.
(i) Bulk and surface plasmons;
(ii) Examples of nano-plasmonics.

(5) Introduction to Kramers-Kronig relations;
(a) Necessity for a relation between absorption and dispersion;
(b) Kramers-Kronig integrals in linear, isotropic media;
(c) Fourier transformation and frequency domain;
(d) The complex ω plane: The Lorentz oscillator;
(e) Use of the Cauchy theorem and Kramer-Kronig relations.

(6) Structure and scattering: Dynamic correlation and response.
(a) Elementary scattering theory - Bragg’s law;
(b) Photons, neutrons or electrons;
(c) Correlation functions in liquids, gases and crystalline solid.
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Why ray-matter interaction is important ?

(1) Can build new devices (mirrors, sensors, multi-fonctionnal particles ...) for a wealth
of applications. This is trendy subject:
(a) Fast commutable devices using multifunctional materials (i.e. materials where

you can control properties by light) and nanostructured materials;
(b) New tools for biomolecular manipulation : Optical tweezers (Nobel prize in chem-

istry, 2018);
(c) New tools for labeling, detection, drug delivery, theranostics etc. using metallic

nanoparticles (enhancement of the electromagnetic field intensities due to the
coupling between the photons and an excitation called plasmon, see SERS effect).

(2) New insights about the low energy excitation which control and govern the properties
of the materials. As shown below, everything depends on the wavelength. Typical
excitations in Solid Stat physics are in the 1 − 10 meV range. There are obvious
exceptions. A typical band gap in a semiconductor is about 1 eV (1.1 for Si). The
plasma frequency for Silver is about 3.8 eV. To understand why the plasma fgrequency
is important, recall that Silver is good metal with a lot of conduction electrons. These
electrons form a plasma which can oscillate (there are positive ions). This plasma is
highly reflective below the plasma frequency. Silver is a very poor reflector in the UV
range.

(3) Ray-Matter interaction also concerns rays whose wavelength is of the order of the
interatomic distances.
(a) X-ray diffraction (ESRF) is essential for determining structure factors;
(b) Neutron scattering (thermal neutrons at the ILL have a wavelength of the order

of 2Å.). Ideal to probe optical phonons, spin and charge density waves etc.

References
To compose this course, I used the following references:

(1) Optical effects in Solids, D.B. Tanne, Cambridge Universiyt Press, 20199;
(2) Modern Electrodynamics, A. Zangwill, Cambridge University Press, 201211;
(3) Electrodynamique des milieux continus, E. M. Landau and E. Lifschitz, Mir, 20194;
(4) Principles of Condensed Matter, P.M. Chaikin and T.C. Lubensky, Cambridge Uni-

versity Press, 19952;
(5) Solid State Physics, N. Ashcroft and D. Mermin, Saunders College Publishing, 1976;
(6) Principles of Electronics Materials and Devices, SZ. Kasap, McGraw-Hill, 2018;
(7) Plasmonics: Fundamental and applications, S. Maier, Springer, 20075.

10 CHAPITRE 1. ONDES ÉLECTROMAGNÉTIQUES DANS LE VIDE

Notons au passage les conventions pour les transformées de Fourier qui seront utilisées dans
ce cours. Bien que nous choisissions une représentation en pulsation ! plutôt qu’en fréquence
⌫ = !/(2⇡), par abus de langage nous utiliserons souvent l’appellation “fréquence” pour ! (il
faudra simplement prendre garde au facteur 2⇡ éventuel dans les applications numériques).

Un cas particulier important est celui d’un champ monochromatique, dont le spectre ne contient
qu’une seule fréquence, et que l’on écrit sous la forme

E(r, t) = Re [E(r) exp(�i!t)] (1.3)

où E(r) est l’amplitude complexe. La convention pour la dépendance temporelle en exp(�i!t)
est cohérente avec celle choisie pour la transformée de Fourier, et est la convention habituelle
en physique des ondes (on utilise souvent la convention de signe opposée en ingénierie). En
introduisant explicitement module et phase de l’amplitude complexe E(r) = |E(r)| exp(�i�), le
champ en domaine temporel devient E(r, t) = |E(r)| cos(!t + �). Un champ monochromatique
a donc une dépendance temporelle en cos(!t).

Le spectre des ondes électromagnétiques est représenté sur la figure 1.1, en fréquence ⌫ = !/(2⇡)
et en longueur d’onde � = c/⌫ = 2⇡c/! (dans tout le cours c représente la vitesse de la lumière
dans le vide et � la longueur d’onde dans le vide).

Figure 1.1: Spectre des ondes électromagnétiques (en fréquence et en longueur d’onde).

Remarque sur les unités spectrales : selon les communautés scientifiques, le spectre électromagnétique
est repéré en pulsation ! (rad.s�1), en fréquence ⌫ (Hz), en longueur d’onde � (m), en nombre
d’onde � = 1/� (cm�1, unité souvent utilisée en spectroscopie), ou encore en énergie E (sou-
vent exprimée en eV en physique). Pour passer d’une unité à l’autre on utilise les relations
!/c = 2⇡⌫/c = 2⇡/� et E = h⌫ = ~! avec h la constante de Planck et ~ = h/2⇡.

1.2 Equations de Maxwell microscopiques

D’un point de vue microscopique, on peut considérer que la matière est constituée de particules
ponctuelles placées dans le vide. Les densités de charge et de courant microscopiques sont donc
dues à des charges ponctuelles (électrons et protons) dispersées dans le vide. La densité de
charge microscopique s’écrit :

⇢m(r, t) =
X

i

qi �[r � ri(t)] (1.4)

Figure 1. Electromagnetic spectrum.
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the empty conduction band. Photons with energies below the gap can propagate without
loss in silicon. Photons with energies above the gap are absorbed, generating electron-hole
pairs. This absorption renders silicon opaque and, as mentioned, increases the reflectance.
Sodium chloride is an insulating crystal, with a band gap in the ultraviolet. Similar to silicon,
photons with energy larger that the gap are absorbed. Sodium chloride has two atoms per
unit cell; these occur as ions, Na+ and Cl−; an electric field displaces these ion, producing
induced dipoles in the solid. With a two-atom basis, the lattice vibrations have an optical
branch, and the reststrahlen band is a result of the light exciting this optical branch.

Now let me return to the question of the range of wavelengths (or the range of light
frequencies or of photon energies) over which I can discuss the optical properties of solids.
The electromagnetic spectrum extends over a huge range; one of many existing cartoons
illustrating the “electromagnetic spectrum” is shown in Fig. 2. This chart shows wavelengths
from km to pm along with corresponding frequencies and photon energies. So the question
is what part of this spectrum might be used to study the optics of solids?

Fig. 2. Electromagnetic spectrum, after a diagram from SURA.

To start, I’ll want to use continuum electrodynamics, so the short wavelength limit is set
by a requirement that the wavelength be larger than the spacing between atoms. When the
wavelength is less than the interatomic distances, diffraction effects dominate. X-ray diffrac-
tion is essential for determining crystal structure but beyond my scope. At somewhat longer
wavelengths, continuum electrodynamics is fine, but the materials properties are essentially
a superposition of atomic transitions. Solid-state effects contribute of course, but minimally
for wavelengths shorter than something on the order of 50 nm.∗

the reflectance. A hand-waving argument says that high conductivity means large currents in response to
applied electric fields; the power loss or absorption goes as j · E = σE2. See page 54 for further discussion.

∗ Using λf = c, ν̃ = 1/λ, and E = hf with λ the wavelength, f the frequency in Hz, ν̃ the frequency in cm− 1,
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1. INTRODUCTION

The way in which light interacts with material objects is determined by the optical
properties of the materials. Why might you want to think about these optical properties?
There are at least two reasons. One is that you can make use of known optical materials to
design and build devices to manipulate light: mirrors, lenses, filters, polarizers, and a host
of other gadgets. The second is that you can measure the optical properties of some new
material and obtain a wealth of information about the low energy excitations that govern the
material’s physics. Figure 1 is a chart that identifies some of these excitations and indicates
the part of the spectrum where they might be expected to appear.

Fig. 1. Chart showing optical processes in solids, with an indication of the frequencies where these
processes typically may be studied. Frequencies are given on three scales: the uppermost scale
shows THz, 1012 cycles/sec; the second shows photon energies in meV; and the bottom shows
wavenumbers, ν̃ (in cm−1), defined by ν̃ = 1/λ with λ the wavelength measured in cm.

In common parlance, “optical” can be a synonym of “visual,” and hence related to

1

Figure 2. Chart for optical processes in solids, after Ref.9.



CHAPTER 2

Maxwell equations in the vacuum

1. Summary

(1) Microscopic approach to Maxwell equations;
(2) Properties of waves in the vacuum;
(3) Polarisation.

2. Introduction

We are interested in cases where the distribution of electrical charges and electrical current
are time dependent. As a result of theses variations, there is an electromagnetic wave. Since
waves are not necessarily monochromatic, we use Fourier decomposition for the electrical field

(1) E(r, t) =

∫ +∞

−∞

dω

2π
e−iωtẼ(r, ω)

and for the magnetic field

(2) B(r, t) =

∫ +∞

−∞

dω

2π
e−iωtB̃(r, ω)

Using complex number is a mathematical commodity and both fields are real quantities

(3) E(r, t) → Re
[
E(r)e−iωt

]

As discussed in the preceding chapter, the wave frequency

(4) ν =
ω

2π
and the wave length

(5) λ =
c

ν

cover a very large spectrum from 10−16m (gamma rays) to 108m (radiowaves).

Remark 1. This is a mathematical note. We will often use the δ(x−x′) distribution. This
δ can be understood as an operator in the space of well-behaved functions f(x) such that for
any f(x)

(6) δ : f(x) → f(0)

and this operation is always written as

(7)
∫
dx f(x)δ(x− x′) = f(x′)

The reason for this, is that the distribution δ(x) can be understood as the limit of a sequence of
functions which become more and more highly peaked at the point where its argument vanishes.
An example is

(8) δ(x) = lim
n→∞

n√
π
exp

{
−n2x2

}

since we have for any f(x)

(9) lim
n→∞

n√
π

∫
dx f(x) exp

{
−n2x2

}
= f(0)

9



10 CHAPTER 2. MAXWELL EQUATIONS IN THE VACUUM

Using Fourier transform, we also have

(10) δ(x) =
1

2π

∫
dk eikx

since, for any f(x),

(11)
∫
dx f(x)δ(x) =

1

2π

∫
dk

∫
dx eikxf(x) =

1

2π

∫
dkf̃(k) = f(0)

where the last equality is simply the definition of the inverse Fourier transform of f(x) taken
at x = 0.

3. Maxwell equation

We assume that matter is simply the sum of point like particles in vacuum. If qi is the charge
of type i particle with position ri(t), there is a charge density which depends on position, r and
time, t, as:

(12) ρm(r, t) =
∑

i

qiδ(r− ri(t))

where the δ-distribution of charges obeys the rule (the integral runs over a volume element ∆Ω)

(13)
∫

∆Ω

d3r δ(r− ri(t)) = 1 iff ri(t) ∈ ∆Ω

Associated with density (13), there is a current density

(14) jm(r, t) =
∑

i

qiviδ(r− ri(t))

where vi is the velocity of the charged particle of type i.
To describe the propagation of waves, we will use the following the ∇ (nabla) operator
(1) Gradient: If V (x, y, z) is a scalar field, the gradient of V is a vector:

(15) ∇V =
∂V

∂x
ûx +

∂V

∂y
ûy +

∂V

∂z
ûz

where ûx,y,z are unit vectors.
(2) Divergence: If A is a vector with components (Ax(x, y, z), Ay . . . , Az . . .) all func-

tions of (x, y, z), the divergence of A is a scalar:

(16) ∇ · A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z

(3) Rotational If A is a vector with components (Ax(x, y, z), Ay . . . , Az . . .) all functions
of (x, y, z), the rotational (curl) is a vector:

(17) ∇×A = (∇x,∇y,∇z) ∧A

Exercice 3.1. Compute the normal vector n̂ to the ellipsoïdal surfaces defined by the con-
stant values of

(18) V (x, y, z) =
x2

a2
+
y2

b2
+
z2

c2

Check your result for a = b = c.

A very useful identity to remember is as follows
(19)
Divergence ( Rotational (of a vector field) ) = Rotational( Gradient (of a Scalar))) = 0 or DRG = 0

For the best or/and the worse, the are two unit systems. The SI and the CGS (centimeter,
gram, second). To make or lives as simple or complicated as possible, the former is generally
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used for waves in the vacuum. The latter is always used to describe waves in media. We,
therefore, have to get used to both unit systems.

The microscopic Maxwell equations read as (the subscript m stands for microscopic. This
will be useful in the next chapter where we will introduce local averages of microscopic field).

(1) SI (international system) :

(20)
∇ · E =

ρm
ϵ0

∇× E = −∂B
∂t

∇ ·B = 0 ∇×B = µ0jm + ϵ0µ0
∂E

∂t

with the condition1

(21) ϵ0µ0c
2 = 1

(2) Gaussian CGS

(22)
∇ · E = 4πρm ∇× E = −1

c

∂B

∂t

∇ ·B = 0 ∇×B =
4π

c
jm +

1

c

∂E

∂t

In CGS, E and B have the same units. In CGS, the unit of a force is a dyne (1 dyne = 10−5N),
and energies are measured in erg ( 1 erg = 10−7 J)

Let us also introduce the Laplacian operator for any vector field E = (Ex, Ey, Ez)

(23) ∇2E = ∇2Exûx +∇2Eyûy +∇2Ezûz

with the usual definition for the Laplacian for each coordinate Ex, Ey, Ez

(24) ∇2Ex =
∂2Ex

∂x2
+
∂2Ex

∂y2
+
∂2Ex

∂z2

For practical purposes, these equations are only useful if one wants to describe wave propagation
outside the medium where the sources are located. It is indeed totally illusory and useless to
describe the propagation of light in materials using these equations. In the next chapter, we
will see how this problem can be overcome by performing local averaging. In the the vacuum
ρm = 0 and jm = 0, so that the Maxwell equations can be further simplified using

(25) ∇× (∇× E) = ∇×
(
−∂B
∂t

)
= − ∂

∂t
[∇×B] = −ϵ0µ0

∂2E

∂t2

But

(26) ∇× (∇× E) = ∇(∇ · E)−∇2E

so that

(27) ∇2E− 1

c2
∂2E

∂t2
= 0

In the same way, we have the symmetric equation for the magnetic field

(28) ∇2B− 1

c2
∂2B

∂t2
= 0

where the ∇2 operator is often written as the ∆ operator.

1We have :
ϵ0 = 8.85410−12F m−1

µ0 = 4π10−7Hm−1
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2.7 Vector directions

Vectors whose inner product is zero are orthogonal. Hence, q is perpendicular to both
D and B. The cross product produces a vector normal to the plane containing the other
two. Hence, Eq. 7c tells me that B is perpendicular to E (and to q, which I already knew).
Equation 7d says that H is perpendicular to a particular linear combination of D and j and,
moreover, that j is perpendicular to q because D is.

2.8 Electromagnetic waves in vacuum

If there is no medium, there are neither electric nor magnetic dipoles nor free currents.
Hence D = E and H = B. Equation 7 becomes

q · E = 0 (9a)

q · H = 0 (9b)

q × E =
ω

c
H (9c)

q × H = −ω

c
E. (9d)

q, E, and H form a right handed orthogonal set, which I may orient respectively along the x̂,
ŷ, and ẑ Cartesian axes. Then∗ q̂×ê = ĥ and q̂×ĥ = −ê, making the magnitudes of Eqs. 9c
and 9d be qE = ωH/c and qH = ωE/c. Solving the second of these for H and substituting
in the first, I find q = ω/c; either of these then give H = E. So in vacuum, electromagnetic
waves travel at the speed of light and have equal (cgs-Gaussian) amplitudes for the electric
and magnetic components. The energy density2 U = (E ·D+B ·H)/8π becomes in vacuum
Uvac = (E2 + H2)/8π. Half the energy is carried by the electric component and half by the
magnetic component.

Figure 4 shows a cartoon of the wave in vacuum.† The wave is traveling to the right,
with the E field (blue) in the vertical plane and the H field (red) in the horizontal plane.
These waves are plane waves, so the fields have spatial variation in the propagation direction

Fig. 4. Electromagnetic wave in vacuum.

∗ I’ll define unit vectors parallel to any vector A as â and the magnitude (length) of the vector as A.
† If you look on the web for such cartoons you may note that more than half of them show the fields incorectly,

failing to satisfy q̂ × ê = ĥ.
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Figure 1. EM wave in vacuum.

