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Forword

These lectures notes are available at : https://www-liphy.univ-
grenoble-alpes.fr/Lecture-Notes-and-Material-M1. They will be up-
graded during the lectures at regular intervals. Therefore, there is
no need to print them ! Students will be evaluated through home-
works (2) and final exam (50 %).
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Introduction : Why ?

What is soft matter/colloidal domain ? Polymers, surfactants, liq-
uid crystals, colloidal suspensions, gels (gelatine !), food etc.

What is the characteristic property of "soft order": Minute
changes in the chemistry makes big changes, i.e. has macroscopic
(mesoscopic) effects.

This is where Biology, physics and chemistry meet. Structures
of biological molecules depend on the interactions between atomes
and molecules, and the interplay between energy and entropy,
which results in the remarquable ability of biological systems to
self-assemble and control their own replication. It is interesting
to emphasize the concepts which bridge biology and the colloidal
domain.

Why colloids/soft-matter/bio-nanotech etc. are important ?
Numerous industrial applications (cosmetics, food industry, drug
delivery with multifonctional nanoparticles ...)

This journal is c The Royal Society of Chemistry 2013 Chem. Soc. Rev., 2013, 42, 1147--1235 1149

to achieve the desired macromolecular architecture, the
selected coupling strategy, the choice of the homing devices
(vitamins, hormones, peptides, proteins, etc.), as well as the
various strategies to display them at the surface of nanocarriers
without altering their colloidal properties. The resulting
morphologies and the main colloidal features will be given as
well as a general discussion about the biological activities, with
a special focus on the main achievements that have been
reported in vivo.

2. Morphology and preparation of
nanocarriers

Nanoparticulate systems are colloidal-sized particles, with
diameters ranging from 1 to 1000 nm. A wide variety of
nanocarriers composed of different materials including lipids,
polymers and inorganic materials have been developed, resulting
in delivery systems that vary in their physicochemical properties
and thus in their applications (Fig. 2). The following sections will
describe the most used polymer-based nanoparticulate systems
for drug delivery and targeting purposes.

2.1. Nanocarrier morphologies

In this review, we will focus our attention on polymer-based
nanocarriers. In this regard, three classes of polymer-based

colloidal systems will be discussed: (i) nanoparticles, (ii) polymeric
micelles and (iii) polymersomes. The reader who would like more
details about all other nanoparticulate systems (e.g., liposomes,
solid lipid nanoparticles, etc.) is referred to the adequate
reviews.29,30 It is noteworthy that due to intense research effort
in the field, most of these systems can be easily engineered, which
makes them easily adjustable in terms of size, surface charge,
drug loading, release mechanism, etc.

2.1.1. POLYMERIC MICELLES. Polymeric micelles belong to a
group of nanosized colloids that can be formed by self-assembly
of amphiphilic block copolymers in aqueous solution.31 The
hydrophobic core region serves as a reservoir for hydrophobic
drugs, whereas the hydrophilic shell region stabilizes the hydro-
phobic core, making the particle an appropriate candidate for
i.v. administration.32 They typically present the so-called core–
shell morphology and exhibit average diameters in the 5–100 nm
range.33 Contrary to nanoparticles, polymeric micelles are
characterized by a critical micelle concentration (CMC). There-
fore, upon dilution below the CMC, micelles disassemble into
free unimers.34 Nonetheless, polymeric micelles mainly show
low CMC values, which make them relatively insensitive to
dilution, thus leading to enhanced circulation times.32 Micelles
appear to be the most advanced nanoparticulate systems for
clinical trials33 and proved already to be a relevant approach for
the delivery of hydrophobic drugs and DNA, with the possibility
to be functionalized by many different ligands.35

2.1.2. NANOPARTICLES. Nanoparticles (NPs) are solid colloidal
systems in which the drug is physically dispersed, dissolved, or
chemically bounded to the polymer chains.36 Depending on the
method employed for their preparation, either nanospheres or
nanocapsules can be obtained. Nanospheres are matrix-like
systems in which the drug is dispersed within the polymer
chains. On the contrary, nanocapsules are vesicular systems
which are formed by a drug-containing liquid core (aqueous or
lipophilic) surrounded by a single polymeric membrane.37

Nanocapsules may thus be considered as a ‘‘reservoir’’ system.
The advantage of NPs results from the ability to incorporate
hydrophobic drugs at concentrations greater than their intrinsic
water solubility.38 Polymeric nanoparticles offer a very wide
range of possibilities to greatly modify their composition, their
surface (in order to have an impact on the drug loading), their
circulation time or the drug release.25

2.1.3. POLYMERSOMES. Polymersomes are reservoir-like systems
but are opposed to nanocapsules regarding the nature of the
polymer membrane, which is composed, in that case, of self-
assembled amphiphilic block copolymers. They are biomimetic
analogs of natural phospholipids and can be formed with sizes
ranging from tens of nanometers to tens of micrometers with
relatively high control of the size distribution.39 The hydrophobic
blocks of each copolymer tend to associate with each other in
order to minimize direct exposure to water, whereas the hydro-
philic blocks face inner and outer aqueous solutions and thereby
delimit the two interfaces of a typical bilayer membrane.40 The
membrane is the key feature of this kind of nanocarrier. It serves
to partition aqueous volumes with different compositions and
concentrations, based on its selective permeability to hydrophobic

Fig. 2 Lipid and polymer-based nanoparticulate systems used in the field of drug
delivery and active targeting.

Fig. 1 Design of targeted nanoparticulate systems.
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Figure 2.1: Design for drug-loaded
nanocarriers, such as liposomes,
nanoparticles, micelles etc. [? ]

We assume:

1. Basic knowledge with essential principles for chemical struc-
tures, reactivity and bonding;

2. Basic Concepts of molecular biology;

3. Basic maths.

Remember: Soft matter is different from biology because self-
assembly is not synonymous of self-organization. However the
organization of cellular structures (functional and structural) de-
pends on a delicate interplay between energy and entropy. These
concepts are common to the three fields.

Figure 2.2: Positional order gives
regular distances between molecules.
Orientational order means that groups
of molecules lie in the same direction.

What are the characteristic properties of the colloidal domain ?

1. Mesoscale ( 1 - 100 µm) with marked consequences: We observe
huge thermal fluctuations !

2. Disordered: Polymers look like spaghetti; Liquid crystals (ob-
long molecules) are a state of matter which has properties be-
tween those of conventional liquids and those of solid crys-
tals. For instance, a liquid crystal may flow like a liquid, but
its molecules may be oriented in a crystal-like way. : see posi-
tional order and orientational order, Fig. ?? , huge fluctuations
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(thermal fluctuations, small number of molecules), (thermal and
non-thermal noise) noise.

3. Living systems are out-equilibrium systems. In equilibrium,
there is only one steady state. When systems are out of equilib-
rium, there can have more than in steady states.

4. Systems where connectivity plays an important role (see gels
and percolation)

5. Systems where geometry is not trivial (see self-similarity and
fractals)

6. Systems where the interactions between the (macro)molecules
are weak (very different from solid state physics). In particular:

(a) Van de Waals interactions: They are attractive and due to
dipole-dipole interaction which oriente each other so net
attraction results. For two spherical objects (geometry is im-
portant, distance d, radii R)) at small distance

U “ ´
A
12

R
d

(2.1)

which means U ą kT: Thermal energy is not strong enough to
overcome the Van der Waals interaction which dominates.

(b) Electrostatic interactions: They are generally screened be-
cause of counter ions in the solvent. Competition between
attractive van der Waals and repulsive electrical double-layer
forces determines the stability or instability of colloidal sys-
tems.

(c) Steric forces: are long range and important. Example are
stealth liposomes with a polymeric corona to prevent recogni-
tion by the immune system.

(d) Entropic forces (rubber elasticity which contact upon heat-
ing)

(e) Mechanics (ex: adhesion, biopolymers): bending, stretching.

Energy scales:

1. For ionic or covalent bond: Typically, 1 ev = 1.610´19J;

2. Soft order in physics and biology, thermal energy « 1{40 ev is
the relevant scale.

We have for the thermal energy

kTp300Kq “
1

40
ev “ 410´12 ˆ 10´9 J (2.2)

Thus the convenient unit for the force is pN and the relevant scale
for the distance is nM.

General references for these lectures are:
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1. For the point of view of physics: Physical Biology of the Cell,
by Rob Phillips and al, Garland. Biological Physics, Energy,
information, life, by P. Nelson, Freeman.

2. For the point of chemistry: Physical Chemistry; P. Atkins and
Julio de Paula, Oxford

3. For the point of view of Biology: The molecules of Life, Physical
and chemical principles, by J. Kuriyan et al, Garland.
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Self-assembly of amphiphiles: Thermodynamics of in-
terface

75

Membranes biologiques : vers un modèle physique

membrane est illusoire, et surtout inutile
pour répondre à ces questions aux échelles
de temps et d’espace d’intérêt. Il s’agit plu-
tôt de proposer une modélisation réaliste
capable d’appréhender les caractéristiques
pertinentes de la membrane. 

L’évolution du concept 
de membrane biologique 

Les premiers modèles de la membrane
cellulaire remontent à la fin du XIXe siècle.
Ils sont fondés sur les similarités qui existent
entre les propriétés des membranes cellulai-
res et les lipides tels que ceux présents dans
l’huile d’olive. En 1925, les biologistes
Gorter et Grendel solubilisent les lipides de
globules rouges et les déposent à la surface de l’eau dans
une cuve de Langmuir. En mesurant les aires de la
membrane du globule rouge et de la mono-couche
déposée, ils déduisent que la membrane est formée
d’une double couche de lipides. Les protéines entrent
dans la description quelques années plus tard mais leur
localisation et leur distribution restent à élucider. Cette
question demeure encore d’actualité. Entre 1940 et
1950 apparaissent deux techniques qui permettent des
progrès rapides dans la connaissance de la structure cel-
lulaire et de la membrane plasmique : l’ultracentrifuga-
tion différentielle et la microscopie électronique. Les
observations de microscopie électronique renforcent
l’hypothèse de bicouche, révèlent l’asymétrie de la
membrane et suggèrent la présence de structures globu-
laires, composées de protéines. Après diverses spécula-
tions, le modèle de mosaïque fluide est proposé par
Singer et Nicolson en 1972. La membrane y est décrite
comme une bicouche fluide dans laquelle sont insérées
des protéines pouvant y diffuser librement. Ce modèle
prévaut encore actuellement. 

Que révèle la diffusion des protéines 
et des lipides ? 

A peine quelques années plus tard, les techniques de
FRAP et FCS (pour « Retour de fluorescence après
photo-blanchiment » et « Spectroscopie de corrélation
de fluorescence », voir encadré 1) étaient développées
par W.W. Webb, grand pionnier (encore en activité)
dans le développement d’outils expérimentaux de la
physique pour l’imagerie et la spectroscopie de cellules
biologiques. Les premiers résultats ont soulevé d’emblée
deux questions fondamentales encore non résolues : 
– quelle est la cause du ralentissement des protéines dans
les membranes plasmiques cellulaires ? La constante de
diffusion d’une protéine y est effectivement de l’ordre
de 0,1 !m2/s, soit un à deux ordres de grandeur plus

faible que dans une membrane modèle constituée d’une
bicouche lipidique pure dans laquelle sont insérées des
protéines en faible concentration. La diffusion serait
donc limitée soit par un fort encombrement en protéi-
nes, soit par un confinement (éventuellement tempo-
raire) des protéines dans des domaines membranaires ;
– quelle est l’origine des hétérogénéités de distribution
latérale à l’échelle micro et submicrométrique ? Les frac-
tions de lipides et protéines mobiles à la surface de cel-
lules vivantes accessibles par FRAP, toujours inférieures
à 1, sont là aussi la signature que leur diffusion est forte-
ment perturbée par des hétérogénéités membranaires. 

Il n’a fallu ensuite attendre qu’une décennie pour
que se développe la technique de Suivi de particule uni-
que (Single Particle Tracking ou SPT, suivi du Single
Molecule Tracking ou SMT, voir encadré 1) permettant
la détection et le suivi de molécules individuelles avec
une résolution spatiale nanométrique. Avoir ainsi accès
aux comportements individuels, masqués dans les mesu-
res d’ensemble obtenues en FRAP ou FCS, a permis de
révéler une grande diversité des modes de diffusion, non
seulement entre molécules différentes, mais aussi au sein
d’un échantillon de molécules identiques dans une
même cellule. Une caractéristique remarquable des tra-
jectoires de SPT ou SMT est qu’elles montrent très
généralement un confinement de la diffusion aux temps
courts (" 1 s), dans des domaines dont le diamètre varie
de quelques dizaines à quelques centaines de nanomè-
tres. Ce confinement peut être temporaire, en alter-
nance avec des périodes de diffusion libre, ou
permanent. Dans ce dernier cas, peut se superposer à
cette diffusion confinée une diffusion plus lente aux
temps longs (# 1 s). Un tel comportement est révélé par
le déplacement quadratique moyen de la position
(cf. figure 2 de l’encadré 1). 

Ces observations ont donné lieu à l’émergence de
plusieurs modèles d’organisation dynamique des mem-
branes, proposant différentes origines au confinement
(voir encadré 2). Ainsi, dans le modèle de « corrals », ce

Figure 1 – Schéma de la membrane plasmique, avec ses composants évoqués dans le texte. La
bicouche a une épa isseur de l’ordre de 5 nm. D’après Greg Geibel, http://sun.menloschool.org/
!cweaver/cells/c/ce ll_membrane/. 
Figure 3.1: The fluid mosaic mem-
brane mode according to Singer and
Nicholson.

3.1 Introduction: A brief note on history

The colloidal domain is where chemistry, biology and physics meet.
Membranes have a long history which started in 1890 with Ch. E.
Overton who discovered that cells are envolopped in a selectively
permeable layer. The story continued for more than a century. In
1972, Singer and Nicholson published a paper where they proposed
the so-called fluid mosaic model for cell membranes. This model
describes the membrane as a fluid, lipidic bilayer (lipid + choles-
terol) in which macromolecules and proteins are incorporated.

Figure 3.2: The Langmuir and
Langmuir-Blodgett techniques al-
low preparing molecular monolayers
and their transfer onto solid substrates

We will see that lipidic bilayers form spontaneously above a
well determined critical concentration. This is one of the most ele-
mentary form of spontaneous self-assembly where phospholipidic
molecules aggregate themselves into a thin bilayer (60 Å thick) and
form a vesicle (small bag, « 20µm). Self-assembly is a hot subject
in chemistry and in Nano-sciences in general. But it should not be
confused with self-organization. The latter is a much broader and
deeper subject. It is characteristic of active, i.e. out of equilibrium,
phenomena seen in living cells.

Figure 3.3: An amphiphile is a chem-
ical compound possessing both hy-
drophilic (water-loving, polar) and
lipophilic (fat-loving) properties. Such
a compound is called amphiphilic
or amphipathic. This forms the basis
for a number of areas of research in
chemistry and biochemistry, notably
that of lipid polymorphism. Organic
compounds containing hydrophilic
groups at both ends of a prolate (in
the aggregate) molecule are called bo-
laamphiphilic. Common amphiphilic
substances are soaps, detergents and
lipoproteins.

We start with simple amphiphilic molecules.

3.2 Amphiphilic molecules form aggregates with well-defined
properties: Aggregation at low concentration

Each lipid or surfactant has two well-defined parts: A hydrophobic
and a hydrophilic part. The hydrophobic effect is mainly due to
entropy : the non-polar part of the amphiphile modifies the struc-
ture of the surrounding water. In contrast, polar molecules or polar
parts of amphiphilic molecules strongly repeal each other because
of electrostatic interactions. If we put amphiphilic molecules into
water, they will locate at the air-water interface with their polar
head pouring into water and their tail will try to stand out. The
same is also true for surfactant molecules (SDS, sodium dodecyl
sulfate).
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Assume that we have control on the concentration of surfactant
molecules. For concentration below 10´3 M, SDS molecules will
concentrate at the air-water interface. The surface tension decreases
with increasing the concentration of SDS. Above 10´3 M, the sur-
face tension is, however, almost constant. What happens ? Aggre-
gate form spontaneously with well-defined properties. This critical
concentration is called the CMC (for critical micellar concentration).

Figure 3.4: At small concentration, SDS
molecules concentrate at the surface.
The surface tension (resistance to
stretch or to compress the film) can be
measured.

The schizophrenic character of the molecule leads to the forma-
tion of aggregates called micelles. The hydrophobic tails protect
themselves from water by forming a core while the polar heads stay
outside (see Fig. ?? below for a textbook picture). However, beside
this textbook picture, on should note that

1. There is no denser core;

2. The heads are not perfectly arranged;

3. The micelles are not shape-persistent.

37

physical properties of detergents
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Sodium dodecyl sulfate is a detergent with a charged hydrophilic sulfate head group and a 12 
carbon hydrocarbon tail.   Upon dissolving in water at room temperature (298ºK) it assembles 
spontaneously (ΔGº = -16.4 kJ/mol) into a higher ordered micelle with the structure shown below

The critical micelle concentration (CMC) is defined as the concentration of surfactant above 
which micelles form and all additional surfactants added to the system form micelles
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Figure 3.5: SDS.

3.3 Surface tension

Molecules in a fluid feel a mutual attraction. When this attractive
force is overcome by thermal agitation, the molecules pass into a
gaseous phase. Let us first consider a free surface, for example that
between air and water, i.e. a liquid-gas interface. A water molecule
in the fluid bulk is surrounded by attractive neighbors, while a
molecule at the surface has a reduced number of such neighbors
and so in an energetically unfavorable state. The creation of new
surface is thus energetically costly, and a fluid system will act to
minimize surface areas.

To understand that surface tension can affect the shape of an
object, it is useful to recall the following theorem. Consider a given
volume V of incompressible material. What is the shape of an ob-
ject composed of this material that minimizes the area ? The answer
(in any dimension), is simple. The shape is a sphere. Therefore,
the sphere is the shape which minimizes surface tension at a given
volume.

Nomenclature: σ denotes the surface tension (at a fluid-gas inter-
face). A related concept is the interfacial tension (depending on the
context, this surface tension is noted either γ or σ) at a fluid-fluid or
fluid-solid interface.

If we use the c.g.s. system :

1. The unit of force is 1 dyne = 1 g cm s´2 = 10´5 N (roughly the
weight of a mosquito).

2. For the pressure 1 atm « 100 kPa = 10
5 N/m2= 10

6 dynes/cm2.

3. The unit of σ (or γ) is dyne/cm = mN/m.

Figure 3.6: Adsorption of surface-
active molecules as an orientational
monolayer at air-water or oil-water
interfaces.
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3.4 Surface activity

Materials such as short chain fatty acids and alcohols are soluble in
both water and oil solvents. The hydrocarbon part of the molecule
for its solubility in oil, while the polar part ´COOH or OH group
has sufficient affinity to water to water to drag a short-length non-
polar hydrocarbon chain into aqueous solution with it. If these
molecules become located at an air-water or an oil-water interface,
they are able to locate their hydrophilic headgroup in the aqueous
phase and allow the lipophilic hydrocarbon chain to escape into the
vapor or oil phase. The strong adsorption of such materials at sur-
faces or interfaces in the form of oriented monomolecular layer

(monolayer) is termed surface activity. Surface active materials, i.e.
surfactants, consist of molecules containing both polar and non-
polar parts. By sitting at the interface, amphiphilic molecules lower
the surface tension of the interface.

h

r θ

πr2hρg

2πrσcosθ

Figure 3.7: Capillary rise.

3.5 How do we measure surface tension ?

There are many methods. The capillary rise method is the most
accurate one, since it dos not involve a disturbance of the interface.
The formula for capillary rise can be derived by balancing forces
on the liquid column. The weight of the liquid with density ρ is
balanced by the upward force due to surface tension. This formula
can also be derived using pressure balance.

σ “
rh∆ρg
2 cos θ

(3.1)

which, for zero contact angle, reduces to

σ “
1
2

rh∆ρg (3.2)

Liquid γ or σ

Water 72.8
Benzene 28.9
Acetone 23.7

Table 3.1: Surface tension against water
for liquids at 200C (in mN.m´1).

Exercice 3.1 As usual, it is useful to define dimensionless numbers.
Check that the Bond number

Bo “
ρga2

σ

Gravity
Curvature

(3.3)

is a dimensionless ratio. The Bond number indicates the relative impor-
tance of forces induced by gravity and surface tension. Note that these
two forces are comparable when Bo “ 1, which arises at a length scale
corresponding to the capillary length

lc “
c

σ

ρg
(3.4)

For water-air σ “ 70 dynes/cm, lc “ 2 mn.
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For an example where gravity plays a role, see Fig. ?? where we
use the Evolver program to simulate a drop sitting on a substrate
with and without gravity.

Figure 3.8: Effect of gravity on the
shape of a drop sitting on a substrate.
Two drops sitting on a substrate with
the same contact angle and the same
volume. For the top one, the gravity is
set to zero and the shape is a spherical
cap. For the bottom one, gravity is
such that its capillary length is smaller
than its radial dimension. In this
case, gravity influences the shape of
the drop and its shape is no more
spherical.

3.6 Contact angle and wetting

In spreading wetting, a liquid already in contact with the solid
spreads so as to increase the solid-liquid and liquid-gas interfacial
areas and decreases the solid-gas area. Let us define the difference
between the surface energy (per unit area) of the substrate when
dry and wet:

S “ Esubstratepdryq ´ Esubstratepwetq “ γSG ´ pγSL ` γLGq (3.5)

Figure 3.9: Contact angle at the gas-
liquid-solid interface. The boundary of
the drop sitting on a solid surface can
be assimilated as a straight line with
contact angle θ.

To remember this formula, it suffices to remind ourselves that
in the dry state, there is only one solid-gas interface. We have the
following cases:

1. S ą 0: Total wetting. If the parameter S is positive, the liquid
spreads completely in order to lower its surface energy. Con-
dition favorable for this condition is a high value of γSG (high
energy surfaces like glass, clean silicon) and a lower value of γSL

(ethanol, toluene).

2. S ă 0: The drop does not spread but, instead, forms at equilib-
rium a spherical cap resting on the substrate with a contact angle
θ . A liquid is said to be "mostly wetting" when θ ă 900, and
"mostly non-wetting" when θ ą 900.

To revover Young’s equation, recall that the equilibrium is such
that the total surface free energy of the system is minimum, i.e.

γSG ASG ` γSL ASL ` γLG ALG (3.6)

is a minimum (note that we consider the total energy, since the
γ1s are multiplied by the area of the interfaces). Consider a liquid
making an equilibrium contact angle, θ, to spread an infinitesimal
amount further, so as to cover an extra area, dA, of the solid sur-
face. The increase of liquid-gas interfacial area is, therefore, dA cos θ

and the increase of free energy is given by (see Fig. ??)

dG “ γSLdA` γLGdA cos θ ´ γSGdA (3.7)

If the system is at equilibrium, dG “ 0 (the first derivative is zero),
and

γSL ``γLG cos θ ´ γSG “ 0 (3.8)

known as the Young’s equation.

Remark 1 The wetting of a hydrophobic solid surface by an aqueous
medium is considerably helped by the addition of surface-active agents.

Figure 3.10: The origin of the hy-
drophobic interaction. Water forms
a continuously changing disordered
network of hydrogen bonds (left)
often described as a dipole-dipole
electrostatic interaction. If a molecule
is introduced that cannot form hy-
drogen bonds (right), then the nearby
water molecules are forced into a
more-ordered arrangement.
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3.7 What is the hydrophobic effect ?

Hydrocarbons are only slightly soluble in water: they are hy-
drophobic. The accommodation of a hydrocarbon molecule in water
is accompanied by an increase in an associated free energy. The un-
favorable free energy change accompanying the dissolution of the
hydrocarbon results from structural changes in the solvent around
each solute molecule. This is the phenomenon of hydrophobic hy-
dration. The total volume of solvent so affected by a pair of solute
molecules is less when the two are close together than when they
are far apart, as illustrated schematically in Fig. ??. The result is an
effective, solvent-mediated attraction between the two. This is the
hydrophobic attraction.

The hydrophobic effect

B. Widom, P. Bhimalapuram and Kenichiro Kogay

Department of Chemistry, Baker Laboratory, Cornell University, Ithaca,
New York 14853-1301, USA

Received 10th April 2003, Accepted 4th June 2003
First published as an Advance Article on the web 24th June 2003

The thermodynamics of the hydrophobic effect, as measured primarily through the temperature
dependence of solubility, is reviewed, and then a class of models that incorporate the basic mechanism of
hydrophobicity is described. These models predict a quantitative relation between the free energy of
hydrophobic hydration and the strength of the solvent-mediated attraction between pairs of solute molecules. It
is remarked that the free energy of attraction being just of the order of the thermal energy kT may be important
for the effective operation of the hydrophobic effect in proteins. Deviations from pairwise additivity of
hydrophobic forces are also briefly discussed.

I. Introduction

Hydrocarbons are only slightly soluble in water: they are hydro-
phobic. The accommodation of a hydrocarbon molecule in
water is accompanied by an increase in an associated free
energy. Hydrocarbons are not the only hydrophobes but they
are typical of the class. Characteristically, their solubility dec-
reases with increasing temperature at low temperatures, which
provides an important clue to the mechanism of hydrophobi-
city. At higher temperatures the solubility, after reaching a min-
imum, often then increases with further increase of temperature.
These effects are illustrated in Fig. 1, which shows the Ost-

wald absorption coefficient S of methane in water (the ratio
of the number density of dissolved methane to that in the equi-
librium vapor), as a function of temperature.1 This is at a par-
tial pressure of methane of 1 atm, although there is almost no
dependence on the pressure as long as the concentration of
methane in both phases is low (Henry’s law).
The unfavorable free energy change accompanying the dis-

solution of the hydrocarbon results from structural changes

in the solvent around each solute molecule. This is the phe-
nomenon of hydrophobic hydration. The total volume of
solvent so affected by a pair of solute molecules is less when
the two are close together than when they are far apart, as illu-
strated schematically in Fig. 2. The result is an effective,
solvent-mediated attraction between the two. This is the
hydrophobic attraction.
These effects have long been recognized to be important in

physical chemistry and biochemistry. The subject thus has an
enormous literature, ranging from works that are now clas-
sic2–17 to those more nearly current,18–85 many of these quite
sophisticated. A recent authoritative assessment of the status
of the field with emphases different from those in the present
account is in a review by Pratt.29 A beautiful earlier review
by Scheraga86 with an account of experimental results and
emphasis on the role of hydrophobicity in biochemistry,
should also be noted.
The thermodynamics of transfer of a molecule from one

phase to another is outlined in Section II, and then the thermo-
dynamics of hydrophobic hydration as inferred from solubility
measurements such as those in Fig. 1 is presented in Section
III. What is seen there, among other principles, is that the dis-
solution of a hydrophobe in water is energetically favorable,

y Permanent address: Department of Chemistry, Okayama University,
3-1-1 Tsushimanaka, Okayama 700-8530, Japan.

Fig. 1 Ostwald absorption coefficient S of methane as a function of
temperature T (from compilation of Battino1).

Fig. 2 Two hydrophobic molecules, (a) far apart, and (b) close
together. The regions within the dashed curves represent schematically
the volumes of solvent that are significantly affected by the presence of
the solutes. The total volume so affected by the pair is smaller in (b)
than in (a).

DOI: 10.1039/b304038k Phys. Chem. Chem. Phys., 2003, 5, 3085–3093 3085
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Figure 3.11: Two hydrophobic
molecules, (a) far apart, and (b)
close together. The regions within
the dashed curves represent schemat-
ically the volumes of solvent that are
significantly affected by the presence
of the solutes. The total volume so
affected by the pair is smaller in (b)
than in (a).

3.8 Critical micellar concentration

Micelles (Example : Mayonnaise) We observe the following proper-
ties:

(i) Aggregate form spontaneously at a well-defined micelle con-
centration.

(ii) Aggregation is a start-stop process. Adding more surfactant
results in the formation of more micelles of the same size.

(iii) Aggregate have well-defined properties: The maximum radius
of a spherical micelle is set by the length of the hydrocarbon
chain.

(iv) The critical micelle concentration decreases with the chain
length.

Number of carbon atoms 8 10 12 14 16 18
cmc/10´3 mol dm´3 140 33 8.6 2.2 0.58 0.23

Table 3.2: Critical micelle concentration
for a homogous series of sodium alkyl
sulfates in water at 400C.

We may think of the abrupt change between the freely dissolved
surfactant system and the micellar system as a phenomenon akin
to a phase transition. It is not, however, a phase transition, since
thermodynamic quantities do not experience any singularities as
one passes from one regime to the other one.

As we will see shortly, it, however, a cooperative phenomena. We
may first think aggregation as an accretion phenomena where one
adds one surfactant molecule at a time to build a micelle. This is
the stepwise way of thinking

S` pN´1q S ÝÝÑÐÝÝ S2 ` pN´2q S ÝÝÑÐÝÝ S3 ` pN´3q S ÝÝÑÐÝÝ . . . (3.9)

We will not go this way: It does not give an abrupt change and
gives a broad distribution of micelle size. In contrast, we will as-
sume that N surfactant molecules decide to form 1 micelle at once.
rSs being the concentration of free surfactant,

NS ÝÝÑÐÝÝ SN (3.10)
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with equilibrium constant

KN “
r SNs

SN (3.11)

The total surfactant concentration expressed in moles of monomers
is

rSsT “NrSNs ` rSs “N KNrSsN ` rSs (3.12)

And we can rewrite the first equation as:

N rSNs “NKN SN (3.13)

so that Eqs (?? + ??) gives the variations of the number of surfac-
tants in micelles, N rSsN, versus the total number of moles of surfac-
tants (free + in micelles), rSsT.

Figure 3.12: Relation between surfac-
tant concentrations (SC) and surface
tension (ST) and CMC of surfactant.

When rSs is small, rSNs is small and does not vary with ST. We
have in this regime

d NrSNs

drSsT
Ñ 0 when N Ñ8 and rSs Ñ 0 (3.14)

In the other limit where all surfactant molecules have gone into the
micelles, N KN SN " S, we have rSTs « N rSNs

dNrSNs

drSsT
Ñ 1 when rSsT Ñ8 (3.15)

Therefore, the slope between the two regime goes to infinity at
some magic concentration S. We call this concentration the criti-
cal micelle concentration, i.e. the CMC.

3.9 How surfactant molecules decrease the surface tension

Complexes systems are often composed of interfaces between dif-
ferent phases. The simplest example of such a system is an inter-
face between different phases (a liquid phase, a vapor phase and a
solid phase phases for a fluid layer atop a solid surface). Surfactant
molecules tend to aggregate at air water interfaces in such a way
that their polar head reside in water with their hydrocarbon in air.
For microemulsions (dispersion of droplets of oil in water), the sur-
factant molecules sit at the oil-water interface. Such interfaces are
generally refereed as "surfaces" with an energy proportional to the
area of contact between the two phases

The surface tension is given by the change in the free energy as
the amount of interfacial area is varied

γ “
BF
BA

(3.16)

and a surface tension is always positive or zero. It cannot be nega-
tive. If this the case, the system would be unstable with respect to
the creation of an infinite area of contact between the two phases
and the concept of an interfacial area would be meaningless (the
concept of interface assumes tacitly that the width of the interface
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is much smaller than the other length scales characterizing the bulk
properties of the two phases in contact. An an example, take the
size of the droplet. If these two length scales are comparable, this
description does not make sense).

What does a surfactant molecule (soluble and insoluble) is to
decrease the surface tension. To see this, consider first the case of
a surfactant which is not soluble in the solution. This surfactant
behave as an ideal gas on the fluid with area A. For and ideal gas,
we will see that the entropy is

S “ Aσpln σa0 ´ 1q (3.17)

where σ is the area density of surfactant molecules:

σ “
Ns

A
(3.18)

where Ns is the fixed number of surfactant molecules (remember
that the surfactant molecules are not soluble, so that they sit at the
interface). The notation σ for the surface density is standard and
has the same meaning as the volume density ρ. In this formula
we shall derive later on, a0 is a constant with the dimension of
a molecular area. S ins (??) is nothing more that the entropy of
a perfect gas in two dimensions. Going back to the free energy
FS “ U ´ TS of the interface, we must add to the bare surface
tension Aγ0 (i.e. the surface tension in the absence of surfactants),
the contribution due to the surfactant molecules. This gives

FS “ γ0 A` ATσpln σa0 ´ 1q ` Aσu0 (3.19)

where u0 is the difference in energy for a surfactant molecule on the
surface compared with the energy in the bulk. Remember (??), so
that σ depends on A (NS is fixed), so that Aσu0 “ NSu0. Taking the
derivative including the variation of σ gives

γ “ γ0 ´ Tσ (3.20)

so that the surface tension is decreased. This is so because when
the area in increased, the translational entropy of the surfactant
molecules is increased.

Remark 2 All this does NOT apply to bilayer where the only way to
change the area is to stretch tangentially to the bilayer. This mechanical
stretching has the form

fstretch “
1
2

γ

ˆ

a
a0
´ 1

˙2
(3.21)

where γ is called a surface tension constant. In this formula, a is the area
per polar head and a0 is a reference state.

3.10 The packing parameter, Israelachvili (1976)

This a very useful concept. We introduce the following parameters:
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1. The surfactant tail volume v0.

2. The equilibrium area a0 per molecule at the aggregate interface.

3. The tail length l0.

For common surfactant with single tail
v0

l0
“ 0.21 nm2 (3.22)

The packing parameter P is dimensionless

P “
v0

a0l0
(3.23)

and is a geometrical parameter. As an example, consider a spherical
micelle with aggregation number g. We have

Vcore “ gV0 “ 4{3πR3 (3.24)

A “ ga0 (3.25)

so that R “ 3V{a0. For a spherical micelle with positive curvature
R ď l0, so that the the packing parameter P is less than 1{3.

Changes in the critical packing parameter P of surfactant molecules
give rise to different aggregation structures, see Fig. ??.

The concept of the “packing parameter P” (Israelachvili)

Figure 3.13:

Typically, we have:

1. P ă 1{3 for a single chain surfactant. Micelles are spherical.

2. 1{3 ă P ă 0.5 for single-chain surfactant with small head group
(or in conditions where the electrostatic interaction between the
headgroups are screaned). The micelles are cylindrical.

3. 0.5 ă P ă 1: Double-chain surfactants with large head group.
The aggregate structures are vesicles made up of bilayers.

3.11 The free energy model for micelles (according to Tanford,
)

This model explains the basic feature of micellization. Everything is
in the headgroup area. We formulate the standard free energy dif-
ference between a surfactant molecule present in the aggregate and
one in the singly dispersed state in water. In general, the tempera-
ture T and the pressure P are control parameter. Thus the appropri-
ate thermodynamics potential is the Gibbs free energy GpT, Pq: this
is an important point. You must use the thermodynamic potential
(free energy, Gibbs free energy ... which depends on the parameters
that are under our control. Having control on the pressure P is not
the same as having control on the volume V.)

Surfactant molecules pass from the solution to the agrgegate
because they experience a smaller energy in the micelle. To com-
pute the difference, we must concentrate on the free energy per
molecule. In other words, we will focus on the chemical potential

µpT, Pq “
BG
BN

ˇ

ˇ

ˇ

ˇ

ˇ

T,P

(3.26)
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which is the energy one has to spend to add one molecule of sur-
factant to a system in the presence of the others.

Assuming aggregates with g molecules, this free energy differ-
ence per surfactant is the sum of free contributions
ˆ

∆µg

kT

˙

“

ˆ

∆µg

kT

˙∣∣∣∣
Transfer

loooooooomoooooooon

´

`

ˆ

∆µg

kT

˙∣∣∣∣
Interface

loooooooomoooooooon

`

`

ˆ

∆µg

kT

˙∣∣∣∣
Head

looooooomooooooon

`

(3.27)

1. The first contribution is negative. By forming a micelle, surfac-
tant avoids the contact between hydrocarbon tails and water.
This free energy is independent of the size of the aggregate and
of its shape.

2. The second is positive and corrects the first one. There is a resid-
ual contact between water and hydrocarbon tails. This term is
proportional to the headgroup area: σa, where a typical value for
σ “ 50dynes{cm “ 0.1kT{Å

2
.

3. There is a headgroup electrostatic repulsion. This term is pro-
portional to 1{a (with some power depending on the model). For
interfaces composed of ionic headgroups, we take : α{a, where
α ą 0 is some phenomenological constant. This term can be
considered as the first term in the expansion of the interaction
free energy as per molecules in powers of the surface density of
headgroups ρ91{a.

We now assume that micelles are in thermodynamics equilibrium.
The headgroup area is therefore the one which minimizes the free
energy. The first being independent of the headgroups, it drops out.
The system adjusts a at ae

σ´
α

a2 “ 0 at a “ ae (3.28)

or

ae “
´α

σ

¯1{2
(3.29)

with
g “ 1{ae (3.30)

in appropriate units, since we compare micelles of the same area
made of different surfactants.

In conclusion :

1. The tail transfer is responsible for aggregation, it has no influ-
ence nor on size or shape.

2. The size and the shape result from a trade-off between the resid-
ual contact and the headgroup repulsion.

Figure 3.14: Packing parameter

Exercice 3.2 1. Consider a spherical micelle with aggregation number g
(the aggregation number is the number of lipids forming the micelle).
Recall that the packing parameter is defined as

P “
V0

ael0
(3.31)
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where V0 is the surfactant tail volume, ae is the equilibrium area per
molecule of the aggregate, and l0 is the fully extended tail length.

2. Give Vcore and A. Deduce R (Vcore “ gV0 “ 4πR3{3, A “ gae “

4πR2. R “ 3V0{ae.)

3. From the condition R ă l0, give the range for P where spherical mi-
celles can exist (the micelle core is packed with surfactant tails without
any empty space). P ă 1{3

4. Repeat the same calculation for a cylindrical micelle (assume an infinite
cylinder and do the calculation per unit length). P ă 1{2

5. Assume a bilayer of half-bilayer thickness R of the spherical vesicle. Do
the same calculation per unit area of the spherical vesicle. P ă 1.

6. Therefore, if we know the molecular packing parameter, the shape and
size of the equilibrium aggregate can be readily identified. What is your
prediction for lipid with "small headgroup" and "large headgroup" ?
(micelles versus lamellae)

7. Assume that a single tail surfactant forms a micelle. What is your
prediction for the shape of the aggregate for a surfactant with the same
headgroup but with two tails ? (bilayers instead of micelles)

8. As we have seen, the influence of solvent is to decrease the surface ten-
sion of an interface. What happens if we had a surfactant to a micellar
solution ? (interfacial tension decreases, ae increases and P decreases.
Bilayers to micelles).
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Gels and percolation

4.1 Introduction: What is a gel ?

Gelatin or gelatine (from Latin: gelatus meaning "stiff" or "frozen")
is a translucent, colorless, flavorless food ingredient, derived from
collagen taken from animal body parts. To make a gel, one must
start with at least two different constituents. The initial state is a
fluid (water) in which one dissolves a molecular compound (a poly-
mer or a protein). This state is the "sol". Under some circonstances
(PH, temperature, concentration), there is a phase transition. The
sol becomes a gel 1. The gel has the mechanical properties of a solid 1 In french: solution-glification

under the action of macroscopic forces (elasticity). Gel are impor-
tant for the food industry ... or the tire industry (vulcanisation)

JOURNAL DE PHYSIQUE Colloque C3, supplément au n o  4 ,  Tome 41,  avril 1980, Page C3-17 

P.G.  d e  Gennes 

Collège de France, 75231 Paris Cedex 05, France 

Résumé : Nous décrivons i c i  quelques s i t u a t i o n s  
physiques qui  peuvent s e  r e l i e r  aux phénomènes de 
percolat ion 1 )  l e s  t r a n s i t i o n s  sol-gel 2)  l e s  m i -  
croémulsions à gouttes  conductrices ( "percolat ion 
brassée") 3) l e s  écoulements laminaires  de suspen- 
s ions.  Dans tous  ces  cas ,  il n ' e s t  pas s û r  que l a  
t r a n s i t i o n  appartienne à l a  même "classe d'univer- 
s a l i t é "  que l a  percolat ion : l e s  exposants c r i t i  - 
ques peuvent ê t r e  d i f f é r e n t s  de ceux de l a  perco- 
l a t i o n ,  mais l e  f a i t  c e n t r a l  (appari t ion d'un amas 
i n f i n i )  d o i t  subs i s te r .  

Abstract : We describe here some physical  s i tua-  
t i o n s  which a r e  r e l a t e d  t o  percolat ion processes : 
1)  sol-gel t r a n s i t i o n s  2 )  microemulsions with corr 
duct ing drop le t s  ( s t i r r e d  percolat ion)  3) laminar 
flows of passive suspensions. In a l1  t h e s e  cases ,  
t h e  t r a n s i t i o n  need not belong t o  t h e  p rec i se  uni- 
v e r s a l i t y  c l a s s  of  perco la t ing  systems : t h e  c r i -  
t i c a l  exponents may be d i f f e r e n t ,  but t h e  main 
e f f e c t  (onset of an i n f i n i t e  c l u s t e r  a t  th reshold)  
i s  always present .  

1. - L'ETAT GEL 
La f i g u r e  1 nous donne une idée  q u a l i t a t i v e  

de c e  qu 'est  un g e l  polymérique : 

a )  Il s ' a g i t  d'une s t r u c t u r e  rét icul 'ee  : l e s  

d i f f é r e n t e s  chaînes cons t i tuan tes  sont r e l i é e s  par 

des pontç, 

b) Un g e l  e s t  une s t r u c t u r e  ouverte : dans 

beaucoup de cas ,  l ' i n t e r v a l l e  e n t r e  chaînes cons- 

t i t u a n t e s  e s t  rempli par  une f r a c t i o n  importante 

de solvent .  Les mesures physiques l o c a l e s  (spec- 

t roscopies ,  résonance électronique ou nuc léa i re ,  

e tc . )  indiquent a l o r s  des comportements de type 

l iqu ide .  Mais l e s  mesures mécaniques à grande 

éche l le  indiquent l a  présence d'une é l a s t i c i t é  de 

type sol ide.  Cet te  d u a l i t é  e s t  l ' u n  des t r a i t s  

l e s  plus  in té ressan ts  des  ge l s .  

(i) Les s e c t i o n s  1 e t  II d u  p r é s e n t  t e x t e  
o n t  d é j à  6 t é  p u b l i é e s  d a n s  l a  ~ l a q u e t t e  1 9 7 9  
d e  1 ' E c o l e  d e  Physique e t  Chimie. 

Fig. 1 : Image q u a l i t a t i v e  d'un g e l  p o l ~ é r i q u e  : 

on a supposé i c i  que chaque noeud e s t  relié 

à 4 branches. 

1 )  - Mécanismes de formation des g e l s  

Les "ponts" peuvent ê t r e  r é a l i s é s  par des 

l i a i s o n s  covalentes. Mais i l s  peuvent a u s s i  ê t r e  

obtenus par des mécanismes physiques : 

- assoc ia t ion  de deux (ou t r o i s )  chaînes pour 

former un tronçon d 'hé l ice .  Ceci e s t  probablement 

l e  mécanisme e s s e n t i e l  pour l a  formation de l a  & 
l a t i n e ,  k p a r t i r  d'une so lu t ion  de chaînes de col-  

lagène 

- assoc ia t ion  pour former un microcr i s ta l ;  c e  

mécanisme a é t é  é t a b l i  en grand d é t a i l  récemment 

sur  des chaînes de polystyrène i so tac t ique  par des 

études c r i s ta l lographiques  de Keller  e t  de ses  

col laborat  eurs  

- assoc ia t ion  par  des i n t é r a c t i o n s  e n t r e  

"groupes ionomères" : il s ' a g i t  i c i  de chaînes 

portant  quelques groupes la té raux  p o l a i r e s  (pyri- 

dine,  carboxyle, ... ) en solvants  peu po la i res  : 

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1980302

Figure 4.1: Qualitative image of a
polymeric gel: We have assumed here
that each node is connected with four
branches.

Fig. ?? gives us a qualitative idea of what a polymer gel is (see [?
]):

1. It is a reticular structure: the different component chains are
connected by means of bridges.

2. A gel is an open structure: in many cases, the gap between con-
stituent chains is filled with a large fraction of solvent. Local
physical measurements (spectroscopies, electronic or nuclear
resonance, etc.) then indicate liquid-type behavior. But mechan-
ical measurements on a large scale indicate the presence of a
solid-type elasticity. This duality is one of the features the most
interesting gels.

fondamentale de l a  fabrication.  

c )  Certains produits spéciaux, qui doivent 

ê t r e  préparés avec une forme définie mais une f a i -  

b le  r i g i d i t é  mécanique (ex. : l e n t i l l e s  de contact 

souples) sont préférablement des gels .  

d) La gél i f ica t ion  es t  une méthode de sépara- 

t i on  chimique, u t i l i s é e  par exemple pour l e  t r a i -  

tement des eaux (précipitat ion d 'a rg i les) .  A l a  

l imi te ,  on peut aussi  r e l i e r  l a  coagulation sanguke 

à un processus de gé l i f ica t ion .  

Une large  f rac t ion  des processus, ou des 

matériaux, que nous venons de c i t e r ,  e s t  connue 

actuellement de façon purement empirique : d'où 

une sé r i e  de questions qui ont un véri table int&êt 

pratique, mais qui demandent aussi  une réflexion 

au plan fondamental. C'est pourquoi, à 1'E.S.P.C.I. 

nous avons commencé en 1978 (sous l'impulsion du 

Professeur C.  Quivoron) à f a i r e  fonctionner un 

séminaire d'informations sur l e s  gels  : l e  présent 

t ex te  es t  largement basé sur ces réunions. Par 

contre, nous ne parlerons pas i c i  de certains sys- 

tèmes déjà classiques, comme l e s  ge ls  "calibrés" 

fabriqués à Strasbourg par P. Rempp, sur lesquels 

on a d ' a i l l eu r s  pu é t a b l i r  récemment des l o i s  

d'échelles remarquables (S. Candau, P.  unc ch) . 

II. - LA TRANSITION SOL-GEL 

Prenons comme exemple une réaction de polyd-  

r i s a t ion  qui engendre des molécules ramifiées de 

plus en plus grandes ( f ig .  2a,b). Au début de l a  

réaction, l e s  produits sont encore relativement 

légers  : i l s  forment un f lu ide  (ou "sol") dont l a  

viscosité c ro î t  au cours du temps. Puis, à un cer- 

t a i n  moment, l a  s i tua t ion  e s t  dramatiq~ement modi- 

f i é e  : il apparaît une molécule géante (d'extension 

spat ia le  comparable aux dimensions du réc ip ient ) .  

Dès cet ins tant ,  l e  système r é s i s t e  à une t rac t ion  

mécanique macroscopique : il est  devenu un &.. 

SOL 

(a ) 

Amas infini 

) GEL 

(b) 
Fig. 2 : Etapes de l a  formation d'un gel  a )  en 

phase so l ,  on a des molécules t r è s  variées, 

mais toutes  de t a i l l e  f i n i e  b) en phase 

gel ,  il exis te  un "amas inf in i"  : molécule 

  rés ente dans toutes l e s  par t ies  du spéci- 

men. Mais il peut subsister  auss i  des mo- 

lécules de t a i l l e  fa ib le .  

La t r ans i t i on  sol-gel a é t é  étudiée depuis 

fo r t  longtemps par l e s  kquipes de P. Flory e t  

W. S toceayer  aux Etats-Unis, e t  par ce l l e  de 

M. Gordon en Angleterre. Mais e l l e  es t  encore lo in  

d 'ê t re  bien comprise. Plus récemment, È1 l1E.S.PLICI, 

des mesures mécaniques f ines  ont é t é  f a i t e s  grâce 

à un montage dû à P. Pieranski. Une t r è s  p e t i t e  

Figure 4.2: Stage of gel formation a) in
the sol phase, there are a wide variety
of molecules, but all of finite size b)
in the gel phase, there is an infinite
cluster, but there are also molecules of
small size.

Bridges can be achieved by covalent bonds. But they can also be
obtained by physical mechanisms:

1. association of three chains to form a helix like gelatin, from a
collagen solution;

2. association by hydrogen bonding and Van der Waals forces as
for some polysaccharides;

3. association through micelles.
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4.2 Sol-Gel transition

Let’s take as an example a polymerization reaction that produces
larger and larger branched molecules. At the beginning of the re-
action, the products are still relatively light: they form a fluid (or
"sol") whose viscosity increases over time. Then, at a certain point,
the situation changes dramatically: a giant molecule with a spatial
extension comparable to the dimensions of the container appears.
From that moment on, the system resists macroscopic mechanical
traction: it has become a gel.
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cyc l i sa t ion  dans l a  théor ie .  styrene-DVB e s t  raisonnable,  a l o r s  que pour t l a  

En p a r t i c u l i e r ,  on peut r e l i e r  l e s  p ropr ié tés  

mécaniques (E e t  n) définies p lus  haut aux pro- 

p r i é t é s  de &seaux é lec t r iques  a l é a t o i r e s  dans l e  

modèle de percolat ion.  Le pr inc ipe  de c e t t e  corres- 

pondance en t re  réseaux mécaniques e t  réseaux élec- 

t r i q u e s  e s t  expliqué sur  l a  f igure  6. La correspon- 

Fig. 6 : Analogie e n t r e  p ropr ié tés  mécaniques des 

g e l s  e t  p ropr ié tés  é lec t r iques  des réseaux 

de percolat ion.  ( a )  l a  l o i  de Kirchoff ex- 

prime que l a  somme algébrique des courants 

J a r r ivan t  à un noeud e s t  nu l le .  La l o i  
+ 

d 'équ i l ib re  des fo rces  f sur  un noeud d'un 

réseau mécanique a l a  même s t r u c t u r e  ( b )  

l 'analogue de l a  l o i  d'Ohm e s t  l a  l o i  de 

Hooke. 

dance e s t  u t i l e ,  ca r  e l l e  permet de t i r e r  des mesu- 

r e s  f a i t e s  sur  des systèmes électr iquesdésordonnés,  

des valeurs  pour l e s  exposants s e t  t .  

s = 0.7 à 0.8 

t = 1.6 à 1.7 

On v o i t  que pour s l ' accord  avec l e s  mesures sur 

s i t u a t i o n  e s t  moins c l a i r e .  (Notons que dans l ' ap-  

proximation des a rbres  t = 3 ) .  

Certains  fac teurs  peuvent en f a i t  compliquer 

l ' ana lyse .  Ainsi ,  dans l ' opéra t ion  de vulcanisat ion 

des caoutchoucs, on par t  de chaînes p réex is tan tes  

e t  concentrées, pour e f fec tuer  ensu i te  une réac t ion  

de pontage. I c i ,  l a  t h é o r i e  prévoi t  que l 'approxi-  

mation des a rbres  devient correcte .  ( ~ l l e  donne 

t = 3 , donc un comportement é l a s t i q u e  t r è s  d i f f é -  

r e n t ) .  O r ,  dans l e s  polymérisations du s tyrène en 

présence de d iv iny l  benzène, l e s  deux groupes 

r é a c t i f s  (vinyl)  du DVB s e  comportent t r è s  d i f fé -  

remment. Le premier at taqué r é a g i t  v i t e ,  a l o r s  que 

l e  second r é a g i t  lentement. La réac t ion  conduit 

donc à des chaînes l i n é a i r e s  de polystyrène, por- 

t a n t  des molécules de DVB qui n'ont r é a g i  qu'une 

f o i s .  Ces DVB n 'assurent  l e  pontage (par  l e u r  

deuxième fonct ion)  que beaucoup plus t a r d .  Donc c e  

cas  s e  rapproche en f a i t  de l a  vulcanisat ion : s i  

l e s  chaînes sont concentrées, on peut se  t rouver  

dans un cas  intermédiaire  e n t r e  percolat ion e t  

approximation des a rbres  (+). Ce genre de d i f f i c u l -  

t é  explique sans doute l e s  r é s u l t a t s  con t rad ic to i res  

que l ' o n  t rouve dans l a  l i t t é r a t u r e .  La s i t u a t i o n  

devra i t  s ' é c l a i r c i r  à l ' a y e n i r  par un bon contrôle  

des cinét iques de réac t ion .  

III. - CONDUCTIVITESELECTRIQUES ET PERCOLATION 
BRASSEE 

Nous a l lons  reven i r  maintenant un peu plus en 

d é t a i l  su r  l e s  p ropr ié tés  de t ranspor t  é lec t r ique  

d'un réseau comportant une r é p a r t i t i o n  a l é a t o i r e  de 

régions fortement ou faiblement conductrices. Pour 

s i m p l i f i e r ,  nous parlerons swbutd 'une s i t u a t i o n  li- 

(+) Cette d i f f icuz té  n'est  pas, semble-t-iZ, trop 
gênante pour Zes spécimens étudiés par Adam e t  
DeZsanti, car Les chaZnes y sont peu concentrées : 
on n'est  pas dans une situation du type vuzcani- 
sation. 

Figure 4.3: Analogies between mechan-
ical properties of gels and electrical
properties of percolation networks.
(a) Kirchoff’s law expresses that the
algebraic sum J of currents arriving
at a node is zero. The law of equilib-
rium of forces on a node has the same
structure. The analogue of Ohm’s law
is Hooke’s law.

One way to study this transition is to place a small magnetic
bead in a field gradient: it then undergoes a weak force a) in the
sol phase, this tends to give it a constant speed (proportional to
a viscosity η) b) in the gel phase, the displacement of the ball is
constant and inversely proportional to a certain elastic modulus,
say E. One finds that both the viscosity and the the elastic modulus
have critical behavior (i.e. the viscosity η becomes infinites at the
transition and the rigidity modulus E becomes zero)

1. η “ cte ppc ´ pq´s, for p ă pc (s ą 0);

2. E “ cte pp´ pcq
t, for p ą pc (t ą 0).

where s and t are critical exponents (independent on the way briges
are formed). This behavior is reminiscent of critical phase transi-
tions (second order near a critical point) and we are going to see
that the sol-gel transition can be connected to a general geometrical
phenomena called percolation, see Fig.??.

Li et al., Sci. Adv. 2019; 5 : eaax8647     6 December 2019

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

2 of 7

measurement as the crossover point (29) of the storage modulus G′ 
and loss modulus G″ (Fig. 1E). The value of G′ for the fully devel-
oped star polymer gel reached 10 kPa, which is comparable to the 
ideal elastic modulus expected for the phantom network model (30) 
(see the Supplementary Materials for details of this comparison).

To examine the nanometer structures in the gels, we evaluated 
the spatial correlations of the polymer chains in Fourier space using 
static laser light scattering (SLS) and small-angle x-ray scattering 
(SAXS), which cover a wide length scale in real space from ~2 to 
~60 nm in SAXS and from ~250 to ~920 nm in SLS according to 
Bragg’s law. Figure 2A shows the scattering profiles of the pregel 
solution and the fully developed gel synthesized by the bond perco-
lation scheme. The SLS intensity from the sol and gel samples has 
been scaled by the same factor so that it matches the SAXS intensity 
I(q) at the low-q limit, where q is the magnitude of the scattering 
vector. The scattering profiles of the polymer gel and the non–cross- 
linked pregel solution were almost identical. Namely, the spatial 
correlation between the polymer chains did not change by cross- 
linking. This result strongly suggests that gelation of the star polymers 
proceeded by bond percolation. Hereafter, we call this gel the bond 
percolation gel. Another point to note is that the abnormal strong 
low-q scattering, which has always been observed in past polymer 
gels (11, 13, 14, 18, 21–23), was not observed in the bond percolation 
gel (Fig. 2A). The spatial defects must be largely reduced from the 
gel network. To further confirm the homogeneity in this bond per-
colation gel, we performed laser speckle tests to visualize the spatial 
defects in the gel. The gelling samples were irradiated with a coherent 
laser beam, and the 2D pattern of the scattered light was monitored 
with an electron-multiplying charge-coupled device (EMCCD) camera 

(Fig. 2B and fig. S3). In the bond percolation gel, the scattering pattern 
remained the same from the pregel solution up to the fully developed 
gel (Fig. 2, C and D). Unexpectedly, even at the gel point, there was 
little change in the scattering pattern. Stationary laser speckles (i.e., 
bright spots), which are an indication of spatial defects (16, 31–33), 
were not observed at all (see movie S1 for the scattering patterns 
throughout the whole gelation process). To make this observation 
even clearer, we performed the same measurement on a conventional 
gel synthesized by copolymerizing small monomers and cross-linkers 
in water, using a common monomer, N-isopropylacrylamide (NIPAM) 
(34). This monomer/cross-linker system serves as a representative 
example of site-bond percolation because the small monomers and 
the cross-linker do not space-fill the solution. As we expected, the 
scattering patterns of the conventional gel markedly changed during 
the network formation (Fig. 2, E and F). The total scattered intensity 
increased with the progress of reaction and reached a maximum at 
the sol-gel transition point. In addition, numerous laser speckles 
that reflect the nonuniform distribution of the polymer chains 
appeared when the incipient gel network was formed (see movie S1 
for the scattering patterns throughout the whole gelation process). 
All these static scattering results show that the spatial homogeneity 
in polymer gels can be significantly improved by the proposed bond 
percolation scheme. Note that, although the bond percolation 
gel was spatially homogeneous, the scattering patterns did not 
show Bragg diffraction peaks that are expected for spatially ordered 
systems such as crystals. The absence of clear interpolymer inter-
ference is likely because the cross-linked polymer chains are very 
flexible and fluctuate in the length scale much larger than the atoms 
in crystals do, which would smear the interference between the chains.
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Fig. 1. Schematic of the gel preparation via bond percolation. (A) Star polymer: tetrafunctional poly(ethylene glycol) (PEG) with active ester end groups; bifunctional cross-linker: 
1,14-diamino-3,6,9,12-tetraoxatetradecane (amino-PEG4-amine). (B) Stoichiometric mixture of the star polymer and the cross-linker in a good solvent. The system is uniformly 
prepacked with the star polymers. (C) Polymer gel formed by end-linking of the star polymers with the small cross-linkers via bond percolation. 2D schematics are shown instead of 
the real 3D polymer network for the sake of legibility. (D) Optical image of the fully developed transparent gel in a glass tube. Photo Credit: Xiang Li, Institute for Solid State Physics, 
The University of Tokyo. (E) Gelation of the star polymers is confirmed by dynamic viscoelastic measurements. G′ and G″ represent the storage and loss shear moduli, respectively.
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Figure 4.4: Star polymer: tetrafunc-
tional poly(ethylene glycol) (PEG) with
active ester end groups; bifunctional
cross-linker: 1,14-diamino-3,6,9,12-
tetraoxatetradecane (amino-PEG4-
amine). (B) Stoichiometric mixture
of the star polymer and the cross-
linker in a good solvent. The system
is uniformly prepacked with the star
polymers. (C) Polymer gel formed
by end-linking of the star polymers
with the small cross-linkers via bond
percolation. 2D schematics are shown
instead of the real 3D polymer net-
work for the sake of legibility (see [?
]).

Li et al., Sci. Adv. 2019; 5 : eaax8647     6 December 2019
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measurement as the crossover point (29) of the storage modulus G′ 
and loss modulus G″ (Fig. 1E). The value of G′ for the fully devel-
oped star polymer gel reached 10 kPa, which is comparable to the 
ideal elastic modulus expected for the phantom network model (30) 
(see the Supplementary Materials for details of this comparison).

To examine the nanometer structures in the gels, we evaluated 
the spatial correlations of the polymer chains in Fourier space using 
static laser light scattering (SLS) and small-angle x-ray scattering 
(SAXS), which cover a wide length scale in real space from ~2 to 
~60 nm in SAXS and from ~250 to ~920 nm in SLS according to 
Bragg’s law. Figure 2A shows the scattering profiles of the pregel 
solution and the fully developed gel synthesized by the bond perco-
lation scheme. The SLS intensity from the sol and gel samples has 
been scaled by the same factor so that it matches the SAXS intensity 
I(q) at the low-q limit, where q is the magnitude of the scattering 
vector. The scattering profiles of the polymer gel and the non–cross- 
linked pregel solution were almost identical. Namely, the spatial 
correlation between the polymer chains did not change by cross- 
linking. This result strongly suggests that gelation of the star polymers 
proceeded by bond percolation. Hereafter, we call this gel the bond 
percolation gel. Another point to note is that the abnormal strong 
low-q scattering, which has always been observed in past polymer 
gels (11, 13, 14, 18, 21–23), was not observed in the bond percolation 
gel (Fig. 2A). The spatial defects must be largely reduced from the 
gel network. To further confirm the homogeneity in this bond per-
colation gel, we performed laser speckle tests to visualize the spatial 
defects in the gel. The gelling samples were irradiated with a coherent 
laser beam, and the 2D pattern of the scattered light was monitored 
with an electron-multiplying charge-coupled device (EMCCD) camera 

(Fig. 2B and fig. S3). In the bond percolation gel, the scattering pattern 
remained the same from the pregel solution up to the fully developed 
gel (Fig. 2, C and D). Unexpectedly, even at the gel point, there was 
little change in the scattering pattern. Stationary laser speckles (i.e., 
bright spots), which are an indication of spatial defects (16, 31–33), 
were not observed at all (see movie S1 for the scattering patterns 
throughout the whole gelation process). To make this observation 
even clearer, we performed the same measurement on a conventional 
gel synthesized by copolymerizing small monomers and cross-linkers 
in water, using a common monomer, N-isopropylacrylamide (NIPAM) 
(34). This monomer/cross-linker system serves as a representative 
example of site-bond percolation because the small monomers and 
the cross-linker do not space-fill the solution. As we expected, the 
scattering patterns of the conventional gel markedly changed during 
the network formation (Fig. 2, E and F). The total scattered intensity 
increased with the progress of reaction and reached a maximum at 
the sol-gel transition point. In addition, numerous laser speckles 
that reflect the nonuniform distribution of the polymer chains 
appeared when the incipient gel network was formed (see movie S1 
for the scattering patterns throughout the whole gelation process). 
All these static scattering results show that the spatial homogeneity 
in polymer gels can be significantly improved by the proposed bond 
percolation scheme. Note that, although the bond percolation 
gel was spatially homogeneous, the scattering patterns did not 
show Bragg diffraction peaks that are expected for spatially ordered 
systems such as crystals. The absence of clear interpolymer inter-
ference is likely because the cross-linked polymer chains are very 
flexible and fluctuate in the length scale much larger than the atoms 
in crystals do, which would smear the interference between the chains.
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Fig. 1. Schematic of the gel preparation via bond percolation. (A) Star polymer: tetrafunctional poly(ethylene glycol) (PEG) with active ester end groups; bifunctional cross-linker: 
1,14-diamino-3,6,9,12-tetraoxatetradecane (amino-PEG4-amine). (B) Stoichiometric mixture of the star polymer and the cross-linker in a good solvent. The system is uniformly 
prepacked with the star polymers. (C) Polymer gel formed by end-linking of the star polymers with the small cross-linkers via bond percolation. 2D schematics are shown instead of 
the real 3D polymer network for the sake of legibility. (D) Optical image of the fully developed transparent gel in a glass tube. Photo Credit: Xiang Li, Institute for Solid State Physics, 
The University of Tokyo. (E) Gelation of the star polymers is confirmed by dynamic viscoelastic measurements. G′ and G″ represent the storage and loss shear moduli, respectively.
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Figure 4.5: E) Gelation of the star
polymers is confirmed by dynamic
viscoelastic measurements. G1 and G2

represent the storage and loss shear
moduli, respectively (see [? ]).

4.3 Percolation

As a brief introduction to percolation, consider a simple square
lattice (see Fig.??). Each bond in the lattice is occupied with prob-
ability p. A cluster of bonds is defined as the set of neighboring
occupied bonds. For simplicity, we only consider bond percolation
here because site percolation is similar in many respects. When
p “ 0, all bonds are empty. For small p, there is a sparse population
of bonds resulting in only small clusters (top left). As p increases,
the mean size of the clusters grows (top right, bottom left) and
when p “ 1, all bonds are occupied. Hence, as p increases from 0
to 1, there appears a specific value of p at which a large cluster, the
incipient percolation cluster, emerges providing full connectivity of
the network from one side to the other for the first time. The short-
est contiguous path on the percolating cluster is traced with red
(bottom left). If the size of the lattice approaches infinity, the tran-
sition from an unconnected to a connected lattice occurs sharply
when p crosses a critical threshold called the percolation threshold,
pc . Whatever property a bond represents, this property percolates
through the network and the emergence of the percolating cluster
represents a phase transition.
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Let us now consider the probability P that a bond belongs to the
percolating cluster. It is easy to see that P itself also has singular
behavior, since P “ 0 for p ă pc (no connectivity across the lattice),
while P increases continuously for p ą pc, eventually approaching
1. Close to the transition, just above pc, P follows a power law

P9pp´ pcq
β (4.1)

Suki Life and networks

FIGURE 1 | Bond percolation on a square lattice (thin lines) for
different values of the probability p. Thick line segments are occupied
with probability p. The red curve marks the shortest percolating pathway at
p = pc = 0.5 (with permission from Suki et al., 2011).

for example, fluid flow through a porous medium in which bonds
present/absent in the lattice represent open/blocked channels.
While the numerical value of pc depends on the type of lattice,
the critical exponents such as β are independent of the micro-
scopic details of the lattice and only depend on the dimension of
the space (Stauffer and Aharony, 1992). The percolation transition
is similar to other continuous phase transitions with P playing the
role of the order parameter and β the critical exponent of the
order parameter. As conceptually shown in Figure 2, the essence
of a network associated phase transition is that it separates two
regimes of network functionality and the transition between these
two states occurs sharply at a critical organization of the network
which, for the case of a simple percolation, happens when p = pc.
At the critical point, phase transitions also generate fractals which
are self-similar structures between the fully ordered and random
configurations and exhibit long-range spatial correlations. The
percolation cluster at p = pc is thus a fractal with a fractal dimen-
sion that is only a function of the dimension of the space and the
critical exponents (Stauffer and Aharony, 1992). Since fractals are
widespread in nature (Mandelbrot, 1983 ; Buldyrev, 2009), perco-
lation has become a central tool in the understanding of complex
structures and processes.

Percolation can be applied to a wide variety of phenomena.
Examples include the estimation of the amount of oil in oil fields
from limited drilling (Stauffer and Aharony, 1992) or under-
standing gelation in bronchial mucus (McCullagh et al., 1995).
Modeling the spreading of infectious diseases (Meyers et al., 2006)
can be thought of as a model of the survival of the fittest in
Darwinian evolution where a small advantage brought about by

FIGURE 2 | A conceptual representation of network associated phase
transitions. The horizontal axis represents some measure of network
structure that can range from “sparsely connected” to “highly connected”
configuration. In percolation, this would represent the probability p that a
bond is occupied. The vertical axis is related to some functional property of
the network. For example, in percolation it can represent the fraction of
networks in an ensemble that percolate the system or the probability that a
bond belongs to the percolating cluster. If flow such as fluid or electrical
current that can be carried by the network is of interest as a functional
property, there would be essentially no function available for the network
below a critical organization of its structure NC that corresponds to pc in
percolation. It can be seen that the functionality of the network suddenly
changes, once its structural organization reaches the critical configuration at
NC which represents a phase transition.

a random mutation results in spreading or percolating through
the population. Indeed, a percolation model that incorporates
species–species interactions and ancestral relationships has been
successful in explaining the distributions of extinction events and
the distribution of species and lifetimes,all of which display power-
law type distributions (Klimek et al., 2009). Another important
application is the error and attack tolerance of networks whereby
the robustness of a network structure is tested against gradual
removal nodes (Albert et al., 2000) which has implications for
the evolution of biological networks discussed later. Percolation
can also be used to explain dynamic phenomena occurring over
a physiological structure within an individual including airway
opening in the airway tree (Barabasi et al., 1996), capillary open-
ing in the pulmonary vascular network (Wagner et al., 1999), the
progression of symptoms in diseases such as pulmonary fibro-
sis and emphysema (Bates et al., 2007), or perhaps aiding tissue
engineering (Suki et al., 2007).

Finally, I mention a few more general features of network
behavior. An important application of network theory is related
to the dynamics of mass or information transfer through net-
works (de Menezes and Barabasi, 2004). Directionality can also
be associated with bonds which limits the transmission in one
direction. These processes are called directed percolation and
phase transitions on such networks belong to the non-equilibrium
class which has also been applied to the emergence of life
(Ferreira and Fontanari, 2002). Although non-equilibrium phase

www.frontiersin.org April 2012 | Volume 3 | Article 94 | 3

Figure 4.6: Bond percolation on a
square lattice (thin lines) for different
values of the probability p. Thick
line segments are occupied with
probability p. The red curve marks
the shortest percolating pathway at
p “ pc “ 0.5.

This transition is known as the percolation transition and it
conveniently models, for example, fluid flow through a porous
medium in which bonds present/absent in the lattice represent
open/blocked channels. While the numerical value of pc depends
on the type of lattice, the critical exponents such as β are indepen-
dent of the microscopic details of the lattice and only depend on
the dimension of the space. The percolation transition is similar
to other continuous phase transitions with P playing the role of
the order parameter and β the critical exponent of the order pa-
rameter. On average (i.e. averaging over many realizations of the
network, which is not self-averaging at p “ pc), the infinite cluster
is self-similar or fractal.
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4.4 Self-similarity, fractals and all that

"How long is the coast of Britain ? " is the title of paper published
by Benoit Mandelbrot in  where he shows that the degree of
complication of non-rectifiable curves (similar to the curve of Fig.
??) can be characterized by a quantity D that has many properties
of a "dimension", through it is fractional.

Figure 4.7: A typical (stochastic) fractal
generated using a diffusion-limited
aggregation model.

Consider the object of Fig. ??. This object illustrates diffusion-
limited growth (the simulation can be done more along the lines
of a standard molecular dynamics simulation where a particle is
allowed to freely random walk until it gets within a certain critical
range whereupon it is pulled onto the cluster). Imagine concentric
radii R centered at the middel of the cluster. The number particles
in a circle of radious R scales as

NpRq9RD (4.2)

Figure 4.8: The Sierpinski gasket.where D ă d is a non-integer value (d is the dimension of
the embedding space). For a regular object embedded in a a d-
dimensional Euclidean space, this law would have the form NpRq9Rd.
Cluster with non-trivial D are typically self-similar. This property
means that a larger part of the cluster after being reduced "looks
the same" as a smaller of the cluster before being reduced. This
feature can be visualized in Fig. ?? where parts of different sizes
(included into rectangular boxes) can be compared.

Figure 4.9: The von Koch curve.

The volume of an object can be measured by covering it with
d´ dimensional balls of radius l. Then the expression

Vplq “ Nplqld (4.3)

gives an estimate of the volume, where Nplq is the number of balls
needed to cover completely the object. D is defined through the
scaling of Nplq as a function of decreasing l. For an euclidean struc-
ture in embedding dimension d, if we divide the scale l by a factor
x, the number of balls needed to cover the object will increase by a
factor xd. For a non-trivial fractal structure, this is not the case, as
seen in the following exercice.

Exercice 4.1 Consider Figs ?? and ??. Show that the fractal dimensions
are D “ ln 3{ ln 2 and ln 4{ ln 2
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Energy and entropy

5.1 Quick reminder: Intensive and extensive parameters, inter-
nal energy and entropy

Thermodynamics focuses on macroscopic systems, i.e. systems
with a very large number of molecules. Thermodynamics ignores
fluctuations and should be applied with care to small systems,
i.e. single molecules. Thermodynamics seeks to describe static
equilibrium, which are states which system usually evolve.
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form of work. This connection leads us into the fields
of electrochemistry, the interaction between electri-
city and chemistry, and bioenergetics, the deployment
of energy in living organisms. The whole of equilib-
rium chemistry—the formulation of equilibrium con-
stants, and the very special case of the equilibrium
composition of solutions of acids and bases—is an
aspect of thermodynamics.

The conservation of energy

Almost every argument and explanation in chemistry
boils down to a consideration of some aspect of a 
single property: the energy. Energy determines what
molecules may form, what reactions may occur, 
how fast they may occur, and—with a refinement in
our conception of energy that we explore in Chap-
ter 4—in which direction a reaction has a tendency 
to occur.

As we saw in the Introduction:

Energy is the capacity to do work.

Work is done to achieve motion against an oppos-
ing force.

These definitions imply that a raised weight of a
given mass has more energy than one of the same
mass resting on the ground because the former has a
greater capacity to do work: it can do work as it falls
to the level of the lower weight. The definition also
implies that a gas at high temperature has more 
energy than the same gas at a low temperature: the
hot gas has a higher pressure and can do more work
in driving out a piston.

People struggled for centuries to create energy
from nothing, for they believed that if they could 
create energy, then they could produce work (and
wealth) endlessly. However, without exception, des-
pite strenuous efforts, many of which degenerated
into deceit, they failed. As a result of their failed 
efforts, we have come to recognize that energy can be
neither created nor destroyed but merely converted
from one form into another or moved from place 
to place. This ‘law of the conservation of energy’ is 
of great importance in chemistry. Most chemical 
reactions release energy or absorb it as they occur; 
so according to the law of the conservation of energy,
we can be confident that all such changes must 
result only in the conversion of energy from one form
into another or its transfer from place to place, 
not its creation or annihilation. The detailed study 
of that conversion and transfer is the domain of 
thermodynamics.

2.1 Systems and surroundings

In thermodynamics, a system is the part of the world
in which we have a special interest. The surround-
ings are where we make our observations (Fig. 2.1).
The surroundings, which can be modelled as a large
water bath, remain at constant temperature regard-
less of how much energy flows into or out of them.
They are so huge that they also have either constant
volume or constant pressure regardless of any
changes that take place to the system. Thus, even
though the system might expand, the surroundings
remain effectively the same size.

We need to distinguish three types of systems 
(Fig. 2.2):

An open system can exchange both energy and
matter with its surroundings.

A closed system can exchange energy but not 
matter with its surroundings.

An isolated system can exchange neither matter
nor energy with its surroundings.

An example of an open system is a flask that is not
stoppered and to which various substances can be
added. A biological cell is an open system because
nutrients and waste can pass through the cell wall.
You and I are open systems: we ingest, respire, per-
spire, and excrete. An example of a closed system is a
stoppered flask: energy can be exchanged with the
contents of the flask because the walls may be able 
to conduct heat. An example of an isolated system 
is a sealed flask that is thermally, mechanically, and
electrically insulated from its surroundings.

Surroundings

Universe

System

Surroundings

Universe

Fig. 2.1 The sample is the system of interest; the rest of 
the world is its surroundings. The surroundings are where 
observations are made on the system. They can often be
modelled, as here, by a large water bath. The universe con-
sists of the system and surroundings.