Exercice 3.2. Consider a plane wave

(29) E(r, t) = Re
[
ei(k·r−ωt)E0

]

Show:
(1) ∇ · E = Re

[
ik · E0e

i(k·r−ωt)
]
;

(2) ∇× E = Re
[
ik ∧ E0e

i(k·r−ωt)
]
.

(3) Conclude that the Maxwell equations in the vacuum read as

(30)
ωB = k ∧ E ; k ·B = 0

−ωE = c2k ∧B ; k · E = 0

From this, one concludes:
(1) E and B are perpendicular to each other and they are both perpendicular to k. This is

a TEM (transverse electromagnetic mode) mode;
(2) (E, B, k) form a direct frame;
(3) E and B have the same phase.

4. Canonical solutions in the vacuum

4.1. Plane waves. Consider an equation of the form

(31) ∇2w − 1

c2
∂2w

∂t2
= 0

and look for a solution which depends on a single variable, say z. We, therefore, look for a
solution of

(32)
∂2w

∂z2
− 1

c2
∂2w

∂t2
= 0

The last equation can be written as

(33)
[
∂

∂z
+

1

c

∂

∂t

] [
∂

∂z
− 1

c

∂

∂t

]
w = 0

Let us change variables and define
(1) ξ = z + ct;
(2) η = z − ct.

Using the chain rules, one obtains:

(34)

∂

∂ξ
=

1

2

[
∂

∂z
+

1

c

∂

∂t

]

∂

∂η
=

1

2

[
∂

∂z
− 1

c

∂

∂t

]

with

(35)
∂2w

∂ξ∂η
=
∂2w

∂z2
− 1

c2
∂2w

∂t2
= 0

The general solution of this equation is of the form

(36) g(η) + f(ξ) = g(z − ct) + f(z + ct)
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Figure 2. Group and phase velocity.

where g(η) and f(ξ) are two arbitrary functions.
By definition, a plane wave is a solution which can we written as

(37) E(z, t) = E+(z − ct) + E−(z + ct)

where the + sign refers to a wave propagating towards the z > 0 half-space at speed c, and the
− sign refers to a wave which propagates towards the z > 0 half-space at a speed c.

For monochromatic waves, we retain only one Fourier component

(38) E+(z − ct) = E0e
i(kz−ωt)

which is a solution iff ω = ck. The wave vector is defined as k = kûz and we see from
∇ · E+ = ik · E+ = 0 that E+ is perpendicular to k.

For a planar wave, the phase is given by

(39) ϕ = kz − ωt

and is a constant in the plane z = ω/kt. From dz/dt, this plane move at velocity ω/k = c. In
general, the ratio ω/k defines the phase velocity.

5. Group velocity

We have already defined what we mean by phase velocity. To go further, we consider a
wave packet. A wave packet is constructed from an overall envelope function inside which one
has an oscillating pattern.

One observes, see Fig. 2:
(1) The envelope can move to left or to the right;
(2) The oscillating pattern inside the envelope can move to the right or to the left even if

the envelope is at rest.
The speed at which the oscillating pattern moves inside the envelope is the phase velocity

we have already defined. To define the speed at which the envelope is moving (ie the group
velocity), one has first to define what we mean by a wave packet.

A wave packet is the sum of monochromatic waves where ω(k) is not necessarily a linear
function of k as in the vacuum (we will encounter this situation when we will study dispersive
media). We assume, however, that ω(k) is smooth We write

(40) u(r, t) =
1

(2π)3

∫
d3kû(k)ei(k·r−ω(k)t)

where û(k) is peaked around some value. The usual choice is to take a Gaussian

(41) û(kx) =
1√
π∆k2x

e−(kx−k0,x)2/∆k2x

Using

(42)
∫
dseas−bs2 =

√
π

b
ea

2/4b
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one finds a Gaussian envelope in the physical space with:

(43) u(x, 0) = eik0,xe−x2/(∆x)2 with ∆x = 2/∆kx

Since the Gaussian is strongly peaked around k0, we can Taylor expand the dispersion
relation ω(k) (dispersion means changes as a a function of |k|)

(44) ω(k) = ω(k0) +
dω

dk

∣∣∣∣
k0

(k − k0)

and define the group velocity

(45) vg =
dω

dkx

∣∣∣∣
k0,x

ûkx +
dω

dky

∣∣∣∣
k0,y

ûky +
dω

dkz

∣∣∣∣
k0,z

ûkz

We see that

(46) u(x, t) = ei(k0x−ω(k0)t)
1

(2π)3

∫
d3kû(k)ei((k−k0)·(r−vgt)

or

(47) u(x, t) = ei(k0x−ω(k0)t)ψ(x− vgt)

is the product of two terms. The first is the usual monochromatic wave at k = k0. The second
does not change if we imagine that x = vgt, or dx/dt = vg. In vacuum vg = c and is equal to
the phase velocity. In dispersive matter, this is not true.

5.1. Spherical waves. Another canonical solution is the spherical wave which only depend
on the radial distance r = |r| and on t. The wave equation imposes a solution in the form

(48) E(r, t) =
1

r
E+(t− rc) +

1

r
E−(t+ rc)

where the first is a divergent spherical wave (the other is a convergent one). For a divergent
wave in the vacuum

(49) E(r, t) =
1

r
Re

[
E0e

i(kr−ωt)
]
ûr

6. Polarisation

The most general form for a propagating wave in the z-direction is

(50)
Ex = E0

xe
i(kz−ωt+ϕx)

Ey = E0
ye

i(kz−ωt+ϕy)

Ez = 0

If the light is emitted by a natural source (star, light bubbles, etc.), there is no relation between
the phases ϕx and ϕy. In that case, the difference ϕx − ϕy is a stochastic variable which varies
from time to time.

However, if ϕx − ϕy is constant in time, on says that light is polarized. We have:
• If ϕx − ϕy = pπ, with p integer, then we says that light is linearly polarized;
• If ϕx − ϕy = ±π/2 and E0

x = E0
y , the polarization is said to be circular;

• Otherwise, for constant ϕx − ϕy, the polarisation is said to be elliptical.

Remark 2. Ellipsometry measures a change in polarization as light reflects or transmits
from a material structure. The measured response depends on optical properties and thickness
of individual materials. Thus, ellipsometry is primarily used to determine film thickness and
optical constants. Since the 1960s, as ellipsometry developed to provide the sensitivity neces-
sary to measure nanometer-scale layers used in microelectronics, interest in ellipsometry has
grown steadily. This widespread use is explained by increased dependence on thin films in many
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areas and the flexibility of ellipsometry to measure most material types: dielectrics, semiconduc-
tors, metals, superconductors, organics, biological coatings, and composites of materials (see:
https://www.jawoollam.com/resources/ellipsometry-tutorial/what-is-ellipsometry).

7. Gauge fields

In Electrodynamics one introduces a scalar potentiel V (x, y, z, t) and a vector potential
A(x, y, z, t)

(51)
E = −∇V − ∂A

∂t
B = +∇×A

To understand why it may be useful, recall DRG = 0 !
(1) If ∇ ·B = 0, then this equation is automatically satisfied if B = +∇×A;
(2) From ∇×E = −∂B/∂t, we have ∇×(E+∂A/∂t) = 0 which is automatically satisfied

if E+ ∂A/∂t is a gradient.
These two conditions do not specify what are V and A and one has to introduce a condition

(called a gauge condition). The popular choice is the Coloumb jauge

(52) ∇ ·A+ ϵ0µ0
∂V

∂t
= 0

8. Energy - Poynting vector

In electrostatics 1/(2ϵ0)E is the energy density for the electrical field E. The magnetic
energy density is 1/(2µ0)B

2. We establish a conservation law for the total energy density of an
EM wave.

Assume no current. From

(53) ∇×B = ϵ0µ0
∂E

∂t

which implies

(54) E · (∇×B) = ϵ0µ0E · ∂E
∂t

But

(55) ∇ · (E ∧B) = B · (∇× E)− E · (∇×B)

which means

(56) − 1

µ0

∇ · (E ∧B) = ϵ0E · ∂E
∂t

+B · ∂B
∂t

This equation can be interpreted as a continuity equation. To see this, recall that if a quantity
is conserved (for example the concentration of some molecules)

(57)
∂c

∂t
+∇ · j = 0

where j is the current of particules. We try to write down an equation like this one in vacuum
(when light propagates in matter, energy is not conserved).

Without electrical current current, the total energy density of the EM wave

(58) u =
1

2
ϵ0E

2 +
B2

2µ0

is obviously conserved. We expect, therefore, an equation of motion of the form

(59)
∂u

∂t
+∇ ·Π = 0
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Figure 3. Rayleigh scattering.

Comparing with (56) gives

(60) Π =
1

µ0

E ∧B

as a solution. The vector Π is called the Poynting vector.

Remark 3. Using the divergence theorem, this conservation equation can written as (for
all surfaces S enclosing a volume V )

(61)
∫∫

S

Π · n̂ dS +
dU

dt
= 0 with U =

∫

V

u dv

Exercice 8.1. Rayleigh scattering: Shine at frequency ν0. Show Iscattered ∝ ν40 .

9. Appendix : Mathematical Intermezzo

9.1. The divergence theorem. From calculus, we know

(62)
∫ b

a

f(x)dx = F (b)− F (a)

where f(x) is the derivative of F (x). The following theorem generalizes this formula when the
integral is taken over a 3D-volume element.

Theorem 9.1. Let F(r) be a vector function defined in a volume V enclosed by a surface
S. The surface S is not part of the volume but is tangent to V at all points. Then,

(63)
∫∫∫

V

d3r∇ · F(r) =
∫∫

S

dS n̂ · F(r)

where the unit vector n̂ is the outward normal.

Exercice 9.1. Let S be surface that bounds a volume V . Shows

(64)
∫∫

dS n̂ · ûr = 0
1

3

∫∫
dS n̂ · r = V

9.2. The Stokes theorem.

Theorem 9.2. Consider a vector function F(r)defined on a closed surface bounded by a
closed curve C.The curve and the surface are oriented by the corkscrew rule. Then,

(65)
∫∫

dS n̂ · ∇× F(r) =

∮

C
dl · F(r)
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6.2. ETUDE D’UN GUIDE MÉTALLIQUE PLAN À PLAQUES PARALLÈLES 67

Figure 6.2: Géométrie du guide d’onde métallique plan à plaques parallèles séparées par du vide.

6.2.1 Géométrie

Dans cette structure, schématisée sur la figure 6.5, les dimensions latérales des plaques métalliques
(selon y) sont bien plus grandes que la distance les séparant : W � d. Le guidage se fait toujours
selon z. On néglige tout champ de fuite et toute variation selon x ( @

@x = 0). Enfin, on suppose
que les deux plaques métalliques sont des conducteurs parfaits, séparées par du vide (✏ = ✏0 et
µ = µ0).

6.2.2 Etude d’une solution particulière

Nous considèrons une onde monochromatique se propageant selon z.

Equation aux dérivées partielles

L’onde monochromatique se propageant dans le vide, elle obéit à l’équation d’onde suivante :

�E +
!2

c2
E = 0 (6.1)

Condition aux limites

Les champs sont nuls à lintérieur du conducteur parfait mais des courants et des charges peuvent
être présents en surface. Les conditions aux limites se traduisent donc par la continuité de la
composante normale de B et de la composante tangentielle de E en y = ± b

2 , soit :

Etg(y = ± b

2
) = 0 (6.2)

Remarquons qu’il est possible de découpler les équations de Maxwell en deux groupes, impli-
quant chacun di↵érentes composantes des champs : le groupe Transverse électrique (TE) qui
concerne les composantes Ey, Bx et Bz et le groupe Transverse Magnétique (TM) qui concerne
les composantes By, Ex et Ez. Le champ électrique d’une onde du groupe TE est transverse à
la direction de propagation, et réciproquement pour le groupe TM, d’où la dénomination. Les
modes TE et TM forment une base des modes de propagation d’un guide d’onde uniaxe.

Figure 4. Geometry for a simple wave guide.

10. Waveguides

We have certainly all been familiar with the interruption of a radio broadcast while driv-
ing through a short tunnel, the end of the tunnel being visible. Why does this tunnel let
electromagnetic waves pass at optical frequencies and not at radio frequencies?

Exercice 10.1. We consider a monochromatic wave propagation along the ûz direction
(where W ≫ d), see Fig. 4. We assume that the two metallic plates are perfect conductors and
that they are separated by vacuum. Then,

(66) ∆E+
ω2

c2
E = 0

with the boundary conditions

(67) E∥(y = ±b/2) = 0

(1) Show that the transverse electric mode

(68) E = E0 cos(ky)e
iγze−iωtûz

is solution if γ and k obeys some conditions.
(2) we have seen that the TE propagation modes are fully characterized by a single integer

p. Give the phase velocity for each mode.
(3) Show that there is a cutoff frequency ωc below which γ is a pure imaginary number.

Can we have a propagating mode bellow this frequency ? In a gas station, the distance
between the ground and the roof is about 5m. The cut-off frequency is then ? 30MHz.
So the FM frequencies pass but the longwave ones do not.





CHAPTER 3

Electrodynamic of continuous media - I

1. Summary

We write macroscopic Maxwell equations to understand how light propagates in linear
media. What are dispersion, attenuation and absorption phenomena ?

2. Local averaging

Recall the Maxwell equations, see (98) or (100). The microscopic fields Em, Bm experience
huge variations on the atomic or molecular scales. We are not interested in these short distance
features but only in the long wave length limit. To get rid of these spurious variations, we use
a procedure to perform local spatial averages.

At each point, consider a surrounding domain with size l such that
(1) l ≫ interatomic distances;
(2) l ≪ wavelength of the light used to probe the sample.

Call Ω the volume of the surrounding domain of a point P . Typically, the size l of Ω is of the
order of a few tenth of nm.

If F (r, t) is a scalar field, define the average

(69) < F (r, t) >=
1

Ω

∫

Ω

ddr F (r, t)

where the integral weights only the neighborhood of P in the volume Ω. Since the volume of
the domain where we perform the integral is not infinite, the local average quantities depend on
the position r of P . As a result of this averaging which eliminate all short distance fluctuations,
one expects < F (r, t) > to be also a smooth function.

We have the following properties

(70)
< ∂tF (r, t) > = ∂t < F (r, t) >

< ∂xF (r, t) > = ∂x < F (r, t) >

Exercice 2.1. Mathematically, this procedure amounts to integrating with some weight
function, say w(x). In one dimension:

(71) < F (x, t) >=

∫ +∞

−∞
w(x− x′)F (x′, t)

Figure 1

19
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By integrating by parts, show the last equality in (70).

What we want to do is to write down the Maxwell equations for local averaged fields
E(r, t) =< Em(r, t) > and B(r, t) =< Bm(r, t) >.

(72)
∇ · E =

< ρm >

ϵ0
∇× E = −∂B

∂t

∇ ·B = 0 ∇×B = µ0 < jm > +ϵ0µ0
∂E

∂t

3. Performing < ρm >: How the polarization P emerges

We assume electrical neutrality, meaning

(73)
∫
d3r < ρm >=

∫
d3rρm = 0

where the integral is over the whole sample. Outside the sample, ρm = 0. If < ρm > obeys
(73), then there exists some vector field (to be determined) P such that

(74) < ρm >= −∇ ·P
where the − signe is pure convenience. Outside the sample, P = 0. Indeed, we have

(75)
∫
d3r < ρm >= −

∫

Boundary

d2r n̂ ·P = 0

since P = 0 on the boundary because of continuity.
To understand why the vector P may be useful, consider the total dipolar moment

(76) p =

∫
d3r ρmr =

∫
d3r < ρm > r

Write

(77) r = xûx + yûy + zûz =
∑

α

αûα

We have

(78) p = −
∑

α

ûα

∫
d3r α∇ ·P

and

(79) ∇ · (αP) = α∇ ·P+P · ∇α α = x, y, z

with

(80) ∇α = ûα α = x, y, z

Using the divergence theoreme and the continuity of P (which implies that P is zero on the
boundary), we have

(81) p =

∫
d3rP

which implies tat P is nothing but the dipolar moment per unit volume.
Our first conclusion runs, therefore, as follows. Even for the case of electrical neutrality, an

electrical field makes the distribution of ± charges no more homogeneous. We have a gradient
of charges, and this gradient induces a polarization that we call P.

What happens now if the material is not electrically neutral ? This means that we have
introduced by hand an ion in an initially neutral material. Before, we had < ρm >= −∇ · P.
We have now

(82) < ρm > −ρext = −∇ ·P
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where ρext is the density of charges we have introduced inside the sample by hand.