What do we call a sample ? A sample is the system of interest.
The rest of the world is the surrounding where observations are
made. We can distinguish:

1. Open systems which can exchange both energy and matter with
the surrounding.

2. Closed systems which can exchange energy but no matter with
the surrounding.

3. Isolated systems with no exchange at all. Boring stuff !

To describe equilibrium and non-equilibrium we first introduce the
concept of internal energy U. U is the sum of the kinetic energy
of the components, of their potential energy and of their mutual
interaction energy.

Second, we distinguish between two types of variables:

1. Extensive variables such as internal energy, volume, number
Ni of the component indexed by i. These variables scale with
the number of components (i.e. they double if we multiply the
number of components by two). In all cases, we can divide them
by the volume V and define the appropriate density. Walls sep-
arate the system of interest from its surrounding and provide
boundary conditions. It is by manipulation of walls that exten-
sive parameters are altered.

2. Intensive variables are variables such as the pressure P, the
temperature T or external fields such as an electrical field E
where it makes no sense to define a density. Manipulating inten-
sive variables is a way to apply work on the system.
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Thermodynamics assumes that there exists equilibrium states
which are completely characterized by their internal energy, their
volume V and the number N1, N2, . . . Nr of components. Consider
two equilibrium states A and B differing in their internal energy.
We can measure the difference between them, UB ´UA, and we will
often work with differentials assuming that the two states differ
sightly. So, UB ´UA becomes dU.

The basic problem of thermodynamics is to determine the values
of the extensive parameters which gives a complete description of
the equilibrium states. Obviously, these parameters are "special".
As now usual in sciences, we seek for an optimum principle which,
in a more mathematical language, is equivalent to an extremum
principle. We postulate that there exists a function, called the
entropy, of the extensive parameters

S “ SpU, V, N1, . . . , Nrq (5.1)

such that the values of the extensive parameters are such those that
maximise this function over the manifold of unconstrainted states.
From definition (??), the entropy S is also an extensive variable.
Under general assumptions, this equation can be inverted, so that
(??) is equivalent to

U “ UpS, V, N1, . . . , Nrq (5.2)

Figure 5.1: The representation of the
hypersurface S “ SpU, V, Nq in the
thermodynamic configuration space.
This figure represents also a path for a
quasi-static process.

We compute the the first differential

dU “

ˆ

BU
BS

˙

V,Ni

dS`
ˆ

BU
BV

˙

S,Ni

dV `
ÿ

i

ˆ

BU
BNi

˙

S,V
dNi (5.3)

and we remark that the partial derivatives are intensive parame-
ters. We define
ˆ

BU
BS

˙

V,Ni

“ T , the temperature

ˆ

BU
BV

˙

S,Ni

“ ´P , the pressure

ˆ

BU
BNi

˙

S,V
“ ´µi, the electrochemical potential of the ith component

(5.4)
and use this notation to write

dU “ TdS´ pdV `
ÿ

i

µidNi (5.5)

We will recognize in the next sections that TdS is the heat flux.
This equation summarizes the three possible ways for a system
to change its internal energy : heat flux, mechanical work, and
exchange of molecules. All that with the surroundings.

By definition an equation of state is a relationship which ex-
presses intensive parameters in terms of extensive parameters. For
example,

T “ TpS, V, . . . , Ni, . . .q

P “ PpS, V, . . . , Ni, . . .q

µi “ µipS, V, . . . , Ni, . . .q

(5.6)
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5.2 Interpretation of the extremum principle: entropy is mix-
ing

Consider Fig. ??. We assume that the membrane is permeable to
sucrose molecules. Sucrose will diffuse through the membrane
until the concentrations inside and outside the bag are equal. The
final equilibrium state is the state which maximizes the mixing of
sucrose with water.

What is that determines the irreversible process that leads to it ?
Clearly, this is not a mechanical process. A mechanical system

reaches it equilibrium states by going down the scale of its mechan-
ical, i.e. potential, energy. Here, sucrose solutions are almost ideal,
meaning that their energy is almost independent of their concen-
tration. The main difference between the initial and final state lies
in the number of ways sucrose oleules are distributed over the total
volume. There are more ways to distribute sucrose molecules in a
large volume than in a small one. What the system does is that it
maximizes the mixing entropy.

What shows also the figure is tat work (and heat) exchanged
with the surroundings depends on the path taken from the initial
to the final state. We can do the experiment in a quasi-static way
by moving a permeable piston so that we reach reversibly the same
final state (uniform mixing). Figure 5.2: A dialysis experiment in

which sucrose will diffuse our if a
bag and water in until equilibrium is
attained. This process is irreversible
and no work is done. A way of doing
the same experiment reversibly. The
membrane of the piston is imper-
meable to sucrose and permeable to
water. If the pressure on the piston is
gradually reduced, the same final state
of uniform mixing is attained, see [? ].

5.3 The first law of thermodynamics

In the process of going from A to B, The work done on the system
is measured by the methods of mechanics and is associated with
a change in volume dV. We write for quasi-statics processes (the
meaning of d̄ is explained below)

d̄W “ ´PdV (5.7)

where P is the pressure controlled from the surrounding. It is
sometimes noted Pext.

We define the heat flux to the system as the difference in inter-
nal energy between the final and the initial state diminished by the
work done on the system.

d̄Q “ dU ´ d̄W at constant mole number (5.8)

Note that this equation gives the definition of what we call heat and
that heat corresponds to an energy transfert. This equation is also
equivalent to

dU “ d̄Q` d̄W at constant mole number (5.9)

We now explain the meaning of the symbol d̄. In the process of
going from A to B, the work done on the system depend a priori
on the process and different ways for going from A to B may give a
priori different works. Therefore, d̄W and d̄Q are the work and heat
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in a particular process. However, the energy difference dU between
two equilibrium states cannot depend on a particular path joining
them and we employ the usual differential symbol dU.

Since work and heat refer to particular modes of energy transfer,
each is measured in energy units. The practical units is the calorie,
or 4.18 J. Eq. (??) is the statement of the first law in thermodynam-
ics which can be formulated as follows.

Changes in energy occur as a consequence of adding and sub-
tracting heat, d̄Q, and work, d̄W to the system. Before going on, it
is important to make the sign convention clear. If we add energy
to the system by performing work, d̄W is always positive. If the
system does some kind of work, then d̄W ă 0. If the system receive
heat, d̄Q is positive. If the system loses heat during the process,
then d̄Q is negative.

5.4 The definition of the Boltzmann’s entropy

In classical text books in thermodynamics, the entropy (from the
greek, evolution) is defined via the ratio

S “
Q
T

(5.10)

where Q is the heat and T the temperature. This leads to the for-
mulation of the second principle (a machine cannot perform work
without heat flux between two sources and these sources cannot be
at the same temperature)

In these lectures, it is more appropriate to use the definition
of Bolzmann. For a given macroscopic state, there exists a huge
number of microscopic configurations (states of the particules).
For example, we can divide a container into a grid of M compart-
ments. We decide that the size of the compartment is such that we
can put at most one molecule in one compartment. If there are N
molecules, we will assume N ! M, i.e. diluted solutions. Here the
number the configurations W corresponds to the number of ways
we can distribute the N particules among the M compartments. In
the same way and for a gaz of particles, there are a large number
of different configurations (speed, position) for the particles which
gives the same macroscopic pressure.

We have the definition

S “ kB ln W (5.11)

Note 1 If we combine two systems, let say A and B molecules, then

WA`B “ WA ˆWB (5.12)

which means that entropy is additive (extensive)

SA`B “ SA ` SB (5.13)

as it should be.
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5.5 A mathematical interlude

The multiplicity, W, for N molecules distributed among M grid
points is (the size of the grid point is the size of a molecule, so there
is at most one molecule per compartment)

W “
M!

N!pM´ Nq!
(5.14)

and is easy to demonstrate:

• M choices for the first molecule. There is, therefore, M ´ 1
choices for the second one (one molecule per box) and so on.
We have:

M!
pM´ Nq!

“ MpM´ 1q . . . pM´ N ` 1q (5.15)

• There are N choices for the first molecules, pN ´ 1q ones for the
second one etc. The way we draw the molecules does not matter,
since all all them leads to the same configuration. Therefore, we
divide by N!

We shall use the following formula (Stirling) which works very
well when n is large (n ą 2 in practice)

n! “ pn{eqn (5.16)

This means:

ln W “ ln
M!

N!pM´ Nq!

“ ´M
„

N
M

ln
N
M
` p1´

N
M
q ln

ˆ

1´
N
M

˙

» ´N ln
N
M

if (small concentration, or small mole fraction)
N
M
! 1

(5.17)
so that the entropy per unit volume is

S “ ´kB ln c (5.18)

Exercice 5.1 The exact approximation (Stirling formula) for n! is

n! “
´n

e

¯n?
2πn

ˆ

1`Op
1
n
q

˙

(5.19)

Compare the left-and-right hand side for n= 3,4, and 10. Show that the use
of the simple Stirling formula ?? gives a reasonable approximation (it will
be useful to compute ln n! instead of n!).

The multiplicity of a system increases as the volume increases.
We consider a gas in a container. This container is divided into grid
boxes with at most one gas molecule per box. The multiplicity of
a molecular system is defined as the number of different config-
urations or conformations of the component atoms or molecules
that are equivalent. For what follows, it will be useful to use the
following definition:
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Definition 5.5.1 A state of system is characterized by the global
properties of the system, such as the temprature, pressure, or number of
molecules. A microstate is a specific configuration of molecules that is
consistent with the state. Each state corresponds to many different mi-
crostates, see Fig. ??.

Figure 5.3: The container is divided
into into boxes. The grid boxes need
to be small enough to accomodate
only one molecule. When comparing
to systems, it is crucial to have the
same size for the grid boxes. Two
microstates (configurations) are shown
for the same state.

Exercice 5.2 Compute the change in entropy for a a system of n molecules
in a system with N boxes. Using Stirling formula, show that the entropy
increases as on increase the volume of the system forom N to 2N.

5.5.1 The binomial distribution

This is the probability to get k successes in n trials for an event
occuring with probability p. The probability distribution is given by

Ppx “ kq “ Ck
N pkp1´ pqN´k (5.20)

From the binomial expansion

1 “ 1N “ p1´ p` pqN “ pp1´ pq ` pqN “
ÿ

k“0,N

Ck
N pkp1´ pqN´k

(5.21)
we see that ppkq is normalized

ÿ

k“0,N

ppkq “ 1 (5.22)

The case p “ 1{2 corresponds to flipping a coin.
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0.20 Figure 5.4: Binomial distribution for
p “ 0.1, 0.5, 0.7.

Exercice 5.3 Analogies between mismatches in DNA and coin flips.
During the replication process, errors (mismatches between the base pair)
are introduced are being introduced in the newly synthesized strand.

1. We denote the probability of a mismatch being introduced as p. What is
the mean value of mistakes ? (hints: remember k!{k “ pk´ 1q!q
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5.5.2 The normal distribution

When the number of events is very large, the probability distribu-
tion of the normal distribution is well approximated by the Gaus-
sian (or normal) distribution. The normal random variable has
probability distribution

f pxq “
1

?
2πσ2

exp
"„

´
px´ µq2

2σ2

*

(5.23)

The mean is µ and the variance is σ2. As σ Ñ 0, the random vari-
able is almost sure. With these definitions, (??) is normalised to 1,
so that the σ Ñ 0 limit gives the δ-Dirac function.

-1.5 -1.0 -0.5 0.5 1.0 1.5

1

2

3

4 Figure 5.5: The normal distribution
tends to a Dirac distribution as σ Ñ 0.

Exercice 5.4 If you have not done before, the following trick is useful. To
calculate

ż `8

´8

dx exp
!”

´αx2
ı)

, evaluate first

„
ż `8

´8

dx exp
!”

´αx2
ı)

2

“

ż `8

´8

dx exp
!”

´αx2
ı)

ż `8

´8

dy exp
!”

´αy2
ı)

(5.24)

and use polar coordinates. While you are at it, take the derivative with
respect to α to calculate ă x2 ą.

5.6 The second law of thermodynamics

One statement of the second law of thermodynamics if that the
combined entropy of the system and the surroundings always in-
creases for a spontaneous process. This is equivalent to saying that
the entropy of a system and its surroundings has a maximum value
at equilibrium.



36 physics of the colloidal domain - lecture notes

To illustrate the application of maximum entropy principle, we
consider a simplified model for osmosis.

The system is divided into two halves by a semipermeable bar-
rier. The barrier allows type A molecules to pass freely, but blocks
the passage of the B molecules. For simplicity, we assume the same
number N of A and B molecules.

We divide each half of the chamber into M grid boxes with
M " N. The value of entropy on the left side of chamber can be
calculated as follows

Sl
kB
“

Sr

kB
“ N ln

M
N

(5.25)

We start from a situation where all the A molecules are on the
right with the B in the left half. Assume now that a fraction x
of A molecules have crossed the barrier. This means that xN A
molecules are in the compartment occupied by the B molecules
(which cannot cross the barrier). Since the two kinds of molecules
act independently of each other, the total entropy for the left com-
partment is the sum

Sl
kB
“ N ln

M
N
` Nx ln

M
Nx

(5.26)

The right compartment has now p1´ xqN molecules and its entropy
is

Sr

kB
“ Np1´ xq ln

M
Np1´ xq

(5.27)

So the total entropy is therefore given by

S
kB
“

Sl
kB
`

Sr

kB
“ 2N ln

M
N
´ N rx ln x` p1´ xq lnp1´ xqs (5.28)

and the change in entropy per A molecule (divide par N)

∆S
kB
“ ´rx ln x` p1´ xq lnp1´ xqs (5.29)

From the figure, see Fig ??, S is maximum when x “ 1{2, meaning
that half of A molecules have diffused on the left half.

In this situation the B molecules in the left chamber contribute
a constant value to the total entropy and the volume of each com-
partment is held constant. As the A molecules move to the left, the
density in the left hand-side increases and the osmotic pressure
increases. This phenomenon is known as the osmotic pressure (if
living cells are transferred to low solute concentration, cells burst).
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Figure 5.6:
5.7 Consequences of the extremum principle

Recall that the entropy is an extensive function. Therefore,

S “ SpU, V, Nq (5.30)

From this, we have for the internal energy U

dU “ TdS´ pdV ` µdN (5.31)
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where ´pdV is the work done on the system (the work provided
by the external force), and dN is the change in the number of
molecules (we consider one type of molecules). From this, one
finds,

dS “
1
T

dU `
p
T

dV ´
µ

T
dN (5.32)

where µ is the chemical potential. We show that the statement that
the entropy is maximal implies that temperature, pressure and
chemical potentials for systems in contact are equal.

5.7.1 Thermal equilibrium

We consider the system and the surrounding and assume the com-
posite system is isolated. This means:

Usys `Usur “ constant (5.33)

as imposed by the closure of the composite system as a whole. We
also assume that (a) there is no exchange of matter between the
system and its surrounding and (b) that the volume is kept constant
(i.e. there is a test tube plug). According the extremum principle,
the values os Usys and Usur will be such as to maximize the entropy

dS “ 0 (5.34)

The additivity of the entropy gives the relation:

S “ SsyspUsys, Vsys, . . .q ` SsurpUsur, Vsur, . . .q (5.35)

As Usys and Usur are changed by energy transfert, the entropy
change is:

dS “
ˆ

BSsys

BUsys

˙

Vsys

dUsys `

ˆ

BSsur

BUsur

˙

Vsur

dUsur (5.36)

From the definition of temperature

ˆ

BS
BU

˙

sur
“

1
T

(5.37)

we have

dS “
1

Tsys
dUsys `

1
Tsur

dUsur (5.38)

By the conservation equation dUsys ` dUsur “ 0

dS “
ˆ

1
Tsys

´
1

Tsur

˙

dUsys (5.39)

Since the condition for extremum demands that dS vanishes, we
have as a condition for equilibrium

1
Tsys

“
1

Tsur
(5.40)
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5.7.2 Mechanical equilibrium

The same argument gives

P1 “ P2 (5.41)

Exercice 5.5 Assume no energy transfer and no transfer of molecules. So

dS “
ˆ

BSsys

BVsys

˙

Usys , Nsys

dVsys `

ˆ

BSsur

BVsur

˙

Usur , Nsur

dVsur (5.42)

Derive (??) using Vsys `Vsur “ constant.

5.7.3 Chemical equilibrium

Consider
2 H2 `O2 ÝÝÑÐÝÝ 2 H2O (5.43)

We can write in general

0 ÝÝÑÐÝÝ
ÿ

jνjAj (5.44)

where νj are stoichiometric coefficients, p´2,´1, 2q for the reaction
above. The fundamental equation of the system is

S “ SpU, V, N1, . . . , Nrq (5.45)

In the course of the chemical reaction, the total energy U and the
volume V remain fixed. The change in entropy is then

dS “ ´
j“r
ÿ

j“1

µj

T
dNj (5.46)

Since the change in mole number are proportional to the stoichio-
metric coefficients

dS9´
µj

T
νj (5.47)

Then the extremum principles dictates
ÿ

j

µjνj “ 0 (5.48)

Example 5.1 If
A1 ÝÝÑÐÝÝ A2 (5.49)

Then
µ1 “ µ2 (5.50)

In summary, the principle of maximum entropy for system 1` 2
leads to the conditions

1. Equilibrium for the chemical work µ1 “ µ2.

2. Equilibrium for the mechanical work p1 “ p2.

3. No net heat transfert between T1 “ T2.
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5.8 Thermodynamic potentials

Consider gaz in a compartment of volume V. If we move the wall
(the piston), the volume changes and there is also a change in pres-
sure on the piston will follows the change in volume. Conversely,
if we change the pressure on the wall, the volume will follow the
change in pressure and will adapt to the new situation. We need,
therefore, a bookkeeping mechanism to manage this adaption
mechanism between an intensive variable and its extensive con-
jugate partner.

The whole thing is to focus on independent versus dependent
variables. The independent variable is the one that is changed by
the person who is doing the experiment. The dependent variable is
the one which depends on the outcome of the experiment. In the
preceding example:

1. Process of type 1: When we move the wall by a mechanical
system, the independent variable is the volume. The dependent
variable is the pressure on the piston.

2. Process of type 2: When we change the pressure on the piston,
the independent variable is the pressure, and the dependent one
is the volume.

Observe that an intensive dependent or independent variable is
always conjugated to an extensive independent or dependent vari-
able.

Consider again the energy differential

dU “ TdS´ PdV ` µdN (5.51)

This equation means that the increase dU of U follows the ones of
pS, V, Nq chosen as independent variables. This equation implies
also that the pressure P adapts to a change in V, since

P “ ´
ˆ

BU
BV

˙

S,N
(5.52)

Figure 5.7: (a) A process occurring
under conditions of constant volume
and temperature[? ].

Figure 5.8: (b) A process occurring
under the conditions of constant
pressure and temperature.

Experiments of type 1 controlling the volume are not of great in-
terest to the biochemist. Reactions usually take place in a test tube
at a constant pressure of 1 atm. The temperature is also constant.
To deal with type 2 experiments, see Fig. ??, write

G “ U ´ TS` PV (5.53)

which defines the Gibbs free energy. Now differentiate

dG “ dU ´ TdS´ SdT` pdV `VdP “ SdT`VdP` µdN (5.54)

which means that, from the point of view of G, the variables T, P, N
are the independent variables. So, we write

G “ GpT, P, Nq (5.55)
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From Eq. (??), we see that dG “ 0 when T, P, N are constrained

by a reservoir. In other words, S, V and P adjust themselves to
make G extremal, actually minimal see next section.

In short:

1. For processes occuring under the condition of constant volume,
use the free energy F “ U ´ TS, see case (a) of Fig. ??.

2. For processes occuring under the condition of constant pressure,
use the Gibbs free energy G “ F´ PV, see case (b) of Fig. ??.

Remark 3 An important question in thermodynamics is to isolate the
control parameters and the companion parameters which adjust themselves
by (Gibbs) free energy minimization. For an intensive parameter deter-
mined by the experimental conditions (force or pressure), there is always
an extensive variable that adjusts (length or volume). The reciprocal is also
true. Minimizing the wrong free energy leads to non-sense. The following
example illustrate this point.

R

Figure 5.9: A single molecule exper-
iment using a bead trapped in an
optical trap.

Consider Fig. ??. A polymer is grafted to a solid surface at one en
point. A bead is bound to the other end point. The bead can be observed
under the microscope because of its size and the elongation R can be
recorded. On can also apply a force F to the bead so that the polymer
can be stretched. What the characteristic force-extension curve R “ RpFq
?

To answer we need two things. First, the correct free energy. Second
our minimization principle. Assume that the polymer behaves as a spring.
Its potential energy has therefore the form 1{2kR2, where k is some elastic
modulus. The control parameter is the force. The work done by the force is
FR, so we consider the Gibbs free energy

G “
1
2

kR2 ´ FR (5.56)

0.5 1.0 1.5 2.0 2.5 3.0

-0.5

0.5
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Figure 5.10: Plot of 1{2kx2 ´ Fx with
the minimum at x “ F{k.

Then, the elongation minimizes G. Plotting G as a function of R shows
that G has indeed a minimum at some Re “ F{k. This is the equilib-
rium and one finds that at equilibrium G is independent of R, since R is
fixed by the force. Note that if we would have minimized 1{2kR2 without
adding the work done by the force, the result would have been meaningless,
i.e. R “ 0.

5.9 Minimum principle

We illustrate two points:

1. The free energy minimization is an alternative of the entropy
maximization.

2. The minimization of the free energy reflects the competition
between energy and entropy.

The enthalpy of the system is given by:

Hsys “ Usys ` PVsys (5.57)
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According to this equation, an infinitesimal change in the enthalpy
is given by

dHsys “ dUsys ` PdVsys `VsysdP (5.58)

If this change is made under constant pressure, then dP “ 0 and

dHsys “ dUsys ` PdVsys (5.59)

Using

dSsur “
1
T

dUsur `
P
T

dVsur (5.60)

with
dUsur “ ´dUsys

dVsur “ ´dVsys
(5.61)

we get

dSsur “ ´
1
T

dUsys ´
P
T

dVsys (5.62)

Comparing with (??), we get the following for the entropy change
of the surrounding when the process occur under constant pressure

dSsur “ ´
1
T

dHsys (5.63)

which means that the entropy changes of the surrounding is equal
to the heat transferred to the system.

For the process at constant pressure and constant temperature to
occur spontaneously, the total entropy must increase

dStotal “ dSsys ` dSsur ě 0 (5.64)

which means:
dHsys ´ TdSsys ď 0 (5.65)

We now define the Gibbs free energy

G “ H ´ TS (5.66)

As the entropy and the enthalpy, G is a state function.
The change in Gibbs free energy is the amount of energy (or

heat) that can be converted to work. An infinitesimal change dG is
given by

dG “ dH ´ SdT´ TdS (5.67)

At constant temperature

dG “ dH ´ TdS (5.68)

and using p??q, we find that the Gibbs free energy decreases

dG ď 0 at constante pressure and temperature (5.69)

Thus, a spontaneous process at constant temperature and pressure
always involve a decrease in Gibbs free energy. It follows that the
Gibbs free energy is minimum at equilibrium, see fig. ??.

Figure 5.11: Illustration of the Gibbs
free energy change during a chemical
reaction. The reaction evolves till
the system reaches the minimum
equilibrium point.
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Exercice 5.6 Equivalence of the Bolzman entropy and of the

statistical entropy

Consider a collection of N molecules distributed among t confor-
mational states. Each molecule can occupy a conformational state j,
j “ 1, 2, . . . t. Let Nj the number of molecules in the state j. We have:

ÿ

1ďjďt

Nj “ N (5.70)

Recall that In the lecture we have defined the Bolzmann entropy as

S “ kB ln W (5.71)

where W is the multiplicity of the system. This follows naturally from
the idea that a system evolves naturally from less probable states to more
probable ones (a macroscopic state with high multiplicity is more likely to
be observed).

1. What the multiplicity of the distribution of N molecules ?

2. Use
ln Nj! “ Nj ln Nj ´ N (5.72)

for all Nj and show

W “
NN

NN1
1 NN2

2 . . . NNt
t

(5.73)

3. Let

pi “
Ni
N

(5.74)

be the fraction of the total number of molecules found in level i. Show

S “ NkB
ÿ

1ďjďt

pj ln pj (5.75)

For a typical configuration, pi “ Ni{N is the probability that a molecule
is in conformational stet j. This last expression is the statistical definition
of entropy we shall use later on and this exercice demonstrates that the
definition of Bolzmann entropy is equivalent to the definition of statistical
entropy.

5.10 The statistical and thermodynamic definitions of entropy
are equivalent

5.10.1 The work done in an near-equilibrium process is related to the
change in entropy

Consider a volume expansion V1 Ñ V2 which occurs in a series of
infinitesimally small steps. The work done by the experimentalist is

dW “ ´pdV (5.76)
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so that for dV ă 0, we have dW ą 0. The process being quasi-static,
we van apply the ideal gas law

PV “ nRT (5.77)

This means

W “ ´

ż V2

V1

nRT
V

dV “ ´nRT ln
V2

V1
(5.78)

We assume also an isothermal process. This means that the energy
of the gas cannot change during the process. In accordance with the
fist law which states

dU “ dw` dq (5.79)

the system takes heat from the surrounding

W `Q “ 0 ùñ Q “ nRT ln
V2

V1
(5.80)

Using the thermodynamic definition of entropy ∆S “ Q{T, we get

∆S “ nR ln
V2

V1
(5.81)

5.10.2 Equivalence between the two definitions

To analyse the statistical entropy, we consider again a container di-
vided into M boxes. For large N et M (N is number of molecules),
we use Stirling formula to get

ln W “ N ln
M
N

(5.82)

The volume V1 is related to M by V1 “ Mv0, where v0 is the volume
of a box (equal to to the volume of one molecule). So, for system 1

S1 “ kbN ln
V1

Nv0
(5.83)

and
∆S “ S2 ´ S1 “ Nkb ln

V2

V1
(5.84)

Or N “ nNA, where NA is the Avogadro number. We define R “

NAkb. Both definitions, see Eqs. (??) and (??) give the same result.
These definitions are, therefore, equivalent.
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Maximum work and Gibbs free energy: coupling work
to ATP hydrolysis

Our discussion has so far focused on a particular kind of work
involving changes in volume. This is called "expansion" work. The
system can, however, do other kind of works without changing the
volume (in the sense defined below, the system is can be either a
transporter or a motor protein). This includes electrical work, in
which charges move against a gradient of electrical potential, and
chemical work, where the free energy change is due to change in
the number of molecules. The exquisite ability to extract work for a
chemical reaction a landmark property of biological systems.

Peter Rich

The 1960s was an important time for mito-
chondrial research, which saw many sig-
nificant and enduring advances. During

this period, Peter Mitchell developed the
chemiosmotic proposal — the coupling of
biological electron transfer to ATP synthesis.
Although it ultimately won Mitchell a Nobel
Prize, his work was highly controversial, and it
was more than a decade before his ideas were
accepted widely, leading some researchers to
claim prior ownership of key elements of the
ideas that still persist today.

The fact that mitochondria are central to
the efficient provision of energy for eukary-
otic cells is undisputed. It is generally accepted
that the early and energetically inefficient
eukaryotic cell was invaded more than a 
billion years ago by a bacterium containing 
a much more efficient system for utilizing
available energy sources — the oxygen-
consuming respiratory chain. The majority
of the bacterial genetic information was 
subsequently transferred to the nucleus,
transforming the bacterial symbionts into
slave mitochondrial organelles.

We rely on these mitochondria to synthe-
size ATP. The process begins with the passage
of electrons derived from food along a series 
of mitochondrial respiratory-chain carriers,
until they are consumed in converting the oxy-
gen we breathe into water. Mitchell showed
that their transfer is linked to the movement 
of protons across the ion-impermeable inner

mitochondrial membrane in which the respi-
ratory chains are embedded. The membrane
acts as a capacitor, storing energy as a pH and
charge difference across the membrane. This
gradient of electrochemical potential energy 
is used to drive protons through the ATP syn-
thases that are embedded in the same mem-
brane, and which couple the exergonic proton
flow to the synthesis of ATP from ADP and
phosphate. The energy thus stored can be
released by ATP hydrolysis, a reaction that is
used by the myriad energy-requiring enzymes
that maintain cellular function. 

An average human at rest has a power
requirement of roughly 100 kilocalories (420
kilojoules) per hour, which is equivalent to a
power requirement of 116 watts — slightly
more than that of a standard household 
lightbulb. But, from a biochemical point of
view, this requirement places a staggering
power demand on our mitochondria.
Mitchell’s work showed that the electro-
chemical gradient of protons across the inner
mitochondrial membrane that drives ATP
synthesis is roughly 200 mV, and most of this
is the electric field component. 

If it is assumed that 90% of human power
is provided by the protons that are transferred
through the ATP synthase, then the trans-
membrane proton flux would have to repre-
sent a current of 522 amps, or roughly 3!1021

protons per second. Recent estimates, based
on the structure of yeast ATP synthase, con-
tend that three ATP molecules are formed for
every ten protons that are transferred. Assum-
ing a conversion efficiency that is close to
unity, ATP is reformed at a rate of around
9!1020 molecules per second, equivalent to a
turnover rate of ATP of 65 kg per day and with
much higher rates than this during periods of
activity. This output is itself powered by the
oxygen-consuming respiratory chain. 

A typical adult male consumes around 380
litres of oxygen each day, and top athletes can
sustain rates that are ten times greater for 
limited periods. Most (90%) of this oxygen is
reduced to water by the terminal respiratory-
chain enzyme, cytochrome oxidase. The inner
mitochondrial membrane contains around
0.4 nanomoles of this enzyme per milligram
of protein. It can work at a rate in excess of 300
electrons every second, but probably operates
at an average rate of no more than 50 per 
second. Hence, an average human will need
2!1019 molecules of cytochrome oxidase to
support oxygen consumption. With the inner
mitochondrial membrane having a lipid/pro-
tein weight ratio of 1:1, the cytochrome oxi-
dase would be associated with about 70 ml of
lipoprotein membrane. However, the mem-
brane’s thickness — only 6 nm — means that
the surface area of the inner mitochondrial

membrane in an average human would be
around 14,000 m2.

This constant energy provision is a her-
culean task so it is not surprising that defects
in mitochondrial function should lead to
physiological disorders. As human mito-
chondrial DNA (mtDNA) sequence and clin-
ical databases are amassed and compared, the
number of diseases that are suspected to be
caused by mitochondrial dysfunction due to
mtDNA mutations is increasing. Mutations
in mtDNA might even accumulate with age
and contribute to a reduced efficiency of
energy provision. Some aspects of mitochon-
drial function seem to be potentially deleteri-
ous to cell health, particularly the ‘leakage’ of
electrons that must inevitably occur, result-
ing in the formation of small amounts of
damaging and mutagenic free radicals. Mito-
chondria may also play a key role in some cells
in an apoptotic, or ‘cell death’, pathway by
releasing factors from the intermembrane
space into the cytoplasm, where they interact
with the caspase cascade system. So it seems
that our energy-producing organelles have
not yet been entirely tamed to the needs of the
eukaryotic cells that control them, and that
we may well be paying a significant price for
the luxury of the efficient energy supply that
we need to sustain our ravenous needs.

Recognition of such mitochondrial activ-
ities, together with the tremendous advances
in determining the structural details of the
mitochondrial molecular machinery, in
many instances down to the atomic level, is
heralding a new era of interest in mitochon-
dria. Hopefully, the new wave of insights into
this enigmatic organelle that are now 
emerging will not evoke the same controversy
and prolonged difficulties in acceptance as
Mitchell’s work. ■

Peter Rich is in the Department of Biology,
University College London, Gower Street, 
London WC1E 6BT, UK.
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Chemiosmotic
coupling
We may well be paying a significant
price for the luxury of an efficient
energy supply.

Shining example: even at rest, a human body
requires as much power as a 100-watt lightbulb.
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Figure 6.1: Even at rest, a human body
requires as much power as a 100-watt
lightbulb, from [? ].

Basically, we rely on mitochondria to synthesis ATP the energy
is stored from the synthesis of ATP from ADP and a phosphate.
This energy can be released from ATP hydrolysis, a reaction that is
used by a myriad energy requiring enzymes that maintain cellular
function.

As seen in Table ??, there are many possible ways to perform
work. Consider what happens to the free energy when a small
number of molecules moves from outside to the inside of the cell.
Let us say that the number of moles inside changes as n Ñ n` dn.
For a mechanical displacement with a force F and a displacement
dr, we have

∆G “
ż

Fdr (6.1)

What is the equivalent of the mechanical work (??) for our chem-
ical work which consists in transferring molecules ? If ∆µ is the
change in chemical potential between the outside and the inside,
the equivalent of (??) is

∆G “
ż

∆µ dn (6.2)

Th work is known as the chemical work. Note that there is a close
relationship between the change in free energy and the amount of
work done on the system. Actually, the change in free energy in
a process equal the maximum amount of work that can done or
extracted in a process.
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Table 6.1: Different types of works
that can be done by a system.

Type of work Intensive variable Extensive variable Work

Mechanical Force, F Change in distance, dr W “
ş

Fdr
Expansion Pressure, P Change in Volume, V W “

ş

PdV
Electrical Voltage Difference, ∆V Change in charge , dq W “

ş

δVq
Surface Surface tension, γ Change in surface area, dA W “

ş

γdA
Chemical Chemical potential difference, ∆µ Change in the number of molecules, dn W “

ş

∆µ dn

6.1 An example

Consider a kinesin motor protein moving a cargo vesicle along
a microtubule track. This motor protein is able to perform work
which is equal to

dw “ ~F.~dr (6.3)

for a small displacement dr (corresponding to a "step" size). If the
motor protein "walks" at constant speed, the energy dissipated is
equal to the work done by the protein. In the preceding equation,
the force ~F is the resistive force due to friction and viscositywhich
counterbalances exactly the generating force of the kinetsin. In
other words, one can extract work from the kinesin motor protein.
The movement of the vesicle is powered by the hydrolysis of ATP
within the motor domain of the kinesin protein and the value of the
free energy change for hydrolysis

∆GATP “ ´28 kJ.mol´1 (6.4)

Figure 6.2: A kinesin protein walking
on a microtubule filament

is negative and sets the limit of work that can be done (ex-
tracted) from the system. Recall the convention dw ă 0 for work
done by the system (extracted from the system). Since ~F is resis-
tive, the vector product is negative indeed (in the opposite direction
of the movement). Although ∆GATP ă 0, ATP hydrolysis is not
spontaneous because of a high energy barrier and this process is
controlled in cells by a number of kinase proteins.

This said, it is important to remember that a way to transform
free energy into work is to couple a chemical reaction to a mechan-
ical displacement. This has measured in single molecule experi-
ments[? ] and can be summarized as follows for a kinesin perform-
ing a 8-nm step per ATP molecule hydrolysed

Original Position`ATP ÝÝÑ pOriginal Position` 8 nmq `ADP` Pi

(6.5)
It should be noted that the difference in energy is between the
total sum of the right and the total sum of the left member of this
equation.

6.2 Maximum work that can be extracted

It will be useful to derive the conditions imposed by thermodynam-
ics on the maximum work extracted from the hydrolysis of ATP.
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Consider a system coupled to a surrounding. In the preceding
example, the system is the sum of the ATP bound molecule with
the motor protein. As before, we have for the total variation of
entropy

dSsys ` dSsurr ě 0 (6.6)

with

dSsurr “ ´
dq
T

(6.7)

where dq is the heat transferred from the surrounding to the system
(when the surrounding gives heat, its entropy decreases).

From
dU “ dw` dq (6.8)

One gets

dSsurr “ ´
1
T
pdU ´ dwq (6.9)

and
T
`

dSsys ` dSsurr
˘

“ TdSsys ´ dU ` dw (6.10)

For isothermal processes without expansion work (i.e. no change in
volume), this gives

´dG` dw ě 0 or ´ ∆GATP ` ∆w ě 0 (6.11)

Since ∆G and ∆w are both negative, we have in absolute value

|∆GATP| ě |∆w| (6.12)

Thus the maximum work that can be extracted from the process is
equal to the change in the Gibbs free energy for ATP hydrolysis.

Energy is the ability to do work: How do we convert chemical
energy into mechanical work ? The trick is to couple a reaction to a
mechanical process (rotation, translation, diffusion etc.).

Consider the hydrolysis of ATP

ATP`H2O ÝÝÑÐÝÝ ADP` Pi `H2O (6.13)

where Pi represents the phosphate ion (inorganic). In order to de-
termine whether the reaction will proceed spontaneously from left
to right, we need to determine the sign of the total change in energy
∆G

∆G “
ż products

reactants
dG “ Gpproductsq ´ Gpreactantsq

“ GpADP` Pi `H2Oq ´ GpATP`H2Oq
(6.14)

Figure 6.3: ATP loses its terminal
phosphate group upon hydrolysis.
This reaction occurs rapidly in the
forward direction when catalyzed.

Since the free energy of a molecule changes with temperature,
pressure, and wether it is pure or in mixture, one needs to know
the conditions for which a free energy change is reported. The free
energy change is usually reported for the standard state (molar free
energy, i.e. for one mole) and for ATP hydrolysis is

∆G “ ´28kJ.mol´1
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So the reaction will proceed spontaneously to the right, because
the free energy of ATP in water is higher than the free energy of
ADP and Pi. However, the energy barrier along the reaction coordi-
nate is so high that this reaction cannot happen spontaneously. We
need a catalyser, i.e. a molecule which lowers the energy barrier as
seen below.