Exercice 3.1. Do the conduction electrons in a metal contribute to ρext ? The answer is
no, since there are compensated by the ions.

Finally, we can write

(83) ∇ · E =
ρext
ϵ0

−∇ ·P

where E has still the meaning of a mesoscopic average.
For practical purpose, we can define the new vector D (electrical displacement) by

(84) D = ϵ0E+P

and D is a new macroscopic variable which contains the effect of polarizing the medium. From
this definition, we have
(85) ∇ ·D = ρext

To conclude, we note that this definition still holds in the dynamic regime (there is no time
derivative in the corresponding Maxwell equation).

4. Performing < jm >

(1) First, consider the case of an insulator in the time independent regime. The total
current is zero, meaning that there is an exact compensation of the in-and-out-current.
So, for any arbitrary cross-section

(86)
∫∫

dS

dS < jm > ·n̂ = 0

We use for any vector field M

(87)
∮

C
M · dl =

∫∫
dS∇×M · n̂

By analogies with what we have done before, define the magnetization M through the
local average of jm

(88) < jm >= ∇×M

with M = 0 outside the sample. We are going to see that M is nothing but the
magnetization density. To see this, write the dipolar magnetic moment as

(89) m =
1

2

∫

Sample

d3r r ∧ jm

we have (and this calculation is not trivial)

(90) m =

∫

Sample

d3rM

Just as before, a non-uniform magnetization with ∇×M ̸= 0 contributes to a current
density.

(2) Second, consider now the case of a conductor (or an electrolyte) where an external
current is driven into the system (still in the time independent regime). We add this
external current jfree to the magnetization current

(91) ∇×B = µ0jfree + µ0∇×M

We can always define

(92) H =
B

µ0

−M

so that
(93) ∇×H = jfree



22 CHAPTER 3. ELECTRODYNAMIC OF CONTINUOUS MEDIA - I

By definition, and to be sure sure to mislead everybody, H is called the magnetic field
and B is the magnetic induction.

What happens now in the time dependent regime ? Assume that we introduce charges in the
system. If these charges move, there is a current. But electrical charges are conserved, meaning

(94) ∇ · jfree +
∂ρ

∂t
= 0

But,

(95) ∇ ·D = ρext

so that

(96) ∇ ·
[
jfree +

∂D

∂t

]
= 0

Use now the DRG theorem. Define the magnetic field H through

(97) ∇×H = jfree +
∂D

∂t

which agrees with the one above in the time independent regime. To conclude, we have indeed
define a new vector field H so that

(1) H = B/µ0 outside the sample;
(2) H = B/µ0 −M inside the sample.

The upshot of all of this is as follows. The Maxwell equations are now relatively simple

(1) In SI:

(98)
∇ ·D = ρext ∇× E = −∂B

∂t

∇ ·B = 0 ∇×H = jext +
∂D

∂t

with the definitions (in SI)

(99)
D = ϵ0E+P

H =
B

µ0

−M

This result obtained at the expense of having introduced two new fields D and H which
are only defined through macroscopic averages. We did not solve the problem (yet),
and this is a rewriting of the microscopic Maxwell equation. As before, the number of
unknowns is the same as the number of equations.

(2) In Gaussian CGS

(100)
∇ ·D = 4πρext ∇× E = −1

c

∂B

∂t

∇ ·B = 0 ∇×H =
4π

c
jfree +

1

c

∂D

∂t

with the definitions (in CGS)

(101)
D = E+ 4πP

H = B− 4πM
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5. Energy

From the Maxwell equation

(102) ∇×H = jfree +
∂D

∂t
we have (after taking the scalar product with E)

(103) E · ∇×H = jfree · E+
∂D

∂t
· E

Using the identity
(104) ∇ · (E ∧H) = H · ∇× E− E · ∇×H

with

(105) ∇× E = −∂B
∂t

we get

(106)
∂D

∂t
· E+

∂B

∂t
·H = −∇ · E ∧H− jext · E

Define the instantaneous Poynting vector
(107) Π = E ∧H

Here I want to show

(108) ∇ ·Π+ E · ∂D
∂t

+H · ∂B
∂t

= −jext · E

The right-hand side describes the energy exchange between the field and the current due to
the external charges (this current can for example describe an external source which provides
energy to the field). The left member contains different contributions: free energy density of
the field, potential energy stored in the material and dielectric losses





CHAPTER 4

Electrodynamics of continuous media - II

1. Summary

We show that Maxwell equations are satisfied as soon as one defines response functions
(conductivity, permittivity, susceptibility, permeability). The next chapter will show how these
response functions can be calculated using microscopic models.

2. Introduction

We have introduced to subsidiary fields D and H from the Maxwell equations to describe
the propagation of waves in media. From now on, we assume that there is no external charge
ρext = 0, so that j = jfree. To make progresses, we make the following assumptions: local
response, non-magnetic materials, linear materials (don’t shine a laser light !), isotropic systems,
homogeneous materials.

(1) Locality: For a conductor where conductivity is the important parameter, linear
response means that the current is proportional to the electrical field. Assuming an
instantaneous (same t) response, this means

(109) j(r, t) = σE(r, t)

Locality means that the current at point r depends only on the electrical field at r (and
not at a point far away or in the neighborhood). True ? There is always a relaxation
time and a distance (mean free path) for things to relax to zero. Locality is generally
OK is one work in a regime where

(110) Mean Free Path(s) ≪ Typical Wavelength of E

(2) Linearity: In general, we assume for a dielectric

(111) P =
↔
χe E

where
↔
χ is a 3× 3 matrix (a tensor). If the material becomes magnetic

(112) M =
↔
χm H

From this, we have

(113) D = ϵ0E+P = ϵ0
↔
ϵ E

where
↔
ϵ is the permittivity tensor.

We can also define the permeability tensor

(114) B =
↔
µm H

We use matrices (i.e. tensors) for
↔
ϵ ,

↔
µ, since linearity does not imply that things

have the same direction ! There are, for example, crystalline orientation axes where P
is not co-linear with E.

(3) Isotropic materials: The tensors were introduced above on purpose., since crys-
talline symmetries are in general important. To makes things as simple as possible,
say

(115)
↔
ϵ= ϵI

25



26 CHAPTER 4. ELECTRODYNAMICS OF CONTINUOUS MEDIA - II

or

(116) D = ϵ0ϵE P = ϵ0(ϵ− 1)E

3. Linear response and causality

The frequency dependence of the conductivity occurs because matter cannot responses
instantaneously to an external perturbation.

Let us concentrate on a time-dependent conductivity function σ(τ). A time delay appears
between the perturbation and the response, but the response must be causal. Linear response
says

(117) j(r, t) =

∫ t

−∞
dt′ σ(t− t′)E(r, t′)

where the current at time t depends on the electrical field at earlier time t′ (causality). Obvi-
ously,

(118) σ(τ) → 0 as τ → +∞
For practical purposes, we define the response function σ(τ) such that

(119) σ(τ) = if τ < 0

and write

(120) j(r, t) =

∫ +∞

−∞
dt′ σ(t− t′)E(r, t′)

as a convolution integral. w As usual, we define the Fourier transform

(121) σ(t) =
1

2π

∫
dωe−iωtσ̃(ω) σ̃(ω) =

∫
dtσ(t)eiωt

and use the convolution theorem

(122) j̃(r, ω) = σ̃(ω)Ẽ(r, ω)

An important property of σ̃(ω) = σ̃′(ω) + iσ̃′′(ω) follows from the fact that both j(r, t) and
E(r, t) are real. This means

(123) σ̃(ω) = σ̃⋆(−ω)
or

(124) σ̃′(ω) = σ̃′(−ω) and σ̃′′(ω) = −σ̃′′(−ω)
To conclude, all these properties apply to the complex permittivity ϵ̃(ω). We will see in the
next paragraph that the complex permittivity and the complex conductivity which are both
response functions are not independent from each other. A priori, ϵ̃′(ω) can be positive or
negative, but σ̃′(ω) is certainly positive.

Exercice 3.1. As said before, we have

(125) ϵ(ω) = ϵ∗(−ω)
Assume a real field E at frequency ω

(126) E = E0e
iωt + E∗

0e
−iωt

Show (superposition principle) that if E is real, then D(ω) = ϵ0ϵ̃(ω)E is real if (125) holds4.
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4. The complex permittivity and the complex conductivity

We assume that both E(r, t) and B(r, t) are real fields varying as

(127) E0e
i(k·r−ωt) + E∗

0e
−i(k·r−ωt)

and we give the relation under which the wave propagate (the relation between k and ω). To
do this, we will concentrate on transverse waves where both E(r, t) and B(r, t) are ⊥ to k.

Consider one of the Maxwell equation

(128) ∇×H = j+
∂D

dt
where the fields H and D are both real quantities.

Using (127) in (128) gives

(129) ∇× H̃(ω) = j̃− iωD̃(ω)

Assume

(130) j̃(ω) = σ̃′(ω)Ẽ(ω) and D̃(ω) = ϵ0ϵ̃
′(ω)Ẽ(ω)

where ϵ̃′(ω) and σ̃′(ω) are both real numbers for j̃(ω) to be real. Eq. (128) can now be written
as:

(131) k ∧H = −ωϵ0
[
ϵ̃′(ω) +

i

ϵ0ω
σ̃′(ω)

]
Ẽ(ω)

In vacuum, the same equation is written

(132) k ∧H = −ωϵ̃0E
Comparing these two equations, one defines the complex permittivity from ϵ̃′(ω) and σ̃′(ω)

(133) ϵ̃(ω) = ϵ̃′(ω) +
i

ϵ0ω
σ̃′(ω)

As a result, this equation in a dispersive medium is

(134) k ∧H = −ωϵ̃0ϵ̃(ω)Ẽ(ω)
and this equations looks like the same equation in the vacuum but with the complex permittivity
ϵ̃(ω)

In the same way, we define the complex conductivity by σ̃(ω) = σ̃′(ω) + iσ̃′′(ω). Using this
definition, write (131) as

(135)
k ∧H = −ωϵ0

[
1 +

i

ω
σ̃(ω)

]
E

= −ωϵ0
[
1 +

i

ϵ0ω
σ̃′(ω)− 1

ϵ0ω
σ̃′′(ω)

]
E

For definitions (131) and (135) to be coherent

(136) ϵ̃′(ω) = 1− σ′′(ω)

ϵ0ω

In summary, the relation between the complex permittivity and complex conductivity is:

(137) ϵ̃(ω) = 1 +
i

ϵ0ω
σ̃(ω)

When considering a specific type of material (metal, insulator, ionic solid, superconductor) it
is sometimes better to work out the conductivity and other times better to derive the dielectric
function. Equation (137) allows one to translate back and forth between them.

Exercice 4.1. Show that in CGS Gaussian units

(138) ϵ̃(ω) = 1 +
4πi

ω
σ̃(ω)
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Remark 4. This way to write the Maxwell equation predicts that the low frequency limit of
the dielectric function has the form

(139) ϵ ≈ ϵs +
i

ϵ0ω
σ̃

where σ and ϵs are the static conductivity and dielectric constant.

5. The complex refractive index

To get the relation between the wave number k and the frequency ω - this means the
dispersion relation - , we start from the Maxwell equation

(140) ∇× E = −∂B
∂t

And assuming again (127) for a monochromatic wave

(141) ik ∧ Ẽ(ω) = iωB̃(ω)

Using the identity

(142) k ∧ (k ∧H) = (k ·H)H− k2H

in (134), we get a relation between k and ω

(143) k2 =
ω2

c2
ϵ̃(ω)

where ϵ̃(ω) is the complex dielectric constant.
Let us define the complex refractive index N , though N2 = ϵ̃(ω) with

(144) N = n+ iκ with κ > 0

The coefficient n is the refractive index, and κ is the extinction coefficient.
To make this definition more meaningfull, recall that if we remove all directions H =

(cq/ω)E. Since q = ωN/c, we have

(145) H = NE =
√
ϵE

6. Traveling waves in matter

Combining two of the Maxwell equations in the absence of external stimuli, we have

(146)
∇×∇× E = −µ0

∂2D

∂t2

k(k · E)− k2E = −ϵ(k, ω)ω
2

c2
E

Two cases must be distinguished, depending on the polarization direction of the electric field
vector:

(1) For transverse waves with k · E = 0, we have the generic dispersion relation:

(147) k2 = ϵ(k, ω)
ω2

c2

(2) For longitudodinal waves with k ∥ to E, we have

(148) ϵ(k, ω) = 0

signifying that longitudinal collective oscillations can only occur at frequencies corre-
sponding to zeros of ϵ(k, ω). These waves cannot exist in the vacuum but can exist in
matter (see bulk plasmons).
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Figure 1. Refraction at an interface separating two media with positive refractive indices
(left) and with positive and negative refractive indices (right).

materials, for instance on the eVective permeability [4] and permittivity [5–8]. For given permit-
tivity constants and volume fractions of the components constituting a composite, such bounds
characterize the set of possible macroscopic responses and identify the microstructure produc-
ing the extreme eVective parameters in this set, see the book of G. Milton [9] for an extensive pre-
sentation of the bounds of composites. These works on bounds oVered new possibilities in terms
of achievable values of permittivity and anisotropy. These works have been however restricted to
the quasistatic regime in the frame of classical homogenization [10], where the eVective param-
eters result from an averaging process. In this frame, the range of frequencies with negative val-
ues of permittivity cannot be significantly extended and, moreover, the eVective permeability re-
mains equal to the vacuum permeability as soon as the components constituting the composite
are non-magnetic, leaving the negative refractive index unachievable in theory and in practice.

The fundamental steps that led to the negative indices have been completed thanks to the
works of J. Pendry and his colleagues. Back in 1996, they proposed three-dimensional network
structures made of thin metallic wires and showed theoretically, numerically and experimentally
that such structures exhibit metallic behavior with low plasma frequency in the range of GHz
[11, 12]. In such structures, the plasma frequency of the original metal !p , which is proportional
to the ratio

p
N /meV of the electron density N and the electron eVective mass meV, is made

lower using two mechanisms: (i) the electron density N is reduced since the fraction of metal
in the wires network is lower than in the bulk metal and (ii) the electron eVective mass meV

is enhanced by confining the electrons in the thin wires. With these mechanisms, the eVective
plasma frequency is strongly reduced and the metallic behavior encountered in the visible range
is extended to the Ghz range, which allows eVective permittivity with negative values in a new
range of frequencies. Then, in 1999, these physicists proposed structures made of the so-called
split rings that exhibit resonant eVective magnetic permeability in the GHz range [2]. Here,
the magnetic response is induced by loops of current in the rings. In addition, this magnetic
response is enhanced by introducing a thin split which makes the split ring equivalent to a LC
resonator, the capacitance C resulting from the thin split and the inductance L resulting from
the ring. The resonance is essential since it enhances the eVective magnetic response and thus
oVers the possibility to address negative values of the eVective permeability. Finally, combining
these conducting non-magnetic split ring resonators with thin wires, D. Smith et al. proposed a
composite medium with simultaneously negative permittivity and permeability in the GHz range
[13]: this work enabled the experimental demonstration in the Ghz range of a negative refractive
index [14], the extraordinary electromagnetic property imagined by V. Veselago in 1968 [1].

It is stressed that, in this new kind of metallic composites proposed by J. Pendry and his col-
leagues, the microstructure induces resonances in the eVective electric and magnetic responses,
which makes the nature of the underlying mechanism diVerent from the one encountered so far

C. R. Physique, 2020, 21, nO 4-5, 343-366

Figure 1. Snell law for positive and negative index materials.

Remark 5. The notion of negative index of refraction has been theoretically introduced 50
years ago by Veselago. J.B. Prendy is credited to to have shown that such materials can actually
be made7. For refraction at interface, we have

(149) n1 sinϕ1 = n2 sinϕ2

Consequently, if the refractive index of the two materials have opposite sign, then the refraction
angle have also opposite sign.

For these nanophotonic artificial materials (actually meta materials), both ϵ and µ are
negative in a limited frequency range. In such a material the triplet (k, E, H) is left-handed.