As said before, the way to transform free energy into work is
to couple the ATP hydrolysis to an other chemical or mechanical
reaction. Then the maximum chemical or mechanical work which
can be extracted is bounded from above by the free energy change
is ATP hydrolysis.

Figure 6.4: The maltose transporter
which couples transport of maltose
molecules across the membrane with
ATP hydrolysis.

Consider, for example, the maltose transporter with the reaction

H2O`ATPpinq `Maltosepoutq

ÝÝÑ ADP` Pi `Maltosepinq
(6.15)

where the maltose is transported from the outside of the cell to the
inside by an enzyme which uses ATP hydrolysis1, see Fig. ??. The 1 Maltose = 2 glucose molecules to-

gethercycle proceeds into 4 steps:

1. ATP binds to the inner face of the membrane and maltose binds
to the outer face. This is a high energy conformation of the trans-
porter.

2. The transporter relaxes this high energy conformation by mov-
ing the maltose inside the barrel.

3. Then, ATP can be hydrolysed resulting in the formation of ADP.
This is why the maltose transporter is an enzyme which catalyse
this reaction.

4. This conformation is unstable and relaxes by releasing the mal-
tose molecule in the inside of the cell (with ADP + Pi).

In short, the gain in (chemical) energy due the hydrolysis of ATP is
used to drive a conformational change in the transporter. Coupling
the transporter molecule to ATP hydrolysis gives here a way to per-
form chemical work (the maltose molecule has been transferred
from the outside to the inside of the cell). This is this conforma-
tional change which allows the maltose molecule to be transported
through the barrel.

The next question is far from trivial: can we increase the con-
centration of maltose inside the cell so that the cycle will run the
other way around. In that case, the energy provided would be the
increase of entropy due to the maltose molecules flowing outside
the cell (remember F “ U ´ TS). By the same token, this would
provide a way to synthesize ATP from ADP. The problem is that
we cannot increase the concentration of maltose to infinity without
reaching the sedimentation limit. The F-1ATPase motor protein
uses this strategy to synthesize ATP. This protein is molecular tur-
bine machine using protons flux. If the flux is driven one way, the
machine synthesize ATP and the machine can use ATP to drive the
flux of protons the other way.
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Entropy of mixing and chemical potential

We are concerned with the thermodynamics of self-assembly
of molecules (polymers, surfactants, phospholipids and so on).
We start by considering the mixing of two lipid species, or so-
lute/solvant, on a flat 2D membrane which reflect the behavior
of the miscibility of sucrose into water.

Figure 7.1: Lattice model to calculate
the entropy of mixing.

The simplest approach to calculate the entropy of mixing of NA

molecules A with NB molecules B is to adopt a coarse-grained or
lattice model. In that case, we divide the membrane into N “ NA `

NB compartments (little cells). Molecules interchanges positions
by diffusion. The conformational probability of the last section
is replaced by the probability to distribute molecules among the
different compartments. This is the origine of the mixing entropy.

Let us distribute NA of A molecules in N compartments. Since
the A molecules are indistinguishable, there are

N!
NA! pN ´ NAq!

(7.1)

ways to do it. All that remains is to place the B molecules. Since the
B molecules are also indistinguishable, there is only one way. Thus

Ω “
N!

NA! pN ´ NAq!
“

N!
NA!NB!

(7.2)

This expression is exact, but working with factorial is clumsy. To go
ahead, use the Stirling approximation

ln px!q « x pln x´ 1q x " 1 (7.3)

and get

S “ ´k
„

NA
N

ln
NA
N
`

NB
N

ln
NB
N



“ ´k rφA ln φA ` p1´ φAq lnp1´ φAqs

(7.4)

where φA “ NA{N is the fraction of surface occupied by the A
molecules. We see that the mixing entropy depend sonly on the A
molecule and, from now on, it is simpler to drop the A and to take
φA “ φ.
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7.1 Chemical potential

For a lattice model, it is much more convenient to work at fixed
total number of compartments. This is equivalent to work at a
given volume and the appropriate thermodynamic potential is the
free energy

F “ U ´ TS (7.5)

The chemical potential per unit surface area is

µ “

ˆ

BF
Bφ

˙

T
(7.6)

For ideal solutions, there is no energy U “ 0. The free energy is
purely entropic. Taking the derivative of the ln, we get:

µ “ kT ln
φ

1´ φ
(7.7)

Ideal solutions makes sense in the low density limit. In the hight
density limit, molecules start interacting and the ideal solution
concept is meaningless. For this reason, we take the small φ limit so
that

µ “ `µ0 ` kT ln φ (7.8)

where µ0 is the chemical potential of a reference state. For a 3D-
problem, the surface fraction is replaced by the volume fraction and
φ is usually replaced by the concentration c.

For any type of gas A`B (real or perfect) the partial pressure of
the gas A is defined as :

pA “ xA p (7.9)

where xA is the mole fraction of A.

xA “
NA

NA ` NB
xB “

NB
NA ` NB

(7.10)

The total pressure is sum of the partial pressures

pA ` pB “ p (7.11)

For a gas, the chemical potential is generally written in terms of the
of the partial pressures

µA “ µA
0 pT, Pq ` kT ln pA{p

µB “ µB
0 pT, Pq ` kT ln pB{p

(7.12)

where µA
0 pT, Pq is the chemical potential of the A or B component

in the pure phase.
Note that the chemical potential for a ideal gas is

µppq “ µ0 ` kT ln p (7.13)

where µ0 is the chemical potential of the reference state where
p “ 1 atm.
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Exercice 7.1 Recall that as a consequence of the surface tension the pres-
sure difference across a curved interface is

∆p “ γ

ˆ

1
R1
`

1
R2

˙

(7.14)

where R1,2 are the two radii of curvature. This expression reduces to

∆p “ 2
γ

R
(7.15)

for a spherical droplet. As a result, on expects that the vapor pressure over
of small liquid droplet is higher than over a flat surface.

Consider a droplet of gas phase with radius r. The surface tension is γ.

1. What is the increase in free energy when r increases by dr ? (since dr is
small, do this calculation to first order in dr).

2. To increase r by dr, we need to transfert molecules from the liquid
phase. Let dn be the number of moles transferred from the liquid phase
to droplet. If the liquid phase is at pressure p0 and the gaz phase in the
droplet at pressure p, what is the corresponding change in Gibbs free
energy ?

3. Let M be the molar mass and ρthe density of the liquid phase. What is
the relation between dn and dr ?

4. Deduce the Kelvin equation

RT ln
p
p0
“

2γM
ρr

“ 2γ
Vm

r
(7.16)

where the molar volume Vm is defined as M{ρ.

If Vm « 18.1 ml/mol (T = 300 K) , γ “ 72 10´3 N.m´1 (water):

p
p0
“ Expr1{rs (7.17)

where r is in nM.

An important example of this phenomenon is to be found in the aging of
colloidal dispersion (referred to as Oswald ripening).

7.2 Osmosis: balancing entropy versus mechanics

Consider a system : solute (s, with Ns molecules) + solvant (H2O
with NH2O molecules). We calculate the chemical potential of the
solute as

µs “
BGtotal
BNs

∣∣∣
T,p

(7.18)

where the total Gibbs energy is the sum of:

1. The Gibbs energy of the solvant;

2. The internal energy of the solute;

3. The mixing entropy.
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This means:

Gtotal “ NH2Oµ0
H2OpT, pq ` Nsεs ´ TSmixing (7.19)

Taking the derivative, we have the chemical potential per solute
molecule

µspT, pq “ εs ` kT ln
c
c0

where c “
Ns

VBox
(7.20)

and c0 “ NH2O{VBox is a reference concentration for which we chose
to take µspT, Pq “ 0.

2.13. ENTROPY OF MIXING AND THE GIBBS PARADOX 101

Figure 2.33: Osmotic pressure causes the column on the right side of the U-tube to rise higher than the
column on the left by an amount �h = ⇡/% g.

But a Maxwell relation (§2.9) guarantees

✓
@µ

@p

◆

T,N

=

✓
@V

@N

◆

T,p

= v(T, p)/NA , (2.380)

where v(T, p) is the molar volume of the solvent.

⇡v = xRT , (2.381)

which looks very much like the ideal gas law, even though we are talking about dense (but ‘weak’)
solutions! The resulting pressure has a demonstrable e↵ect, as sketched in Fig. 2.33. Consider a solution
containing ⌫ moles of sucrose (C12H22O11) per kilogram (55.52 mol) of water at 30� C. We find ⇡ = 2.5 atm
when ⌫ = 0.1.

One might worry about the expansion in powers of ⇡ when ⇡ is much larger than the ambient pressure.
But in fact the next term in the expansion is smaller than the first term by a factor of ⇡T , where T is
the isothermal compressibility. For water one has T ⇡ 4.4 ⇥ 10�5 (atm)�1, hence we can safely ignore
the higher order terms in the Taylor expansion.

2.13.4 E↵ect of impurities on boiling and freezing points

Along the coexistence curve separating liquid and vapor phases, the chemical potentials of the two phases
are identical:

µ0
L(T, p) = µ0

V(T, p) . (2.382)

Here we write µ0 for µ to emphasize that we are talking about a phase with no impurities present. This
equation provides a single constraint on the two variables T and p, hence one can, in principle, solve to
obtain T = T ⇤

0 (p), which is the equation of the liquid-vapor coexistence curve in the (T, p) plane. Now
suppose there is a solute present in the liquid. We then have

µL(T, p, x) = µ0
L(T, p)� xkBT , (2.383)

Figure 7.2:

Consider now a bacterium overcrowded in the interior with
components. The exterior is at much mower concentration in these
components. Let Ni,e be the concentration at the inside and in the
outside. The system ` the surrounding being isolated:

Ne ` Ni “ const , which means dNi “ ´dNe (7.21)

The difference in Gibbs free energy is therefore

dG “ pµi ´ µeqdNi (7.22)

must decrease and µi ´ µe is the driving force for mass transport.
The difference in solute concentration leads to a mechanical force
called the osmotic pressure. Cells are able to prevent swelling due
to this osmotic pressure and consume a lot of energy to do that.

We now proceed to derive the osmotic pressure difference. Since
the membrane is permeable to water (and not to other stuff), we
have equality of the chemical potential for water molecules between
subsystems i (interior) and e (exterior)

µe
H2O “ µi

H2O (7.23)

Recall the entropy of mixing,

Smix “ ´kB

„

NH2O ln
NH2O

NH2O ` Ns
` Ns ln

Ns

NH2O ` Ns



(7.24)

Since the ratio Ns{NH2O is small, we have

NH2O

NH2O ` Ns
“

NH2O ` Ns ´ Ns

NH2O ` Ns
« 1´

Ns

NH2O
(7.25)

and
Ns

NH2O ` Ns
«

Ns

NH2O
(7.26)

Finally, we can use

lnp1´ εq “ ´ε with ε “
Ns

NH2O
(7.27)

so that the mixing entropy is very well approximated by

Smix « ´kB

„

Ns ln
Ns

NH2O
´ Ns



(7.28)
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Finally, from ??, the chemical potential of the water molecules is

µi
H2OpT, piq “ µ0

H2OpT, piq ´ kT
Ns

NH2O
(7.29)

Since water can pass through the membrane, we have equality
of the chemical potentials on both sides. On the outside of the
membrane, there is no solute, so that the chemical potential is the
one of the reference state at pe

µe
H2OpT, peq “ µ0

H2OpT, peq (7.30)

and
µH2OpT, peq

0 “ µ0
H2OpT, piq ´

Ns

NH2O
kT (7.31)

so that pe ‰ pi for this equality to hold. We can, however, assume
that the difference pe ´ pi is small, so that we can Taylor expand the
left hand-side

µH2OpT, peq “ µH2OpT, piq ` ppe ´ piq
Bµ

Bp
(7.32)

Following the definition of the chemical potential

µ “
BG
BN

ùñ
Bµ

Bp
“

B

BN

„

BG
Bp



(7.33)

From
dG “ ´SdT`Vdp` µdN ùñ V “

BG
Bp

(7.34)

So µ “ pv, where v is the volume per molecule (v “ V{NH20 ).
Finally,

ppi ´ peq
BµH2O

Bp
“

Ns

NH2O
kT “

Ns

V
kT (7.35)

which is known as the Van’t Hoff law.

Exercice 7.2 Consider Fig. ??. Discuss why the right column of the
U-tube raises higher than the column on the left.

7.3 Nerst Potential: Balancing entropy versus electrostatic

Exercice 7.3 Membrane and electrochemical cells: The concept
of chemical potential is very general and can be extended to systems in an
electrical field. Recall the definition of the Faraday constant: F “ NAe
(NA Avogadro’s number, e electric charge). Consider two compartments,
say i (for interior of the cell) and e (for exterior of the cell), at electric
potentials ϕ1,2. The electrical potentials are assumed to be homogenous in
both compartments. Take kBT “ 4.3 10´21 J for a human body, so that
kT{e « 25 mV (check).

1. What is the electrochemical potential µ̃i,epφq for a ion with charge Ze
in the two compartments ?

2. Assume that the membrane is permeable to K`, but not to Cl´. What
is the condition for equilibrium ? Do we have one or two conditions ?



54 physics of the colloidal domain - lecture notes

3. Assume the concentrations are 0.1M on left and 1M on the right
compartment. What is the voltage drop ϕi ´ ϕe across the membrane ?

4. The typical voltage drop across a membrane is ´90mV (the interior
of a cell is at lower potential). Assume the concentration of Na` and
Ca2` as given in table below (measured values). Show that the calcu-
lated values is in sharp contradiction with the measured value. Biolo-
gists should explain why.

Exercice 7.4 1. Consider now the much weaker gravitational potential
field (gravity constant g). Assume that the chemical moiety has molar
mass M. What is the gravitational energy of thin slice of material at
height h ? Check your result by computing the vectorial force.

2. Assume now that this chemical compound is a perfect gaz. Compute
the chemical potential at height h. Start to derive this result with the
concentration at height h and transform your result using the pressure .

3. What is the condition for equilibrium on the chemical potential ?What
is the pressure at height h (consider that pph “ 0q is known).

K` Na` Ca2`

Intracellular concentration 155 mM 12 mM 10´4 mM
Extracellular concentration 4 mM 145 mM 1.5 mM
Nerst potential (calculated) ´98 mV 67 mV 130 mV

Table 7.1: Ion concentrations and
the Nerst potential for small ions
within the cell. The Nerst potential
corresponds to the calculated value.
For sodium and potassium, the value
of the Nerst potential has the wrong
sign.

7.4 Ion channels and neuronal dynamics



8
Surface phenomena

8.1 Capillary condensation

Consider a vapor, ie. water, in contact with a solid surface. If the
corresponding liquid wets the surface, the vapor will have a ten-
dency to form a wetting film. At a given T, this film will be formed
at a vapor pressure p lower than the bulk saturation pressure p0.
The relative humidity is is defined by the ratio p{p0, so that 100%
humidity means that the vapor is in equilibrium with liquid (p is
actually the partial pressure of the vapor phase).

The chemical potential of the vapor is (per mole)

µg “ µ0
g ` RT ln p (8.1)

while the chemical potential of the condensed bulk liquid is

µl “ µ0
g ` RT ln p0 (8.2)

The free energy change in forming a liquid film of thickness δ of
an area A involves a transfer from vapor to liquid of δA{VL moles,
where VL represents the molar volume of the liquid. There is also a
change in surface energy

pγlv ` γsl ´ γsvq A (8.3)

The free energy change is therefore

δA
VL

RT ln
p0

p
` pγlv ` γsl ´ γsvq A (8.4)

and this free energy energy change is zero when the liquid pressure
is such that

RT ln
p0

p
“

VL
δ

´

γsv ´ γsl ´ γlg

¯

(8.5)

Surface condensation occurs if the liquid wets the surface. The
right-hand side is positive, and the the pressure p ă p0. The prob-
lem with this derivation is that we have treated the thickness of
the film δ as given. Going further needs to discuss intermolecular
forces in details.

Even for a liquid that does not wet the surf ace, condensation
with p ă p0 can occurs if the surface arrangement is favorable. Con-
sider two planar parallel surfaces with a gap of thickness h in equi-
librium with a bulk vapor phase. If the geometry of the condensate
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is a cylinder the number of mole in the condensate is hA{VL. Com-
paring the two situations where the gap is either filled with water
or with vapor, the free energy change in the condensation is

∆G “
hA
VL

RT ln
p0

p
` 2pγsl ´ γsvqA (8.6)

where the term γlg is absent since the liquid fill completely the
interstice. The factor arises owing to the presence of two interfaces.
Condensation occurs at the threshold pressure where ∆G “ 0. This
means

RT ln
p0

p
“

2VL
h
pγsl ´ γsvq “

2VL
h

γlv cos θ (8.7)

An interesting consequence of this formula is the change in relative
humidity when we compare a wetting surface for which θ is small,
cos θ “ 1, with a hydrophobic surface for which θ ą π{2 (therefore,
cos θ ă 0). A surface has always cracks or pores at the microscopic
level and this problem gives the conditions for drying the surface.
If the liquid wets the surface, il will take a vapor pressure less than
the equilibrium liquid-vapor pressure to dry the surface. For an
hydrophobic surface where cos θ ă 0, il will take a vapor pressure
larger than the equilibrium pressure to have a film, so that drying
will occur even at the equilibrium p0.

8.2 Langmuir adsorption



9
Non-ideal solutions: Binary solutions

The phase behavior of a lipid system depends on the pressure, tem-
perature, and exact membrane composition. The maximum number
of phases P that can coexist in a given system is determined by the
Gibbs phase rule

P “ C´ F` 2 (9.1)

Here C is the number of components and F denote the number of
independent intensive variables. For a binary system, C “ 2 and
F “ 2 (temperature and pressure), and hence P “ 2. In a binary
system only two coexisting phases are possible. In a ternary system
(cholesterol, saturated lipid and unsaturated one), coexistence of 3
phases are possible. Compositions for a ternary system are com-
monly represented using a triangle as in Fig. ?? and an example is
shown in Fig. ??. Other examples in biology are lipid rafts for celle
membranes whose biological function is still a matter of debate.

BINARY AND TERNARY SYSTEMS 187
B in equilibrium with the liquid are shown in Fig. 7.7. In this figure, along the
curve EN, the solid A is in equilibrium with the liquid; along the curve EM,
solid B is in equilibrium with the liquid. The point of intersection of the two
curves, E, is called the eutectic point and the corresponding composition and
temperature are called the eutectic composition and the eutectic temperature.
Now, if we consider a three-phase system-the liquid, solid A and solid B, all

in equilibrium-then the Gibbs phase rule tells us that there is only one degree
of freedom. If we take this degree of freedom to be the pressure and fix it at a
particular value, then there is only one point (T, xA) at which equilibrium can
exist between the three phases. This is the eutectic point, the point at which the
chemical potentials, of solid A, solid B and the liquid· are equal. Since the
chemical potentials of solids and liquids do not change much with pressure
changes, the eutectic composition and temperature do not change much.

TERNARY SYSTEMS

As was noted by Gibbs, the composItIon of a solution containing three
components may be represented by points within an equilateral triangle of unit
side length. Let us consider a system with components A, Band C. As shown in
Fig. 7.8, a point P may be used to specify the mole fractions XA, XB and Xc •
From the point P, we draw lines parallel to the sides of the equilateral triangle.

c

B XB
\ XA'IIl- A
,I P

I,
I

II Xc,,A £..-----"' -.a B

Figure 7.8 The composition of a
ternary system consisting of compo-
nents A, Band C can be represented
on a iriangular graph because
XA + XB + Xc == 1. The composition is
represented as a point P inside an
equilateral triangle of unit side length.
The mole fractions are the lengths of
the lines drawn parallel to the sides of
the triangle. It is left as an exercise to
show that PA +PB + PC == 1 for any
point P

Figure 9.1: The composition of a
ternary system consisting of com-
ponents A, B, and C can be repre-
sented on a triangular graph because
xA ` xB ` xC “ 1. The composition
corresponds to a point P inside an
equilateral triangle of unit side length.
The mole fraction are the lengths of
the line drawn parallel to the sides of
the triangle. For ternary systems, see [?
].

increases in the Ld phase (arrow 1 in Fig. 3),
apparently cholesterol continuously dissolves
without phase separation right up to its maxi-
mum solubility of 67 mol %. The same is not
true of the gel phase (arrow 3 in Fig. 3). In the
Lb phase, cholesterol reaches a maximum solu-
bility of about 16 mol % (for SM, DPPC, or
DSPC in mixtures with DOPC, POPC, or
SOPC). Cholesterol chemical potential rises
steeply at this special concentration, resulting
in the formation of a Lo phase having the higher
cholesterol concentration of !27 mol %. The
concentration of 16 mol % corresponds to
each cholesterol molecule in the gel being sur-
rounded by about six phospholipids—every
phospholipid in the gel “solvating” but one
cholesterol in the cholesterol-saturated solid
Lb phase. Cholesterol at concentration .16
mol % must be accommodated in a different
type of lattice than that of the Lb phase, namely
that of the Lo phase. Apparently, lateral and
rotational positions have larger ranges available

for optimal cholesterol solvation when not
dictated by the demands of the highly-ordered
Lb lattice. Perhaps the details of cholesterol
molecular shape make anisotropic demands
on its now approximately four or fewer phos-
pholipid neighbors in Lo, rather than the six
phospholipid neighbors of the cholesterol-
saturated Lb phase. Packing adjustments in
Lo, unconstrained by the Lb lattice, seem to
enable each cholesterol to be shielded from
water by fewer lipid headgroups.

As cholesterol concentration increases,
eventually reaching its maximum solubility in
the Lb phase, the cholesterol also responds to
the presence of any coexisting Ld phase. For
example, Figure 3 arrow 2 corresponds to the
addition of cholesterol to a two-phase mix-
ture of Ld (DSPC-saturated DOPC) and Lb
(DOPC-saturated DSPC). In this interesting sit-
uation, the cholesterol has modest preference
for Lb over Ld, but dissolves into both phases.
In Ld and Lb, cholesterol chemical potential

Cholesterol

0.67

0.40

0.27

0.16

High–TMLow–TM

Ld
Ld + Lβ

Ld + Lo

Ld + Lo + Lβ

1 2 3

Lo

Lo
Lβ

Lβ

+

Figure 3. Illustrative phase diagram for a ternary lipid mixture containing low- and high-melting temperature
lipids and cholesterol. Tielines are shown in phase-coexistence regions, and the Ld þ Lo critical point is marked
with a star. The effect of cholesterol addition to Ld (arrow 1), Lb (arrow 3), or phase-separated Ld þ Lb mix-
tures (arrow 2) is discussed in the text.

F.A. Heberle and G.W. Feigenson

8 Cite this article as Cold Spring Harb Perspect Biol 2011;3:a004630

Figure 9.2: Illustrative phase diagram
for a ternary lipid mixture containing
low- and high-melting temperature
lipids and cholesterol[? ].

9.1 Introduction to the mixing free energy

Due to the near incompressibility of liquids the energy and en-
thalpy differ by a constant term pV. Therefore, if we compare two
states at the same pressure, the enthalpy change is equal to the
energy change

∆H “ ∆U (9.2)

It follows that the changes in Helmhotz free energy equal changes
in Gibbs free energy. The thermodynamic internal energy U equals
the total intermolecular interaction

E “
All molecules

ÿ

iąj

wi,j (9.3)

For the mixing of two pure liquids into a randomized mixture

∆Emixing “ Emixing ´ E0 (9.4)

where E0 is the energy of unmixed liquid. Assume E0 “ 0 to make
things simple.

To calculate ∆Emixing, we define wAB as the interaction energy
for a pair of nearest neighbor compartment. If two neighboring
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compartments are occupied by a A and B molecule, respectively,
the mixing energy for this pair is

wAB (9.5)

The mixing energy is thus

∆Emixing “ wAB pAB (9.6)

where pAB is the probability to have a nearest neighbor A´B
pair. The probability that a compartment is occupied by a type
A molecule is NA{N. Given that a compartment is occupied is by
a type A molecule, the probability that one its z neighbor is occu-
pied by a type B molecule is NB{N. Therefore, the probability for a
compartment to have a A´B bond is

z
NA
N

NB
N

(9.7)

The last equation is the mixing energy per compartment. To have
the total the total mixing energy, we sum up over all compartments

∆Emixing “
ÿ

All compartments

wABz
NA
N

NB
N

(9.8)

The term in the sum is the same for all compartments. Therefore,

∆Emixing “ NwABz
NA
N

NB
N

(9.9)

This equation is known as the Flory-Huggins theory to investigate
binary systems.
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Exercice 9.1 The purpose of this exercise is to study the phase transition
phenomenon for binary solutions. One considers a mixture of A and
B lipids. As before, we imagine that the membrane can be divided into
N cells which contain either A or B lipids (one per each cell). The total
number of A lipids is NA and the total number of lipids of type B is NB.
The lattice is supposed to be a square lattice with coordination number
z “ 4 (number of nearest neighbors). Because of the afore mentioned
constraint, we have N “ NA ` NB.

1. In this problem, we will follow a mean-field approach where all quan-
tities are average quantities. This allows us to use occupancy prob-
abilities. Assuming NA A lipids with NB for B-lipids, what are the
probabilities for a cell to be occupied by a A lipid or a B lipid ?

2. Given that a compartment is occupied is by a type A molecule, the
probability that one its z neighbor is occupied by a type B molecule is
NB{N. What is the probability for a compartment to have a A´B bond
as a function of z ?

3. To calculate the enthalpy of mixing ∆Emixing, we define wAB as the
interaction energy for a pair of nearest neighbor compartment. What is,
on average, the mixing enthalpy per cell due to this interaction anergy
?

4. Till now, we have assumed that the contact energy wAA for a AA
pair or wBB for a BB pair is zero. We want to know how the previous
equation is modified when wAA ‰ 0, or wBB ‰ 0. To do this, we have
to count the number nAA of AA pairs and the number nBB of BB pairs. Figure 9.3: A´B binary solution.

At high temperature, entropy rules
with perfect mixing for the A and B
molecules. At lower temperature, the
energy of contact between the A and B
atoms wins. Phase separation occurs
between a B rich phase and a A rich
phase (i.e. B poor phase).

Given that a A molecule is either engaged in AA or a AB pair, zNA is
the total number of pairs where A molecules are engaged. Give zNA as
a function of nAA and nAB. Give zNB as a function of nBB and nAB

5. Show that the total mixing energy becomes (sum over all cells) :

EMixing “ Nz
NA
N

NB
N

ˆ

wAB ´
1
2

wAA ´
1
2

wBB

˙

` E0 (9.10)

where
E0 “

1
2

zwAANA `
1
2

zwBBNB (9.11)

is the energy of the pure states.

6. Give the mixing entropy for a system of NA and NB lipid molecules
distributed among N “ NA ` NB.
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Figure 2.34: Gibbs free energy per particle for a binary solution as a function of concentration x = xB of the B
species (pure A at the left end x = 0 ; pure B at the right end x = 1), in units of the interaction parameter λ. Dark
red curve: T = 0.65λ/kB > Tc ; green curve: T = λ/2kB = Tc ; blue curve: T = 0.40λ/kB < Tc. We have chosen
µ0

A = 0.60λ − 0.50 kBT and µ0
B = 0.50λ − 0. 50 kBT . Note that the free energy g(T, p, x) is not convex in x for

T < Tc, indicating an instability and necessitating a Maxwell construction.

In Fig. 2.34 we sketch the free energy g(T, p, x) versus x for three representative temperatures. For T > λ/2k
B

, the
free energy is everywhere convex in λ. When T < λ/2kB, there free energy resembles the blue curve in Fig. 2.34,
and the system is unstable to phase separation. The two phases are said to be immiscible, or, equivalently, there
exists a solubility gap. To determine the coexistence curve, we perform a Maxwell construction, writing

g(x2)− g(x1)

x2 − x1

=
∂g

∂x

∣∣∣∣
x1

=
∂g

∂x

∣∣∣∣
x2

. (2.408)

Here, x1 and x2 are the boundaries of the two phase region. These equations admit a symmetry of x ↔ 1 − x,
hence we can set x = x1 and x2 = 1− x. We find

g(1− x) − g(x) = (1− 2x)
(
µ0

B − µ0
A

)
, (2.409)

and invoking eqns. 2.408 and 2.405 we obtain the solution

Tcoex(x) =
λ

k
B

· 1− 2x

ln
(

1−x
x

) . (2.410)

The phase diagram for the binary system is shown in Fig. 2.36. For T < T ∗(x), the system is unstable, and
spinodal decomposition occurs. For T ∗(x) < T < Tcoex(x), the system is metastable, just like the van der Waals gas
in its corresponding regime. Real binary solutions behave qualitatively like the model discussed here, although
the coexistence curve is generally not symmetric under x ↔ 1 − x, and the single phase region extends down to
low temperatures for x ≈ 0 and x ≈ 1. If λ itself is temperature-dependent, there can be multiple solutions to
eqns. 2.407 and 2.410. For example, one could take

λ(T ) =
λ0 T 2

T 2 + T 2
0

. (2.411)

Figure 9.4: Gibbs free energy per
particle for a binary solution as a
function of concentration x “ xA
of the A species . Dark red curve is
for T ą Tc and blue red curve is for
T ă Tc. The Gibbs free energy is
not convex for T ă Tc indicating an
instability towards phase separation
between a A rich phase and a A
poor phase. The dotted line is the
double tangent construction giving the
concentration of A molecule in the rich
and poor phase.

7. Show that the mixing free energy can be expressed as

∆GmixingpT, p, NA, NBq “ NAµ0
ApT, Pq ` NBµ0

BpT, Pq`

NAkBT ln
ˆ

NA
NA ` NB

˙

` NBkBT ln
ˆ

NB
NA ` NB

˙

` λ
NANB

NA ` NB
(9.12)

where λ is a parameter. Give λ as a function of the other parameters.
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8. As usual the state of the system is the state which minimizes the Gibbs
free energy. We have N “ NA ` NB. For λ ą 0, what kind of phase the
term

λ
NANB

NA ` NB

does favor ? Discuss the competition between the mixing entropy term
and this term as a function of the temperature ?

9. Define the variable x “ xA “ NA{pNA ` NBq. What is xB as a
function of x ?

10. Define

gpT, p, xq “ GpT, p, xq{pNA ` NBq “
1
N

GpT, p, xq (9.13)

Write gpp, T, xq as a function of x.

11. In order for the system to be stable into relatively A-rich and B-rich
regions, we consider the plots of GpT, P, xq as a function of x for dif-
ferent temperatures T as in Fig. ??. What happens if G has the shape
of the upper blue curve ? (Remember that for the system to be stable
against any fluctuation ∆x, gpx´ ∆xq ` gpx` ∆xq ď 2gpxq. The last
inequality means that gpxq must be a convex function of x. To answer
this question, consider the total Gibbs free energy and divide the system
in two).

12. Consider again Fig. ??. Identify on x axis the pure A system and
the pure B system. Draw an arrow to sketch the experimental protocol
when the system is quenched from high to low temperatures.

13. Since xA is the only variable, we can simplify our notation and take
xA “ x. Show

gpT, p, xq “ xµ0
ApT, Pq ` p1´ xqµ0

BpT, Pq

` kT rx ln x` p1´ xq lnp1´ xqs

` λxp1´ xq

(9.14)

14. In order for the system to be stable against phase separation, we must
have that gpT, p, xq to be a convex function of x. Thus, we must calcu-
late the second derivative. Show :

B2g
Bx2 “ kBT

„

1
x
`

1
1´ x



´ 2λp1´ 2xq (9.15)

15. The solution of the equation B2g{Bx2 “ 0 gives a condition T˚pxq
known as the spinodal. What is the maximum value achieved by the
function xp1´ xq for 0 ď x ď 1 ?

Deduce that the system phase separates if T ă T˚ ď kB{2λ. Conclude
from question 1. In this case the two phases are said to immiscible, or,
equivalently, there exists a solubility gap.
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Figure 2.36: Phase diagram for the binary system. The black curve is the coexistence curve, and the dark red curve
is the spinodal. A-rich material is to the left and B-rich to the right.

Since ∆µ−(x, T ) = ϕ(x, T ) − ϕ(1 − x, T ) = −∆µ−(1 − x, T ), where ϕ(x, T ) = λx − kBT lnx, we have that the

coexistence boundary in the (x, ∆−) plane is simply the line ∆µ− = 0, because
1−x∫
x

dx′ ∆µ−(x′, T ) = 0.

Note also that there is no two-phase region in the (T, ∆µ) plane; the phase boundary in this plane is a curve
which terminates at a critical point. As we saw in §2.12, the same situation pertains in single component (p, v, T )
systems. That is, the phase diagram in the (p, v) or (T, v) plane contains two-phase regions, but in the (p, T ) plane
the boundaries between phases are one-dimensional curves. Any two-phase behavior is confined to these curves,
where the thermodynamic potentials are singular.

The phase separation can be seen in a number of systems. A popular example involves mixtures of water and
ouzo or other anise-based liqueurs, such as arak and absinthe. Starting with the pure liqueur (x = 1), and at a
temperature below the coexistence curve maximum, the concentration is diluted by adding water. Follow along
on Fig. 2.36 by starting at the point (x = 1 , kBT/λ = 0.4) and move to the left. Eventually, one hits the boundary
of the two-phase region. At this point, the mixture turns milky, due to the formation of large droplets of the pure
phases on either side of coexistence region which scatter light, a process known as spontaneous emulsification22. As
one continues to dilute the solution with more water, eventually one passes all the way through the coexistence
region, at which point the solution becomes clear once again, and described as a single phase.

What happens if λ < 0? In this case, both the entropy and the interaction energy prefer a mixed phase, and there is
no instability to phase separation. The two fluids are said to be completely miscible. An example would be benzene,
C6H6, and toluene, C7H8 (i.e. C6H5CH3). The phase diagram would be blank, with no phase boundaries below
the boiling transition, because the fluid could exist as a mixture in any proportion.

Any fluid will eventually boil if the temperature is raised sufficiently high. Let us assume that the boiling points
of our A and B fluids are T ∗

A,B, and without loss of generality let us take T ∗
A < T ∗

B at some given fixed pressure23.
This means µL

A(T ∗
A , p) = µV

A(T ∗
A , p) and µL

B(T ∗
B , p) = µV

B(T ∗
B , p). What happens to the mixture? We begin by writing

22An emulsion is a mixture of two or more immiscible liquids.
23We assume the boiling temperatures are not exactly equal!

Figure 9.5: Phase diagram for the
binary system. The black curve is the
coexistence curve, and the dark red
curve is the spinodal. A-rich material
is to left and B-rich to the right.
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16. If two phases coexist, they must have equal chemical potential (as
well as same temperature and pressure, which is why G is a useful
function). The chemical potentials associated with each component are

µi “
BG
BNi

, i “ A, B (9.16)

where the partial derivatives are taken with all other variables constant.
Using

µi “
BrNgs
BNi

i “ A, B (9.17)

and
Bg
BNi

“
ÿ

k

Bg
Bxk

Bxk
BNi

(9.18)

where the sum runs over k “ A and k “ B, show

µi “ g`
Bg
Bxi

´
ÿ

k

xk
Bg
Bxk

i “ A, B (9.19)

which shows that µi ‰
Bg
Bxi

as one would have naively expected.

17. In our problem, the total number of particles is conserved N “ NA `

NB. Deduce
g “

ÿ

i“A,B

xiµi (9.20)

18. Since xA ` xB “ 1, xA and xB are not independent. We take xA as
the independent variable. Show that the chemical potential are

µA “ g`
Bg
BxA

´ xA
Bg
BxA

µB “ g´ xA
Bg
BxA

(9.21)

where g and its derivative are now functions of xA only.

19. Consider the coexistence of two phases 1 and 2. Let xA,1 the concen-
tration of A in the phase number 1 and xA,2 the concentration of A in
phase number 2. For the B molecules, we have xB,1 or xB,2.

The phases can coexist if the chemical potential of the two components
in both phases are equal

µApxA,1q “ µApxA,2q

µBpxA,1q “ µBpxA,2q
(9.22)

Show that this condition implies

Bg
Bx
|x“xA,1 “

Bg
Bx
|x“xA,2 “

gpxA,2q ´ gpxA,1q

pxA,2 ´ xA,1q
(9.23)

This condition is known as the double tangent, see Fig. ??.

20.

21. From the Maxwell construction, show that the two phases coexist if
temperature and concentration are related by

Tcoexpxq “
λ

kB

1´ 2x

ln
”

1´x
x

ı (9.24)
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22. Consider the phase diagram of Fig. ??. Find on which line of this
diagram are located the points with the double tangents of Fig. ??.
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9.2 Non-ideal solutions: Polymer solutions, the Flory-Huiggins
theory for polymers

Up to now we have considered ideal solutions. This approximation
may be correct for gas, but solutions are very, very non-ideal. As
a first example of non-ideal solutions, we concentrate on the case
where the solvent and the solute are not of the same size. This is
the case for polymer solutions where the solute is assumed to be
a macromolecule composed of N monomeric units, where N is
a large number. An other case non-ideal solutions is the case of
electrolyte solutions (Coulomb forces are not weak).

Implicit in many of our solution thermodynamic equations is
the assumption that the solute and solvent particles are of similar
sizes and occupy similar volumes. A good example is the entropy
of mixing. If we mix gas A in voule VA and gas B in volume VB

the final volume occupied by both gases is VA ` VB. The entropy
change is

∆Smixing “ ´k
„

nA ln
VA

VA `VB
` nB ln

VB
VA `VB



(9.25)

with volume fractions defined as:

φA “
VA

VA `VB
φB “

VB
VA `VB

(9.26)

A polymer solution can be visualized in the same way as a regu-
lar solution: the solvent and solute occupy a lattice. The difference
is that the polymer occupies more than a single lattice site. We as-
sume each monomer occupies a lattice site as shown below, where
each monomer is a dark circle and the monomers are connected
into a polymer. The solvent molecules are shown as open circles.
Actually, what counts is the center of mass of the molecule.

Suppose the lattice has M sites, M plays the role of the total
volume. There are Np polymer molecules each with N monomer
units and Ns solvent molecules. Therefore, M “ NNp ` Ns. We now
define the solvent and polymer volume fractions:

φs “
NS
M

and φp “
NpN

M
(9.27)

 
 

• Suppose this lattice has M sites. M plays the role of the total volume. There 
are nP polymer molecules each with N monomer units and nS solvent 
molecules.  If the lattice is filled then P SM Nn n= + . We now define the 
solvent and polymer  volume fractions:  

  

 andS P
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• Flory-Huggins theory calculates the energy, entropy, free energy, chemical 
potential, and activity coefficients for polymer solutions using the same lattice 
approach as used for regular solutions. The difference is that volume fractions 
are used instead of mole fractions. First of all, from our remarks about the 
entropy, it is obvious that the entropy of mixing a polymer and a solvent is: 
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 (19.5) 

 which is identical to our entropy equation for ideal solutions if N=1. 
• The energy U is derived in the same way as in regular solution theory (see 

Lecture 19). The internal energy u accounts for all interactions between 
solvent and polymer molecules: 

 
where 2 and 2

SS SS PP PP SP SP

S SS SP P PP SP

U N N N
Zn N N ZNn N N
ε ε ε= + +

= + = +…
 (19.6) 

  
• In the same procedure as in regular solutions we get the energy of mixing. U 

is composed of US and UP which are the energies of the pure solvent and 
polymer, respectively: 

  

 2 2

2 2

SS SS S P
SP

SS SS
S P

Z Z n n N
U RTw

RT RT M
Z Z

whereU andU
RT RT

ε ε

ε ε

= + +

= =
 (19.7) 

Figure 9.6: Flory model for a polymer.
Each mer occupies a single compart-
ment and the chain is visualized as a
random walk.

The total entropy of mixing a the polymer and a solvent is

∆Smixing “ ´k
“

Ns ln φs ` Np ln φp
‰

(9.28)

so the entropy per site is q

∆Smixing

M
“ ´k

„

φs ln φs `
φp

N
ln φp



(9.29)

which is the usual entropy of mixing is N “ 1.
This formula is far from trivial because of the Np ln φp term (one

should expect NpN instead of Np). The simplest way to understand
that its correct is to note that the mixing entropy should be propor-
tional to the total number of chains, Np (only the center of mass of
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the chains counts when we place the chain on a lattice), but the vol-
ume fraction should be the one of the monomers (thus the φp term
within the Log). De Gennes writes this formula with the symmetric
form

∆Smixing

M
“ ´k

„

φs ln φs `
φp

N
ln

φp

N



(9.30)



10
The Bolzmann-Gibbs distribution

10.1 Statistical entropy

Proteins can adopt many conformational states as a function of
generalized forces. For example, Fig. ?? schematizes different types
of ionic channels with two conformational states: open and closed.
Recording the ionic current in a patch clamp experiment allows to
measure the probability pi“1,2 to be in one of the conformational
states.

With this example in mind, consider a hypothetic protein with Ω
conformational states. First, we define the probabilistic entropy as1 1 This godlike contraption is due to

Shannon in the 40th.

S “ ´k
i“Ω
ÿ

i“1

pi ln pi (10.1)

where pi is the probability to find the system in state i. This defini-
tion is equivalent to well-known formula2 2 This other godlike contraption is due

to Bolzmann in 1897.

S “ k ln Ω (10.2)

where k is the Bolzmann constant and where Ω stands for the num-
ber of microscopic states accessible to the system under given
constraints. To go from the first equation to the second one, take
pi “ 1{Ω. So, when all microscopic states have equal probability,
the Bolzmann definition is equivalent to the probabilistic definition.
Proteins, however, like other systems have many conformational
states which differ in energy, so that the probabilities are not equal.

Does the probabilistic entropy agree with the thermodynamic
entropy ? To answer this equation, we should do statistical physics
and this is not our purpose. Here it suffices to show that the en-
tropy defined this way is an extensive property.

Exercice 10.1 Suppose that we have two proteins A and B with N and
M conformational states. The entropy of for each protein is

SA “
ÿ

1ďiďN

pi ln pi SB “
ÿ

1ďjďM

pj ln pj (10.3)

Consider now the ensemble A` B. Each state pi, jq of the ensemble is the
product of the state i of the protein A with the state j of protein B.
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1. What is the probability pi,j to observe the microstates i and the j ?

2. The conformations of the two molecules are independent so that the
joint probability is the product of the probabilities. What is the entropy
for the combinaison C of A and B ?

3. Check that the entropy is extensive indeed

SA`B “ SA ` SB (10.4)

10.2 Bolzmann-Gibbs distribution

Consider again an hypothetical molecule with Ω conformational
states. The Bolzmann-Gibbs distribution is the distribution proba-
bility to observe the molecule in state i

pi “
1
Z

e´Ei{kT i “ 1, . . . , Ω (10.5)

Since
ÿ

i

pi “ 1 (10.6)

the normalization constant is equal to

Z “
ÿ

1ďiďΩ

e´βEi β “ 1{kBT (10.7)

This normalization constant is called the partition sum.
Where (??) does come from ? Here it suffices to say that if we fix

the mean energy
ă E ą“

ÿ

i

piEi (10.8)

Then the Bolzmann distribution is the one which maximizes the
entropy. Since the entropy measures (returning to our physical
intuition) the randomness or disorder of the system, the Bolzmann
distribution is the ’most random’ or ’least structured’ distribution
that can generate the mean energy.



the bolzmann-gibbs distribution 67

Exercice 10.2 One of the principal result in statistical mechanics states
that that the average energy associated with every degree of freedom is
1{2kBT. This statement is the known as the equipartition of energy. As-
sume that the cost of energy of a hypothetical protein is E “ 1{2kx2, where
x is the elongation of the protein in the x-direction.

1. Check this result.

2. What is the mean energy for a two-dimensional deformation E “

1{2kpx2 ` y2q and a three-dimensional case E “ 1{2kpx2 ` y2 ` z2q

Exercice 10.3 We are going to show that the open probability of an ion
channel depend on membrane tension.

1. Consider first a two-states model where the channel is either closed or
open. We label the state of the channel via a variable σ and when σ “ 0,
the channel is closed, but when σ “ 1, the channel is open. For the
case for which there is no external driving force, the energy Epσq is a
function of the internal state σ “ 0, 1. We write:

Epσq “ σε0 ` p1´ σqε1 (10.9)

What are ε0 and ε1?

2. What is the probability to observe the channel in the open state et what
is the probability to observe the channel in the closed state ?

3. When a bacterial cell is subjected to osmotic shock, the resulting flow of
water across the cell membrane results in osmotic tension. The channels
reply by opening. We thus introduce the energy as a function of the
applied tension τ as

Epσq “ σε0 ` p1´ σqε1 ´ στ∆A (10.10)

where the term στ∆A favors the open state and reflect the fact that
membrane tension favors the open states. What is the probability popen

to observe the channel in the open state ? Draw a graph of popen as a
fun function of σ ?

4. What is σ ? Conclude.

Exercice 10.4 Consider the mixing entropy

Spnq “ kB rN ln N ´ n ln n´ pN ´ nq lnpN ´ nqs (10.11)

Suppose that one solute molecule is removed from solution by binding to
a protein receptor. The change in free energy has two contributions. The
first is associated with the enthalpy binding, the second is the change in
entropy due to the change of n Ñ n´ 1 molecules in the solution.

1. If the binding energy is ε, give the change in free energy as a function
of the concentration c “ n{N. Call this result ∆E.

2. Recall Bolzmann’s law for a macro-molecule with j “ 1, 2, . . . N
internal states

pj “ e´βEj{Z j “ 1, 2, . . . N (10.12)

Compute Z (recall that probabilities have to be normalized).
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3. One application of the chemical potential is to ligand-gated ion chan-
nels. Suppose that the ion channel receptor can be in two states : un-
bound by a ligand (C) or bound by a ligand (0). Give pC and pO as a
function of ∆E.

4. As shown in Fig. ??, these probability are experimentally accessible.
Using single molecule devices which mesure the electrical current
passing through a ionic canal (patch-clamp), one mesures the time spent
topen in the open conformation. Assume that topen ` tclose is the time
of observation. What is pO as a function of these two times ?

Ligand-gated ion channel Voltage-gated ion channel 

From Ion Channels and Disease, Frances M. Ashcroft, Academic Press, 2000 

Ion Channels Are Gated Pores That Are 
Selective For Transported Ions 

Note: All-or-none openings, stochastic 
Figure 10.1: The opening of a ionic
ion-channel is all-or-none and is a
stochastic event. The probability for
channel opening is the fractional time
passed in the open conformation. Such
experimental results are routine using
patch-clamp setups.

Exercice 10.5 In this exercice we will explore simple thermodynamic
model for gene or protein regulation, by studying how the concentration of
a transcription factor (TF) relates to the to promoter occupancy. A TF is
present in solution at concentration c in the cell. On the DNA, there is a
single specific binding site that can be empty or occupied by this TF. When
the site is occupied, the regulated gene will transcribed into mRNA, see
Fig. ??. The problem of regulation by agonist3 is central in biology4 3 Recall the definition of an agonist

in biochemistry: A substance that
attaches to a receptor and directly
causes a response in the organism.
4 There are many drugs that act as
agonists ligands (L) which means they
"turn on" their target receptor (RL)
so that it induces its normal down-
stream signalling. Examples of such
drugs include: growth hormones,
insulin, steroids and G-protein cou-
pled Recetor(GCPR) ligands such as
morphine (opiods), neurotransmit-
ters and scent/aroma compounds. In
general you can improve the potency
of these drugs by improve their bind-
ing dissociation constant Kd for their
receptor. 3

cleus). The timescales of such regulation span a wide
range, from minutes to hours.

Generally, the expression of genes can be regulated at
all levels, from DNA looping to post-translational modi-
fication of proteins. Often, many co-factors and enzymes
are involved, and the process can be described in a molec-
ularly detailed fashion. However, certain features can be
abstracted and allow us to study generalized models of
gene expression:

• Regulation functions, i.e. functions that map the
concentrations of TFs into levels of regulated gene
expression, in gene regulatory networks are non-
linear. There are saturation e↵ects, for example
when a gene is fully activated. Nonlinearities in
regulation also set the range of input concentra-
tions in which a network is responsive. In addition
to the simple nonlinearities induced by saturation
e↵ects, networks often contain positive or negative
feedback loops that can give rise to even more
complicated behaviors.

• Gene regulation is a noisy process. This is a
consequence of the stochasticity in single molec-
ular events at low concentrations of the relevant
molecules, such as in reactions between TFs and
binding sites (that can be present at copy num-
bers of only one or two in the whole genome). The
nanomolar concentrations of TFs in the cell mean
that the precise timing when a TF finds and binds
a regulatory site on the DNA is a random variable;
this randomness results in stochastic gene activa-
tion.

• The processes involved in gene regulation happen
on various time scales: the time on which the in-
put fluctuates, the protein decay time, the gene ex-
pression state fluctuation time, the time on which
the external input signal changes. The networks
are dynamical systems, and their behaviors span
the range from settling down to one of the possi-
ble stationary states, to generating intrinsic oscilla-
tions (as in, e.g., circadian clocks) or more complex
combinations of checkpoint steady states and limit
cycle oscillations (as in cell-cycle control).

• The wiring in the network is specific. Specificity
is achieved by molecular mechanisms of recognition
(TF–DNA interaction). One TF can regulate many
genes by recognizing and binding multiple sites in
the genome, and each gene can be regulated by
several TFs.

One can describe a gene regulatory circuit at various
levels of detail. All of them attempt to capture most of
the properties listed above, with di↵erent emphasis on
the particular points (see Refs [15, 17] for more informa-
tion). Here we will briefly review a few basic approaches
that we are going to use later in this review, on a specific
example of a single regulatory element.

n

gene ggene g

c

bindingbinding
sitesite

FIG. 1: The simplest regulatory graph, where an input tran-
scription factor at concentration c regulates the output ex-
pression level g by binding to a binding site n, which can be
empty or occupied. Since c acts as an activator, an occupied
site results in transcription and translation of g.

A. Gene regulatory elements: a mathematical
primer

Let transcription factors be present at concentration c
in the cell. On the DNA, there is a single specific binding
site that can be occupied or empty; we will denote this
occupancy with n(t). When the site is occupied, the
regulated gene will get transcribed into mRNA, which is
later translated into proteins whose count we denote by
g(t), at the combined rate that we denote by R. The
proteins are degraded with the characteristic time ⌧ . In
this case, our TF thus acts as an activator, see Fig. 1.
Here and afterwards we will refer to the transcription
factor c as an input, and the regulated gene product g as
output.

This model discards a lot of molecular complexity:
there is no explicit treatment of di↵usion of TFs, no
non-specific binding, no separate treatment of mRNA
and protein, no chromatin opening / closing etc; in ad-
dition, we group many multi-stage molecular processes
(such as TF binding, RNAP assembly, processive tran-
scription etc) into single coarse-grained steps. Thus, our
model is a gross (but tractable) oversimplification. As an
illustration, let us formulate it in a few di↵erent mathe-
matical frameworks.

In the limit of relatively large concentrations, we can
treat concentrations c and g as continuous and describe
this regulatory process by the set of di↵erential equations
for the means of the concentrations:

dn

dt
= k+c(t)(1 � n) � k�n (1)

dg

dt
= �1

⌧
g + Rn. (2)

Equation (1) is an equation for occupancy n, which is a
number between 0 and 1. Nominally, the site can only
be fully empty or occupied, but in this approximation,
we treat it as a continuous variable that can be inter-
preted as a “probability of the site being bound.” k+c is
the TF-concentration-dependent on-rate, and k� is the
first-order o↵-rate. Often, it is assumed that there is a
separation of time scales: the first equation for occupancy
equilibrates much faster than ⌧ , meaning that the mean

Figure 10.2: The simplest regulatory
graph, where an input transcription
factor at concentration c regulates the
output expression level of mRNA by
binding to a binding site n, which can
be empty or occupied.

Suppose that a site is occupied of empty. The different states of this site
are therefore labeled by a number n “ 0, 1. We assume that the unoccupied
state has zero energy.

1. Assume that there is a binding energy E favoring the occupied state,
relative to the reference energy 0 in the unbound state. But in order
to occupy the state, one needs to remove one molecule of TF from the
solution. Let µ be the chemical potential of TF. What is the energy cost
of removing a single TF molecule from the solution ?

2. What is the probability for this site to be occupied ?

3. What is the partition sum Z ?

4. Show that we can write

Ppn “ 1q “
c

c` Kd
(10.13)

and give Kd as a function of E. Plot Ppn “ 1q as a function of c.

5. In the limit of relatively large concentrations, we can treat the concen-
trations c as a continuous variable and describe the regulatory process
by a differential equation. If becomes n a number between 0 and 1, we
can interpret n as the "probability of the site" to be occupied, we write

dn
dt
“ k`cptqp1´ nq ´ k´n (10.14)

where k` is the on-rate and k´ is the off-rate. Interpret this equation.
Give k´{k` as a fucntion of E.

6. Suppose now that we make a model somewhat more complicated. We
consider 2 binding sites and consider the 4 possible values p00, 01, 10, 11q.
Suppose moreover that there is cooperativity - if both sites are occu-
pied there an additional favorable energy contribution ε to the total
energy energy of the state p11q. What is the partition sum of the system
?
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7. What is pp11q ?

8. When ε ! µ ´ E, i.e. when the gain in energy ε is larger that the
favorable energy µ´ E of transferring one molecule in an empty site,
we can assume

e´E`µ ! e´2E´ε`2µ (10.15)

show

Pp11q “
c2

c2 ` pK1dq
2 (10.16)

and give K1d.

9. In molecular biology, Hill functions (or sigmoidal functions) are de-
fined as

f pcq “
ch

ch ` Kh
d

(10.17)

where h is known as the Hill coefficient. We have seen how such phe-
nomenological curves arise in thermodynamics. Assume for simplicity
Kd “ 1 and plot the occupancy f pcq as a function of c for increasing
values of the Hill coefficient h.

Exercice 10.6 Consider a molecule with 1 ď n ď N internal states.

1. Since the internal energy is a random variable, it is of interest to com-
pute the mean ă E ą. Call

Z “
ÿ

n
exptr´βEnsu β “

1
kT

(10.18)

Show:
ă E ą“ ´

BZ
Bβ

(10.19)

2. The specific heat is the energy to increase the the temperature by one
units. In other term: CV “ B ă E ą {BT. Show that the specific heat is
related tot he fluctuations of E (second cumulant)

CV “
1

kT2

”

ă E2 ą ´ ă E ą2
ı

(10.20)

This result is general. Response functions, i.e. how a system responds
to an external perturbation, are related to the fluctuations of the quan-
tity coupled to the perturbation.

Exercice 10.7 Introduction to the Debye-Hückel theory: Sur-
faces of nanoparticles in solvent are electrically charged. This is is due
to:

1. Iononization of surface groups;

2. Adsorption of ions to previously uncharged surfaces;

3. Charge transfert: Acid-Base reaction for example.

Interactions that occur between fixed charges at surface and those which
are free in solution play an important role. Charged surface are character-
ized by:
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• The density σ of surface charges;

• An electrical potential Φ0.

We assume that the adjacent solution contains electrolyte and is char-
acterized by bulk concentration (i.e. number of molecules per unit volume)
cion. Let zi be the ion valency. We want to determine the relationship be-
tween σ and Φ0 and also how the potential and the distribution of ions
varies with distance from the charged interface.

We consider negatively charged wall that is infinite in the x and y
direction. The distance from the charged surface is z. The charge density
on the wall is σ. Let Φpzq be the electrical potential. Because of Gauss’s
law

dΦ
dz
“ ´

σ

ε0εr
(10.21)

The adjacent solution contains positively charged and negatively charged
ions in equal quantity with homogeneous density c0 when φpzq “ 0. We
assume that the ions bare a charge ˘zie.

1. Because the ions in solution are free and respond to the electrical fields,
the solution’s charge distribution is not independently known. In ad-
dition to the electrostatic interaction energy, we must also consider the
entropy associated withe the solution’s ion distribution. The electro-
static interaction favors an ordered and well localized ion arrangement,
but entropy strives to generate a random distribution. Recall that this
compromise between entropy and energy results in the Bolzmann distri-
bution.

The potential energy of a charge q in an an electrical potential Φpzq is
qΦpzq. Check this formula using the relation between the electrical field
E and the electrical potential Φpzq. It suffices to compute the force due
to the electrical field (remember E “ ´∇Φ).

Figure 10.3:

2. Calculate c˘pzq as a function of Φpzq (use Bolzmann law).

3. In electrostatics, the Poisson equation gives the relationship between
the electrical charges and the electrical potential Φpzq. It takes the form
(εr is the relative permittivity of the water, εr “ 80)

∆Φpzq “ ´
ρfree ionspxq

ε0εr
(10.22)

and show
d2Φ
dz2 “ ´

e
ε0εr

ÿ

i

zic0 exp
"

´
´zieΦ

kT

*

(10.23)

where each ion "i" (concentration c0) carries a charge zi (ion valency).
Typically (i.e. zi “ 1 for NaCl in solution)

4. Use the identity
d
dz

ˆ

d f
dz

˙2
“ 2

d2 f
dz2

d f
dz

(10.24)

to show that the potential φpzq solves the differential equation:

∆Φpzq “ `
2ezic0

ε0εr
sinh

„

zieΦpzq
kT



(10.25)



the bolzmann-gibbs distribution 71

This equation is known as the Poisson-Bolzmann equation. There is
fundamental approximation involved in this derivation. We have ne-
glected the electrical potential due to the ions and have only considered
the external potential due the charges on the surface.

5. Without solving this equation, show that there exists a characteristic
length scale lp which enters into the problem. What is your interpreta-
tion ?

6. To solve this equation we need appropriate boundary conditions.
Electro-neutrality requires that the surface charge be fully neutral-
ized by ions in solution, and at sufficiently large distance E “ 0. What
is the condition on dΦ{dz as z Ñ `8 ?

7. The other condition is similar to the condition governing the electrical
field inside a capacitor. What is

dΦ
dz
|z“0 “? (10.26)

8. Assume

sinh
„

zieΦpzq
kT



«
zieΦpzq

kT
(10.27)

and solve the differential equation. Give lp. What is the physical inter-
pretation of lp ? Are electrostatic interaction relevant in cells and if yes
at which scale ?

9. Assume that the ions come from the dissociation of NaCl (0.15 M).
What is the order of magnitude of lp ? (For future reference, l´1

p “

0.3{c1{2
0 where c0 is in Mol) (hints: kT “ 4.110´21 J, εr “ 78.5, ε0 “

8.8510´12F{m)





11
Electrostatic interactions, Van der Waals interaction,
DLVO theory for colloidal dispersions

Competition between attractive van der Waals and repulsive double-
layer (electrostatic) forces determine the stability of colloidal sys-
tems.

11.1 Debye-Hckel theory

Surfaces of nanoparticles in solvent are electrically charged. This is
is due to:

1. Iononization of surface groups;

2. Adsorption of ions to previously uncharged surfaces;

3. Charge transfert: Acid-Base reaction for example.

Interactions that occur between fixed charges at surface and those
which are free in solution play an important role. Charged surface
are characterized by:

• The density σ of surface charges;

• An electrical potential Φ0.

We assume that the adjacent solution contains electrolyte and is
characterized by bulk concentration (i.e. number of molecules per
unit volume) cion. Let zi be the ion valency. We want to determine
the relationship between σ and Φ0 and also the potential and the
distribution of ions varies with distance from the charged interface.

Exercice 11.1 We consider negatively charged wall that is infinite in the
x and y direction. The distance from the charged surface is z. The charge
density on the wall is σ. Let Φpzq be the electrical potential. Because of
Gauss’s law

dΦ
dz
“ ´

σ

ε0εr
(11.1)

The adjacent solution contains positively charged and negatively charged
ions in equal quantity with homogeneous density c0 when φpzq “ 0. We
assume that the ions bare a charge ˘zie.



74 physics of the colloidal domain - lecture notes

1. Because the ions in solution are free and respond to the electrical fields,
the solution’s charge distribution is not independently known. In ad-
dition to the electrostatic interaction energy, we must also consider the
entropy associated withe the solution’s ion distribution. The electro-
static interaction favors an ordered and well localized ion arrangement,
but entropy strives to generate a random distribution. Recall that this
compromise between entropy and energy results in the Bolzmann distri-
bution.

The potential energy of a charge q in an an electrical potential Φpzq is
qΦpzq. Check this formula using the relation between the electrical field
E and the electrical potential Φpzq

Figure 11.1:

2. Calculate c˘pzq as a function of Φpzq (use Bolzmann law).

3. The Poisson equation gives the relationship between the electrical
charges and the electrical potential Φpzq. It takes the form

∆Φpzq “ ´
ρ f ree ionspxq

ε0εr
(11.2)

and show

∆Φpzq “ `
2ezic0

ε0εr
sinh

„

zieΦpzq
kT



(11.3)

This equation is known as the Poisson-Bolzmann equation. There is
fundamental approximation involved in this derivation. We have ne-
glected the electrical potential due to the ions and have only considered
the external potential due the charges on the surface.

4. Without solving this equation, show that there exists a characteristic
length scale lp which enters into the problem. What is your interpreta-
tion ?

5. To solve this equation we need appropriate boundary conditions.
Electro-neutrality requires that the surface charge be fully neutral-
ized by ions in solution, and at sufficiently large distance E “ 0. What
is the condition on dΦ{dz as z Ñ `8 ?

6. The other condition is similar to the condition governing the electrical
field inside a capacitor. What is

dΦ
dz
|z“0 “? (11.4)

7. Assume

sinh
„

zieΦpzq
kT



«
zieΦpzq

kT
(11.5)

and solve the differential equation. Give lp. What is the physical inter-
pretation of lp ?

8. Assume that the ions come from the dissociation of NaCl (0.1 M).
What is the order of magnitude of lp ? (For future reference, l´1

p “

0.3{c1{2
0 )
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11.2 Zeta potential

Zeta potential is the charge that develops at the interface between
a solid surface and its liquid medium. This potential, which is
measured in MilliVolts, may arise by any of several mechanisms.
Among these are the dissociation of ionogenic groups in the parti-
cle surface and the differential adsorption of solution ions into the
surface region. The net charge at the particle surface affects the ion
distribution in the nearby region, increasing the concentration of
counterions close to the surface. Thus, an electrical double layer is
formed in the region of the particle-liquid interface.

Figure 11.2:

This double layer (upper part of figure) consists of two parts:
an inner region that includes ions bound relatively tightly to the
surface, and an outer region where a balance of electrostatic forces
and random thermal motion determines the ion distribution. The
potential in this region, therefore, decays with increasing distance
from the surface until, at sufficient distance, it reaches the bulk
solution value, conventionally taken to be zero. This decay is shown
by the lower part of the figure and the indication is given that the
zeta potential is the value at the surface of shear.

In an electric field, as in microelectrophoresis, each particle and
its most closely associated ions move through the solution as a unit,
and the potential at the surface of shear between this unit and the
surrounding medium is known as the zeta potential. When a layer
of macromolecules is adsorbed on the particles surface, it shifts the
shear plane further from the surface and alters the zeta potential.

Zeta potential is therefore a function of the surface charge of the
particle, any adsorbed layer at the interface, and the nature and
composition of the surrounding suspension medium. It can be ex-
perimentally determined and, because it reflects the effective charge
on the particles and is therefore related to the electrostatic repul-
sion between them, the zeta potential has proven to be extremely
relevant to the practical study and control of colloidal stability and
flocculation processes.

11.3 Electrostatic interaction between two plane surfaces

11.4 Van der Waals interaction

Figure 11.3: . DLVO theory: The total
interaction potential between two
colloidal particles is the sum of the
attractive Van de Waals interaction and
the repulsive electrostatic repulsion.

Competition between attractive van der Waals and repulsive double-
layer forces determines the stability or instability of colloidal sys-
tems.





12
Brownian motion and random walk

12.1 Introduction

A polymer chain is a chain of several polyatomic units called
monomers and look like a cooked spaghetti. In this chapter we
will look at static or time averaged properties of polymers by em-
ploying different models. In particular we will investigate the end-
to-end distance and the radius of gyration (i.e. its averaged size
in solution) as a function of the number of monomers (index of
polymerization). In this chapter, chains are "ideal", meaning that
self-avoidance effects are neglected (two monomers can occupy
the same place). We will limit ourselves ti polymer in good sol-
vents where the interaction between the monomers and the solvent
molecules are attractive.

12.2 The central limit theorem

The normal random variable has probability distribution

f pxq “
1

?
2πσ2

exp
"„

´
px´ µq2

2σ2

*

(12.1)

The mean is µ and the variance is σ2. As σ Ñ 0, the random vari-
able is almost sure. With these definitions, (??) is normalized to 1,
so that the σ Ñ 0 limit gives the δ-Dirac distribution (where all the
’mass’ is concentrated on one point on the x axis .

-1.5 -1.0 -0.5 0.5 1.0 1.5

1

2

3

4

Figure 12.1: The normal distribution
tends to a Dirac distribution as σ Ñ 0
(peaked at one point).

The generalization to N variables is straightforward

Ppxq “ Pptxiuq “

1
a

p2πqNdetC
exp

"„

´
1
2

xT ¨ C´1 ¨ x
* (12.2)

where xT is the transpose of the vector x with dimension N.
For example, we can consider a vector in d-dimension (d “

1, 2, 3) with components pr1, r2, . . . rdq on a vector basis (orhonormal)
û1, û2, . . . ûd

R “ r1û1 ` r2û2 ` . . . rdûd (12.3)

The vector R is said to normally distributed if r1, r2, . . . rd are nor-
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mally distributed (mean µi, variance σi)

PpRq “
1

b

p2πqdσ2
1 σ2

2 . . . σ2
d

exp

$

&

%

»

–´
ÿ

i“1,2,...d

pri ´ µiq
2

2σ2
i

fi

fl

,

.

-

(12.4)

or

PpRq “
1

a

p2πqdσ2d
exp

$

&

%

»

–´
1

2σ2

ÿ

i“1,2,...d

pri ´ µq2

fi

fl

,

.

-

(12.5)

in the usual case where all σi and µi are equal to σ or µ.

Exercice 12.1 If you have not done before, the following trick is useful. To
calculate

ż `8

´8

dx exp
!”

´αx2
ı)

Evaluate first

„
ż `8

´8

dx exp
!”

´αx2
ı)

2

“

ż `8

´8

dx exp
!”

´αx2
ı)

ż `8

´8

dy exp
!”

´αy2
ı)

(12.6)

and use polar coordinates. Don’t forget
ż ż

dxdy . . . “
ż 2π

0
dφ

ż 8

0
dr . . . (12.7)

While you are at it, take the derivative with respect to α to calculate ă
x2 ą.

In his most restrictive form, the central limit theorem goes as
follows:

Let X1, X2, X3, . . . , Xn be a sequence of n and identically dis-
tributed variables having each finite value of expectation µ and
variance σ2. Form

Yn “

ř

i“1,n Xi ´ nµ

σ
?

n
(12.8)

The distribution for Yn approaches the standard distribution as
n Ñ8.

12.3 One-dimensional random-walk

A polymer chain can be seen as a random walk. Here we define
what we mean by that and consider the stochastic movement of
particles on a lattice. We reduce the problem to its barest essential
and consider the motion of particles along one axis only. All par-
ticles start at time t “ 0 at the origin and execute a random walk
according to the following rule :

1. Each particle steps to the right or to the left once every τ sec-
onds with a velocity ˘vx. The corresponding distance travelled
without changing direction is thus δ “ vxτ.
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2. the probability from going to right is 1{2, and the probability of
going to the left at each step is 1{2. The particle by interacting
with the water molecule forgets the preceding journey. The walk
is not biased.

3. Each particle moves independently of all other particles. There is
no interaction among particles.

The motion of one single particle is not of interest, since we cannot
predict what it will be. This is an example of a random process
(stochastic process). We want to characterize the probability to be
at a certain distance after N steps. In d “ 2 or d “ 3, the path taken
by our stochastic molecules correspond to one configuration of a
polymer chain with N mers. What we want to do is to average over
the configurations of a polymer.

Figure 12.2:

The consequences of this random walk picture are striking :

1. On average, the particle goes nowhere. the mean displacement is
zero ă x ą“ 0.

2. On average, the root-mean-square displacement is proportional
to the square-root of the time and not to the time

?
ă x2 ą9t.

This point will be discussed later on in a next chapter.

We consider an ensemble of Z particles. Let xipNq the displace-
ment of ith particule after the Nth step. We have

xipNq “ xipN ´ 1q ˘ l (12.9)

For half of the particles, the ` sign will apply and for the other
half, we will choose the ´ sign.

On average

ă xpNq ą“
1
Z

ÿ

i“1,Z

xipNq (12.10)

which means

ă xpNq ą “
1
Z

ÿ

i“1,Z

rxpN ´ 1q ˘ ls

“ă xpN ´ 1q ą

(12.11)

Therefore : One average, the particle goes nowhere. The distribu-
tion which characterizes the spreading is symmetrical withe respect
to the origin.

We compute the root-mean square displacement. For the ith
particle, we take the square

xipNq2 “ xipN ´ 1q2 ˘ 2lxipN ´ 1q ` l2 (12.12)

and compute the mean

ă xpNq2 ą “
1
Z

ÿ

i“1,Z

ă xpNq2 ą

“ă x2pN ´ 1q ą `l2

“ă x2pN ´ 2q ą `2l2

“ă x2pN ´ 3q ą `3l2

“ . . .

(12.13)
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which means :
ă x2pNq ą“ Nl2 (12.14)

Consider now the bond vectors upiq “ xpi ` 1q ´ xpiq. A bond
vector corresponds one mer in our polymer analogy. Then the upiq
are independent random variables with:

1. Zero mean: xupiqy “ 0

2. Equal variance: xupiq2y “ xpxpi` 1q ´ xpiqq2y “ l2

We have for the end-to-end distance between the starting and the
end point

R “
ÿ

i

upiq (12.15)

so that our preceding conclusion applies. R is the sum of indepen-
dent random variables with a given mean and variance, so that R is
normally distributed.

We have
xR2y “ Nl2 (12.16)

For d “ 1

PpN, Rq “
´

2πR2
0

¯´1{2
exp

#«

´
R2

2R2
0

ff+

(12.17)

For d “ 3, one can do the same calculation as before. The cal-
culation is similar. What happens in the x , y or z directions are
independent and things are symmetric in the x, y, z directions. We
have (note the factor 3):

1. xxy “ xyy “ xzy “ 0;

2. xx2y “ xy2y “ xz2y “ l2{3;

so that
xx2y ` xy2y ` xz2y “ l2 (12.18)

After N steps, one finds

xR2y “ Nl2 (12.19)

and the distribution is

PpN, Rq “

˜

2πR2
0

3

¸´3{2

exp

#«

´
3R2

2R2
0

ff+

(12.20)

12.4 The random walk results are universal

One can ask if the results of the random walk model will survive in
more realistic situations. The answer is yes. They will survive and
they are model independent as long as we don’t make drastic chan-
ges. This property is called universality. There are things which
matter and things which do not.
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For an ideal random walk (a self-avoiding random walk is not
ideal), one always finds that the typical size of the region that the
random walk inspects is proportional to t1{2

?
ă R2 ą9tν ν “ 1{2 Ideal Random Walk (12.21)

or to N1{2 where N is the number of steps. The mathematical sign
9 means proportional to. When we coin the term "universal", we
mean that ν does not change, but that the prefactor can. In general,
ν will not depend on the geometry of the network. If we take a
square or a triangular lattice, the exponent ν will not change. If
the length of the step is not more fixed but if it is drawn from a
probability distribution, ν will not change either (if this probability
distribution is not pathological). For an ideal random walk, the
exponent ν does not depend on the dimension of space. For a self-
avoiding random-walk, it does as long as the dimension of space is
less than 4.

Remark 4 Let ppdq be the probability that a random walk on d-dimensional
lattice return to the origin (after an infinite number of steps). In 1921,
Pólya proved that

pp1q “ pp2q “ 1 but ppdq ă 1 for d ą 2 (12.22)

Another way to say that is: "All roads lead to Rome except the cosmic
paths ! "

This can be seen as follows. Consider a random walk of N steps on
a lattice. The region inspected by the random walk has size

?
N. This

corresponds to Nd{2 different sites if the sites are distinct, i.e. counted
once. The density of visited sites is therefore 9N{Nd{2 “ 1{Nd{2´1 which
growths with N if d ă 2. The random will start at some point to visit the
same site many times. One says that the walk is recurrent. For d ě 3, the
density decreases meaning that the random walk has a chance to escape.
The random walk is transient. The case d “ 2 is more problematic, but the
random walk has a probability 1 to return to the origin.

12.5 Thermodynamic functions

We assume that all conformations with a given end-to-end distance
are of equal energy. Absorbing all constants into the reference en-
tropy:

S pR, Nq “ kb ln PpN, Rq (12.23)

which gives

S´ S0 ´
3kR2

2Nl2 (12.24)

The free energy is then

F “ E´ TS “ F0 `
3kR2

2Nl2 (12.25)

We see that the free energy is related quadratically to the end-to-
end vector, as if the chain is an entropic spring.
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12.6 The Gaussian Chain

This is a second alternative model kown as the Gaussian chain.
A gaussian chain is a collection of beads connected by springs
playing the role of harmonic oscillators. The potential exerted on
two successive beads is

Rudiments of Polymer Physics 6

r3

r1

r2

rN

R

Figure 2.3: A drawing of a Gaussian chain. Although they are not shown, the vectors Ri

are defined analogously as in the FJC model. When the spring constant is appropriately
chosen for the harmonic oscillators (see equation (2.10)), the distribution function for R
is identical to that of a FJC.

2.2 The Gaussian chain

A common model used to describe polymers is a Gaussian chain, depicted in
figure 2.3. A Gaussian chain is modeled as a collection of beads connected
by springs functioning as harmonic oscillators. We define the potential the
spring exerts of two successive beads as

U0 (ri) =
3

2b2
kTr2

i (2.10)

where ri is the vector between them, T is the temperature, and k is Boltz-
mann’s constant. Notice that the spring constant is similar to that expressed
in the “entropic spring” description of the free energy of the FJC. With such
a definition for the potential of a harmonic oscillator, the average displace-
ment of the two beads is b, as we will see shortly, which correlates to the
length of the segments of a FJC.