Exercice 6.1. Work out an exercice with

(150) E = E0e
i(nxω/c−ωt)e−κωx/c

Exercice 6.2. We consider the case of a light incident normally on an interface between
two semi-infinite media, one with complex dielectric function ϵa (for the incoming and reflected
field) and the other by ϵb (for the transmitted field). Let r and t be the reflexion and transmission
coefficients. If the incoming wave is

(151) Ei = E0e
i(kx−ωt)ûy Hi = NaE0e

i(kx−ωt)ûz

the reflected wave is of the form

(152) Er = rE0e
i(±kx−ωt)ûy Hi = ±NaE0e

i(±kx−ωt)ûz

(1) Choose the correct signs in the equation above;
(2) The transmitted fields Et and Ht are

(153) Et = tE0e
i(kx−ωt)ûy Hi = NbtE0e

i(kx−ωt)ûz

(3) Assume that both E and H are continuous at the interface. Conclude

(154) r =
Na −Nb

Na +Nb

(4) Assume that the incident wave is traveling in the vacuum. In experiments, one mea-
sures the intensity. Show that the reflectance intensity is given by

(155) R =
(n− 1)2 + κ2

(n+ 1)2 + κ2

Usual values for n range as 1.1 < n < 1.9 (visible) and absorption is in general rather weak.





CHAPTER 5

Semi-classical theory for ϵ and σ

1. Drude absorption for free carriers in metals and semiconductors

This model predates quantum mechanics and igores Fermi-Dirac statistics as well as Bloch
theorem. The model assumes:

(1) A density n of mobile charges (charge −e);
(2) That the carriers are free, there is no restoring forces, no interaction;
(3) A relaxation mechanism. If we set the system in motion, the system will relax towards

equilibrium due to a damping (due to electron-electron collisions).

1.1. The conductivity. Let Eext the applied field (and not the local field). For simplicity,
assume that the k = kûx is along the x−coordinate, so that

(156) E = E0e
i(kx−ωt)ûy

with the equation of motion for the displacement y

(157) mÿ = −eEext − γẏ

where γ is the damping coefficient. To find the solution, write

(158) ẏ = V0e
i(qx−ωt)

One finds:

(159) V0 = − e

m(1/τ − iω)

where τ = m/γ is a characteristic time: τ is the mean time between collision (or, if you want,
1/τ is the rate at which collisions occur). The electrical current is simply j = −neẏ, so that

(160) σ̃ =
ne2

m(1/τ − iω)

Two limit cases are of interest:

(1) ω → 0, the velocity is in phase with the external electrical field E;
(2) ω ≫ 1/τ , the velocity is out of phase and decreases as 1/ω.

The dc conductivity

(161) σdc =
ne2τ

m

has the same expression in CGS and in SI. Typical numbers for Silver are as follows: n =
5.91022cm−3; ρ = 1.610−6Ω.cm so that 1/τ = 2.61013s−1. The typical frequency range is of the
order of 41014Hz.

Working out the real and imaginary part of the conductivity, one finds

(162) σ′(ω) =
σdc

1 + ω2τ 2
and σ′′(ω) =

ωτ

1 + ω2τ 2
σdc

31
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1.2. The permittivity. To obtain the complex dielectric function, recall (163)

(163) ϵ̃(ω) = ϵc +
i

ϵ0ω
σ̃(ω)

where we have substituted 1 by ϵc to take into account for the polarizibility of the ion cores.
One finds

(164) ϵ̃(ω) = ϵ′(ω) + iϵ̃′′(ω)

with

(165) ϵ̃′(ω) = ϵc −
ne2

mϵ0

τ 2

1 + ω2τ 2
and ϵ̃′′(ω) =

1

ωτ

ne2

mϵ0

τ 2

1 + ω2τ 2

Then, it is interesting to define

(166) ω2
p =

ne2

mϵ0
as the plasma frequency.

Exercice 1.1. Do this calculation in CGS and show that the overall expression for the
permittivity is the same with the plasma frequency

(167) ω2
p =

4πne2

m

1.3. The refractive index
√
ϵ. Assume ωτ ≫ 1 to make calculus as simple as possible.

Then ϵ̃(ω) is real

(168) ϵ̃(ω) = ϵc −
ω2
p

ω2

and negative for ω < ωp/
√
ϵc. The refractive index is purely imaginary: E.M. wave cannot

propagate in this range. At normal incidence, the total reflectance is unity. For ω > ωp/
√
ϵc,

propagation is possible. The material becomes transparent. For most metals, ωp is in the
ultraviolet regime (5 eV- 15 eV).

The dispersion relation can be determined from k2 = |k|2 = ϵ̃(ω)ω/c

(169) ω(k) =
√
ω2
p + k2/c2

If there is no propagation below the plasma frequency ω < ωp, for ω > ωp waves propagate
withe a group velocity dω/dk < c.

The physical origin of this behavior lies in the source of transmitted and reflected waves.
For ω < ωp, the medium radiates two waves: A backward propagating wave (reflected) and a
forward-propagating wave which interferes destructively with the incident wave. For ω > ωp,
the polarization is no more in phase and the destructive interference between the two waves
is lost. This phase change is reminiscent of an harmonic oscillator driven below and above its
natural frequency.

1.4. Physical interpretation. To understand the physical interpretation of ωp , consider
the longitudinal oscillations of a conduction electron gas in a fixed background of positive
charges. A slab displacement u with respect to the background leads to an effective charge
density σ = ±neu where n is the density of ± charges.

To calculate the electric field, we realize that the problem is equivalent to a plate capacitor,
so that the displacement u leads to an electric field

(170) E =
neu

ϵ0
The equation of motion reads as:

(171) nmü = −n
2e2u

ϵ0
or ü+ ω2

pu = 0
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and

N =





0 + i

√
ω2

p

ω2 − εc, for ω < ωp/
√

εc
√

εc − ω2
p

ω2 + i0, for ω > ωp/
√

εc

Below the screened plasma frequency, this approximation gives a pure imaginary value iκ
for N . The real part is zero. Above the screened plasma frequency, N = n is purely real
and has the high-frequency limit of n =

√
εc. Metals should be transparent above ωp/

√
εc,

and some are.

4.2.12 Reflectance

Once I have N , I can calculate the reflectance R from Eq. 44. At low frequencies, both
parts of N are very large, so the difference between n and 1 is large. In this case, it is
sometimes convenient to write Eq. 44 as

R = 1 − 4n

(n + 1)2 + κ2
. (62)

Note that although Eq. 62 might look like an expansion, it is exact. The calculated re-
flectance, using parameters identical to those for Figs. 8–10, 12, and 13, is shown in Fig. 14
as the red curve, marked “300 K.”

Fig. 14. Normal incidence reflectance of a Drude metal.

A good approximation in the far infrared, where n ≈ κ $ 1, is to write n + 1 ≈ n and
then, using Eqs. 61 and 62, obtain the so-called Hagen-Rubens8 equation

R ≈ 1 −
√

2ω

πσdc
(63)

The reflectance is 100% at ω = 0 and falls in accord with Eq. 63 with increasing frequency.
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Figure 1. Normal incidence reflectance of a usual metal9.
40 CHAPITRE 3. PROPRIÉTÉS ÉLECTROMAGNÉTIQUES DES MATÉRIAUX

Cuivre'

Réflec,vité'

Structure'de'bandes'du'cuivre! Densité'd’états!

eV'

Aluminium,'Or'et'Argent'

Réflec,vité'

Figure 3.3: Haut : réflectivité de surfaces planes de cuivre, d’or et d’argent. Bas : structure
de bandes et densité d’états électroniques dans le cas du cuivre. Les transitions interbandes
indiquées par les flèches verticales sont responsables de l’absorption dans le visible, et de la
coloration rouge du cuivre.

probabilité importante car la densité d’états électroniques est élevée dans la zone où les bandes
d sont quasiment horizontales. C’est ce mécanisme qui est responsable de la couleur rouge du
cuivre massif (ou de la couleur jaune de l’or massif). Notons que pour des métaux comme
l’argent, le rôle des transitions inter-bandes peut être pris en compte de manière e↵ective en
utilisant une valeur de ✏r(! ! 1) di↵érente de 1 dans le modèle de Drude. On écrit alors la
constante diélectrique sous la forme ✏r(!) = ✏1 � !2

p/(!2 + i�!), la valeur de ✏1 devant être
ajustée sur des données expérimentales [4].

3.4 Modèle de l’électron élastiquement lié

Pour modéliser un matériau polarisable dilué (un gaz d’atomes ou de molécules), on calcule
le moment dipolaire induit dans chaque atome (ou molécule) puis on déduit la densité de po-
larisation P en utilisant la densité volumique d’atomes. On modélise l’atome par un électron
(considéré comme une particule classique de masse m et de charge e) lié au noyau par une force
de rappel élastique de la forme F = �m!2

0r, où r est la position de l’électron. La pulsation
!0 est la pulsation de résonance de la liaison élastique. En présence du champ excitateur, le
principe fondamental de la dynamique appliqué à l’électron s’écrit

m
d2r

dt2
= �eE � m!2

0r � m�
dr

dt
(3.10)

Figure 2. Reflectivity for cooper. Note that the reflectivity drops below the
plasma frequency dur to interband transition in the visible range.

Note that interpretation assumes longitudinal modes where the displacement is parallel to E.
This type of plasmon (volume plasmon) cannot be excited by TEM where E is ⊥ to the direction
of propagation. They can only be excited by particle impacts.

Remark 6. But not all metals are mirrors. Some metals are colored (in reflection copper
is red, gold is yellow) which reflects other mechanisms of absorption of radiation. Contrary to
the case of aluminum, these metals have a reflectivity that drops well before ωp. This drop in
reflectivity is explained by the fact that in these metals inter-band transitions are possible at
energies corresponding to the visible wavelengths.

2. The Lorentz model

The Lorentz model applies to situation where electrons are bound by some force to an atom
or to an ion. Assume that the molecule acquires a polarization p = αeElocal where Elocal is the
local field at the molecule position (which differs a priori from the external field).

2.1. The dilute limit. The molecule having a dipole moment, it generates in turn a field
at distance r

(172) Edipole =
3(p · r)ûr − p

r3

For a molecule surrounded by its neighbors, the electrical field at the molecule position is the
sum of the applied field, Eapplied with the dipolar field generated by the neighbors, say En

(173) Elocal = Eapplied + En

In the dilute limit we start with, we neglect the field generated by the neighbors, so that

(174) Elocal = Eapplied
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Fig. 17. Real and imaginary parts of the dielectric function of a Lorentzian oscillator.

I’ll now calculate the actual “screened plasma” frequency ω̃p where ε1(ω) equals zero.
Setting the left side of Eq. 75a to zero and doing some considerable algebra, I get

ω̃2
p = ω2

e +
1

2

(
ω2

pe

εc
− γ2

) (
1 +

√
1 − 4ω2

eγ
2

(ω2
pe/εc − γ2)2

)
.

This equation is not very illuminating, so let me evaluate it in the case ωpe " ωe >∼ γ. This
is the usual case and in it

ω̃2
p =

ω2
pe

εc
+ ω2

e .

As a general statement, one can say that the zero is pushed up by ωe and pulled down by γ.

4.4.5 Limiting behavior

Low frequencies: The low frequency limit of Eq. 75a is ε1 ≈ εc + ω2
p/ω

2
e . The imaginary

part goes as ω at low frequencies; the conductivity σ1 as ω2.

Mid frequencies: At ω = ωe, ε1 = εc. The imaginary part is a maximum with ε2 = ω2
pe/ωγ

and σ1 = ω2
pe/4πγ. I have identified γ = 1/τ so that this is also: σ1 = ω2

peτ/4π. This is the
DC conductivity of a metal with plasma frequency ωpe and mean free time 1/τ .

High frequencies: Above the resonance, ε1 is negative, rising as the frequency increases,
following ε1 ≈ εc − ω2

pe/ω
2. At these frequencies, ε2 ∼ 1/ω3.

4.4.6 Conductivity

It is easy to write σ1(ω); it is related to ε2 by σ1(ω) = ωε2/4π. Then

σ1(ω) =
ω2

peω
2γ/4π

(ω2
e − ω2)2 + ω2γ2

The real and imaginary parts of σ are plotted in Fig. 18,
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Figure 3. Real and imaginary parts of the permittivity of a typical Lorentz
oscillator9.

Fig. 18. Real and imaginary parts of the optical conductivity of a Lorentzian oscillator.

The shape of the Lorentzian is always the same: a peak in σ1(ω) and a derivative like
structure∗ in σ2(ω). Three parameters control the details: ωe the location, ω2

pe (as I shall

show) the area under the σ1(ω) curve, and γ the full width at half maximum. The value of
the conductivity at the maximum is σ1(ωe) = ω2

pe/4πγ.

4.4.7 The refractive index

Fig. 19. Real and imaginary parts of the refractive index in the Lorentz model. Data are shown on
a log-log scale.

∗ The negative of the derivative actually.

46

Figure 4. Real and imaginary parts of of the conductivity of a typical Lorentz
oscillator9.

For an electron bound by an harmonic force, the equation of motion is

(175) mẍ = −mω2
0x−mγẋ− eE0e

−iωt

where γ is a damping term. Formally, this is identical to the Drude model, but the underlying
physics is different. Drude model assumes that e−−e− collisions give rise to γ. Here, impurities
and phonons etc. give this damping. If

(176) x = x0e
iωt

we have

(177) x0 = − e/m

ω2
0 − ω2 − iγω

Since the dipole moment for one molecule is p = −ex, the electronic polarizability per molecule
is

(178) αe =
e2/m

ω2
0 − ω2 − iγω

If n is the density of molecules, the total dipole moment P is np. Since, the susceptibility, a
response function, is P = χeE, we have

(179) χe =
ne2/m

ω2
0 − ω2 − iγω

From
D = ϵ0E+P = ϵ0ϵE

one finds
χe = ϵ0(ϵ− 1)

and

(180) ϵ(ω) = 1 +
ω2
p

ω2
0 − ω2 − iγω
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In the low frequencies limit, we can approximate this expression as

(181) ϵ(ω) = 1 +
ω2
p

ω2
0

so that, unlike metals, see (168), ϵ̃(ω) > 0 in the ω → 0 limit.

2.2. The depolarizing field. In this section, we don’t assume anymore the dilute limit.
We still have p = αeElocal, but the local field Elocal is the sum of the applied field and the
field generated by the surrounding. We split the later into two contribution. The immediate
surrounding (immediate neighbors) and the medium

(182) Elocal = Eext + Eneigh + Emedium

(1) The field Eneigh is the finite sum of the fields due to the neighboring molecules. For
cubic symmetry, each term appears with its symmetric, but with a minus sign, so that
this (finite) sum is zero;

(2) To calculate Emedium, we carve a spherical cavity inside a uniformly polarized medium.
The uniform polarization P outside the cavity leads to a surface charge density σ =
P · n. This charge density varies as cos(θ), and leads to a uniform field in the cavity,
see Exercice.

(183) Emedium =
P

3ϵ0

The polarization P is, therefore:

(184) P = nαe

[
Eext +

P

3ϵ0

]

which is self-consistent for P. Since αe(ω) is known from (178), we have

(185) P =
nαe(ω)

1− nαe(ω)/(3ϵ0)
Eext

From χ = ϵ0(ϵ− 1), one finds the Clausius-Maussotti formula

(186)
ϵ− 1

ϵ+ 2
=
nα

3ϵ0

which reads as

(187)
ϵ− 1

ϵ+ 2
=

4πnα

3

when using CGS units.

Exercice 2.1. In CGS units

(188) P =
nαe(ω)

1− 4πnαe(ω)/3
Eext

Using ((178)), we find

(189) ϵ̃(ω) = 1 +
ω2
p

ω2
0 − ω2 − iωγ − 1/3ω2

p

which amounts to a reduction of the bare resonant frequency

(190) ωe =

(
ω2
0 −

1

3
ω2
p

)1/2
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Fig. 16. A sphere is carved out from a uniformly polarized material. There is a surface charge
density on the surface of the spherical cavity that is the source of a uniform depolarizing field
in the cavity.10

equation above. It contains n, the number of atoms per unit volume. Clearly n = 1/Ω0,
with Ω0 the volume of one molecule. Now the polarizability of a metal sphere is αe = r3,
with r the radius of the metal sphere. Then

4π

3
αe ∼ 4π

3
r3 = Ω0

and
P =

nαe

1 − 1
E

is finite when E → 0. Variations on such a model have been used in the theory of ferro-
electrics, solids which have a spontaneous polarization.∗

So now, making sure to keep αe below r3, I can write the dielectric function with local
field corrections, and with a core polarizability, ε = εc + 4πχe as

ε = εc +
4πnαe

1 − 4π
3 nαe

. (71)

This equation can be turned around. Let me take εc = 1 for simplicity, and then solve
for αe in terms of ε.

ε − 1

ε + 2
=

4π

3
nαe (72)

in which form it is known as the Clausius-Mossotti equation.† It is approximately obeyed
by simple molecular solids.

∗ It is not enough of course to have a polarizability catastrophe; the crystal symmetry must allow the
polarization to exist.