For the Gaussian chain, our approach to finding the distribution function
for the end-to-end vector will be di↵erent than in the example of a FJC. We
start by finding the distribution function for a single segment,  (ri). The

Figure 12.3:

U0priq “
3

2l2 kBTr2
i (12.26)

where ri is the vector between them. The spring constant is similar
to the spring constant of the freely joined chain.

Exercice 12.2 The probability distribution for a single segment is given
by the Bolzmann weight

ppriq “ C exp
"ˆ

´
U0

kBT

˙*

(12.27)

where C is a normalization constant

C
ż

dri ppriq “ 1 (12.28)

Show (using polar coordinates):

C “
ˆ

3
2πl2

˙3{2
(12.29)

A more lengthy calculation gives that the end-to-end distribution is
again Gaussian

PpN, Rq “

˜

2πR2
0

3

¸´3{2

exp

#«

´
3R2

2R2
0

ff+

(12.30)

We note now that since each segment of the Gaussian chain
is independent of the others, a chain of length N may be con-
structed by stringing two chains of length N1 and N2 together with
N1 ` N2 “ N. Noting this, we can trivially find the distribution
function of the vector connecting any two arbitrary segments m and
n in a Gaussian chain. In particular, the average distance between
monomers n and m is

xpRm ´Rnq
2
y “ |m´ n|l2 (12.31)

Exercice 12.3 The purpose of this problem is to compute the radius of
gyration of a Gaussian chain. We define the coordinates of the center of
gravity as

RG “
1
N

m“N
ÿ

m“1

Rm (12.32)

The radius of gyration is

R2
g “

1
N

ÿ

i

xpRi ´RGq
2
y (12.33)
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1. Show that the following two equations are correct

R2
g “ x

1
N

ÿ

i

R2
i ´

1
N2

ÿ

i

ÿ

m
Ri.Rmy

“
1

2N2

ÿ

i

ÿ

m
xpRi ´Rmq

2
y

(12.34)

2. Using (??), show

R2
g “

1
2N2

N
ÿ

m“1

N
ÿ

n“1

|n´m|l2 (12.35)

3. The last expression can be transformed into an integral as

R2
g «

l2

2N2

ż N

0
dn

ż N

0
dm|n´m|

“
l2

N2

ż N

0
dn

ż n

0
dm pn´mq

(12.36)

Performing the last integral, show

R2
g “

1
6
xRy2 (12.37)

12.7 The freely rotating chain

This is a model where the angle θ between two consecutive seg-
ments is fixed, but each segment can rotate freely in the φ direction.
This model is also called the Kratky-Porod wormlike chain. This
model has some kind of "memory" but the end-to-end distance still
scales with

?
N.
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R

r1
r2 r3

rN

ri−3

ri−2

ri−1

ri
θθ

θ
θ

Figure 2.5: At left, a 2-D representation of a freely rotating chain. As before, although
they are not shown, the vectors Ri are defined analogously as in the FJC model in figure
2.1 and the lengths of each ri is again b. Note that full rotation is permissible about each
bond in the � direction, as shown at right. Note also that each successive segment is not
independent of those previous to it. In such a way, the chain can exhibit sti↵ness for small
N .

rotate in the � direction. The distribution function for the end-to-end vector,
R, is di�cult to obtain for the discrete case (we will examine a continuous
limit of this chain, called a Kratky-Porod wormlike chain, in a subsequent
section), so we will only compute R̄2 = hR2i here. This alone is enlightening
because it provides interesting insights into the limiting cases of this model
and the nature of the inherent sti↵ness.

Since equation (2.2) is general, it also holds for the freely rotating chain.
A recursion relation is needed to calculate hri · ri+ji. The relationship is
derived by successively projecting each segment vector, ri, onto the unit
vector along the direction of the subsequent one, ri+1. Thus,

ri =
(ri · ri+1) ri+1

|ri+1|2
=

(ri · ri+1) (ri+1 · ri+2) · · · (ri+j�2 · ri+j�1)

(b2)j�1 ri+j�1.(2.21)

So, we have ri in terms of dot products of successive segments. We know from
elementary vector geometry that the dot product of the successive segments
is

hri · ri�1i = b2 cos ✓. (2.22)

Figure 12.4: . The freely rotating chain.
The angle θ is fixed but segments can
rotate and draw a cone whose apex is
a vertex.

When N " 1:

R̄ “
a

R2 “ l

d

N
ˆ

1` cos θ

p1´ cos θq

˙

(12.38)

Figure 12.5: A chain of N mers within
a tube of diameter D. The length
occupied by chain is R‖.

Exercice 12.4 An ideal chain trapped in a tube: Consider a chain in a
cylindrical tube of diameter D ! R0, see Fig. ??. We have D " l, so
that the chain retains some lateral wiggling. What is the length of tube R‖
occupied by the chain ?

Exercice 12.5 Consider a particle that hops at discrete times between
neighboring sites on a onedimensional lattice with unit spacing. At each
step, the random walker moves a unit distance to the right with probability
p or to left with probability q “ 1´ p. Let PpN, rq denote the probability
that the particle is at site r at the Nth time step.

1. Show

PpN, rq “ pPpN ´ 1, r´ 1q ` qPpN ´ 1, r` 1q (12.39)

2. Introduce the generating function

GpN, kq “
ÿ

r“´8,`8
eikrPpN, rq k P r´π,`πs (12.40)
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Show
ˆ

´i
d
dk

˙m
GpN, kq

∣∣∣∣
k“0

“ă rm ą (12.41)

3. Show
GpN, kq “

´

peik ` qe´ik
¯

GpN ´ 1, kq (12.42)

4. Assume that the particle starts at the origin

Pp0, rq “ δ0,r (12.43)

Show
GpN, kq “

´

peik ` qe´ik
¯N

(12.44)

5. Deduce that PpN, rq is the binomial distribution

PpN, rq “
N!

´

N`r
2

¯

!
´

N´r
2

¯

!
ppN`rq{2qpN´rq{2 (12.45)

6. Use Stirling approximation and show

PNpxq Ñ
1

a

2πNpq
e´rx´Npp´qqs2{2Npq (12.46)

7. What is ă x ą. Take p “ q “ 1{2 and recover the result given in the
lecture.

Exercice 12.6 Consider a random walk on a finite interval of length N.
The two boundary sites are absorbing, i.e. the random walker immediately
disappears upon reaching these sites. Suppose that the starting position of
the random walk is n, with 0 ď n ď N. What is Fn, the probability that
the walker first reaches the boundary at site N, i.e. without touching site
number 0, first? We will write a simple recursion relation for Fn. Consider
the probability Fn.

1. What is F0 and FN ?

2. With probability 1{2, the walk steps to site n´ 1 at which the probabil-
ity to escape at site n´ 1 is Fn´1. Similarly, the walk steps at site n` 1
with probability 1{2. Show:

Fn “
1
2
pFn´1 ` Fn`1q (12.47)

3. Show Fn “ n{N. In a fair coin-toss game, the probability that a
gambler ruins the casino equals the wealth of the gambler divided by the
combined wealth of the gambler and the casino. Is gambling a good idea
?

4. Introduce the step size a. Write

Fn`1 “ Fpx “ na` aq “ Fpxq ` aF1pxq ` a2{2F2pxq (12.48)

Show that Fpxq solves the Laplace equation

∆F “ 0 (12.49)

so that "exit problems" ara analogous to electrostatic problems.



13
Entropic elasticity of polymer chains, self-avoidance,
and persistence

13.1 Force-extension curve

As a first trivial example, consider a spring with rigidity k. Let x0

its extension at rest. We apply a force F to the spring. The equiva-
lent of the Gibbs energy is

GpFq “
1
2

kpx´ x0q
2 ´ Fx (13.1)

where we work in an ensemble where we control F (which plays an
equivalent role as the pressure P for a gas). The state of the state
minimizes G at a given force F. Taking the derivative with respect
to x to find the minimum gives

kpx´ x0q ´ F “ 0 or x “ c0 `
F
k

(13.2)

In this simple example, U “ 1{2kpx´ x0q
2 and S “ 0 (no entropy for

macroscopic spring).

Figure 13.1:

Macromolecules and biopolymers are elastic and single molecule
experiments probe their elasticity. We illustrate this in the case of an
ideal polymer.

This an example where we minimize the Gibbs free energy to
find the equation of state of a polymer. We consider a simple poly-
mer model composed of sequences of N rigid segments of length l
and able to point in any direction independently of each other. We
attach the polymer at one end on a surface and apply a force at the
other end: see Fig. ??. What is the relation between the extension R
and the force F ?

R

Figure 13.2: A single molecule ex-
periment using a bead trapped in an
optical trap.

n We pose this problem to illustrate two points:

1. Elasticity can be entropic.

2. The conformational state of the chain results from the min-
imization of G. By minimizing G we realize our ambition to
equilibrate energy with entropy.

As a starting point, we consider the instantaneous end-to-end
vector R. Because of the rules for addition of vectors, R is the sum
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of the bond vectors ui “ xi`1 ´ xi with

R “
ÿ

i

rui “ xi`1 ´ xis (13.3)

where xi`1 ´ xi is the bond vector for one single mer. We assume
that we have N mers.

Since the bond vectors are random variables, the end-to-end
vector vector is also a random variable and is Gaussian. It follows
that probability distribution of R has the form

PpN, Rq “

˜

2πR2
0

3

¸´3{2

exp

#«

´
3R2

2R2
0

ff+

(13.4)

where R2
0 “ Nl2.
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Figure 13.3: Plot of x2 ´ x. Note the
minimum.

There is no energy associated with a given macroscopic exten-
sion R, since the bond vectors can take any direction they want.
Therefore, U “ 0. To calculate G “ U ´ TS, we need to compute
the entropy. We have seen in the sucrose diffusion experiment that
entropy is connected to the number of configurations that the chain
can adopt given a configure R. The more configurations we have
for a given end to end distance R, the largest the probability to
observe a given end to end distance . So we find the entropy

S “ k ln W “ k ln PpN, Rq “
3
2

k
R2

R2
0

(13.5)

micro-irradiation device for the purpose of destroying
selected regions of single cells and embryos [262]. The real
advent of the optical scalpel, however, is tightly connected to
the invention of the laser in 1959. As early as in 1962 Bessis
et al. built the first laser scalpel using the ruby laser
for ablation of sub-cellular organelles [263]. Since then, the
laser scalpel has been used in a number of successful
applications especially in the field of cell and developmental
biology (see [15, 17] and references therein for a compre-
hensive review). A typical experimental approach relies on
removing a selected structural element or organelle within
the cell (e.g. mitotic chromosomes [264–266], centrosomes
[267], individual mitochondria [268, 269], or microtubules
[270, 271]) and studying the effect of this removal on the fate
of the cell.

Laser microablation and micromachining techniques
have been used extensively in analytical and synthetic
chemistry and material science for quantitative optical and
mass spectroscopic analysis of the composition of solid
substrates [272], controlled synthesis of organic and inor-
ganic nanoparticles [273, 274], and manufacturing of
microfluidic systems [275]. Laser-based microablation is also
a very promising technique for manufacturing the optical,
mechanical, and electronic components of integrated
photonic and microelectro-mechanical systems [276–278]
that are vital components of lab-on-a-chip analytical devices
capable of analyzing rapidly the chemical composition of
sub-picoliter sample volumes [279–282].

3.10 Laser-pressure catapulting

Laser pressure catapulting (LPC) in combination with laser
scalpel enables sterile isolation of selected cells or sub-
cellular structures from the sample tissue for further
structural and compositional analysis. The experimental
procedure consists of two steps: first, a selected region
within the sample (that is often placed on a special
UV-absorbing polymer foil for increasing the efficiency of
the ablation) is micro-ablated using a UV-wavelength laser
scalpel. Subsequently, the ablated part of the specimen is
transferred into an appropriate collection vial by using an
intense focused or defocused pulse of the ablation laser
beam. This light-mediated transfer does not require any
mechanical contact with the transported sample; however, it
is not based on the optical forces associated with the laser
pulse. It is mediated by the pressure shock waves that follow
the plasma generation in the irradiated specimen and/or
photothermal ablation of the sample [283].

LPC technique was first introduced by Schütze and Lahr
who applied it to the analysis of mRNA of a single cell
isolated from archival colon adenocarcinoma [284]. Since its
introduction LPC has been successfully applied to isolate
and catapult cells from various types of tissues ranging from
histological specimens to plant tissues and even delicate
stem cells (see [17] and references therein for a review).
Recently, 1 mm long living nematode Caenorhabditis elegans

was successfully transported with LPC technique without
impairing its viability (http://www.palm-microlaser.com).

4 Experimental devices and techniques
using optical forces

Various realizations of optical micro-manipulation
mentioned in the previous section have found exciting
applications in which the optical forces are combined with
other methods in order to create unique tools to study the
processes at the micro- and nanoscale.

4.1 Measurement of weak interaction forces: optical
pico-tensiometer

Combination of OT with sensitive detection of the trapped
particle’s position represented a major breakthrough in the
application of the optical trapping techniques as it allowed
the precise quantification of external forces acting on the
trapped particle. In these experiments, the trapped particle
serves as a probe that is displaced from its equilibrium
position in the trap as a result of the measured external
forces generated, for example, by interaction with a solid
surface [285, 286], fluid flow [89], or pulling action of a
molecule attached to the particle [11, 287, 288]. The force
measurements are then based on the assumption of a linear
relationship between the displacement of the trapped
particle and the applied external force (see Fig. 6). Prior to
the measurement, it is necessary to calibrate the force–dis-
placement conversion constant (optical trap stiffness) that
depends on the laser power, size and optical properties of
the trapped probe, and optical properties of the immersion
medium [57, 74]. With the use of the OT, it is possible to

optical
force Fopt

trapped
object

Fopt

∆x

A B

Fext

Fmax

Figure 6. Principle of the external force measurement using OT.
(A) When no external force is applied, trapped particle is resting
at its equilibrium position in the trap with no net optical force Fopt

acting on it. (B) External forceFext causes displacement nx of the
trapped particle from its equilibrium position; consequently,
optical force Fopt starts acting on the particle that is equal in size
and opposite in direction to Fext. For small displacements from
the equilibrium, relationship Fopt ¼ "kDx holds where k is the
optical trap stiffness. Maximal external force that can be
measured is Fmax.

Electrophoresis 2008, 29, 4813–48514824 A. Jonáš and P. Zemánek

& 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.electrophoresis-journal.com

Figure 13.4: Principle of the external
force measurement using an optical
trap. The particle is made of a dielec-
tric material, meaning that the particle
is trapped at the place where the in-
tensity of the electric field is maximum
(A) When no external force is applied,
trapped particle is resting at its equi-
librium position in the trap with no
net optical force Fopt acting on it. (B)
External force Fext causes displacement
∆x of the trapped particle from its
equilibrium position; consequently,
optical force Fopt starts acting on the
particle that is equal in size and op-
posite in direction to Fext. For small
displacements from the equilibrium,
relationship Fopt “??k∆x holds where
k is the optical trap stiffness. Maximal
external force that can be measured is
Fmax[? ] .

Assume

U ´ TS “ `kT ln PpN, Rq « `
3
2

kT
R2

R2
0
` constant (13.6)

and check that the entropy decreases when R increases: why ?
Since we work at constant force, that is to say constant pressure

in the preceding language, the system minimises G “ U ´ TS´ FR,
where FR is the equivalent of PV:

GpT, Fq “
3
2

kT
R2

R2
0
´ FR (13.7)

This is exactly what we had before: The only variable left is R and
R will spontaneously choose the value which minimizes GpT, Fq:
see plot of Fig. ??. Therefore,

F “ 3kT
R
R2

0
or R “

Nl2

3kT
F (13.8)

From the classical spring example F “ kx, we see that the polymer
possesses a "spring rigidity k " inversely proportional to T, why ?

Exercice 13.1 Consider an ideal chain carrying charges ˘e at both ends.
What will be its relative elongation in a field of E “ 30 103V{m (l “ 2,
N “ 104). Remember kBT “ 1{40eV.
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13.2 Flory theory for self-avoiding walks or polymers

What is missing up to now for the calculating the shape of poly-
mers is the effect of steric interactions. An argument due to
Flory takes these interactions into account.

Suppose that we have a chain with N monomers with radius R.
Then the average density of monomers is

c “
N
Rd (13.9)

where d is the dimension of space. Assuming short-ranged interac-
tions, we add a term to the free energy which counts the number of
self-interactions. On average the probability to find a monomer in a
unit volume is c. Then the probability to find two monomers at the
same place within the volume Rd is

cˆ c (13.10)

So the energy per unit volume for self-intersection is proportional
to

upTq ˆ cˆ c (13.11)

The total energy is this energy integrated over the whole volume Rd

upTq
c

Rd
c

Rd Rd (13.12)

which much positive, since increasing the density increases the
number of contacts. The scale of this penalty energy is propor-
tional to some function upTq in good solvents (we distinguish good
solvents where the polymer "loves" the contacts with the solvent
molecules from the poor solvent case where the polymer forms a
globule to protect himself from the solvent)

Adding the entropic spring energy gives for the total free energy

G “
d
2

kT
R2

R2
0
` upTq

c
Rd

c
Rd Rd (13.13)

where R0 “ Nl2.
This free energy is minimized when the radius R is such that

BG
BR

“ 0 (13.14)

or

RpNq “
ˆ

upTql2

kT

˙1{pd`2q

N3{pd`2q9Nν (13.15)

with

ν “
3

d` 2
for d ď 4 and ν “ 1{2 above (13.16)

When d “ 1, ν “ 1. As anticipated, self-avoidance in d “ 1 makes
the chain straight ! In d “ 2, ν “ 3{4 which is exact. In d “ 3,
ν “ 3{5 which is extremely closed to exact (numerical) value 0.5880.
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13.3 Persistence length of a polymer

Let us start with a continuous model for the chain. Each point on
the polymer chain is perfectly defined if we know the distance of
this point to the origin along the chain. This distance should not be
confused with the flying distance to the origin

r “ OMpsq (13.17)

where s is the arclength. The tangent vector at some point is de-
fined as

t “
dOMpsq

ds
(13.18)

where we take the derivative for each component pxpsq, ypsq, zpsqq.
Integrating the tangent gives back the end-to-end distance

OMpsq “
ż L

0

dOMpsq
ds

ds (13.19)

For a discrete chain, the tangent ti at node i is simply the vector
between node i and i ` 1. Depending on the context, one can use
either a continuous or a discrete approach.

Ideal chain size: worm-like chain
(Kratky and Porod model)

Key argument:            

Figure 13.5: The persistence length sets
the scale of the correlation between
the tangent at different points of the
chain. If we change the angle of the
tangent at some point s1, what is the
probability that the tangent at a distant
point s3 will see this change ? Because
of the exponential dependence of (??),
the persistence length sets the domain
of influence of a perturbation. If this
length is large, the polymer is rigid.
If this length os small, the polymer is
easily deformed.

To evaluate the correlation between two tangents separated by
a distance s along the chain, we shall make use of the following
property

ă cos θs1,s3 ą“ă cos θs1,s2 ąă cos θs2,s3 ą (13.20)

where s2 is any point between s1 and s3.

Exercice 13.2 To prove this, separate into perpendicular and parallel
components as (we do the calculation is d “ 2 for simplicity: For any
vector, the perpendicular vector is well defined)

9r1 “ p9r1 ¨ 9r2q9r2 ` p9r1 ¨ 9rK2 q9r
K
2 (13.21)

9r3 “ p9r3 ¨ 9r2q9r2 ` p9r3 ¨ 9rK2 q9r
K
2 (13.22)

with |9rK2 |
2 “ |9r2| “ l2.

9r1 ¨ 9r2 “ |9r1||9r2| cos θ1,2 (13.23)

9r1 ¨ 9rK2 “ |9r1||9rK2 | cospπ{2´ θ1,2q (13.24)

“ |9r1||9rK2 | sin θ1,2 (13.25)

We have

9r1 ¨ 9r3 “ l2p9r1 ¨ 9r2qp9r3 ¨ 9r2q ` l2p9r1 ¨ 9rK2 qp9r3 ¨ 9rK2 q (13.26)

so that
cos θ1,3 “ cos θ1,2 cos θ2,3 ` sin θ1,2 sin θ2,3 (13.27)

From Fig. ??, we see that each time we have one configuration with θ1,2,
we have a symmetric configuration with ´θ1,2. Using sinp´θq “ ´ sin θ,
we get that the average of the sin are equal to zero

ă sin θ12 sin θ23 ą“ 0 (13.28)

so that @s2 P rs1, s3s

ă cos θs1,s3 ą“ă cos θs1,s2 ąă cos θs2,s3 ą (13.29)
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The only function with this property is the exponential, so that
we can write

cospθps´ tqq “ exptr´|s´ t|{lsu (13.30)

Figure 13.6: 4 configurations to il-
lustrate the symmetry θ1,2 Ñ

´θ1,2, θ2,3 Ñ´θ2,3.

Recall that a correlation function can be interpreted as a proba-
bility. If we rotate the tangent at a given point, what is the proba-
bility that a node located at a distance s of this point will feel our
perturbation ? Formula (??) shows that the domain of influence of
our perturbation is actually small and not larger than l. Because of
the exponential, nodes at distance s marger than l will not feel the
perturbation and will fluctuate indepedently.

Conclusion : Our problem is to connect l to the rigidity of the
polymer. For ideal chains with no internal energy, l is very small.
For more rigid polymers which resists bending, l is much larger
(see table ??).

Actin 15 µm
Microtubules 1´ 6 mm

ADN 50 nm
Dextran 0.5 nm
P.E.G. 0.7 nm

Table 13.1: Persistence length of some
polymers.





14
Single-Molecule Mechanics

14.1 Optical tweezers

A single laser beam focused by a high numerical aperture micro-
scope objective is able to trap dielectric particles, usually micro-
spheres, near the lens focus. Such an arrangement is called optical
tweezers and has a wide range of applications in physics and biol-
ogy.

14.2 Atomic force microscopy

Atomic Force Microscopy (AFM) appears as a very natural tool to
work in the single molecule domain. This apparatus was originally
designed to visualize surfaces with atomic scale resolution. Its
working principle is to scan the surface of a sample with a very
sensitive position detector and to record the modulation of the
topological signal. The AFM relies on a very thin cantilever as a
detector. Somewhat similar to the needle of a dj’s record player, this
micro-fabricated beam is typically 100 microns long, 10 microns
wide and a fraction of a micron thick. It has an extremely sharp
tip at its end (radius of curvature in the tens of nanometers). The
position of this cantilever is measured by reflecting a collimated
laser beam onto its surface and imaging the light spot on a two- or
four- quadrant diode detector. The sample is scanned horizontally
by a XY piezo stage, providing atomic resolution.

As we have stated, the AFM is primarly a visualization tool
and its use as a single molecule micro-manipulation device is a
secondary feature. The very sensitive cantilever has motivated re-
searchers to use this device to measure the force required to stretch
a biopolymer or to break a molecular bond. To achieve this goal,
the operator stops the horizontal sample-scanning process and gen-
tly moves the cantilever vertically above the sample while recording
its deflection. The AFM provides some natural features :

1. The position of the cantilever can be adjusted with sub-nanometer
resolution and the vertical scanning speed can be high.

2. The deflection of the cantilever is also read with sub-nanometer
resolution, and the response time is in the milli-seconde range.
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3. The AFM may be used to visualize the sample.

4. Strong forces in the nanoNewton range may be applied to the
sample.

The force sensitivity of the AFM is related to the cantilever size
and stiffness. Different cantilevers provide a range of stiffness from
1 N/m to 10´3N{m(or 1pN to 1nN per nanometer) of cantilever
deflection. A very common error consists in saying that the best
sensor is the one with the smallest stiffness. We shall see that the
best sensor (in term of signal to noise) in in fact the smallest de-
vice. Since the cantilever size is typically 100 microns they are not
the best sensors in terms of noise. A strong effort is under way to
reduce the size of the cantilever to improve their signal to noise.
Typically the minimum force measured with the AFM is 5 pN.

Exercice 14.1 In order to measure forces accurately with an AFM, it is
important to measure the cantilever spring constant. Experimentally, the
basic idea is to look at the fluctuations of the tip of the cantilever (see Fig.
??).

The force exerted on the cantilever can be deduced from Hooke’s law
F “ ´kx.

1. Assume F “ 0. Show that the fluctuations see in Fig. ?? are the ones of
an abstract particle in a potential well 1{2kx2.

2. From this, you should deduce an expression for ă x2 ą.

3. Do the integral (they have been done somewhere during the lecture)
and show

1
2

k ă x2 ą“
1
2

kBT (14.1)

4. We want now to measure an applied force. Assume F ‰ 0. Show that
the fluctuations ă δd2 ą of the tip around the new position d obey a
relation similar to (??).

5. Deduce that the incertitude on the force measured by looking at the
mean deflection point is

ă δF2 ą“ pkkBTq1{2 (14.2)

6. Do you prefer to choose a rigid or a soft cantilever to measure the force
?

Vol. 1, 2005 Le mouvement brownien 185

Figure 5: Enregistrement du mouvement brownien, dans un liquide, de la pointe d’un microscope
à force atomique. (Enregistrement fourni gracieusement par Pascal Silberzan, Institut Curie.)

De manière assez étonnante, ce sont les fluctuations browniennes qui vont être utilisées di-
rectement pour la mesure de forces d’origine biologique.

2.2 Mesure de force par fluctuations browniennes

Cette technique de mesure de force s’inspire largement de la méthode proposée par Einstein72 pour
mesurer la raideur d’un ressort à l’aide des fluctuations browniennes. Lorsque l’on applique en effet
une force sur la bille magnétique grâce à un gradient de champ, la molécule étirée et la bille forment
un minuscule pendule de longueur ! (Figure 4). La bille est animée d’un mouvement brownien, lié
à l’agitation thermique des molécules d’eau environnantes. Le petit pendule magnétique est ainsi
perturbé par une force de Langevin aléatoire qui l’écarte de sa position d’équilibre. Il est ramené
vers celle-ci par la force de traction exercée par l’ADN (figure 6).

Comme nous allons le montrer en détail plus loin, le pendule possède une raideur transverse
k⊥ qui est directement reliée à la force de traction F par k⊥ = F/!. Si l’on appelle x l’écart de la
bille par rapport à sa position d’équilibre dans la direction perpendiculaire à la force "F , la théorie
va nous donner

F = kBT !/〈x2〉,

où 〈x2〉 représente les fluctuations quadratiques moyennes de x. Pour mesurer la force de traction
sur la molécule d’ADN, il suffit donc de mesurer l’allongement ! et les fluctuations quadratiques
moyennes 〈x2〉 ! Cela est très réminiscent de la formule d’Einstein (25), et de la surprise de pouvoir
en déduire le nombre d’Avogadro.

Pour mesurer ces fluctuations, il faut suivre les déplacements de la bille pendant un certain
temps, comme dans les expériences de Jean Perrin de 1908 sur le mouvement brownien. De nos
jours, un programme informatique analyse en temps réel l’image video de la bille observée au mi-
croscope et détermine son déplacement dans les trois directions de l’espace avec une précision de
l’ordre de 10 nm (figure 6). Cette précision est obtenue par une technique de corrélation d’images.
Ce type de mesure brownienne possède divers avantages :

72A. Einstein, Investigations of the Theory of the Brownian Movement, éd. R. Fürth, trad. A. D. Cowper, Dover
Publications, p. 24 (1956).

Figure 14.1: Position of the cantilever
tip as a function of time. Due to ther-
mal fluctuations, the tip experiences
strong random displacements.
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How to convert chemical energy into work

15.1 The detailed balance principle

This principle reads as follows: In the state of equilibrium, every
elementary transformation is balanced by its exact opposite or re-
verse, see Fig. ??. This is equivalent to say: At equilibrium, the
number of processes destroying situation A and creating situation B
will be equal to the number of processes producing A and destroy-
ing B. If you know the probability of a transition from a state A to
the other state B of a physical system (in some appropriate time
unit), and you also know the probability of the reverse reaction,
then you automatically know what is equilibrium condition for N
molecules distributed in the two states:

NAPpA Ñ Bq “ NBPpB Ñ Aq (15.1)

where N “ NA ` NB and where NA and NB are the "occupation
number" (i.e. the number of molecules in state A or B) and this
condition only applies to equilibrium systems.

This property is useful to distinguish equilibrium from non-
equilibrium systems and is synonymous of a symmetry. When
detailed balance is broken, time-reversal symmetry is also broken.
In case (b) of the companion figure, the cycle runs clockwise and
not anti-clockwise. As a result, there is a macroscopic flux A Ñ

B Ñ C Ñ A of matter (or of information). This is not possible is
the system at equilibrium, since there is not flux for an equilibrium
system (the absence of flux is the essence of equilibrium systems).

242
A .. B

c
(a)

CHEMICAL TRANSFORMATIONS

A .-. B

\ I
c
(b)

(c)

Figure 9.1 The principle of detailed balance. (a)
The equilibrium between three interconverting com-
pounds A, Band C is a result of "detailed balance"
between each pair of compounds. (b) Although a
conversion from one compound to another can also
produce concentrations that remain constant in time,
this is not the equilibrium state. (c) The principle of
detailed balance has a more general validity. The
exchange of matter (or energy) between any·· two
regions of a system is balanced in detail; the amount
ofmatter going from X to Y is balanced by exactly the
reverse process, etc.

equilibrium and a living cell that is in an organized state far from
thermodynamic equilibrium. Removal of a small part of the water droplet does
not change the state of of the droplet, but removing a small part of a
living cell may have a drastic influence on other parts of the cell.

9.5 Entropy Production due to Chemical Reactions

The formalism of the previous sections can now be used to relate entropy
production to reaction rates more explicitly. In Chapter 4 we have seen from

Figure 15.1: The principle of detailed
balance. (a) The equilibrium between
three interconverting compounds A,
Band C is a result of "detailed balance"
between each pair of compounds.
(b) Although a conversion from one
compound to another can also produce
concentrations that remain constant in
time, this is not the equilibrium state,
since the cycle runs only way and
detailed balance is broken between the
two ways of running the cycle.

In particular, living cells are out-equilibrium system, and de-
tailed balance is always broken. The reason for this is that cell uses
chemical energy to perform work. Therefore, energy (ATP con-
sumption) is fed into the system into and cells are open systems
to energy fluxes. This is evident if we drive an energy flux into
a reaction, the reverse reaction will provide energy. This point is
particularly well illustrated in the case of the F1-ATPase rotary mo-
tor. This rotary motor is able to synthesis ATP (from ADP) with
a proton flux (through change of conformations of the molecule).
The synthase is fully reversible in that hydrolysis of ATP drives the
reverse flux of protons (in the reverse direction).
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Thus, the principle of detailed balance has a more general valid-
ity.

Detailed balance implies that rates constant and equilibrium
ratios are not independent. Rate constant for chemical reaction are
equivalent to the transition probabilities PpA Ñ Bq we have seen
before. As an example, consider the reaction

X`Y ÝÝáâÝÝ 2 Z (15.2)

The forward and reverse reaction rates are

R f “ k f aXaY and Rr “ kra2
Z (15.3)

where the a1s are the activities (i.e. concentrations). At equilibrium,
there is an exact balance between the forward and the reverse rates,
meaning that the fluxes equal each other

k f aXaY “ kra2
Z (15.4)

so that we get the equilibrium condition between the concentrations
(the activities) and the chemical rates

KpTq “
k f

kr
“

a2
Z

aXaY
(15.5)

In other words, there is a relationship between the equilibrium
constants and the reaction rates.
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can occur when actin filaments interact with disassembly factors such as 
members of the cofilin family or with polymerases such as members of 
the formin family.

Both actin filaments and microtubules are polarized polymers, meaning 
that their subunits are structurally asymmetrical at the molecular level. 
As a result of this structural polarity, both types of polymer function as 
suitable tracks for molecular motors that move preferentially in one direc-
tion. For microtubules, the motors are members of the dynein or kinesin 
families, whereas for actin filaments, they are members of the large family 
of myosin proteins. These molecular motors have essential roles in organ-
izing the microtubule and actin cytoskeletons. Microtubule-associated 
motors are crucial for the assembly of the microtubule array, in inter-
phase, and the mitotic spindle. These motors also carry cargo between 
intracellular compartments along microtubule tracks. Some actin net-
works, such as the branched networks that underlie the leading edge of 
motile cells, seem to assemble without the aid of motor proteins, whereas 
others, including the contractile array at the rear of a motile cell, require 
myosin motor activity for their formation and function. Myosin motors 
also act on the bundles of aligned actin filaments in stress fibres, enabling 
the cells to contract, and sense, their external environment.

Intermediate filaments are the least stiff of the three types of cytoskeletal 
polymer, and they resist tensile forces much more effectively than com-
pressive forces. They can be crosslinked to each other, as well as to actin 
filaments and microtubules, by proteins called plectins13, and some inter-
mediate-filament structures may be organized mainly through interac-
tions with microtubules or actin filaments. Many cell types assemble 
intermediate filaments in response to mechanical stresses, for example 
airway epithelial cells, in which keratin intermediate filaments form a net-
work that helps cells to resist shear stress14. One class of widely expressed 
intermediate filament, consisting of polymerized nuclear lamins, con-
tributes to the mechanical integrity of the eukaryotic nucleus, and phos-
phorylation of nuclear lamins by cyclin-dependent kinases helps trigger 
nuclear-envelope breakdown at the beginning of mitosis15. Unlike micro-
tubules and actin filaments, intermediate filaments are not polarized and 
cannot support directional movement of molecular motors.

Long-range order from short-range interactions
The cytoskeleton establishes long-range order in the cytoplasm, helping 
to turn seemingly chaotic collections of molecules into highly organized 
living cells. Spatial and temporal information from signalling systems, 
as well as pre-existing cellular ‘landmarks’ such as the ‘bud scar’ left 
after division of budding yeast, can affect the assembly and function of 
cytoskeletal structures, but much of the architecture of these structures 
emerges from simple short-range interactions between cytoskeletal pro-
teins. The long-range order that is generated by the cytoskeleton typi-
cally refers to cellular dimensions (tens of micrometres), which are large 
compared with molecular dimensions (a few nanometres).

The way that cytoskeletal structures form is studied in vivo by genetically 
eliminating, reducing or increasing the expression of a protein through 
knockout, knockdown or overexpression experiments, respectively, and 
is demonstrated in vitro by reconstituting cytoskeletal filament networks 
from purified proteins. Radially symmetrical arrays of microtubules 
similar to those found in interphase cells, for example, can spontane-
ously assemble from mixtures of microtubules and motors16. The mitotic 
spindle, which is more complex, has yet to be reconstituted from puri-
fied cellular components, but Heald and colleagues found that extracts 
from Xenopus laevis ova undergoing meiosis can robustly assemble 
bipolar spindles around micrometre-sized polystyrene particles coated 
with plasmid DNA17. The formation of such structures shows that spin-
dles can self-assemble in vitro in the absence of both centrosomes (the 
microtubule-organizing centre in animal cells) and kinetochores (the site 
on chromosomes to which spindle microtubules attach to pull the chro-
mosomes apart).

Long-range order of actin-filament networks is created by the activity 
of actin-binding proteins and nucleation-promoting factors. One exam-
ple of how a set of simple rules can result in an extended structure is 
the formation of branched actin networks (Fig. 2). The Arp2/3 complex 

(which consists of seven proteins, including actin-related protein 2 (Arp2) 
and Arp3) binds to actin and initiates the formation of new actin fila-
ments from the sides of pre-existing filaments, thereby generating highly 
branched actin filaments that form entangled ‘dendritic’ networks18. 
Nucleation-promoting factors activate this Arp2/3-complex-mediated 
branching. These factors are typically only found associated with mem-
branes, and they specify the front (or leading edge) of a cell, ensuring that 
the nucleation of new filaments in a dendritic actin-filament network 
occurs only from filaments growing towards the membrane19,20. The 
growth of all filaments is eventually stopped by a capping protein, which 
prevents the addition of more actin monomers21. Taken together, the 

Figure 2 | Building cytoskeletal structures. Long-range order of the 
cytoskeleton is generated by simple rules for network assembly and 
disassembly. a, A fluorescence micrograph of a fish keratocyte is shown (with 
the nucleus in blue). Motile cells such as these form branched actin-filament 
networks (red) at their leading edge, and these branched networks generate 
protrusions. Together with coordinated adhesions to a surface (indicated 
by vinculin, green) and myosin-driven retraction, the protrusions lead to 
directed movement. Scale bar, 15 μm. (Image courtesy of M. van Duijn, Univ. 
California, Berkeley.) b, There are three basic steps involved in the assembly 
of protrusive, branched actin-filament networks: filament elongation; 
nucleation and crosslinking of new filaments from filaments close to the 
membrane; and capping of filaments. Disassembly of the network involves 
a separate set of proteins that severs the filaments and recycles the subunits. 
c, The branching of actin filaments can be reconstituted in vitro with soluble 
proteins, generating various branched structures such as those in these 
fluorescence micrographs of labelled actin (white). (Images courtesy of 
O. Akin, Univ. California, San Francisco.)
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Figure 15.2: There are three basic steps
involved in the assembly of protrusive,
branched actin-filament networks:
filament elongation; nucleation and
cross-linking of new filaments from
filaments close to the membrane; and
capping of filaments. Disassembly of
the network involves a separate set of
proteins that severs the filaments and
recycles the subunits.