† If εc $= 1 then this becomes (ε − εc)/(ε − εc + 3) = (4π/3)nαe.
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Figure 5. A sphere is carved out from a uniformly polarized material. There is
a surface charge density on the surface of the spherical cavity that is the source
of a uniform depolarizing field in the cavity.

Exercice 2.2. There is a general method to solve Laplace equation with boundary condi-
tions. We apply this method to the Lorentz cavity of radius R. The problem can be stated as
follows. Find the solution of the Laplace equation 1

(192) ∆V = 0 for r > R and r < R

with the appropriate boundary conditions.
(1) The potential V (r, θ) is continuous at r = R;
(2) The normal component of the electrical field obeys

(193) −∂Vout
∂r

+
∂Vin
∂r

=
σ(θ)

ϵ0
=

1

ϵ0
P · n =

1

ϵ0
P cos(θ)

The general solution of (192) is found using the basis of the Legendre polynomials Pl(x)

(194) V (r, θ) =
∑

l≥0

(Alr
l +

Bl

rl+1
)Pl(cos(θ))

where the Al and Bl’s are the coefficients to be determined using the boundary conditions. This
means that if you plug (194) in (192), you find ∆V = 0. The first two Legendre polynomials
are easy to remember

(195) P0(x) = 1 P1(x) = x

(1) Check that (194) is indeed a solution of the Laplace equation when we keep only the
l = 1 term in the expansion.

(2) What are the Al’s for r > R ?
(3) What are the Bl’s for r < R ?
(4) Take l = 1 in (194). Work out the boundary conditions to find A1 and B1. Since the

boundary conditions can be satisfied, and since the solution is unique, l = 1 is enough;
(5) Compute the electrical field inside the Lorentz cavity. Remember

(196) E = −∇V = −∂V
∂r

ur −
1

r

∂V

∂θ
uθ −

1

r sin θ

∂V

∂ϕ
uϕ

1

(191) ∆V =
1

r2
∂

∂r

[
r2

∂V

∂r

]
+

1

r2 sin θ

∂

∂θ

[
sin θ

∂V

∂θ

]
+

1

r2 sin2 θ

∂2V

∂ϕ2
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Figure 6. Optical and acoustic modes (phonons) of a diatomic linear chain.

Single- molecule optical tweezers assays also require a 
measurable change in a spatial coordinate of the system 
(for example, conformational change, displacement of 
the centre of mass, force- induced unfolding of a protein) 
whose magnitude is well within the spatial resolution of 
the instrument. In some cases, the change in the spatial 
coordinate is not large or discrete enough to be directly 
detected. In such cases, combined optical tweezers and 
single- molecule fluorescence detection may provide a 
way to monitor these changes while retaining the abil-
ity to act mechanically on the system via the tweezers.  
In general, in most optical tweezers experiments, the sys-
tem must be studied one molecule at a time. Therefore, 
systems that can be repeatedly manipulated (as in pro-
tein or RNA mechanical unfolding/refolding studies) 
or whose operation is cyclical, as in the case of enzyme 
reactions or molecular motors, make it possible to obtain 
good statistics on the system. We emphasize that optical 
tweezers- based single- molecule experiments should not 
be attempted if a robust bulk biochemistry assay of the 
system does not already exist, typically arrived at from 
bulk approaches. 

This Primer is not an exhaustive or comprehen-
sive review of all of the main applications of optical 
tweezers in biophysics; we have limited this review to 
single- molecule studies. As such, we have not covered 
the use of optical tweezers to manipulate cells or orga-
nelles. Here, we concentrate on the physical foundations 
of the method and on the best approaches to interpret the 
data. We describe the instrumentation and experimental 
designs used in most single- molecule optical tweezers 
assays (Experimentation), present representative exam-
ples of optical tweezers data, data correction and data 
analysis (Results), and describe the type of information 
that can be derived from the use of this method to study 
systems of great biophysical interest, including DNA 
elasticity, protein and RNA folding, and the dynamics of 
molecular motors (Applications). We also discuss data 
reproducibility given the inherent stochastic behaviour 
of individual molecules, suggest community practices 
to standardize the results from different laboratories 
(Reproducibility and data deposition), discuss the cur-
rent limitations in both instrument performance and 
the data analysis, and suggest ways to overcome these 
limitations (Limitations and optimizations). Finally, we 
explore areas of likely future growth and development 
of the method and its applications (Outlook). Several 
reviews are now available that can provide further details 
on some of the topics addressed here8–13.

Experimentation
In this section, we provide the basic information needed 
to set up an optical trap experiment. We describe the 
components of the instrument and its layout, how 
the instrument is calibrated, the various experimen-
tal geometries used and modes of operation, and how 
samples are prepared. Although commercial systems 
are becoming increasingly popular, to date a majority of 
optical tweezers continue to be custom- built instruments 
and, therefore, designs and operation procedures can vary 
widely. For the sake of brevity, we do not describe here 
the variety of instrument layouts in exhaustive detail but, 

rather, focus on key design features and highlight impor-
tant differences between set- ups. This section is organized 
around three main categories of instruments: standard 
optical tweezers (FIG. 2a) used to measure and exert forces 
and displacements, optical tweezers supplemented with 
fluorescence detection and imaging (‘fleezers’) (FIG. 2b) 
and angular optical tweezers (AOT) (FIG. 2c) that permit 
one to measure and exert torques and rotations.

Standard optical tweezers
A standard layout of optical tweezers is shown in FIG. 2a. 
A high- power laser generates the beam of light used to 
create the trap. The beam is expanded by a telescope and 
then passed into a high numerical aperture objective lens 
(which can be water or oil immersion) that focuses it into 
a diffraction- limited spot — the optical trap — inside a 
sample chamber. A condenser lens collects the transmit-
ted light, which is then imaged onto a position- sensitive 
detector used to measure the displacements of the 
trapped particle and the force exerted on it. In many 
designs, the angle of the beam entering the objective is 
actively steered (for example, with a motorized mirror 
or with an acousto- optic or electro- optic deflector) to 
control the trap position inside the sample chamber.  
In addition, the sample chamber is often mounted on an 
actuated stage to control its position in all three direc-
tions. A camera and bright- field illumination are used 
to image the sample chamber and traps. Although the 
set- up is often integrated into a commercial microscope 
body, this is not essential and many designs are built 
entirely from individual parts.

Fscat

Fgrad

Freflection

Frefraction

Reflected ray

Refracted ray

a b

Fig. 1 | Principles of optical tweezers. Forces acting on a 
dielectric sphere interacting with light, with the incident 
light beam focused by a high- numerical aperture (NA) lens. 
a | A Rayleigh particle smaller than the wavelength of light 
experiences a scattering force (Fscat, red arrow) that pushes 
the particle along the direction of propagation of the light 
and a gradient force (Fgrad, black arrow) that attracts it 
towards the focus. b | A dielectric sphere larger than the 
wavelength of light either reflects or refracts light (pink 
arrows) focused by a high- NA lens. The change in direction 
of each ray corresponds to a change in momentum of the 
light and an equal and opposite change in bead momentum. 
Reflected rays of light lose forward momentum that is 
gained by the bead, leading to a net force (Freflection, red 
arrow) pushing the bead along the direction of propagation 
of the light. Refracted rays are deflected forward because of 
the high incidence angle of the light, which generates 
momentum change and reactive force (Frefraction, black arrow) 
that pulls the bead towards the focus.

Refraction
A change in the direction  
of the travelling beam by the 
presence of an object that has 
a different index of refraction 
to the surrounding medium, 
when that beam impinges  
on it obliquely.

Reflection
A process by which the light 
that impinges on a surface of 
an object bounces back from 
that surface instead of being 
absorbed or refracted by the 
object.

Extinction cross- section
A measure of the efficiency 
with which a given object can 
absorb or scatter the light that 
impinges on it.

Poynting vector
A quantity that describes the 
magnitude and direction of the 
flow of energy of a propagating 
electromagnetic wave.

Geometric or ray optics
A description of light in terms 
of rays that describe in an 
approximate manner the paths 
along which the light travels.

Refractive objects
Objects that possess a 
different index of refraction  
to the medium in which they 
are immersed and that deflect 
light that impinges on them 
obliquely.

High numerical aperture
The range of angles over which 
a lens can collect light; the 
larger the numerical aperture, 
the larger the angular range.

Condenser lens
A standard optical microscope 
component typically used to 
focus the microscope light into 
the specimen; in optical traps  
it is often used to collect 
scattered trap light.
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Figure 7. Principles of optical tweezers. Forces acting on a dielectric sphere
interacting with light, with the incident light beam focused by a high-numerical
aperture (NA) lens. a | A Rayleigh particle smaller than the wavelength of light
experiences a scattering force (Fscat, red arrow) that pushes the particle along
the direction of propagation of the light and a gradient force (Fgrad, black arrow)
that attracts it towards the focus.

3. Semiconductors

4. Polar Crystals

The collective vibrational modes of the atoms in the crystal lattice are responsible for the
absorption and dispersion. Explain optical modes.

5. Optical tweezers

Optical tweezers are a method to exert forces or torques on individual molecules and/or to
directly measure the forces or torques generated in the course of their biochemical reactions. In
1970, Arthur Ashkin exploited the fact that photons carry momentum to entrain and transport
micron-sized latex spheres suspended in water using laser beams1.

Because the bead is very small, it can be considered to be an induced dipole in an approx-
imately uniform electric field due to the laser. The problem of a dielectric sphere located in a
uniform electric field is solved in many books on electromagnetic theory. The induced dipole
moment of the dielectric sphere (radius a) can be written as

(197) P =
K − 1

K + 2
a3E K = ϵ/ϵm

where ϵm is the permittivity of the medium (generally water) and ϵ the permittivity of the
dielectric. The electric potential energy of the induced dipole can then be written as

(198) U = −P · E
which means that the sphere is trapped in the region where the field is maximum.

Exercice 5.1. From Ref.8. Metal nanoparticles are known to exhibit distinctive opti-
Metal nanoparticles are known to exhibit distinctive optical cal characteristics, such as surface-
enhanced Raman scat- characteristics, such as surface-enhanced Raman scattering tering (SERS)
and second harmonic generation, relative to (SERS) and second harmonic generation, relative
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Figure 8. Schematic view of a nanoshell nanoparticle (dielectric core + metallic
shell). In this problem, we consider only metallic nanoparticles without dielectric
core.

to the bulk the bulk form of metals. Representatives of the use of metal form of metals. Rep-
resentatives of the use of metal nano- particles are biomolecular manipulation, labeling, and
detection with SERS 2.

One of the most important factors for all of those applications is the enhancement of the
electromagnetic field intensities around subwave length-size metal particles due to the coupling
between the incident photons and collective oscillation of free electrons at the metal surface.
Here we compute this factor.

Consider first a homogenous, isotropic sphere placed in a medium of radius a in which there
exists a static uniform electric field E = E0ûz. The electric fields inside and outside the sphere,
E1 and E2, are the gradients of the scalar potential Φ1,2(r, θ) as

(199) E1,m = −∇Φ1,m

where

(200) ∇2Φ1,m = 0 for r < a and r > a

Because of the symmetry of the problem, the potentials are independent of the azimuthal angle
Φ.

(1) The dielectric constants of the sphere and of the surrounding medium are ϵ1 and ϵ2,
respectively. What are the two boundary conditions that Φ and its derivative must obey
at r = a ?

(2) It is required that the electric field is the unperturbed applied electric field at large
distance

(201) Φm(r, θ)− E0r cos θ = −E0z for r ≫ a

Show

(202) Φ1(r, θ) = a1r cos θ Φm(r, θ) = amr cos θ + bm
cos θ

r2

is solution of the problem for some values of the contants a1, am, bm. These solutions
for the potentials could be also derived rigorously using Legendre polynomials;

(3) Give E1,2(r, θ) and |E1,2(r, θ)|2;
(4) What are the angles θ for which the field is maximum at a given distance r ?
(5) For these two values of θ, give the value of the enhancement factor as a function of r;

(203) η =
|E2|2

|E0|2

(6) For what value of r is this factor maximum ?
2Other optoelectronic fields inspired by metal nanoparticles are also emerging, such as multiphoton absorp-

tion and fluorescence excitation for microscopy, microfabrication and optical data storage, all-optical nanoscale
network, and surface plasmon enhanced light absorption for photovoltaic materials.
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(7) Express your result in terms of the factor

(204) α = 4πa3
ϵ1 − ϵm
ϵ1 + 2ϵm

Consider r = a. If the nanoparticle is the air, what is the value of ϵm ? If the
nanoparticle is in water, what is the value of ϵm ?

(8) Can we have a maximum for α if the core is made of a dielectric ?
(9) For a metallic nanoparticle with plasma frequency ωp, give the frequency at which the

enhancement factor is maximum.





CHAPTER 6

Electromagnetic waves at interfaces: Plasmonics

1. Summary

Many optical biosensors are based on the phenomenon of surface plasmon resonance (SPR)
techniques. This utilises a property of and other materials; specifically that a thin layer of
gold on a high refractive index glass surface can absorb laser light, producing electron waves
(surface plasmons) on the gold surface. This occurs only at a specific angle and wavelength of
incident light and is highly dependent on the surface of the gold, such that binding of a target
analyte to a receptor on the gold surface produces a measurable signal (Wikipedia). This is
modern technology. The optical properties of metal nanostructures have been used by artists
long before (see Lycurgus cup or the color windows at St. Stephan Church by M. Chagall).

In this chapter we study how electromagnetic waves propagate at the interface between a
metal and dielectric material. For this, we have first to derive the boundary conditions for E.M.
fields at interfaces.

2. Boundary conditions for E.M. fields

We consider two homogeneous media, says medium 1 and 2 separated by a surface S. Let
n̂ be the normal to S. C is a rectangular contour containing the normal n̂. Its orientation is
given by a vector t̂ perpendicular to n̂ and tangent to surface S. Σ is a small cylinder with
axis normal to S.

From the divergence theorem

(205)
∫∫

Σ

d2r S · n̂ =

∫

V

d3r ρext and
∫∫

Σ

d2rB · n̂ = 0

The cylinder having radial symmetry

(206)
∫∫

Σ

d2r S · n̂ =

∫∫

Top in 1

d2r S · n̂+

∫∫

Bottom in 2

d2r S · n̂

Le σS be the charge density at the interface (free charges).

(207) (D1 −D2) · n̂∆Σ = σS∆Σ and (B1 −B2) · n̂∆Σ = 0

We also have the Stokes theorem (for the surface ∫ enclosed by the contour C)

(208)
∮

C
H · dl =

∫∫

∫
d2∫

(
jS +

∂D

∂t

)
· t̂ and

∮
E · dl = −

∫∫

∫
t̂ · ∂B

∂t

From the Fig.

(209) (̂t ∧ n̂) · (E1 − E2)∆l = 0 and (̂t ∧ n̂) · (H1 −H2)∆l = jS · t̂∆t

The first equation gives that the parallel components E∥ are continuous

(210) E∥,1 = E∥,2

The charge density σs and the surface current density jS are both mathematical singular objects.
In real conductors, they are usually taken to zero, so that

(211) H∥,1 = H∥,2 D⊥,1 = D⊥,2 B⊥,1 = B⊥,2

41
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3. Surface Plasmons

Consider the following situation:
(1) For z > 0: Dielectric with complex permittivity ϵ1;
(2) For z < 0: Metal with complex permittivity ϵ2.

with boundary conditions

(212)
D1,z = D2,z B1,z = B2,z i = 1, 2

E1,x,y = E2,x,y H1,x,y = H2,x,y i = 1, 2

Exercice 3.1. (1) We start with the Ansatz of a transverse magnetic mode (for a
transverse magnetic mode, there is no magnetic field in the direction of propagation)

(213)
Ei = (Ei,x, 0, Ei,z)e

i(ki·r−ωt) Di = ϵ0ϵiEi

Hi = (0, Hi,y, 0)e
i(ki·r−ωt) Hi = µ0Bi

where ki = (β, 0, ki,z), with ki,x indicating the direction of propagation along x. We
assume that there no charge and no current at the interface. This wave is a surface
plasmon (actually a surface polariton). Since E is perpendicular to the direction of
propagation, a surface plasmon is a transverse mode. What is the difference with a
bulk plasmon (that we have seen in the preceding chapter) ?

(2) From

(214) ωB = k ∧ E

and from the equation of continuity for Di along the normal z-direction, show:

(215)
E1,x = E2,x

ϵ1E1,z = ϵ2E2,z

(3) Use ∇ ·D = 0 and show

(216) βEi,x/Ei,z = −ki,z i = 1, 2

(4) Deduce

(217)
k1,z
ϵ1

=
k2,z
ϵ2

(5) We are looking for modes bound to the interface where the fields decay exponentially
normal to the interface. What are the conditions for the ki,z’s ?