Exercice 15.1 If you are a biologist: Actin is a biopolymer which poly-
merizes in the immediate vicinity of the membrane. When it polymerizes,
the membrane is pushed forwards. Consider Fig. ??. Can you tell why
the cycle represented in this figure run only anti-clockwise ? To answer to
this question, you have to guess where energy is added to the system and
released from the system and you have discuss the process with the help of
an energy diagram.

Exercice 15.2 One may ask if the principle of detailed balance depends
on the details of the chemical mechanism. To see this, assume that the
preceding reaction consists of two steps paq and pbq as follows:

$

’

&

’

%

X`X
kfa
ÝÝáâÝÝ

kra
W

W`Y
kfb
ÝÝáâÝÝ

krb
2 Z`X

(15.6)

which ultimately achieves

X`Y ÝÝáâÝÝ 2 Z (15.7)

What are the ratios
k f a

kra
and

k f b

krb
(15.8)

as a function of the activities a1s ? Show that the equilibrium concentra-
tions of X, Y and Z obey a relationship independent of the concentration of
W
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15.2 Standard Free-energy changes: How to convert chemical
energy into work

Energy is the ability to do work: How do we convert chemical
energy into mechanical work ? The trick is to couple a reaction to a
mechanical process (rotation, translation, diffusion etc.).

Consider the hydrolysis of ATP

ATP`H2O ÝÝÑÐÝÝ ADP` Pi `H2O (15.9)

where Pi represents the phosphate ion. In order to determine
whether the reaction will proceed spontaneously from left to right,
we need to determine the sign of the total change in energy ∆G

∆G “
ż products

reactants
dG “ Gpproductsq ´ Gpreactantsq

“ GpADP` Piq ´ GpATP`H2Oq
(15.10)

Figure 15.3: ATP loses its terminal
phosphate group upon hydrolysis.
This reaction occurs rapidly in the
forward direction when catalyzed.

Since the free energy of a molecule changes with temperature,
pressure, and wether it is pure or in mixture, one needs to know
the conditions for which a free energy change is reported. The free
energy change is usually reported for the standard state (molar free
energy, i.e. for one mole) and for ATP hydrolysis is

∆G “ ´28kJ.mol´1

So the reaction will proceed spontaneously to the right, because
the free energy of ATP in water is higher than the free energy of
ADP and Pi. However, the energy barrier along the reaction coordi-
nate is so high that this reaction cannot happen spontaneously. We
need a catalyser, i.e. a molecule which lowers the energy barrier as
seen below.

The way to transform free energy into work is to couple the ATP
hydrolysis to an other chemical or mechanical reaction. Then the
maximum chemical or mechanical work which can be extracted is
bounded from above by the free energy change is ATP hydrolysis.

Figure 15.4: The maltose transporter
which couples transport of maltose
molecules across the membrane with
ATP hydrolysis.

Consider, for example, the maltose transporter with the reaction

H2O`ATPpinq `Maltosepoutq

ÝÝÑ ADP` Pi `Maltosepinq
(15.11)

where the maltose is transported from the outside of the cell to the
inside by an enzyme which uses ATP hydrolysis1, see Fig. ??. The 1 Maltose = 2 glucose molecules to-

gethercycle proceeds into 4 steps:

1. ATP binds to the inner face of the membrane and maltose binds
to the outer face. This is a high energy conformation of the trans-
porter.

2. The transporter relaxes this high energy conformation by mov-
ing the maltose inside the barrel.

3. Then, ATP can be hydrolysed resulting in the formation of ADP.
This is why the maltose transporter is an enzyme which catalyse
this reaction.
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4. This conformation is unstable and relaxes by releasing the mal-
tose molecule in the inside of the cell (with ADP + Pi).

In short, the gain in (chemical) energy due the hydrolysis of ATP
is used to drive a conformational change in the transporter. This is
this conformational change which allows the maltose molecule to
be transported through the barrel. Since energy is provided by ATP
hydrolysis, the system maltose molecule + transporter is open to
an energy flux. As in the detailed balance section, the cycle can run
only one way if energy is provided by ATP hydrolysis.

15.3 The F-1ATPase motor

The next question is far from trivial: can we increase the concen-
tration of maltose inside the cell so that the cycle will run the other
way around. In that case, the energy provided would be the in-
crease of entropy due to the maltose molecules flowing outside the
cell (remember F “ U ´ TS). By the same token, this would provide
a way to synthesize ATP from ADP. The problem is that we cannot
increase the concentration of maltose to infinity without reaching
the sedimentation limit. The F-1ATPase motor protein uses this
strategy to synthesize ATP. This protein is molecular turbine ma-
chine using protons flux. If the flux is driven one way, the machine
synthesize ATP and the machine can use ATP to drive the flux of
protons the other way.

15.4 Free energy and work

We have seen that the change of Gibbs free energy is the amount of
energy which can be converted into work during a process. What
kind of work do we refer to ? As summarized in Table ??, expan-
sion work, meaning varying the volume of the system, is not the
only kind of work which can be done on the system. Chemical
work involves changes in the number of molecules of a certain
species, such as in chemical reaction or transport across a concen-
tration gradient.

Consider what happens to the free energy when a small number
of molecules moves from outside to the inside of the cell. Let us
say that the number of moles inside changes as n Ñ n` dn. For a
mechanical displacement with a force F and a displacement dr, we
have

∆G “
ż

Fdr (15.12)

What is the equivalent of the mechanical work (??) for our chem-
ical work which consists in transferring molecules ? If ∆µ is the
change in chemical potential between the outside and the inside,
the equivalent of (??) is

∆G “
ż

∆µ dn (15.13)
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Type of work Intensive variable Extensive variable Work

Mechanical Force, F Change in distance, dr W “
ş

Fdr
Expansion Pressure, P Change in Volume, V W “

ş

PdV
Electrical Voltage Difference, ∆V Change in charge , dq W

ş

∆Vq
Surface Surface tension, γ Change in surface area, dA W “

ş

γdA
Chemical Chemical potential difference, ∆µ Change in the number of molecules, dn W “

ş

∆µ dn

Table 15.1: Different types of work
that can be done by a system.

Note that there is a close relationship between the change in free
energy and the amount of work done on the system. Actually, the
change in free energy in a process equal the maximum amount of
work that can done or extracted in a process.

The coupling of ATP hydrolysis discussed in the preceding sec-
tion to work underlies many processes in biology. It is also an ex-
ample where a chemical work can be transferred into mechanical
work, i.e. a change of a protein conformation. Consider a kinesin
motor protein. This motor is able to transport vesicles along micro-
tubule tracks, see Fig. ??. The work done by the kinesin is equal
to the resistive force F due to friction and viscosity times the dis-
placement dr. This is formula (??) with the appropriate sign. The
movement of the kinesin is powered the hydrolysis of ATP within
the motor domains with a change in free ∆G given by (??). The
amount of work delivered by the kinesin is limited by ∆G given by
(??).

The synthesis of ATP is coupled to the movement of ions across
the membrane, down a concentration gradient.

Figure 2. Models for kinesin and dynein stepping
(a) Consensus stepping sequence of kinesin (for a detailed description, see text). A nucleotide-
driven conformational change in the tightly MT-interacting front head displaces the weakly
MT-interacting rear head toward the MT plus-end, biasing its diffusional search and rebinding
to the next available MT-binding site in front of its partner head. While the rear head undergoes
a 16 nm displacement, kinesin’s center-of-mass advances 8 nm. (b) Possible dynein stepping
sequence. Dynein’s head domains are MT-bound with partially overlapping AAA rings,
aligned parallel to the long MT axis. A nucleotide-dependent conformational change of the
linker element in the tightly MT-binding front head displaces the weakly MT-interacting
partner head toward the MT minus-end (opposite to the direction of kinesin movement). The
displaced head then undergoes a rapid diffusional search and rebinds to the MT, resulting in a
center-of-mass movement of 8 nm. Although dynein takes predominantly 8 nm steps, it has a
considerable diffusional component to its step, resulting in different sized center-of-mass steps
(4–24 nm).
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Figure 15.5: Kinesins are motor pro-
teins which "walk" along microtubule
tracks in "hand-over-hand" manner
with each head taking 16 nm steps.
In solution both ends are bound to
ADP. The binding of one head to a
microtubule causes the release of ADP
which is rapidly replaced by ATP.
The binding of ATP forces the second
head to diffuse forward and brings
it to the next binding site. While the
trailing head hydrolyses ATP into
ADP, the leading head releases ADP
and get bound to ATP. As the result,
the process starts again. The motion is
directional, because the microtubule
tracks break symmetry so that diffu-
sion is more effective from the left to
the right than in other direction[? ].

Figure 15.6: Different protein con-
formations. In this example an ion
channel sitting in a membrane can
be either open or closed depending
on the position of the gate. Protein
conformations are coupled to different
generalized forces (stress, voltage and
so on). Recording the trace of the cur-
rent allows to measure the probability
for the channel to be either open or
closed.
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15.5 Feynman’s ratchets

Diffusion is an isotropic process which can not generate directed
motion. However, e.g. for biological systems directed motion is
essential, e.g. in intracellular transport. This is what we have seen
for the maltose transporter. Is it possible to build a rectifier for
diffusion which leads to a directed transport? The answer to this
question is the so-called ratchet or Brownian ratchet. Before we
discuss ratchets for diffusion in more detail we have a brief look at
the famous Feynman ratchet and pawl.

New Molecu lar Device s: In Search of a Molecu lar Ratche t

T. Ross Kelly,* J osé P érez Sestelo,† and Imanol Tellitu ‡

Departm ent of Chem istry, E . F. Merkert Chem istry Center, Boston College,
Chestnut Hill, Massachusetts 02167

Received Decem ber 29, 1997

The t r iptycene-subst itu ted [3]- and [4]helicenes 1 and 2 were examined as possible molecula r
versions of mechanica l ra tchets, where the t r iptycene serves as the ra tchet wheel and the helicenes
as pawl and spr ing. The syntheses of 1 and 2b are descr ibed. 1H NMR was employed to examine
rota t ion around the t r iptycene/helicene single bond; a t 20 °C rota t ion is frozen for both 1 and 2b ,
but the NMR of 1 revealed a plane of symmetry, indicat ing that 1 cannot funct ion as a unidirect ional
ra tchet . In cont rast , NMR revealed tha t , like a ra tchet , t r iptycyl[4]helicene 2b lacks the symmetry
of 1 and has a bar r ier to rota t ion of 24.5 kca l/mol, bu t spin pola r iza t ion t ransfer NMR exper iments
indica ted the t r iptycene in 2b nonetheless rota tes equa lly in both direct ions. Tha t outcome is
ra t iona lized from the standpoin t of thermodynamics.

In troduction

The dynamics and cont rol of rota t iona l mot ion about
single bonds has engaged the a t ten t ion of chemist s for
decades. Once-forefront issues such as rota t ion around
the carbon-carbon bond in ethane have been superseded
over t ime by more subt le aspects of conformat iona l
isomer ism.1 In terest in recent years has been fur ther
fueled by conceptua l linkages between macromechanica l
issues of rota t ion and molecula r var ia t ions on the same
themes, as illust ra ted by repor t s of molecula r gears,2
brakes,3 and turnst iles.4 A key issue is ident ifying which
everyday mechanica l concepts can be ext rapola ted to the
molecula r sca le.
In conjunct ion with a longer -term goal of devising a

molecule tha t funct ions as a motor , th is labora tory has
been explor ing var ious aspects of rota ry mot ion a t the
molecula r level. To tha t end, we repor ted in 1994 work
culmina t ing in the development of a molecula r brake.3a
More recent ly, we descr ibed in a br ief communica t ion5
our examina t ion of molecules tha t might funct ion as

molecular ra tchets. We now present in greater deta il our
effor t s to const ruct molecular ra tchets and address some
of the conceptua l issues tha t per ta in .
Commonly, ra tchets a re devices tha t a llow rota ry

mot ion in only one direct ion ; in their simplest form they
consist of three components (F igure 1): (a ) a toothed
ra tchet wheel; (b) a pawl tha t prevents unin tended
rota t ion of the ra tchet wheel; and (c) a spr ing tha t holds
the pawl in place. In seeking to translate the macroscopic
concept of the ra tchet to the molecula r sca le, we chose
compounds 1 and 2 as possible candida tes, where the

t r iptycene6 acts as the wheel and the helicenes7 funct ion
as the pawl and spr ing. Examina t ion of models, par -
t icu la r ly of 2, indica tes a dist inct ly helica l conformat ion
of the [4]helicene unit ; tha t asymmetry is evident in
Figure 2, which is a stereoview of an elect ron density
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Figure 1. Simple mechanica l ra tchet : (a ) a ra tchet wheel;
(b) a pawl; (c) a spr ing tha t holds the pawl aga inst the wheel.
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Figure 15.7: A ratchet consists of (a) a
wheel with asymmetric paddles. The
pawl (2) allows its motion only in one
direction. A string that holds the pawl
against the wheel(c) Here clockwise
motion is not possible.

The Feynman-Smoluchowski ratchet is a simple machine which
consists of a paddle wheel and a ratchet. The ratchet has asymmet-
ric paddles so that the pawl only allows its motion in one direction.

The full Feynman-Smoluchowski ratchet is shown in ??. The
ratchet is kept in a heat bath of temperature T2 and coupled to
a paddle wheel in a different heat bath with temperature T1. It
appears as it is possible to use this machine to extract useful work
from heat at thermal equilibrium and lift the weight m. This would
be a violation of Second Law of Thermodynamics.
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T2. It appears as it is possible to use this machine to extract useful work from heat at thermal
equilibrium and lift the weight m. This would be a violation of Second Law of Thermodynamics.
The idea behind this is the following. The molecules in the heat baths undergo random Brownian
motion with a mean kinetic energy determined by its temperature. Assuming that the device
is small enough so that the even single collisions with molecules can turn the paddle. These
collisions tend to turn the paddle in both directions with the same probability. However, the
ratchet prevents the motion in one direction. Effectively this appears to lead to a turing of the
system in one direction, lifting the weight in the process.

Figure 6.1.2: The Feynman-Smoluchowski ratchet consists of a paddle wheel (in heat bath of
temperature T1) and a ratchet (in heat bath of temperature T2). At first sight it appears that this
system can extract useful work (lifting the weight m) from heat (random fluctuations) in a system
in thermal equilibrium. This would imply a violation of the Second Law of Thermodynamics.
(from [1])

Feynman’s analysis shows that this is not true and so the Second Law is not violated. Without
going into the details, which can be found in [4] we just mention that one has also to consider
collisions of the molecules with the pawl. These will lift the pawl from time to time allowing
motion in the ”forbidden” direction. Effectively no net rotation arise if the heat baths are at the
same temperature T1 = T2.
Meanwhile there is even an experimental realization of the Feynman-Smoluchowski ratchet
where the paddle and the ratchet are realized by special molecules [5]. The results are in agree-
ment with the above analysis, i.e. no unidirectional motion was observed.

The Feynman-Smoluchowski ratchet is related to Maxwell’s demon, a thought experiment de-
veloped by Maxwell in 1871. A box containing a case is divided into two compartments A and
B, separated by a trap door (see Fig. 6.1.3). Initially both parts are in equilibrium, i.e. have the

Figure 15.8: The Feynman-
Smoluchowski ratchet consists of a
paddle wheel (in heat bath of temper-
ature T1) and a ratchet (in heat bath
of temperature T2). At first sight it
appears that this system can extract
useful work (lifting the weight m) from
heat (random fluctuations) in a system
in thermal equilibrium. This would
imply a violation of the Second Law of
Thermodynamics.

The idea behind this is the following. The molecules in the heat
baths undergo random Brownian motion with a mean kinetic en-
ergy determined by its temperature. Assuming that the device is
small enough so that the even single collisions with molecules can
turn the paddle. These collisions tend to turn the paddle in both
directions with the same probability. However, the ratchet prevents
the motion in one direction. Effectively this appears to lead to a
turning of the system in one direction, lifting the weight in the
process.

Feynman’s analysis shows that this is not true and so the Sec-
ond Law is not violated. One also has to consider collisions of the
molecules with the pawl. These will lift the pawl from time to time
allowing motion in the "forbidden" direction. Effectively no net
rotation arises if the heat baths are at the same temperature T1 “ T2.
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The t r iptycene-subst itu ted [3]- and [4]helicenes 1 and 2 were examined as possible molecula r
versions of mechanica l ra tchets, where the t r iptycene serves as the ra tchet wheel and the helicenes
as pawl and spr ing. The syntheses of 1 and 2b are descr ibed. 1H NMR was employed to examine
rota t ion around the t r iptycene/helicene single bond; a t 20 °C rota t ion is frozen for both 1 and 2b ,
but the NMR of 1 revealed a plane of symmetry, indicat ing that 1 cannot funct ion as a unidirect ional
ra tchet . In cont rast , NMR revealed tha t , like a ra tchet , t r iptycyl[4]helicene 2b lacks the symmetry
of 1 and has a bar r ier to rota t ion of 24.5 kca l/mol, bu t spin pola r iza t ion t ransfer NMR exper iments
indica ted the t r iptycene in 2b nonetheless rota tes equa lly in both direct ions. Tha t outcome is
ra t iona lized from the standpoin t of thermodynamics.

In troduction

The dynamics and cont rol of rota t iona l mot ion about
single bonds has engaged the a t ten t ion of chemist s for
decades. Once-forefront issues such as rota t ion around
the carbon-carbon bond in ethane have been superseded
over t ime by more subt le aspects of conformat iona l
isomer ism.1 In terest in recent years has been fur ther
fueled by conceptua l linkages between macromechanica l
issues of rota t ion and molecula r var ia t ions on the same
themes, as illust ra ted by repor t s of molecula r gears,2
brakes,3 and turnst iles.4 A key issue is ident ifying which
everyday mechanica l concepts can be ext rapola ted to the
molecula r sca le.
In conjunct ion with a longer -term goal of devising a

molecule tha t funct ions as a motor , th is labora tory has
been explor ing var ious aspects of rota ry mot ion a t the
molecula r level. To tha t end, we repor ted in 1994 work
culmina t ing in the development of a molecula r brake.3a
More recent ly, we descr ibed in a br ief communica t ion5
our examina t ion of molecules tha t might funct ion as

molecular ra tchets. We now present in greater deta il our
effor t s to const ruct molecular ra tchets and address some
of the conceptua l issues tha t per ta in .
Commonly, ra tchets a re devices tha t a llow rota ry

mot ion in only one direct ion ; in their simplest form they
consist of three components (F igure 1): (a ) a toothed
ra tchet wheel; (b) a pawl tha t prevents unin tended
rota t ion of the ra tchet wheel; and (c) a spr ing tha t holds
the pawl in place. In seeking to translate the macroscopic
concept of the ra tchet to the molecula r sca le, we chose
compounds 1 and 2 as possible candida tes, where the

t r iptycene6 acts as the wheel and the helicenes7 funct ion
as the pawl and spr ing. Examina t ion of models, par -
t icu la r ly of 2, indica tes a dist inct ly helica l conformat ion
of the [4]helicene unit ; tha t asymmetry is evident in
Figure 2, which is a stereoview of an elect ron density
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Figure 15.9: Two molecules candidate
for (1) the wheel and (2) the pawl and
string.

Note that chemists have been able to construct molecular ratchets
and address some of the conceptual issues that pertain[? ], see fig.
??.

15.6 Rectifying Brownian motion

How can we get directional motion ? This is a problem known
as rectification of diffusion. Many experiments have been pro-
posed and we follow reference [? ]. In order to get a directional
motion, the particle is subjected to a potential which is periodically
switched on and off. A ratchet potential Upxq is periodic, time-
dependent and not reflexion symmetric. The last point is crucial.

© 1994 Nature  Publishing Group

Figure 15.10: Schematic illustration
of an asymmetric pumping. When
the potential is switched on, particles
move to minima of the Upxq; After the
potential is switched off (Upx, tq “ 0)
the particles start diffusing symmet-
rically; If the potential is switched on
again the particles are captured in the
minima again; due to the asymmetry
of Upxq more a captured in the mini-
mum to the left than that to the right
of the original position.

If the potential is switched on the particles are driven by the
force F “ ´U1pxq towards the minima of the potential. If now the
potential is switched off, the particles start to diffuse isotropically
. Next the potential is switched on again after some time. Again
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the particles are driven by the force to the minima of the potential.
However due to the lack of reflection symmetry more particles will
be captured in the minimum to the left than in the minimum to the
right of the original position. Repeating this switching will then
generate an effective current to the left (in general: in the direction
of the maximum which is closer to the original position).

Figure 15.11: An Atomic Force Micro-
scop setup.

15.7 Equilibrium constants and chemical potential

In studying chemical reactions, one is interested in the number of
molecules of various type as a function of time. Chemical reaction
changes one type of molecules into another. For example,

3 H2 `N2
k f
ÝÝÑÐÝÝ

kb
2 NH3 (15.14)

In chemical equilibrium, the concentrations rXs of various molecules
satisfy the law of mass action

KepTq “
rNH3s

2

rN2srH2s
3 (15.15)

More generally, we can write (νi can be either positive or negative)

∅ ÝÝÑÐÝÝ
ÿ

i

˚ i Ai (15.16)

with

Keq “ K´1
d “

ź

i

rAis
νi (15.17)

The law of mass action can be motivated as follows. For homoge-
nous system, i.e. small systems with large diffusion constants, the
probability to find a N2 molecule in an arbitrary subvolume is pro-
portional to the concentration. by the same token, the probability to
find 3 H2 molecules is proportional to rH2s

3? Thus, the joint proba-
bility to have one N2 molecules together with 3 H2 is proportional
to the product rN2s rH2s

3 and the forward reaction rate per unit
volume is k f rN2s rH2s

3. The backward reaction rate is similarly pro-
portional to kbrNH3s

2 and the equilibrium takes place when both
flux are equal.

kbrNH3s
2 “ k f rN2s rH2s

3 (15.18)

or for the dissociation constant

Kd “ k f {kb (15.19)

When the reaction takes place, it changes the number of molecules
and the energy GpT, P, Nq

∆G “
BG

BNNH3

∆NNH3 `
BG
BNN2

∆NN2 `
BG
BNH2

∆NH2

“ 2µNH3 ´ µN2 ´ 3µH2

(15.20)
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Using the chemical potential for ideal solution µ “ kT ln X` µ0, the
minimum energy condition ∆G “ 0 for equilibrium gives

2 lnrNH3s ´ lnrN2s ´ 3 lnrH2s “ ´2µ0,NH3 ` µ0,N2 ` 3µ0,NH3 “ ∆G0

(15.21)
and we find that the equilibrium constant depends exponentially
on the net internal free energy difference ∆G0 between the reactants
and the product

Keq “ K0 exptr´∆G0{kTsu (15.22)

with K0 being a prefactor (here equal to 1 but 91{T3).

Figure 15.12: Barrier-crossing potential,
see [? ]. Energy E as a function of
some reaction coordinate x for a chem-
ical reaction. The dots schematically
represent how many molecules are at
each position. The reactants (left) are
separated from the products (right) by
an energy barrier B. The rate of reac-
tion is the the number of molecules
crossing the top of the energy barrier.

Remark 5 The exponential dependence of the equilibrium constant
should not be confused with the Arhenius factor.

15.8 Problems

1. There are three properties of enthalpy to keep in mind. The first
is that the change in enthalpy is the heat supplied at constant
pressure. The second is that H is a state function. The third is
that the slope Cp “ ∆H{∆T is the heat capacity at constant
pressure.

(a) Ethanol is is brought to the boil at 1 atm. When an elec-
tric current of 0.682 A from a 12.0 supply is passed for 500 s
through a heating coil immersed in the liquid, the temperature
is found constant but 4.33 g of ethanol is vaporized. What is
the molar enthalpy of vaporization of ethanol (M “ 46.07
g.mol´1) ? answ: 4.35ˆ 104 J.mol´1.

(b) Assuming that enthalpy is a state function, what is the rela-
tion between the enthalpy change for a forward process and
the reverse process (i.e. vaporization and condensation) ?

(c) Consider an arbitrary chemical reaction with stoichiometric
coefficients νi. What is the enthalpy change associated with
this reaction in terms of the molar enthalpy of the reactants
and products ?

2. Consider a perfect gas undergoing isothermal expansion at tem-
perature T between volume Vi and Vf . For a reversible process
the amount of work done on the system is

w “ ´
ż Vf

Vi

pdV (15.23)

(a) What the amount of heat qrev supplied to the system ? hint:
first law of thermodynamics.

(b) Use the thermodynamic relationship

∆S “
qrev

T
(15.24)

and compute the change in entropy for the gas.
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(c) The entropy is state function. Use the entropy of mixing to
evaluate the change of entropy and compare your result with
the preceding question.

(d) Assume that the heat capacity is contant over the range of
temperature of interest. Using (??), show that

∆S “ Cp ln
Tf

Ti
(15.25)

(e) Discuss why ∆S ą 0 if Tf ą Ti.

(f) Can you guess why the temperature appears in the denomi-
nator of (??) ?

3. Suppose that we had a tiny system of 4 molecules A, B, C, D that
could occupy threee equally spaced levels of energy 0, ε, and 2ε.
We know that the total energy of the system is 4ε.

(a) Make explicit with an energy diagram some of the 19 possi-
ble combinaisons.

(b) What is the entropy of this system ?

(c) Assume that the total energy is proportional to the tempera-
ture T. What happens if we increase the temparature ? What
happens if T “ 0 ?

(d) Residual entropy: For some substances, the entropy is
greater than zero at T “ 0. Calculate the residual entropy
for a gas of N molecules which can occupy two positions.

15.9 Langmuir-Hill function: Ligand recognition

As a biological case with very broad applicability, we start by con-
sidering binding problems in which several different molecular
species can exist either separately or in complexes. The simplest
receptor-binding system can exist in one of the two microstates:
bound and unbound, see Fig. ??.

Figure 15.13:To calculate the probability p for a receptor of being bound to a
ligand, we observe that the fraction φ is nothing but this probability
per unit area At equilibrium, the generalized force to transfert
molecules from one state to the other one µ0 ´ µ is equal to zero:

µ “ µ0 (15.26)

which means
´ε` kT ln

φ

1´ φ
“ µ0 (15.27)

p “
epµ0´εq{kT

1` epµ0´εq{kT
(15.28)

Since the chemical potential which serve as a reference is equal
to the chemical potential of the ligands in solution µ0 “ kT ln l,
where l is the volume fraction of ligands in solution. Because l is
proportional to the concentration of ligands L, the probability for
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a receptor of being occupied depend on the concentration of free
ligands as

pplq “
le´ε{kT

1` le´ε{kT
(15.29)

or

pplq “
l{Kd

1` l{Kd
(15.30)

where Kd is the equilibrium dissociation constant at which the
receptor has a probability of being occupied of 1{2.



16
Surface Thermodynamics

Previous : particular case of a most general problem, i.e. adsorp-
tion on a surface. Now: How surface tension varies with parti-
cle/molecule adsorption ?

A colloidal system represents a multiphase (heterogeneous)
system, in which at least one of the phases exists in the form of
very small particles: typically smaller than 1 mm but still much
larger than the molecules. Such particles are related to phenomena
like Brownian motion, diffusion, and osmosis. The terms micro-
heterogeneous system and disperse system (dispersion) are more
general because they include also bicontinuous systems (in which
none of the phases is split into separate particles) and systems
containing larger, non-Brownian, particles. The term dispersion is
often used as a synonym of colloidal system. Examples for gas-in-
liquid dispersions are the foams or the boiling liquids. Gas-in-solid
dispersions are the various porous media like filtration membranes,
sorbents, catalysts and isolation materials.

Figure 16.1: Representation of an
interface between bulk phase α and β.

As a rule the fluid dispersions (emulsions, foams) are stabilized
by adsorption layers of amphiphile molecules. These can be ionic
and nonionic surfactants, lipids, proteins, etc. All of them have the
property to lower the value of the surface (or interfacial) tension, σ,
in accordance with the Gibbs adsorption equation

dσ “ ´
ÿ

i

Γidµi (16.1)

where

1. Γi is the surface concentration (adsorption) of the ith component.

2. µi is it chemical potential.

Note that if a species absorbs to a surface Γi ą 0 and the sur-
face tension decreases as the chemical potential of that species is
increased.

Consider solute
µ2 “ µθ

2 ` RT ln c2 (16.2)

Γ2 “ ´
1

RT
dσ

d ln c2
(16.3)
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which means generally a strong decrease in the surface tension if
we increase the bulk concentration.

16.1 Thermal fluctuations of interfaces: Fourier methods

Fourier methods are based on representing arbitrary signals as
weighted sums of complex sinusoids. They are intuitive, apply to
a large class of interesting signal processing systems and physical
effects, and numerical Fourier analysis can be performed very ef-
ficiently. Here we want to characterize the thermal fluctuations of
interfaces in terms of Fourier components.

Remind that an interface separates two phases, e.g. liquid-gas
and has a width. This width is typically of molecular size. We are
interested in phenomena which occur in a typical length scale much
larger than the typical width of the interface. For example, the
shape of the interface may experience sinusoidal variations due
to thermal fluctuations with a wave length much larger than this
width. In this limit the interface may be seen as infinitely thin. The
interface is, therefore, seen as a mathematical surface with a free
energy proportional to its area.

F “ σˆArea (16.4)

where σ is the surface tension. To represent the surface, we use the
following representation for the position vector

Position vector “ px, y, hpx, yqq (16.5)

where the height hpx, yq is the coordinate of a point along the z
direction. hpx, yq is a function of the other coordinates. For a finite
interface along the x and y directions

0 ď x ď L and 0 ď y ď L (16.6)

Without loss of generality, we will assume that the surface is
clamped along a frame.

Figure 16.2: Monge representation of a
surface.

The area of the surface is given by

A “
ĳ

0ďx,yďL

dxdy
b

1` pBxhq2 ` pByhq2

“ L2 `
1
2

ĳ

0ďx,yďL

”

pBxhq2 ` pByhq2
ı

(16.7)

where we have assumed that the height hpx, yq and the derivates
are small. The interface fluctuates if hpx, yq is not a constant. In this
case, there is an excess in free energy equal to

∆F “
σ

2

ĳ

0ďx,yďL

dxdy
”

pBxhq2 ` pByhq2
ı

(16.8)

We want to calculate the average of ă ∆F ą when the interface
is subjected to thermal fluctuations which make hpx, yq random
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variables. In particular, we want to calculate the mean-squared
fluctuation

ă hpx, yq2 ą (16.9)

Forget for the moment about the y direction. Then hpxq is only a
function of the x coordinate. In Fourier coordinates we define

hpxq “
1
?

L

ÿ

q
eiqx h̃q q “ 2πn{L n “ 0, 2, . . . , L´ 1 (16.10)

Exercice 16.1 1. Show

h̃l “
1
?

L

ż L

0
dx hpxqe´ilx (16.11)

2. Show
∆F “

σ

2

ÿ

q
q2ˇ
ˇh̃pqq

ˇ

ˇ

2 (16.12)

3. By analogy with a spring, show that

ˇ

ˇh̃pqq
ˇ

ˇ

2
“

kT
σq2 (16.13)

In two dimensions, q in the Fourier transform is a vector

q “ qxûx ` qyûy (16.14)

where ûx and ûy are unit vectors along the x and y direction. The
definition of the Fourier transform is

hpx, yq “
1
?

L2

ÿ

q
eiq¨r h̃q r “ xûx ` yûy (16.15)

and the same result as in Eq. (??) holds.

Exercice 16.2 Show

∆F “
kT
2σ

ÿ

q
ă
ˇ

ˇh̃pqq
ˇ

ˇ

2
ą

“
kT

2πσ

ż 2π{a

2π{L

dq
q

“
kT

2πσ
lnpL{aq

(16.16)

This result shows that the mean square fluctuations diverge with
the system size.

Exercice 16.3 For typical values (σ “ 100dyne{cm2 with 1dyne “
10´5N, a “ 3 and L “ 1cm) what is the value of the"divergence". Grav-
ity acting in the z-direction, explain why we can introduce a gravitational
energy per unit area ρgh2 and show that this divergence disappears.

16.2 Ratchets





17
The geometry of curvature: A quick reminder

In this chapter, we introduce what we mean by curvature. Curva-
ture is one of the most important concept in differential geometry
and we shall use this language to characterize both vesicle shapes
and membrane fluctuations.

Figure 17.1:

Differential geometry is a field of mathematics which describes
surface embedded in a 3 or more dimensional space, i.e; varieties.
One may wonder why this language is adapted to colloidal struc-
tures. One answer is that membrane are characterized by two
very different length scales. On the one side, the bilayer is only
50 Åthick. On the other side, a typical vesicle has a radius of 20 µm.
This huge separation of length scales allows us to see a bilayer as a
thin sheet. Surfaces are, therefore, an abstract concept well adapted
for our modeling.

The concept of curvature is useful if we want to understand the
concept of bending energy. When small vesicles change their shape,
there is a gain or a cost in bending energy. The bending energy is
very different from surface energy of surfactant monolayers inter-
face which proportional to the area of the interface. As we will see
shortly, we can have highly bend surfaces without cost of energy.

— 13 — 

Introduction

Les globules rouges sont les cellules sanguines chargées de transporter les gaz à

travers l’organisme : le dioxygène vers les cellules et une partie du dioxyde de carbone vers

les poumons. Pour cela, les globules rouges parcourent des centaines de kilomètres au cours

des 120 jours de leur existence. Ils sont amenés à traverser des capillaires dont le diamètre

peut être inférieur au leur (cf. Figure 1) et doivent supporter des taux de cisaillement élevés,

pouvant aller jusqu’à ~1000 s-1 [Schmid-Schönbein et al., 1979]. Ceci nécessite des propriétés

élastiques remarquables, dont une très grande résistance aux contraintes de cisaillement. Cette

résistance au cisaillement est possible grâce aux propriétés particulières de sa membrane.

Figure 1 : Image de globules rouges humains par microscopie électronique et dessin de

globules rouges dans un capillaire [Delaunay et Boivin, 1990]. Le globule rouge présente une

très grande résistance au cisaillement, résistance due à une membrane ayant une structure

particulière.

Figure 17.2: Healphy red blood cells
have a biconcave shape that is ex-
plained by curvature energy

Example 17.1 Assume for the moment that the bending energy of a
sphere with a radius R is proportional to 1{R2. Then its total bending
energy is integrated over the total area

Ebend “
1
2

κˆ 4πR2 ˆ
1

R2 “ 2πκ (17.1)

where the factor 1{2 is a numerical convention and where κ is a constant
which is material dependent. We will explain why the bending energy per
unit of area is the square of the inverse of the radius of the sphere. We see
that the cost of bending is scale invariant. A small or a large sphere have
the same energy.

17.1 The geometry of a plane curve

Figure 17.3:

We proceed by introducing the curvature. Let t1 and t1 be the tan-
gents, n1 and n2 the normals, at two neighboring points P1 and
P2. Let he intersection of the normals be at M. Clearly, the angle
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between the tangent is equal to the angle between the normal

=pt1, t2q “ =pn1, n2q (17.2)

Let P2 approaches P1 along the curve. In general, the ratio

lim
P1P2Ñ0

=n1n2

P1P2
“

1
R

(17.3)

approaches a limit. The ratio 1{R is called the curvature and the the
factor R which has the dimension of a length is called the radius of
curvature. This quantity is also defined in another way as follows.
We consider the point P1 and two neighboring points on the curve.
These three points define a circle whose radius is R when the two
neighboring pints approaches P1.
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Figure 17.5:

At some exceptional points, the radius of curvature may be in-
finite. At these points, the circle of curvature degenerates into a
straight line and is thus identical with the tangent. At such point
the tangent crosses the curve, so that the point is a point of inflec-
tion.

A curve has two natural or intrinsic coordinates. The first is the
arc length which measures the distance along the curve starting at
one arbitrary point. The second is the curvature. The only line of
constant curvature is the circle.

17.2 The geometry of a 2d-surface embedded in 3d

At each point P, we can elevate a normal vector n. Any plane
which contain the normal vector intersects the surface along a
curve C. Since this curve is planar, we know how to calculate the
radius of circle tangent to C at P. Call R the radius of curvature. If
we now rotate the plane by an angle φ around the normal n, the
radius Rpφq becomes a function of φ. For different φ values, it has a
maximum and a minimum, since it is a periodic function of φ with
the symmetry φ Ñ ´φ.

The general formula whose derivation we will omit here for the
curvature of the normal section is the the follwing formula found
by Euler:

1
R
“

sin2 φ

R1
`

cos2 φ

R2
(17.4)

where R1 anf R2 are the radius of curvature when φ “ 0, π{2
(principal axes).

Let us call H the mean curvature :

H “
1
2

ˆ

1
Rmax

`
1

Rmin

˙

“
1
2

ˆ

1
R1
`

1
R2

˙ (17.5)

for any directions 1, 2 perpendicular to each other. Eq. (??) has two
important features :
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- There are two radii of curvature for a surface instead of one for a
line: There are two possible directions in the tangent plane.

- Radii of curvature have sign and it is possible to construct min-
imal surfaces where H “ 0 everywhere. Both radii of curvature
are small but they have opposite sign so that the mean curvature
is zero (see Fig. ??)

Figure 17.6: Example a constant
curvature surface with symmetry of
revolution. Revolving a curve around
the z-axis gives a surface where each
point has coordinate pr, zq. The circles
with radius Rm correspond to the
curvature along a meridian. Note
that the center of these circles can be
on both sides of the surface (so that
the mean curvature changes sign).
The curvature along a parallel is
shown by the inner circle of radius
r{ sin θ with a center lying on the
z-axis. This example is the only non-
trivial constant mean curvature (i.e.
H “ cst. ą 0) surface of symmetry of
revolution (Delaunnay surfaces).