(6) We write

(218) ki,z = jκi j2 = −1

The normal being oriented either upwards or downwards, what are the signs of κ1 < 0
κ2 ?

(7) What is the condition on the signs of ϵ1 and ϵ2 for (218) to hold ? Can surface plasmon
be excited at the interface between two metals or two dielectrics ?

(8) What is the dispersion relation in the metallic part ?
(9) What is the dispersion relation in the dielectric part ?

(10) Show

(219) β =
ω

c

√
ϵ1ϵ2
ϵ1 + ϵ2

(11) For a dielectric, ϵ1 is constant. But, for ω < ωp, ϵ2 = 1 − ω2
p/ω

2. Plot ω/ωp in
the vacuum and for a surface plasmon as a function of βc/ωp. Show that the surface
plasmon resides below the light cone.

(12) Can a surface plasmon be directly excited by light ?
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Figure 1

Figure 2. Prism coupling: The Kretschmann configuration. From
https://biosensingusa.com/technical-notes/technical-note-102-spr-sensitivity-
detection-limit/

(13) A typical experiment in schematized in the Fig. 2. A metal film is evaporated on top of
a glass prism. To excite the surface plasmon, a second layer of dielectric is deposited
between the prism and the metallic layer. In this two layers geometry, one can, excite
a SPP.





CHAPTER 7

The consequences of causality: The Kramer-Krönig relations

1. An example

Consider a filter which is opaque to only one wavelength but transparent to all other. This
means that the transmittance is 1 at all wavelengths but 0 at, say, ω = ω0.

Consider a wavepacket of the Fig. This is an amplitude versus trace for an incident wave
packet at a fixed point in the medium. Let t = 0 be the first appearance of this wave packet at
this observation point.

This wave packet contains many frequencies. If f(t) is the signal, the spectrum f̃(ω) is
simply the Fourier transform

(220) f(t) =
1

2π

∫ +∞

−∞
f̃(ω) dω

Let the pulse be incident on the filter. What does the filter is to remove one frequency ω0. So,
if the amplitude of this component is Aω0 , the frequency spectrum behind the filter is

(221) g̃(ω) = f̃(ω)− Aω0δ(ω − ω0)

Fourier transforming back gives the signal after the fiter

(222) g(t) = f(t)− Aω0 cos(ω0t+ ϕ0)

There is an obvious problem: Aω0 cos(ω0t+ ϕ0) is finite at all time. The effect of the filter is
to produce a signal at the detector long before the pulse arrived at the filter ! This breaks
causality.

The medium must, therefore, introduce some kind of phase shift in all other frequencies to
produce destructive interferences so that causality is not broken. We have seen that absorption
is related to ϵ̃′′(ω). Te phase shift is due to the real part ϵ̃′(ω). Therefore, ϵ′(ω), cannot be
independent of ϵ̃′′(ω) os, the neigborhood of ω0.

2. Principal part

In general, there are many cases where for an arbitrary function g(x), with g(a) ̸= 0, the
integral

(223)
∫ +∞

−∞
dx

g(x)

x− a

makes no sense. For some problems, it is useful to define the limit

(224) lim
ϵ→0

[∫ a−ϵ

−∞
dx

g(x)

x− a
+

∫ +∞

a+ϵ

dx
g(x)

x− a

]

In general, (223) and (224) are different. Why ? (223) has a meaning iff the following limit
exists

(225) limϵ1→0limϵ2→0

[∫ a−ϵ1

−∞
dx

g(x)

x− a
+

∫ +∞

a+ϵ2

dx
g(x)

x− a

]

where ϵ1 and ϵ2 both go to zero but independently. For this reason, (224) can makes sense even
if (223) does not make sense. To differentiate the two integrals, we use the notation (PP =

45
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 9 . 8  COMPLEX REFRACTIVE INDEX AND LIGHT ABSORPTION 893

 Optical properties of materials are typically reported either by showing the fre-
quency dependences of n and K or ε′r and ε″r. Clearly we can use Equation 9.60 to 
obtain one set of properties from the other. Figure 9.18 shows the real (n) and 
imaginary (K) parts of the complex refractive index of amorphous silicon (noncrys-
talline form of Si) as a function of photon energy (hf ). For photon energies below 
the bandgap energy, K is negligible and n is close to 3.5. Both n and K change 
strongly as the photon energy increases far beyond the bandgap energy.
 If we know the frequency dependence of the real part ε′r of the relative permit-
tivity of a material, we can also determine the frequency dependence of the imagi-
nary part ε″r, and vice versa. This may seem remarkable, but it is true provided that 
we know the frequency dependence of either the real or imaginary part over as wide 
a range of frequencies as possible (ideally from dc to infinity) and the material is 
linear, i.e., it has a relative permittivity that is independent of the applied field; the 
polarization response must be linearly proportional to the applied field.14 The rela-
tionships that relate the real and imaginary parts of the relative permittivity are called 
Kramers–Kronig relations. If ε′r(ω) and ε″r(ω) represent the frequency dependences 
of the real and imaginary parts, respectively, then one can be determined from the 
other as depicted schematically in Figure 9.19.

0 2 4 6 8 10 12
0

1

2

3

4

5
N

n
Real

Imaginary
K

Photon energy (hω)/
Figure 9.18 Optical properties of an amorphous silicon 
film in terms of real (n) and imaginary (K) parts of the 
complex refractive index.

 14 In addition, the material system should be passive—contain no sources of energy.

Figure 9.19 Kramers–Kronig relations allow  
frequency dependences of the real and imaginary 
parts of the relative permittivity to be related to 
each other. The material must be a linear system.

Kramers–Kronig
relations

ωω

ε
r
′ (ω) ε

r
″ (ω)

ε
r
′ (ω) ε

r
″ (ω)

Figure 1. Kramer-Krönig relations give that the real and imaginary parts of a
response function are related to each other. The material has to be linear

Principal Part)

(226) PP

∫ +∞

−∞
dx

g(x)

x− a
= lim

ϵ→0

[∫ a−ϵ

−∞
dx

g(x)

x− a
+

∫ +∞

a+ϵ

dx
g(x)

x− a

]

In particular

(227) PP

∫ +∞

−∞
dx

1

x2
= 0

3. Time domain response and causality

Let us consider the dipolar moment P and the electric field E. In general

(228) P(r, t) =

∫
d3r′

∫ t

−∞
dt′χ(r, r′, t, t′)E(r′, t′)

If we look for local responses

(229) χ(r, r′, t, t′) = δ(3)(r− r′)χ(t− t′)

where we also have assumed time translational invariance. This means

(230)
P(r, t) =

∫ t

−∞
dt′χ(t− t′)E(r, t′)

=

∫ +∞

0

dτ χ(τ)E(r, t− τ)

Define the Fourier transform as usual

(231) χ̃(ω) =

∫ +∞

−∞
dtχ(t)eiωt =

∫ +∞

0

dtχ(t)eiωt

Since P and E are both real numbers, χ(t) is also a real number. But χ̃(ω) is a C-number. We
have

(232) P̃ (ω) =

∫ +∞

−∞
dt′E(t′)

[∫

−∞
+∞eiωte−iωt′

]
eiωt

′
= χ̃(ω)Ẽ(ω)

4. The Kramer-Krönig relation

For all response functions the real and imaginary parts are not independent of each other

(233)
χ̃′(ω) =

1

π
PP

∫ +∞

−∞
dω′ χ̃

′′(ω′)

ω′ − ω

χ̃′′(ω) = − 1

π
PP

∫ +∞

−∞
dω′ χ̃

′(ω′)

ω′ − ω
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Exercice 4.1. Consider a harmonic oscillator with damping coefficient γ. The equation of
motion is

(234) mẍ(t) + γẋ(t) + kx(t) = F (t) = mf(t)

The response function is defined by the displacement-force relation

(235) x(t) =

∫ t

−∞
dt′χ(t− t′)F (t′)

(1) It is interesting to consider the response to an ac field

(236) F (t) = F0e
−iωt x(t) = χ̃(ω)F0e

−iωt

Show

(237) χ̃(ω) = χ̃′(ω) + iχ̃′′(ω) =

∫ ∞

0

dt χ(t)eiωt

so that χ̃(ω) is a complex function.
(2) Since the actual applied field is real, only the real part F0 cos(ωt) is meant. The response

is, therefore, the real part of the response to the complex field. Show

(238) x(t) = χ̃′(ω)F0 cos(ωt) + χ̃′′(ω)F0 sin(ωt)

(3) Find the real and imaginary part of χ̃(ω) (recall χ(τ) = 0 for τ < 0)
(4) Show that

(239) χ(ω) = − 1/m

(ω − ω1)(ω − ω2)
with ω1,2 = −i/(2τ)± ω̃ and ω̃ =

√
ω2
0 − 1/4τ 2

As a result, the poles of χ̃(ω) are in lower part of the complex plane. This property is
generic and are of constant use in more complicated theory.

(5) Show χ̃(ω) = χ̃⋆(−ω).Conclude that χ̃′(ω) is even and that χ̃′′(ω) is odd.

Exercice 4.2. We can demonstrate the Kraemer-Krönig relations if we accept the two
following prerequisites

(1) The convolution theorem:

(240)
∫ +∞

−∞
dteiωtf(t)g(t) =

∫ +∞

−∞

dω

2π
f(ω − ω′)g(ω′)

(2) The Fourier transform of the θ(t) function:

(241)
∫ +∞

−∞
dtθ(t)eiωt = lim

ϵ→0+

∫ +∞

−∞
dtθ(t)ei(ω+iϵ)t =

i

ω + iϵ

where

(242) ∀f(ω) : lim
ϵ→0+

∫ +∞

−∞
dω

if(ω)

ω + iϵ
= PP

∫
if(ω)

ω
+ πf(0)

The last equation is proved using the residu theorem.
Because of causality, the response function must be of the form

(243) χ(t) = θ(t)y(t)

where y(t) = χ(t) for t > 0. We are, however, free to choose y(t) for t > 0 as we want because
of (243).

(1) Choose y(−|t|) = y(|t|). Is ỹ(ω) a pure real function ? Use the convolution of (243)
to demonstrate one of the Kraemer-Krönig equation;

(2) Choose y(−|t|) = −y(|t|). Then prove the second relation.
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ω

Re(ω’)

Im
(ω
’)

Figure 1: Contour C for Eq. (12 – Kramers-Kronig relation

where C could be any contour confined to a region where χ(ω) is analytic, and not containing
the point z = ω. Let C denote the contour shown in fig.1. Because χ vanishes as |z| goes to
infinity, the large arc of C contributes nothing as it recedes to infinity. The remaining part
of the contour can be separated into the straight part along the real axis, which becomes a
principle-value integral as the small arc shrinks, and an integral over the small arc which is
parameterized by z = ω + εeiφ. Thus Eq. (12) becomes

0 = P
∫ ∞

−∞
dω′ χ(ω′)

ω′ − ω
+ lim

ε→0

∫ 0

π

iεeiφdφ

εeiφ
χ(ω + εeiφ). (13)

This becomes the general relation

χ(ω) =
P

iπ

∫ ∞

−∞
dω′ χ(ω′)

ω′ − ω
. (14)

Finally, separating into real and imaginary parts and using the results from Eqs. (8,9) that
χ1 is even in ω and χ2 is odd, this becomes

χ1(ω) =
2P

π

∫ ∞

0
dω′ω

′χ2(ω
′)

ω′2 − ω2
(15)

χ2(ω) = −2ωP

π

∫ ∞

0
dω′ χ1(ω

′)

ω′2 − ω2
. (16)

3 Damped Harmonic Oscillator

The Harmonic oscillator is the canonical example. The quantum results are essentially the
same as the classical results, so consider the Newtonian equation

mẍ + mẋ/τ + mω2
0x = F (t) (17)

where 1/τ is a phenomenological damping rate, and mω2
0 is the spring constant K. If F (t)

has only a single Fourier component F0 exp(−iωt), then δx(t) is χ(ω)F0 exp(−iωt), and one
gets

χ(ω) =
−1/m

ω2 + iω/τ − ω2
0

=
−1/m

(ω − ω1)(ω − ω2)
(18)

3

Figure 2. Contour used to demonstrate the Kramer-Krönig relations.

5. The Kramer-Krönig relation as a a consequence of the Cauchy relation

Here, we demonstrate the Kramer-Krönig equations (233) using complex analysis. First we
show that causality implies that χ̃(ω) is analytic in the upper half of the complex z plane, when
considered as a function of the complex frequency z (whose real part is the physical frequency
ω). Writing z = x+ iy, where x = ω

(244)
χ̃′(ω) =

∫ ∞

0

χ(t) cos(ωt)e−yt

χ̃′′(ω) =

∫ ∞

0

χ(t) sin(ωt)e−yt

The Cauchy relations are necessary and sufficient conditions for a function to be analytic

(245)

dχ̃′(ω)

dx
=
dχ̃′′(ω)

dy

dχ̃′′(ω)

dx
= −dχ̃

′(ω)

dy

It suffices to interchange the operations of differentiation and integration. This is possible,
because of the exponential factor which is always negative. If the χ(t) have not been causal,
the integral had run from −∞ to +∞ and going to the upper half plane would not have been
possible.

Cauchy’s theorem gives the identity

(246)
∮

C

dz
χ̃(ω)

z − ω
= 0

for any contour C confined to a region where χ̃(ω) is analytic and not containing the point
z = ω. Use the contour of Fig. 2.

The integral over the small arc of circle is parametrized as z = ω + ϵeiϕ with dz = iϵeiϕdϕ
and the large C contour vanishes as z goes to infinity. All together

(247) 0 = PP

∫ +∞

−∞
dω′ χ̃(ω

′)

ω′ − ω
+ lim

ϵ→0

∫ 0

π

iϵeiϕdϕ

ϵeiϕ
χ(ω + ϵeiϕ)

This becomes the general relation

(248) χ̃(ω) =
1

iπ
PP

∫ +∞

−∞
dω′ χ̃(ω

′)

ω′ − ω

which is equivalent to (233) after separating the real and imaginary part.



CHAPTER 8

Scattering and structure factor

We have neutron, X-Ray or light scattering. What are we talking about ? Here we are
concerned with phenomena where adsorption is negligible. We distinguish:

(1) Elastic scattering: When radiation is emitted by the illuminated sample without
change in frequency and in all directions of space. Typical examples are Rayleigh scat-
tering for light scattering and Thomson scattering for X-rays. Elastic scattering probe
physical properties of heterogeneities. It gives geometrical structural informations. A
typical example is the diffusion of the light of the headlights of a car at night and in
fog (Rayleigh diffusion).

(2) Inelastic scattering: We have a change in frequency when the radiation is re-
emitted by the sample. Typical example are florescence spectroscopy or Brilloin and
Raman spectroscopy. Inelastic scattering requires the resonance of an atomic or molec-
ular oscillator. It is of prime importance in chemistry.

1. Elementary theory: Bragg’s law

We consider elastic scattering with the scattering from parallel planes with separation dis-
tance d. The incident wave has vector k and the scattered wave has k′. If λ is the wavelength
k = 2π/λ.

The condition for constructive interferences is given by

(249) 2d sin θ = nλ n = 1, 2, . . .

where 2θ is the angle between the incident and scattered particles. Scattering at angle θ gives,
therefore, information on periodicity λ/2 sin θ. In short, scattering at angle 2θ gives information
about fluctuations of inhomogeneities at length scale λ/(2 sin θ).

In a more advanced approach valid for weak scattering (meaning that only one scattering
event is considered, multiscattering is disregarded), the transition from state |k⟩ to state |k′⟩
is given by the matrix element (Fermi’s golden rule)

(250) Mk,k′ = ⟨k′|U |k⟩ =
∫
ddr e−ik·rU(r)eik

′·r

where U(r) is the scattering potential (and where we use unnormalized wave function eik·x)).
For multiparticle systems, the scattering potential U(x) is the sum of all atomic potentials

(251) U(r) =
∑

α

Uα(r− rα)

and the matrix element becomes

(252) Mk,k′ = ⟨k′|U |k⟩ =
∑

α

∫
ddr e−ik′·rUα(r− rα)e

ik·r

The differential section per unit angle is given by

(253)
d2σ

dΩ
=

2π

ℏ
|Mk,k′|2

where dΩ = sinθdθdϕ is the solid angle .

49
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2. The structure factor

Take Rα = r− xα

(254)

⟨k′|U |k⟩ =
∑

α

∫
ddRα e

−ik′·(xα+Rα)Uα(Rα)e
ik′·(xα+Rα)

=
∑

α

[∫
ddRαe

−iq·RαUα(Rα)

]
e−iq·xα

=
∑

Ũα(q)e
−iq·xα

where q = k′ − k is the the scattering wave vector and where Ũα((q) is the atomic form factor
(the Fourier transform of the atomic potential).

We have

(255) |⟨k′|U |k⟩|2 =
∑

α,α′

Ũα(q)Ũ
⋆
α(q)e

−iq·xα+iq·xα′

For identical atoms, Ũα is independent of α and the differential cross-section reads as

(256)
d2σ

dΩ
=

∣∣∣Ũ(q)
∣∣∣
2

I(q)

where the structure function is the double sum

(257) I(q) =<
∑

α,α′

e−iq·(xα−xα′ ) >

In this equation, <> means that we have taken the thermal average over the positions xα. In
solids, I(q) is proportional to N2, where N is the total number of atoms. To define extensive
quantities

(258) S(q) =
1

N
I(q)

All these formula are valid for a) plane waves, b) single scattering events.

We can generalize for inhomogeneous materials:
Let us assume some fluctuations in the concentration field:

(259) n(x, t) = n0 + δn(x, t)

where the fluctuations δn(r, t) can be expanded as a sum of Fourier modes

(260) δn(x, t) =
1

V

∑

k

δ̃n(k, t)eik·x

The quantity measured in elastic scattering experiments is the structure factor

(261) S(q) =<
∣∣∣δ̃n(q, t)

∣∣∣
2

>=

∫
dxdx′ < δn(x, t)δn(x′, t) >

In this equation, <> means thermal average. If the Fourier expansion of of δn(x, t) contains
one dominant wave vector (meaning that the fluctuations have a characteristic length scale
1/qmax), then the structure factor will have to shape of the figure.
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Figure 1. Structure factor when a density fluctuation at characteristic wave
number qmax growths with time.

3. Photons, neutrons and electrons

From Bragg’s law, 2d sin θ = nλ and λmust be less than 2d. Atomic interspacing is generally
on the Angström scale, so we must consider typical energies for the incident radiation.
- Visible light with energy around 1 eV (0.4µm < λ < 0.7µm). As we have seen, visible light

probe structures at the µm (variations in the dielectric constant);
- Probing structures at the Å scale need s, therefore, 104eV : This means X-rays !
- Electrons have a dispersion relation

(262)
ℏ2k2

2m
=

h2

2mλ2

so λ ≈ 1 Åcorresponds to 100eV . But electrons scatter from electrostatic potentials which
are often large and we are no more in the weak scattering limit. For bulk materials, this
is often large ans electron scattering is mainly use for surface phenomena to avoid multiple
scattering events ;

- Neutrons have a similar relationship but with a much larger mass. A wavelength of 1 Å
corresponds to 0.1eV (ie thermal neutrons, since ≈ 400K). This means that neutrons have
the correct energy (and are of used to probe phonon spectrum for example).

4. Intermezzo: What is a correlation function ?

A material in thermal equilibrium may be macroscopically homogeneous and static, but
it fluctuates on the micro scale because of thermal fluctuations. We measure how systems
fluctuate and evolve in space and time using correlation functions.

Consider for example the density (at position x) n(x, t). Because of thermal fluctuations,
n(x, t) at a given position x fluctuates randomly in time. If the mean is n0, a measure of
cross-correlation for the fluctuations at two points distant of r is

(263) C(r, τ) =< (n(x, t)− n0)(n(x+ r, t+ τ)− n0) >

where we have averaged the product and not taken the product of the averages. When r = 0
and τ = 0, the correlation function is simply the variance of the fluctuations. However, when
r or τ is large, what happens at x is statistically independent of what happens at x+ r (same
thing when τ is large). In this case, averaging the product amounts of taking the products of
the averages. In one of these limits

(264) C(r, τ) → 0 if r → +∞ or τ → +∞
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Figure 2. Experimental structure factor S(q) for liquid Ar at 85 K10 compared
with molecular dynamic simulations.
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Figure 3. Experimental density-density correlation function for Ar compared
with Monte Carlo simulations.10

An important application of correlation functions is their interpretation in terms of probability.
If one rescales the density n(x, t) by the mean, n(x, t) is simply the probability to find a particle
at x and time t. Eq. (264) can now be interpreted as a conditional probability. Given that a
particle is at x at time t, what is the probability to find an other particle at position x+ r at
a time τ later.

5. Density operator and correlation functions

In this section we derive an important result. The structure factor is the Fourier transform
of the correlation for the density of particles (at equal time). In other words, the structure
factor S(q) mesure the correlation between fluctuations. To get extensive quantities, define
(V = volume) the Fourier transform of the correlation function

(265) C̃(q) =
1

V

∫
ddx1

∫
ddx2e

−iq·(x1−x2) < (n(x1, t)− n0)(n(x2, t)− n0) >

Expending the product inside the integral

(266) I(q) =

∣∣∣∣
∫
ddxe−iq·x < n(x) >

∣∣∣∣
2

+ V C̃(q)

In liquids

(267)
∫
ddxe−iq·x < n(x) >= V < n > δq,0

with the definition of delta function

(268) V δq,0 = (2π)3δ(q)

In general, the pic at q = 0 is not seen.
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20 Collection SFN

k

θ

q

n

Figure 1. Schéma de principe d’une expérience de diffusion. Le rayonnement incident est une onde plane se
propageant dans la direction du vecteur d’onde k. L’échantillon irradié émet du rayonnement diffusé dans toutes
les directions de l’espace. Une direction particulière d’observation, celle dans laquelle un détecteur est placé, par
exemple, est figurée par le vecteur unitaire n qui forme un angle ! avec la direction incidente.

La traduction en termes quantitatifs des idées exposées ci-dessus repose sur une approximation, dite
« de Born » ou encore de diffusion simple (par opposition à la diffusion multiple), où l’on suppose
que les hétérogénéités du milieu de propagation du rayonnement restent « petites » . Si le rayonnement
incident est décrit par l’éq. (1.1) et que le milieu de propagation ne comporte de (petites) hétérogénéités
que dans le volume fini de l’échantillon, le rayonnement diffusé à grande distance R de l’échantillon,
dans une direction repérée par le vecteur unitaire n (cf. Fig. 1) a pour expression

"d (Rn, t) = "0
exp [i (kR − #t)]

R

∫

Virr

d3x exp [−iq · x] h(x, t) (1.5)

et s’apparente donc à l’onde sphérique divergente de l’éq. (1.4). Dans l’éq. (1.5) ci-dessus, la grandeur
q note la différence kn − k et est appelée le vecteur d’onde de diffusion, h(x, t) décrit la distribution
spatio-temporelle des hétérogénéités au sein du milieu diffusant et l’intégrale porte sur le volume
d’échantillon Virr irradié par le rayonnement incident.

D’après la forme même de l’éq. (1.5), c’est donc par l’intermédiaire d’une transformée de Fourier,
à l’échelle définie par le vecteur d’onde de diffusion q, que le champ diffusée contient les informations
relatives à la distribution des hétérogénéités de l’échantillon, informations véhiculées par la fonction
h(x, t). La nature physique du rayonnement utilisé n’intervient que dans l’expression détaillée de cette
dernière fonction, comme indiqué ci-dessous :

Lumière : quelques complications ayant trait à la polarisation de la lumière étant omises, la fonction
d’hétérogénéités « optiques » s’exprime

h(x, t) = #2

4$c2
%εr (x, t) (1.6)

où %εr (x, t) est la fluctuation locale de constante diélectrique de l’échantillon;
Rayons X : là encore sans prendre en compte la polarisation éventuelle des rayons X ni le phénomène

de diffusion anomale, la fonction d’hétérogénéités « électroniques » s’exprime

h(x, t) = re&e(x, t) (1.7)

où re ≡ e2/(4$ε0mc2), construit à partir des valeurs de la charge électrique e et de la masse m de
l’électron, ainsi que de la permittivité diélectrique du vide ε0, est une longueur dont l’ordre de

Figure 4. Schematic diagram of a scattering experiment. The incident radiation
is a plane wave propagating in the direction of the wave vector k. The irradiated
sample emits scattered radiation in all directions in space. A particular direction
of observation, the one in which a detector is placed, for example, is represented
by the unit vector n which forms an angle θ with the incident direction.

6. Small Angle Scattering - Introduction

Small angle scattering6 is produced by heterogeneities that are a priori non-periodic (so it is
different from Bragg diffraction which assumes periodic materials) and, moreover, often fluctu-
ating due to the inevitable thermal agitation present in any sample. For the study of condensed
matter, small angle scattering is essentially practiced with electromagnetic radiation (visible
light, X-rays) and, of course, neutrons. In its broad outline, the phenomenon of scattering is
largely independent of the nature of the radiation used.

A good way to represent, semi-quantitatively, the phenomenon of elastic scattering is as
follows: because it has been "conditioned" (by the monochromator, collimation devices, etc.),
the incident radiation passing through the sample can be seen, within the heterogeneities of
the sample, as a plane wave

(269) ψ(x, t) = ψ0 exp{i(k · x− ωt)}
where ψ depends on the nature of the radiation. For EM waves (i.e. visible, X-Rays), ψ is the
amplitude of the electric field (magnetic field) with ω = ck, n = 1. For neutrons, ψ is the wave
function with

(270) ℏω =
ℏk2

2M
where M is the mass of the neutron.

Each point of heterogeneity in the sample takes a part of the energy brought by the incident
radiation to give back the totality of this energy in the form of a divergent spherical wave, at
the same frequency as that of the incident wave - the scattering is elastic. Finally, the scattered
radiation is made of the superposition, and thus the interference in coherent scattering, of all
these spherical wavelets.

(271) ψ(R, t) =
ψ0

R
exp{i(k ·R− ωt)}

All the heterogeneities do not take energy from the incident wave with the same efficiency. As a
result, all the wavelets that interfere do not have the same amplitude. The scattered radiation
therefore also contains some information about the efficiency of the plane wave → spherical
wave conversion, related to the contrast of the sample

The characteristic scale at which the sample heterogeneity is probed by the radiation is
defined by the modulus q of the scattering wave vector and is typically 1/q. Since q = kn− k
with the notations in Fig. 4, it follows

(272) q = 2k sin
θ

2
=

4π

λ0
sin

θ

2

Therefore, small q’s correspond to small angles θ. Typical numbers are as follows:
(1) Light: q ∈ [210−3, 210−2] nm−1;
(2) X Rays q ∈ [10−1, 2102] nm−1;
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(3) Neutrons q ∈ [410−2, 210+1] nm−1;

7. Small Angle Scattering - Colloidal dispersion

Consider now a solute and a solvent. The volume fraction of the solute is ϕ (we assume
that the solvent and the solute have the same molecular volume, so the volume fraction and
the density are the same). We also assume that both species are incompressible. Thus local
variations in the concentrations of solute lead to light (x-rays ou neutron) scattering. Here we
replace local variations in density by local variations in volume fraction.

(273) ϕ(x, t) = ϕ0 + δϕ(x, t)

So

(274) I(q) ∝<
∣∣∣∣
∫

V

d3xe−iq·xδϕ(x, t)

∣∣∣∣
2

>

where, as before, the proportionality constant accounts for

(1) The intensity of the incoming wave;
(2) There is a factor 1/R2, because the scattered wave is a spherical wave;
(3) The contrast between the solvent and the solute.

It is interesting to consider the limits qlc ≫ 1 and qlc ≪ 1.

8. Porod’s law

Let lc be the structural characteristic length (dimension). This law is valid in the limit
qlc ≫ 1 (ex. micelles, oil dispersion ...)

(275) I(q) ∝ 1

q4

A notable exception to Porod’s law are polymers where I(q) ∝ 1/q2 at large q.

9. Small q limit

In the other limit qlc ≪ 1. For a binary fluid

(276) I(q → 0) ∝ kBTϕ

[
∂Π
∂ϕ

]−1

1 + q2ξ2

where

(277) Π = ϕ∂f∂ϕ− f

is the osmotic pressure. In the last equation, f is the free energy of the system per unit volume.
Near the critical point for continuous phase transitions, both Π and ξ go to infinity. The last
equation is generally used to explain the phenomenon of critical opalescence.

Exercice 9.1. Consider the free energy (from the pure entropy of mixing)

(278) f = kBT [ϕ ln(ϕ) + (1− ϕ) ln(1− ϕ)]

and compute I(q).
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Figure 5. The end-to-end distance R is the sum of elementary vectors.

10. The structure factor of an ideal polymer

An ideal chain (or freely jointed chain) is the simplest model to describe polymers, such as
nucleic acids and proteins. It only assumes a polymer as a random walk and neglects any kind
of interactions among monomers. Although it is simple, its generality gives insight about the
physics of polymers.

We can think of the chain as the trace made by a random walk. All steps ri have equal
length but they vary in direction. The ri’s are independent stochastic variables with

(279) < ri >= 0 < ri · rj >= a2δi,j

where a is the step size.
We will be interested in the end-to end distance R. By definition, R is a vector and the

sum of all the ri gives R, see Fig. 5:

(280) R =
∑

i=1,N

ri

and the norm of R should not be confused with the total length of the polymer which is Nl.
The end-to-end distance is the sum of 3N random variables (each vector has three components
in a three-dimensional space) and the x component of R follows from (280) as

(281) Rx =
∑

i=1,N

ri,x

with (by the democracy rule which tells us that all directions are equivalent)

(282) r2i,x = r2i,y = r2i,z = a2/3

We can apply the central limit theorem to find the distribution of R over different realizations
of the random walks. We know that the distribution of the vector R is Gaussian in the large
N limit

P (R) = P (Rx, Ry, Rz) =
[

3

2πNa2

]3/2
exp

{[
− 3R2

2Na2

]}(283)

with for the norm

(284) |R| = a
√
N

Eq. (284) is known as the radius of gyration. The factor 3 in ( 283) arises because the walker
took N/3 steps on average in each direction.

Exercice 10.1. Compute the probability distribution for the norm |R| of the vector R.
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Scattering from Large Structures
• Neutron/X-ray wavelength λ ≈ space between atoms in crystal 
⇒ bounce off layers of atoms like light off a mirror
⇒ see diffraction peaks at high angles (correspond to atomic 

positions)
• BUT for larger objects, sees average structure

• large structures scatter 
at small angles

⇒ for techniques using small 
angles use material properties 
rather than atomic properties

Figure 6. Sketch of typical scattering intensity as a a function of the wave
vector q for "particules" (atoms, molecules, polymers, proteins etc.) with a
periodic motif. The small angle scattering (small q) gives informations on the
size or shape of the particles. The high q limit gives the Bragg peaks characteristic
of a periodic structure corresponding to atomic positions.

11. Summary: Form factor, structure factor

A typical intensity plot of the the scattering intensity is presented in Fig. 6. Everything is
in the wave vector q (or the angle θ). Large structures scatter at small angles. For techniques
using small angles, we probe material properties rather than atomic properties. In general the
scattered intensity for a solution of "particles" is of the form

(285) I(q) = NpV
2
p (ρp − ρs)

2|F (q)|2S(q) +B

where
- Np = number of particles;
- Vp = volume of the particle;
- ρ a contrast parameter to distinguish the solvent from the solute;
- B = Background;
- F (q) = Scattering from within the particle (depends on particle shape);
- S(q) = Scattering from different particles. For dilute solution S(q) = 1.

Exercice 11.1. We have seen that the structure factor is related to the pair correlation
function. One of the must useful illustration of this property is given by polymers. Under some
circonstances, you have seen that a polymer can be seen as a random walk of N steps of length
a.

Let R be the average vector for the position the position of the first monomer to the last:

(286) R = rN − r1

Since the the step directions are completely uncorrelated

(287) < R >= 0

but the averaged square scales with the number of steps

(288) < R2 >= Na2

The average radius of gyration determines the characteristic size of the polymer is simply equal
to the the root mean square separation of the end points. That is

(289) RG =
[
< R2 >

]1/2 ∝ N1/2

For polymers, the number of steps is called the index of polymerization. The previous result
which relates the radius Rg to N is of central importance. We remark that this result does not
depend on the dimension. We have the same law for d = 1, 2, 3 or 4.
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For polymers, the structure factor is a measurable quantity using neutron scattering, see
Fig. 7 for two canonical examples (at and above the theta point). In this problem, we would
like to determine this structure factor analytically.
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where X, Y and y have the same definition as in (3. 8).
Equation (3.16) describes the temperature cross-over
of S1(q, 03C4). It is easy to check that in the high tempe-
rature limit (Z = 0), this equation takes the excluded
volume form [19]. On the other hand, at the limit of
region I, given by T - N- lJ2 between the dilute

regime and the theta solvent range the polymeric chain
behaves as a random coil (Z = 1) : (3.16) reduces to
the Debye formula.
An example of scattered intensity by dilute solution

(sample K) is shown on figure 6 for two temperatures
Tl = 67.2 °C and T2 = 41.25 °C corresponding res-
pectively to the reduced temperatures 11 1 = 0.094 8

FIG. 6. - Intensity distribution for sample K (Table II) versus

scattering vector q obtained for two temperatures : open circle
41.25 °C (T = 0.010 4), closed circle 67.2 °C (T = 0.094 8).

FIG. 7. - Inverse of the scattered intensity versus the square of
the scattering vector. Points are experimental data recorded at
different reduced temperatures r as indicated on the right. The
solid curves are the results of calculation using the formula (3.16).

Vertical arrows show the theoretical cross-over point.

Fie. 8. - Homogeneous function (see text section 3) versus q’13
for three dînèrent reduced temperatures (indicated on the left).
The cross-over point is less well-defined than in figure 4 due to
the discontinuity near q = 0. Vertical arrows indicate experimental

cross-over points.

TABLE III

Temperature cross-over point values

FIG. 9. - Plot of the temperature cross-over point versus reduced
température i. Horizontal dashed lines indicate limits of the
observation range given by 10-2  q A-1  10-1. The lower
vertical dashed lines correspond to the condition (2.6). tM is the
maximum value corresponding to the intercept between maximum

value of q* and experimental curve (eq. (3.17)).(a)
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FIG. 2. - Plot of the inverse scattered intensity versus the scattering
vector raised to the power 5/3 for samples E to J (see table II).. 
The total concentration C is indicated on the right. Each solution
contains a concentration of 0.005 g cm-3 of PSD chains. Open
and closed points are experimental data. Solid lines are the result
of calculation using formula (3.8). Vertical arrows show the

theoretical cross-over point.

FIG. 3. - Inverse of the scattered intensity versus the squared
scattering vector, for sample C ( x ) and sample F (+). The lower
solid curve is calculated by formula (3.8). The upper curve is
the result of equation (3.10) when using for Sl(q, c) the theoretical
result (formula 3.8). The solid points are the result when using

experimental data of sample F.

Since formula (3. 8) gives good agreement with
the experimental data, we have used it to calculate

S(q, c) by formula (3.10). The result for sample C
(C = 0.04 g cm- 3) is the upper curve of the figure 3,
where the inverse of the scattered intensity is plotted
versus the squared scattering vector. Measured points
are denoted by x and solid çurve represents equa-
tion (3 .10). Closed points are the result of the calcula-
tion when using data of sample F (CT = 0.04 g cm- 3)
in this equation, in place of the theoretical values. For

comparison, the lower curve is the theoretical func-
tion S1(q, c) (Eq. (3.8)) and crosses are data from
sample F. This figure shows that the agreement with
data of sample C is good for large q values but there
exist disagreements for very low q values. It has been
shown [3] that this effect is due to the finite molecular
weight.
The behaviour of the S(q c) function is then not well

described by equation (3.10). It can be noted that
formula (3. 8) giving the S1 (q, c) function is the sum of
two functions if we use the cross-over point value q*

this form suggests a better representation of the
function by reference to the homogeneous function
approach [25].

In the magnetic analogy [26] it has been shown
that S(q, c) corresponds to the longitudinal correlation
function of the magnetic problém [28]. This function
is a homogeneous function of appropriate reduced
variables near the critical point [25]. In the polymeric
problem the reduced variable will be q/q*. In the high
concentration range, i.e. for C greater than C*, S(q, c)
is a Lorentzian [15]

1 where A is a constant at a given concentration and K is
the inverse of the screening length 03BE By reference to
this form, the homogeneous function will be

where F(x) is the cross-over function. This function is
unknown, but behaves asymptotically as

The value of K can be extracted from the plot of the
inverse scattered intensity versus the squared scatter-
ing vector. Then it is possible to plot the function
F(q, c) = (q2 + x2) S(q, c) versus ql/3 where S(q, c) is
the actual measured function. According to (3.13) the
cross-over will appear in this figure as a plateau
followed by a straight line with a positive slope.

Results of this operation are shown on figure 4 for
samples A to D (table II). Sample A is the dilute solu-
tion for which S(q, c) behaves as q- 5/3 and is used as a
reference in this figure. Sample D is a semi-dilute
solution and S(q, c) has the lorentzian form (3.11),
represented here by a plateau. Between these two
extreme behaviours, data for samples B and C exhibit
the spatial cross-over. The vertical arrows indicate
the cross-over point q* defined as the intersection of
the asymptotes. This figure shows clearly that S(q, c)
is well-described by the homogeneous function (3.12).

(b)

Figure 7. (A) S(q)−1 for polymers in theta solvent where ideal chain statistics
apply. (B) S(q)−1 in good solvent where excluded volume effects are important3.

(1) In this part, we want to compute the structure factor using the radial distribution
function gF (r). It will be useful to consider the dimension d of the space as a variable.
We have

(290) S(q) ∝
∫
gF (r)e

−iq·rddr

Consider first an ideal polymer in d = 3 dimension.
(2) We know that a segment of random walk is itself a random walk. This means that the

structure is fractal and invariant under magnification. How many monomers n(r) can
we observe in a sphere of radius r given that there is one monomer at the origin ? (use
(289)).

(3) We want to compute the radial distribution function gF (r). What is the volume of the
shell between radius r and r+ dr ? What is the number of monomers within this shell
? Deduce the probability to find a monomer at a distance r and give gF (r).

(4) Give gF (r) for arbitrary d (leave unimportant factors aside and don’t forget the remark
following (289) ).

(5) We consider d = 3. For polymer, what is the interesting limit for neutron scattering
(i.e. qRG ≫ 1 or qRG ≪ 1) ?

(6) Again d = 3. How S(q) scales with the wave vector q. Compare with the two cases of
Fig. 7. In which case the polymer chain is more swollen and in which case the chain in
more swollen ? Can you guess what happens in the system if we don’t neglect anymore
the interaction between the monomers ?

(7) Redo the previous calculation if (289) is changed as R2 = a2N2ν, with ν = 3/(d + 2).
Remark that d decreases as the dimensions d increases from 1 to 3. What happens for
d = 4 ?

(8) We now want to calculate the structure factor directly without using the pair correlation
function. The equivalent of (274) is given by

(291) P (q) =
1

N2

N∑

i,j

< e−iq·rij >

where rij is the relative distance between monomers i and j. Give < r2ij > as a function
of |i− j|.
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(9) Polymer coils in theta solvents follow Gaussian statistics whereby the inter-monomer
distance is given by

(292) P (rij) =

(
3

2π < r2ij >

)3/2

exp

{[
− 3r2ij
2 < r2ij >

]}

with < r2ij >= a2|i − j|. Here we will average the structure factor of this probability
(ensemble average over the conformations of the polymer chains). Give the single chain
structure factor S(q).

(10) Use the following identity for Gaussian integrals

(293) < e−iqxxij >= exp

{[
−q

2
x < x2ij >

2

]}

to show

(294) S(q) =
1

N2

∑

i,j

e−
q2a2|i−j|

6

(11) For any function F (x), we have the following identity (which is easy to prove and do
it)

(295)
∑

i,j=1,N

F (|i− j|) = NF (0) + 2
∑

k=1,N

(n− k)F (k)

Show

(296) S(q) =
1

N2

[
N + 2

∑

k=1,N

(N − k)e−
q2a2k

6

]

(12) As usual, we can transform the discrete sum into an integral when N is large. Using
the definition of a Riemann integral

(297)
∑

k=1,n

f(
k

n
)∆

[
k

n

]
=

∫ 1

0

f(x)dx

show

(298) S(q) =
2

q4R4
g

[
e−q2R2

g − 1 + q2R2
g

]

where we have defined Rg as

(299) Rg =
[
Na2/6

]1/2

Plot this function and recover the result obtained in the first part of this problem.

Exercice 11.2. In this problem we ask the following question: What is the scattering from
independent particles immersed in the solvent ? For simplicity, we assume that all particles
are identical (the density inside the particle is ρp and the density of the solvent is ρs. We
neglect correlations between the particles (so we work in the dilute limit) and we assume that
the particles are spherical with radius R.

The scattering intensity per unit volume is

(300) I(q) =
N

V
(ρs − ρp)

2 V 2
p <

1

Vp

∣∣∣∣
∫

particle

eiq·rdr

∣∣∣∣
2

>

where

(301) F (q) =
1

Vp

∣∣∣∣
∫

particle

eiq·rdr

∣∣∣∣

is called the form factor.
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Form Factors
• depend on shape of particle
• for dilute solutions S(Q) = 1 and so I(Q) ∝ F(Q)
• General form of F(Q):
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Figure 8. Shape of the intensity for different shapes of the particles in dilute
solutions.

Figure 9. Lattice model to calculate the entropy of mixing.

(1) Since q is given by the experimental setup (you know where you put your detector), we
can parametrize the system as we want. Take q = (0, 0, qz). Show the two equations:

(302)
F (q) = 2π

∫ π

0

∫ R

0

(cos(qr cos θ) + i sin(qr cos θ)) r2dr sin θdθ

=
4π

q

∫ R

0

r sin(qr)dr

The last integral can be done by integrating by parts. Show (Vp = 4πR3/3!):

(303) F (q) = 3Vp
sin(qR)− qR cos(qR)

(qR)3

(2) How behaves |F (qR)|2 in the limit qR ≪ 1 (Guinier regime) ?
(3) How behaves |F (qR)|2 in the limit qR ≫ 1 (Porod regime) ?

The actual shape of the from factor depends on the shape of the particle (cylinders, disks, or
spheres give distinct signals), see Fig. 8.

12. Mixing Entropy

We are concerned with the thermodynamics of self-assembly of molecules (polymers, sur-
factants, phospholipids and so on). We start by considering the mixing of two lipid species, or
solute/solvant, on a flat 2D membrane which reflects the behavior of the miscibility of sucrose
into water.

The simplest approach to calculate the entropy of mixing of NA molecules A with NB

molecules B is to adopt a coarse-grained or lattice model. In that case, we divide the membrane
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into N = NA + NB compartments (little cells with one molecule, solvant or solute, per cell).
Molecules interchanges positions by diffusion. The conformational probability of the last section
is replaced by the probability to distribute molecules among the different compartments. This
is the origin of the mixing entropy.

Let us distribute NA of A molecules in N compartments. Since the A molecules are indis-
tinguishable, there are

(304)
N !

NA! (N −NA)!

ways to do it. All that remains is to place the B molecules. Since the B molecules are also
indistinguishable, there is only one way. Thus

(305) Ω =
N !

NA! (N −NA)!
=

N !

NA!NB!

and for the total entropy (if one wants the entropy per volume, divide by N)

(306) S = kb lnΩ

This expression is exact, but working with factorial is clumsy. To go ahead, use the Stirling
approximation

(307) ln (x!) ≈ x (lnx− 1) x≫ 1

and get for the entropy per volume

(308)
S/N = −k

[
NA

N
ln
NA

N
+
NB

N
ln
NB

N

]

= −k [ϕA lnϕA + (1− ϕA) ln(1− ϕA)]

where ϕA = NA/N is the fraction of surface occupied by the A molecules. We see that the
mixing entropy depend sonly on the A molecule and, from now on, it is simpler to drop the A
and to take ϕA = ϕ. To obtain the free energy per volume, recall

(309) F/N = U/N − TS/N

where U is the internal energy. In this simple system, there is no interaction and no external
field. Therefore, U = 0 and, for practical purpose, F = −TS.

13. Chemical potential

For a lattice model, it is much more convenient to work at fixed total number of com-
partments. This is equivalent to work at a given volume and the appropriate thermodynamic
potential is the free energy

(310) F = U − TS

The chemical potential per unit surface area is

(311) µ =

(
∂F

∂ϕ

)

T

For ideal solutions, there is no energy U = 0. The free energy is purely entropic. Taking the
derivative of the ln, we get:

(312) µ = kT ln
ϕ

1− ϕ

Ideal solutions makes sense in the low density limit. In the hight density limit, molecules start
interacting and the ideal solution concept is meaningless. For this reason, we take the small ϕ
limit so that

(313) µ = +µ0 + kT lnϕ
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where µ0 is the chemical potential of a reference state. For a 3D-problem, the surface fraction
is replaced by the volume fraction and ϕ is usually replaced by the concentration c.

For any type of gas A+B (real or perfect) the partial pressure of the gas A is defined as :
(314) pA = xAp

where xA is the mole fraction of A.

(315) xA =
NA

NA +NB

xB =
NB

NA +NB

The total pressure is sum of the partial pressures
(316) pA + pB = p

For a gas, the chemical potential is generally written in terms of the of the partial pressures

(317)
µA = µA

0 (T, P ) + kT ln pA/p

µB = µB
0 (T, P ) + kT ln pB/p

where µA
0 (T, P ) is the chemical potential of the A or B component in the pure phase.

Note that the chemical potential for a ideal gas is
(318) µ(p) = µ0 + kT ln p

where µ0 is the chemical potential of the reference state where p = 1 atm.



Exam Ray & Matter
Master Nanosciences
April 27, 2022
This exam is obviously much too long. This is on purpose. The rating scale for this exam is
higher than 20, but your score will not exceed 20.

I Optical modes in Ionics crystals: We consider a crystal with a polarization density
P. Associated with this polarization, there is an electric field E and an electric displacement
D, related by (using c.g.s. units)

(319) D = ϵE = E+ 4πP

Assume D, E, P all parallel to each other with

(320)



D
E
P


 =



D0

E0

P0


eik·r

(a) If there is no free charge. What is ∇ · D ? From this deduce that either D = 0 or
give a condition on the direction of the vectors D, E, P with respect to k.

(b) If −1/c∂B/∂t is negligible, what is ∇×E ? By analogies with the preceding question,
gives the two cases where this mays happen.

(c) Show that the two conditions are consistent with each other if and only if ϵ approaches
in value two limit cases that you will identify.

II Displacement polarizability: We have seen in class that the polarizability of the
atomic cloud depends on frequency ω as 1

(321) αat(ω) =
e2

m

1

ω2
0 − ω2

where ω0 is a typical frequency for an electronic transition (some eV) and where all damping
terms are discarded. Neglecting the contribution of the ions, this allowed us to calculate the
dielectric constant ϵ(ω). Here we study ϵ(ω) for ionic materials where the ionic contribution
cannot be neglected.

We consider an elementary cell with two charged atoms +e and -e respectively (masses
M+ and M−) and displacements u+ and u−. The equations of motion are

(322)
M+ü+ = −k(u+ − u−) + eE

M−ü− = −k(u− − u+)− eE

(a) Does E denote an averaged macroscopic field or a local field? (1 ligne)
(b) We will pose

(323)
1

M
=

1

M+

+
1

M−
with ω̄2 =

k

M

where ω̄ is a typical vibrational frequency (phonon).If the polarization is defined as
pion(ω) = e(u+ − u−), give the polarizability αion(ω).

(c) To take into account both the atomic polarizability, see Eq. (321), and the ionic
contribution, we loosely define the total polarizability by summing all contribution

(324) α(ω) = 2αat(ω) + αion(ω)

Do you expect αat(ω) to be constant in the range of frequencies where αion(ω) varies
? Why ?

1Reminder: The polarization p(ω) is defined as p(ω) = α(ω)E(ω), where E = E0 Re (e
iwt) is an a.c. field.

Eq. (321) is correct when the damping coefficient is equal to 0. This will be the case here.
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(d) The Clausius-Mossetti relation that we have seen during the lectures reads as

(325)
ϵ(ω)− 1

ϵ(ω) + 2
=

4π

3
α(ω)

In the present context, high frequencies means much above vibrational frequencies but
below atomic frequencies (which is usually the case for visible light). Define

(i) ϵ(ω) = ϵ0 for ω ≪ ω̄;
(ii) ϵ(ω) = ϵ∞ for ω̄ ≪ ω ≪ ω0.

Give ϵ0 and ϵ∞ as a function of the givens of the problem.
(e) This question is optional. Show

(326) ϵ(ω) = ϵ∞ +
ϵ∞ − ϵ0

(ω/ωT )2 − 1
with ω2

T = ω̄2

(
ϵ∞ + 2

ϵ0 + 2

)

(f) Plot ϵ(ω) and indicate the frequencies corresponding to the two cases of the preceding
problem.
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