How do we determine the value and the sign of the two radii
of curvature ? We need to parametrize the surface and our energy
must be independent on our parametrization (the energy must be
the same if we use polar and rectangular coordinates) and indepen-
dent on what we call the exterior and the interior. For a sphere, the
volume enclosed by the envelop is usually called the interior. But
this definition is arbitrary and if exchange the role of exterior and
the interior, then the radii of curvature changes sign. Our energy
must however be independent of this convention.

!heptane", and allowing the heptane to evaporate before add-
ing water to the residue, or mixing first AOT and salt in a

ratio 1:3 in weight, then pouring gently the appropriate quan-

tity of water to the AOT/salt mixture to have the desired

!AOT/salt" concentrations. For the purpose of this work we
used the second procedure, so that we could avoid any kind

of mixing of the two alkanes. If we prepare a low salinity

solution by dissolving the amount of AOT in water and add-

ing brine to bring the solution to the desired salinity, no

vesicle is observed. The formation of these vesicles is prob-

ably due to an electrostatic effect between the polar heads

#17$. In this paper we will not describe the phase observed
when changing salinities or amphiphiles concentrations. In-

stead we will focus on a particular effect of dodecane on

tubular vesicles obtained at high salinities. An instability is

studied and the wavelength selected at the onset of the insta-

bility is measured as a function of the radius of the unper-

turbed tubules. The instability and the wavelength selection

are found to be a result of the fact that the spontaneous

curvature deviates from zero because of oil incorporation

into the tubular vesicle layers, which makes the bilayer non-

symmetrical. Although spontaneous curvature is a well-

known parameter in the study of topological and mechanical

properties of membranes, we will explain briefly its origin in

Sec. III.

The vesicles are observed through an inverted phase con-

trast microscope (40! objective, Nikon diaphot 200". The
cell where the vesicles are observed is a 1-mm-thick closed

glass cell; the gap between these two glass slides is also

1-mm-thick. The AOT-brine solution is left for a couple of

days, so that any shape transformation due to macroscopic

flow, after transfering the solution from a test tube to the

observation cell, disappears. The observation cell is hermeti-

cally closed and sealed up in order to avoid any fluid leakage

and oil evaporation. The brine salinities used correspond to

the minimun of oil-water interfacial tensions and are 0.175

mol/L for dodecane and 0.075 mol/L for decane and an AOT

concentration of 7.5 mmol/L and 4 mmol/L, respectively.

The critical micellar concentration !CMC" of AOT water so-
lution without salt is around 2.5 mmol/L. !CMC is the am-
phiphile concentration at which the air-water or oil-water

interface is saturated and the first micelles are formed." It is
noteworthy that by adding AOT to water, the surface tension

drops continuously and reaches a value, at the CMC, beyond

which it !the surface tension" remains constant. At 0.075
mol/L of NaCl, the stable shapes are essentially prolate and

spheres; at 0.175 mol/L of NaCl, the shapes are cylinders.

This shape transformation from low salinities to high salini-

ties is probably due to an electrostatic effect as AOT is an

anionic molecule #17–19$. We observed the effect of dode-
cane on stable tubular vesicles at 0.175 mol/L !at this salinity
the dodecane-brine interface tension is minimum" #13$. The
introduction of the oil into the cell does not perturb hydro-

dynamically the solution and it is a noninvasive way to in-

troduce the drop into the solution. To avoid instabilities such

as the Marangoni effect, the oil is introduced through a less

than 1-%m-diam crack-type orifice. The drop, with a volume
of the order of 0.25 %L, travels through the glass by capil-
larity before it reaches the solution. The orifice is located at

the lateral wall of the cell, that is, between the lower glass

slide and the piece separating the two slides. The drop is then

directly introduced into the solution. Due to the weak solu-

bility of dodecane in water, and its slow diffusion, it takes

several hours for the instability to start. The oil probably

travels inside the solution after being incorporated in the

swollen micelles. After the oil reaches the tubules situated

far enough from the point where the drop was introduced,

tubules become unstable, forming pearls similar to the ones

observed in Refs. #6–9$. We have not noticed any shape
changes when the gap between the horizontal walls of the

observation cell is much smaller than 1 mm. !We do not
know why this effect depends on the gap between the cell

walls where the vesicles are being observed. Oil evaporation

may affect the dynamics too." A sinusoidal instability is ini-
tiated, and develops to a peristaltic state, with a reduction in

fluctuations. However, large cylinders are stable; this will be

clarified in the following model. The structure observed is

periodic and typical necks between the pearls are apparent.

In the case of thick walled vesicles, the pearls do not discon-

nect. However, tubules with thin layers are cut into separated

spheres at the end of the instability. The time over which the

spheres disconnect is still unknown. This kind of state is

shown in Fig. 1. Bar-Ziv and Moses #6$ suggested, after an
experiment where a tubular phospholipid membrane was ex-

cited using optical tweezers, that the instability appears be-

cause of a change in the surface tension induced by the twee-

zers with analogy to the Rayleigh instability of a column of

liquid #20$. The surface energy should be the source of in-
stability, however as the surface energy increases the linear

analysis shows that the instability develops only long-wave

modulations without any wavelength selection. Later, and to

explain the observations of Bar-Ziv, Tlusty, and Moses #7$,
Nelson, Powers, and Seifert #21$ showed that nonzero wave-
length could be selected by the radius of the tubular mem-

brane, because of the fluid viscous motion inside the tube.

See also #26$. However, in the case of our experiment this
model is not sufficient to select a well-defined periodic spa-

tial modulation of tubular membranes with the right depen-

dence of the wavelength versus the initial size of the cylin-

der. In fact, in our case an extra length scale becomes

important in the problem.

Figure 2 shows the dependence of the dimensionless num-

ber (qcR0) as a function of the initial radius of the tubule

R0 . The wavelength at the onset, qc , is measured whenever

a tubular vesicle starts to suffer the instability. The disper-

sion in the data is probably due to the fact that the wave-

length is not measured exactly at the onset with an error of

FIG. 1. A peristaltic state, in a thick cylinder. The bar represents

10 %m.
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Figure 17.7: Confocal image of an ar-
tificial vesicle made of phospholipids.
Note that the resemblance between
these Myelin shapes and the Delaunay
surface is striking.

17.3 Application of the concept of curvature to the elasticity of
surfactant layers

phospholipid bilayer
edges exposed to water

sealed phospholipid vesicle
no edges exposed to water

Energetically unfavorable

Energetically favorable

Modified from Molecular Biology of the Cell, 4th editionFigure 17.8:

From what we have previously discussed, the interesting concept is
the mean curvature:

H “
1

R1
`

1
R2

(17.6)

which is a quantity which varies as one moves along the surface.
The sign of this H is a matter of pure convention. For a vesicle,
what we call inside and outside is arbitrary. However, if we change
convention, the sign of H changes. But the energy cannot change. It
is the same to say that if we bend a surface upwards or downwards,
the energy cost will be the same. Therefore the bending energy of
a vesicle depends on the square of the mean curvature and we will
write

Ebending “
1
2

κ

ĳ

dS p2Hq2 (17.7)

where κ is the bending constant which is phospholipid dependent.
The following exercice helps to understand why the dimension
(1D, a wire, or 2D, a surface) is crucial for the bending energy as a
function of the scale of the object.

Exercice 17.1 1. Consider a rope of length 2πR bend into a circle with
radius of curvature R. What is the bending energy ?

2. Consider a spherical vesicle. What is the bending energy of this vesi-
cle ? How does it scale with R ? Compare with te first question and
discuss the effect of dimensionality.

The following explains why curvature is important for thin shell
elasticity.

One the most fundamental application of the concept of curva-
ture is the variation of an elementary area as one moves along the
normal at one point on a reference surface.
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Let us consider such a point P on an arbitrary surface with nor-
mal n. A neighborhood of P has a surface element dA. If ε is a
small number, we can construct a new surface element as follows.
To each point in the neighborhood of P, let us move by a distance ε

along the normal. This application maps the all points in the neigh-
borhood of P to only one point in the neighborhood of P1 image of
P. The new neighborhood has an area dA1.

To simplify the notations, we define c1 “ 1{R1 and c2 “ 1{R2. We
have

dA1 “ dA
´

1` εpc1 ` c2q ` ε2c1c2

¯

`Opε3q (17.8)

where the Opε3q means that all other therms are negligible.

Exercice 17.2 Demonstrate this formula in the case where the surface is a
sphere

Eq. (??) is at the heart of all elastic theories of surfactant mono-
layers and bilayers1. For a monoloyer of thickness l, the free energy 1 See I. Szleifer et al, J. Chem Phys, 92,

6800, 1990
per molecule is the sum of three contributions

f “ ftail
loomoon

Entropic tail

´

ż l

0
πpxqapxqdx

looooooomooooooon

Lateral compressibility

` fhead
loomoon

Head´head interaction

(17.9)

where the integral extends normal to the interface. The second
term include the work done to change the area per lipid at some
distance x from a reference surface via the lateral pressure πpxq.
The third is the contribution due the interaction between the head
groups.

Using for the area per lipid at a distance x along the normal

apxq “ ap0qp1` xpc1 ` c2q ` x2c1c2q (17.10)

gives a bending energy as a sum of two contribution integrated
over the lateral surface of the whole monolayer.

Box 4 (Poisson ratio)
The Poisson ratio ν quantifies how a uniaxial strain of some material gives rise to a change
in sample dimensions perpendicular to the direction of strain. For instance, think of a bar
of length L and width w which is stretched (or compressed) to a length L′ and changes
its thickness accordingly to w′. Define ∆w = w′ − w, ∆L = L′ − L and the dimensional
strain e = ∆L/L. Then the Poisson ratio ν is defined from the equation

∆w

w
= −νe . (8)

For instance, for a perfectly incompressible material we would have Lw2 = L′w′2, or Lw2 =
(L+∆L)(w +∆w)2, which up to lowest order in the changes implies 2Lw∆w +w2∆L = 0,
from which we readily find ν = 1

2
, which is indeed the largest value possible.

h
R

neutral surface

stretching

compression Figure 2: When a piece of mate-
rial is bent, the outer side is stretched,
while the inner side is compressed.
Using our knowledge of the elastic
behavior, we can thus predict its re-
sistance to bending.

where Y is referred to as the Young modulus of uniaxial extension (or compression), and when we
assume that the paper has a thickness h, then we find the bending energy per area

ebend =
Ebend

L2
=

1

L2

∫ L

0

∫ L

0

∫ h/2

−h/2

1

2
Y

(
(1 + z

R
)dx dy dz − dx dy dz

)2

dx dy dz

=
1

2
Y

∫ h/2

−h/2

dz
( z

R

)2

=
1

24
Y

h3

R2
. (10)

Notice the very strong cubic dependence of the bending energy on thickness. If we make our
membrane thinner, the bending energy goes down very rapidly.
Since bending thus only leads to uniaxial extension (or compression) of the little volume elements
within the membrane plane, the three-dimensional modulus Y of uniaxial extension can be re-
expressed using the two-dimensional stretching modulus Kstretch defined in Eqn. (6), namely by

Kstretch = Y h , (11)

leading to

ebend =
1

24
Kstretch

( h

R

)2

. (12)

Now, the ratio h/L can be very small indeed, even for significant deformations. A noticeable
bending of a piece of paper would have an R of, say, 10 cm, while the thickness h is on the order

9

Figure 17.9: Figure 2: When a piece
of material is bent, the outer side
is stretched, while the inner side is
compressed. Using our knowledge
of the elastic behavior, we can thus
predict its resistance to bending.

1
2

κ

ĳ

dSpc1 ` c2q
2 ` κ̄

ĳ

dSc1c2 (17.11)

The elastic constant entering into (??) are function of the tensile
stress along the normal. The bending modulus κ and the Gaus-
sian modulus κ̄ are macroscopic constants depending on different
moments of the tensile stress

κ “ 2ap0q
ż l

0
xπpxq dx (17.12)

κ̄ “ ap0q
ż l

0
x2πpxq dx (17.13)

This model assumes that the head group interaction gives no contri-
bution to the bending modulus. Experiments show that this indeed
the case. Only varying the length of the hydrophobic tails changes
the bending modulus.
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17.4 A toy model for the curvature energy

Let us assume that the energy per lipid molecule has the simple
form of a Hook’s energy

f “
1
2

ks pl ´ lsq2 (17.14)

The incompressibility of the chains implies that the volume v0

occupied by the layer is constant. When the layer is flat, the volume
is simply a0ls. When the layer is bent, the volume occupied by a
chain depends on curvature. To lowest order in l

v0 “ a0l
ˆ

1`
l
2
pc1 ` c2q

˙

(17.15)

Exercice 17.3 Demonstrate this formula using Eq.(??)

Thus, the incompressibility condition relates the volume v0 to
the chain length l. When the curvature changes, the length l adjusts
itself to keep the same volume v0 per lipid.

Solving for lpv0q, we get

l “ ls

ˆ

1´
ls
2
pc1 ` c2q

˙

(17.16)

We get the curvature energy per lipid.

f “
ksl4

0
8
pc1 ` c2q

2 (17.17)

To get the total energy of the monolayer, we can sum over the lipid

ÿ

fi (17.18)

or, more conveniently, introduce a surface density of lipids ρ “ cst.

E “
1
2

κ

ĳ

dS pc1 ` c2q
2 (17.19)

where the bending modulus κ is an elastic constant.

κ “
1
4

ksl4
0ρ (17.20)

Sometimes, it is useful to define the mean curvature at a point P of
a surface

H “
1
2
pc1 ` c2q (17.21)

A crucial theorem states that the mean curvature does not depend
on the way the surface is parametrized, i.e. on the way axes are
labeled. We can use many different ways to parametrize the surface
and we will always get the same result. Therefore, the curvature
energy in ?? is a well defined quantity which does not care on the
way we parametrize the problem.
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17.5 A note on units

As other things, quantities have dimension : length, second or en-
ergy. For a surface, the bending constant appearing in (??) has the
dimension of an energy, since the mean curvature has the dimen-
sion of 1 over length, the bending modulus has the dimension of an
energy. Typically, the value of κ is about 30 kBT.

Units depend on where you are coming from (chemist, biolo-
gists or physicists) but also on the problem at hand. We use the
most convenient ones. A key idea in physics is to specify the units
of things. Lengths are expressed in meters, times in seconds and
Forces in Newton (N). These units are perfectly adapted to the
macroscopic world. Using them to describe the microscopic world
is very clumsy. In general, lengths are expressed in µ.m or n.m.
Forces at the scale of the cell are in the range of the pico-Newton
(10´12N) to the nano-Newton (10´9N) range.

By definition, the work done by a force is

W “ f orceˆ distance (17.22)

stresses among the smallest reported in the TFM literature
(Fig. 1). Cellular TFM has given a detailed understanding of cell
tractions and the intra- and inter-cellular structures contrib-
uting to force generation.

In vivo, cells generate traction forces to drive processes like
migration,31 morphogenesis,32,33 and extracellular matrix
remodelling.34,35 Cells generate tractions by anchoring them-
selves to neighbouring objects and contracting.10,31 Anchoring

occurs on protein networks in the extracellular environment
(known as extracellular matrix), and on neighbouring cells via
membrane-spanning protein complexes. Contraction in
eukaryotic cells is typically driven by networks of actin laments
and myosin motors. In highly-contractile cells, contraction is
usually produced by stress bres – ordered bundles of actin
laments resembling muscle bres.36,37 However, other types of
cytoskeletal architecture can also generate contraction.38,39

Traction forces can be observed in isolated cells on exible
substrates coated with adhesion-stimulating proteins.9,40–45 The
magnitude and spatial distribution of these tractions vary widely
with cell type. Cells typically pull on the substrate near their
edges, with contraction indicated by inwardly-directed traction
forces. In migrating cells, traction forces are oen polarised
according to the direction of motion.42–44,46,47 Recent work has
probed the connection between cytoskeleton, adhesion and
force dynamics by combining these tractionmeasurements with
techniques such as the uorescent labelling of cellular
proteins.48,49Cells onplanar substrates usually spreadout so they
are very thin. Therefore, cellular tractions are predominantly in-
plane. However, recent studies have suggested that cortical
tension, nuclear compression, and focal-adhesion rotation can
cause signicant out-of-plane forces on the substrate.23,50–52

2.2 Multicellular systems

Multicellular systems are inherently more complicated than
single-cell systems because of intercellular adhesion and all of
its downstream signalling.53 Recently TFM has begun to be

Fig. 1 Traction force microscopy across scales. Approximate length
and stress scales from published reports. Platelets;11 colloidal
cracks;12,13 stratum corneum;14 friction;15 liquid droplets;16,17 dicty
slugs;18,19 neuronal growth cones;20,21 fibroblasts and endothelial
cells;22,23 epithelial cell colonies and sheets;24,25 gastropods.26

Fig. 2 Balance of forces inmulticellular systems. (a) The game of tug-of-war involves balance of forces between the tugging on the rope and the
force transmitted to the ground through the players' feet.58 From this force balance, we can determine the inter-person forces (blue arrows) if we
know the traction forces (red arrows). (b) Intercellular forces can similarly be calculated from cellular traction forces.58 (c) The average in-plane
traction stress perpendicular to the leading edge of migration of a sheet of MDCK cells cultured on a soft substrate decays slowly with distance
from the edge (filled symbols), whereas the average in-plane traction stress parallel to the leading edge is negligible and independent of the
distance from the edge (open symbols).24 (d) Tension within the cell sheet, given by the integral of traction, increases as a function of distance
from the leading edge of a sheet of MDCK cells.24 (e) Tugging forces (white), given as the vector sum of tractions (red) on an individual cell in a pair
of two endothelial cells cultured on an array of PDMS posts (blue).59 (f) Net force exerted by cell 2 on cell 1, Fcell1, as a function of the force exerted
by cell 1 on cell 2, Fcell2, for two MDCK cells in a doublet on a flat, PAA substrate. Dashed line indicates a slope of one. (Inset) schematic of a cell
pair depicting Fcell1 and Fcell2.60

4048 | Soft Matter, 2014, 10, 4047–4055 This journal is © The Royal Society of Chemistry 2014
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Figure 17.10: From R.W. Style et al.,
Soft Matter, 4047, 2014

Here is the table of conversion between the different units which
seem appropriate at the scale of a cell :

12 kCal/mol “ 810´20J/molecule “ 0.5 eV “ 20 kBT (17.23)

where kBT is the standard unit used to describe thermal forces (T is
the temperateure and kB is the Bolzmann constant). We have

1 kBT “ 4.1pN.nm (17.24)

and kBT is thus an appropriate unit, since forces are in the pico-
Newton range and distances are in nanometer range.

17.6 The spontaneous curvature

Figure 17.11: This surface
is called the catenoid. See
http://infima.ba/2012/02/05/the-
geometry-of-soap-films-and-soap-
bubbles/.

For geometric raisons, we have seen that some amphiphilic molecules
prefer to bend the interface. The curvature energy (??) is not appro-
priate. Because pc1 ` c2q

2 is always positive, the minimum energy
state is the one for which

c1 ` c2 “ 0 (17.25)

Figure 17.12: Costa
minimal surface : see
http://bugman123.com/MinimalSurfaces/index.html

This equation defines what people call a minimal surface , i.e.
the shape of a soap film. The only minimal surfaces with symmetry
of revolution are the planes and the catenoid.

If the surface is naturally bent, we will change our definition and
will define the an energy as

E “
1
2

κ

ĳ

dS pc1 ` c2 ´ c0q
2 (17.26)

where c0 is called the spontaneous curvature.
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17.7 The Gaussian curvature

We have seen that the mean curvature H, cf. (??) is invariant under
reparametrization of the surface. there is also an other quantity
independent on the way we decide to describe the surface. This
quantity is the Gauss curvature, i.e. the product of the two inverses
of the radii of curvature c1c2.

For a closed surface, it took Gauss to understand and to demon-
strate that this quantity when integrated over the surface is a con-
stant

¿

dS c1c2 “ 4πp1´ gq (17.27)

Figure 17.13: A torus.

What do we mean by that ? Take a sphere, an ellipsoid or any
surface with no hole, you will get always te same result. The inte-
grated Gauss curvature depends only on the genius of the surface.
For the torus torus pictured aside, the result will differ from the
sphere. The torus has a hole, but the result will not differ if we dis-
place the hole out of center. For this reason, the Gaussian curvature
is not an appropriate way to gauge energy changes. This is however
a way to characterize changes in topologies.





18
Bilayer elasticity : The example of vesicles

18.1 The different meanings of surface tension

There are different meanings for what we call "surface tension". We
read the following in Wikipedia : "At liquid-air interfaces, surface
tension results from the greater attraction of liquid molecules to
each other (due to cohesion) than to the molecules in the air (due to
adhesion). The net effect is an inward force at its surface that causes
the liquid to behave as if its surface were covered with a stretched
elastic membrane. Thus, the surface becomes under tension from
the imbalanced forces, which is probably where the term "surface
tension" came from."

d

Figure 18.1: The surface tension fixes
the angle of contact between a drop
and a substrate.

This description is perfectly correct for an air-liquid interface
where molecules diffuse continuously between the bulk and the
interface. It can non only have an elastic origin, but it is also en-
tropic per nature. The surface tension at the liquid-air interface will
depend on the temperature.

Figure 18.2: Cartoon of a giant vesi-
cle whose size is about 20 µm. The
thickness of the bilayer is very small
compared to the size of the vesicle.
There is no exchange of lipids between
the solution and the bilayer. Flip-flop
of molecules between the two leaflets
is also rare. Vesicles adopt a shape
optimizing a curvature energy with
the constraint of constant surface and
volume.

The situation we have in mind for vesicles is rather different.
There is no exchange between the bilayers and the surrounding
medium. On the time scales of experiments, the number of phos-
pholipids on the vesicle surface is therefore constant. The only
way to change the area is to stretch tangentially the bilayer, i.e. to
change the area per lipid headgroup. This stretching energy has the
form

fstretch “
1
2

σ

ˆ

a
a0
´ 1

˙2
(18.1)

and the constant σ is a surface tension like term. For vesicle stretch-
ing is very dangerous. The bilayer lyses quite easily and the varia-
tions of area per lipid headgroup are small if the vesicle keeps its
integrity. The total area of a vesicle is thus constant.

18.2 Mechanisms for bending

There are two main approaches. If a lipid bilayer consists of two
identical monolayers, it tends to remain flat; because its structure
is symmetrical with respect to the mid-plane, there are no physical
reasons for it to bend in any direction. So, a straightforward way to
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cause membrane bending is to create bilayer asymmetry. The sec-
ond approach is to impose physical constraints on the membrane,
such as frames or scaffolds that enforce bilayer curva- ture. Both
lipids and proteins can be used to implement each of these two
strategies 1 1 Michael Kozlov. Nature, 463, 439,

2010.
(1,2-dioleoyl-sn-glycero-3-phosphocholine) 
enclosed within a stiff, gel-like lipid called 
DPPC (1,2-dipalmitoyl-sn-glycero-3-phospho-
choline), thus forming ‘lakes’ of DOPC within 
the ‘land’ of DPPC. In some experiments, the 
authors added cholesterol to the membranes to 
modify the physical properties of the lake and 
land regions, such as the line tension of the lake 
boundaries. The authors’ system reproduces 
at least one of the lipid-based mechanisms of 
membrane bending: bulging of the lakes driven 
by boundary contraction.

But Yu et al. also added a protein to the 
membrane — melittin, a relatively short anti-
microbial peptide containing 26 amino-acid 
residues. Some of the melittin molecules 
inserted themselves at shallow depths into 
the outer monolayer of the lipid lakes, and 
laid parallel to the membrane surface. These 
molecules bent the lipid lakes using the hydro-
phobic insertion mechanism. Other melittin 
molecules inserted perpendicularly to the 
membrane surface. These molecules formed 
transmembrane complexes that served as 
aqueous pores, facilitating curvature genera-
tion by removing geometrical constraints that 
otherwise maintain the volume of the GUVs. 
Yu and colleagues’ system thus combines for 
the first time these lipid- and protein-based 
mechanisms of membrane bending.

Although the lake-like regions of the authors’ 
GUVs bend, bud and even break away to form 
new, smaller vesicles, the curvatures generated 
in this system are much larger than those of 
intracellular vesicles and tubes. The physical 
forces controlling membrane bending in vivo 
cannot therefore be completely explained by 
the mechanisms built into Yu and colleagues’ 
model. Moreover, the exact interplay between 
lipid-generated line tension and protein-
generated hydrophobic insertion, and its 
role in determining curvature in the model 
system2, remain to be clarified. Neverthe-
less, the authors’ GUVs provide a general, 
promising platform for investigating how inter-
actions between diverse proteins and lipids 
in membranes affect the shaping of those 
membranes. ■
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Figure 1 | Mechanisms of bending in lipid bilayers. a, Lipid asymmetry. This occurs when each 
monolayer is enriched with lipid molecules of different shapes (such as the orange and green 
molecules shown) and/or when one monolayer contains more lipid molecules than the other. 
b, Proteins cause membrane asymmetry by inserting their hydrophobic domains into one side of 
the bilayer. c, When bilayer matrices contain domains consisting of different lipid phases (such as the 
ordered (brown) and disordered (purple) regions shown), the boundaries between the domains tend 
to contract, causing the intervening region to bend. d, Finally, proteins bound to the bilayer can act as 
scaffolds that force curvature on the membrane. Yu et al.2 report a synthetic model of membranes in 
which both hydrophobic insertion and domain-boundary contraction bring about bending.
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cylinders, cones or inverted cones3. If, for 
example, there are more inverted cone-like 
molecules in the outer monolayer than in the 
inner mono layer, the bilayer will tend to adopt 
a concave shape (Fig. 1a). Alternatively, asym-
metry can be created by introducing more 
lipid molecules into one monolayer than in the 
other4. The membrane will then bulge in the 
direction of the monolayer that has the larger 
number of molecules.

Proteins can generate membrane asym-
metry by inserting their hydrophobic domains 
into the lipid bilayer matrix on one side of a 
membrane5 (Fig. 1b), causing the membrane 
to bulge towards the affected monolayer. Most 
membrane-bound proteins have the potential 
to do this, because they already have hydro-
phobic domains inserted into membranes to 
anchor themselves. A theoretical analysis6 of 
this hydrophobic insertion mechanism has 
revealed that the largest membrane curva-
tures are generated by shallow insertions that 
penetrate the external membrane monolayer 
only to about a third of its thickness. Com-
mon protein domains, such as amphipathic 
α-helices (which contain both hydrophobic 
and hydrophilic parts) and short hydrophobic 
loops, induce membrane curvature in this way, 
and are predicted to be much more effective 
than lipids in doing so6.

Physical constraints that cause curvature in 
purely lipid membranes emerge if the lipid mol-
ecules are organized into patches of different 

phase state, such as ordered and disordered 
regions. Generally, the boundaries of such 
patches are in higher energy states than the rest 
of the membrane. This gives rise to a property 
known as line tension (which has dimensions 
of energy per unit length of the boundary), 
analogous to the surface tension associated 
with interfaces of immiscible media. Just as 
surface tension constricts the surface area of 
interfaces, line tension constricts patch bound-
aries. This causes patches to bulge, generating 
membrane curvature7 (Fig. 1c). Protein mol-
ecules, on the other hand, physically constrain 
membranes if they have intrinsically curved 
shapes and attach to the bilayer surface along 
their bent faces — they simply impress their 
curvatures on the membranes3,5,8 (Fig. 1d).

Although all of the above-mentioned 
mechanisms of membrane bending have been 
suggested and verified experimentally3,5,8, the 
importance and effectiveness of the inter-
play between lipid- and protein-based modes 
remains largely unexplored9. Yu and col-
leagues’ experimental model of a membrane2 
offers a unique possibility to resolve this issue. 
Their system consists of giant unilamellar 
vesicles (GUVs). At the size scales involved 
in intracellular membrane bending, the GUV 
membranes can be thought of as being essen-
tially flat, because the vesicles’ radii are much 
greater than the membrane thickness.

The membranes are composed of soft, 
liquid domains of a lipid known as DOPC 
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Figure 18.3: Lipid asymmetry. (a)
This occurs when each monolayer is
enriched with lipid molecules of dif-
ferent shapes (such as the orange and
green molecules shown) and/or when
one monolayer contains more lipid
molecules than the other. (b)Proteins
cause membrane asymmetry by in-
serting their hydrophobic domains
into one side of the bilayer. (c) When
bilayer matrices contain domains
consisting of different lipid phases
(such as the ordered (brown) and
disordered (purple) regions shown),
the boundaries between the domains
tend to contract, causing the inter-
vening region to bend. (d), Finally,
proteins bound to the bilayer can act
as scaffolds that force curvature on the
membrane.

Figure 18.4: A numerical shape of a
vesicle showing a bud

Bilayer asymmetry can be achieved by generating a difference
in the lipid compositions of the two monolayers. Lipid molecules
of different kinds can be seen as the elements of a mosaic, with
various shapes similar to cylinders, cones or inverted cones. If, for
example, there are more inverted cone-like molecules in the outer
monolayer than in the inner monolayer, the bilayer will tend to
adopt a concave shape . Alternatively, asymmetry can be created by
introducing more lipid molecules into one monolayer than in the
other. The membrane will then bulge in the direction of the mono-
layer that has the larger number of molecules. Proteins can generate
membrane asymmetry by inserting their hydrophobic domains
into the lipid bilayer matrix on one side of a membrane, causing
the membrane to bulge towards the affected monolayer. Most
membrane-bound proteins have the potential to do this, because
they already have hydro- phobic domains inserted into membranes
to anchor themselves. A theoretical analysis6 of this hydrophobic
insertion mechanism has revealed that the largest membrane curva-
tures are generated by shallow insertions that penetrate the external
membrane monolayer only to about a third of its thickness. Com-
mon protein domains, such as amphipathic α-helices (which contain
both hydrophobic and hydrophilic parts) and short hydrophobic
loops, induce membrane curvature in this way, and are predicted to
be much more effective than lipids in doing so.

18.3 Curvature energy and constraints

Since the membrane is permeable to water, one might expect that
the volume of the enclosed fluid can adjust freely. However, if ad-
ditional molecules are present in the aqueous solution such as ions
or impurities, which cannot move through the membrane, any net
transfer of water will lead to an osmotic pressure. Typically, such a
pressure is huge on the scale of the bending energy. A small vari-
ation of volume will led to a large osmotic stress that the vesicle
cannot sustain. The only way to keep its closed shape is to allow
only tiny changes in volume. Consequently, the enclosed volume
is essentially fixed by the number of enclosed, osmotically active
molecules and by the concentration of these molecules in the ex-
terior fluid through the requirement that the osmotic pressure is
essentially zero.

In summary, the shape of a vesicle minimizes a curvature energy

1
2

κ

ĳ

dS pc1 ` c2 ´ c0q
2 (18.2)

with the two constraints :
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1. Given volume.

2. Given total area.

Exercice 18.1 The volume of a sphere is 4πR3{3and its area is 4πR2.
Consider a vesicle with an arbitrary shape and we define the radius of the
equivalent area sphere, i.e. A “ 4πR2

0. Define the parameter

v “ V{r4πR3
0{3s (18.3)

Figure 18.5: Effect of thermal fluctua-
tions on vesicle shapes

1. What is the shape of vesicle if v “ 1. In general, do we have 4πR3
0{3 ą

V (why ?) or v ă 1.

2. Assume a large enough spontaneous curvature. Imagine an experi-
mental setup where you can increase the area while keeping the volume
constant. What could happen ? See Fig. ??.

18.4 A note on thermal fluctuations

Figure 18.6: Two fluctuating bilayers
with their abstract representation.
The two membrane bump onto each
other and this creates a repulsive force
between the two membranes. The
strength of this repulsive interaction
can be of the same order of magnitude
than the Van der Waals forces which is
an attractive force.

For typical vesicles, the bending modulus is of the order of κ «

25 kBT. This does not mean that the shapes do not experience any
random undulations due to thermal fluctuations, see figure on the
side. Thermal fluctuations are very difficult to analyse in spherical
geometries. For almost plane membranes, it is much more easy to
analyse. We will discuss two effects during the lecture.

1. Entropic forces and entropic pressure for a membrane bumping
into a wall.

2. Entropic surface tension effects for a fluctuating membrane.

18.5 Micropipette experiments

We study the mechanical properties of living cells in order to un-
derstand their response to stress in the circulation and the tissues.
For example, by characterizing the response of white cells to an
applied pressure we learn how these cells flow through the smallest
vessels of the body and migrate within tissue to sites of infection.
In addition, by measuring the response of cells to applied forces
and stresses, we learn about the underlying structure of a cell.
Does it behave like a liquid or a solid? What molecular structure
is responsible for its behavior? How do mechanical and chemi-
cal stimuli alter its behavior? How do we study and measure the
mechanical properties of the cell ?

Fig. 5. The aspiration into a pipette of a liquid drop with a constant
cortical tension ¹

!
according to (3). ¸

"
is the length of extension of the

drop into the pipette and R
"

is the radius of the pipette. When
¸
"
/R

"
'1, the results are no longer stable to an increase in pressure.

Thus, the cell #ows freely into the pipette when the pressure is increased
beyond the point where ¸

"
/R

"
"1. Cells such as neutrophils that #ow

freely into pipettes at this point behave as liquid drops.

Fig. 6. Aspiration of a #accid (a) and swollen (b) red cell into a pipette.
The diameter of the #accid red cell is approximately 8 !m and that of
the swollen cell is about 6 !m. The scale bars indicate 5 !m.

reciprocal to increase. It will be impossible to satisfy Eq.
(3) for a cell at equilibrium and, therefore, the cell will
#ow into the pipette, as shown for the human neutrophil
by Evans and Yeung (1989). A plot of Eq. (3) for the
constant volume deformation of an 8 !m diameter liquid
drop into pipettes of di!erent diameters is shown in
Fig. 5. We can see in this "gure that the initial response of
the cell for ¸

"
/R

"
(1 is almost linear, which led others to

treat the neutrophil as an elastic solid (Schmid-SchoK n-
bein et al., 1981). Nevertheless, it is impossible to satisfy
Eq. (3) when the pressure is increased beyond the point
where ¸

"
/R

"
"1. Note, however, that for small diameter

pipettes, the pressure is almost constant beyond this
point. This is so because the cell radius barely decreases
as the cell is drawn further into the pipette.

There is another piece of evidence for the liquid behav-
ior of the neutrophil besides its ability to #ow smoothly
into a pipette once the suction pressure exceeds the
critical pressure. That is, the cell behaves according to
Eq. (3) when a neutrophil is aspirated to its critical point
(when ¸

"
/R

"
"1) into pipettes of di!erent diameters for

a constant value for ¹
!

of 35 pN/!m (Evans and Yeung,
1989). Nevertheless, when Needham and Hochmuth
(1992) aspirated cells into tapered pipettes so as to pro-
duce a series of stable states and a signi"cant amount of
area expansion, they saw evidence that the cortical ten-
sion of the neutrophil could increase. They correlated
this with the relative increase in apparent surface area of
the neutrophil as it was aspirated further down the

tapered tube and proposed a relative area expansion
modulus of K

!
"39 pN/!m and an extrapolated value

for the cortical tension before any expansion of area of
¹

!
"24 pN/!m.
Other analyses of neutrophils deformed by micro-

pipette aspiration based on the solid model of Schmid-
SchoK nbein et al. (1981) include work by Chien et al.
(1987). However, in their work only small deformations
of the cell were studied whereby the cell appears to
behave as an elastic solid as shown in Fig. 5 for the case
where ¸

"
/R

"
(1.

In an attempt to duplicate the #ow behavior of neu-
trophils when they are aspirated into a pipette (Evans
and Yeung, 1989; Needham and Hochmuth, 1990), Dong
et al. (1991) used a Maxwell liquid to model the #ow of
a neutrophil. However, even this more complicated
model, compared to a Newtonian one of Evans and
Yeung (1989), would not "t the experimental data unless
the values for the viscosity and elasticity of the cytoplasm
were allowed to change continuously as the cell #owed
into the pipette. A completely satisfactory constitutive
equation for the #ow behavior of the cytoplasm of neu-
trophils and other granulocytes has yet to be found.

The natural shape of the human red cell, unlike most
cells in suspension, is not spherical. Rather, it is shaped
like a biconcave disk as shown in Fig. 6(a). Because its
interior is a Newtonian liquid, the shape of the red cell
comes from the natural shape of its membrane. The
membrane has a shear rigidity (Evans, 1973) in which it
does not #ow into a pipette when subjected to a suction
pressure as shown in Fig. 6(a). This resistance to shear
comes from extension of the membrane in the radial
direction and compression along the circumference as the
cell is aspirated further into the pipette. This deformation
has been analyzed based upon a constant area assump-
tion (Evans, 1973; Chien et al., 1978; Waugh and Evans,
1979). Chien et al. linearized this result to give

!P ) R
"

"
"2.45

!¸
"

R
"

, !¸
"

R
"
"'1, (4)

R.M. Hochmuth / Journal of Biomechanics 33 (2000) 15}22 19

Figure 18.7:

The cell must be deformed in some way by a known force or
stress and its deformation must be measured.
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Diffusion: Macroscopic theory

A useful reference for this chapter is the book of H. Berg.

19.1 Einstein Diffusion equation

We start with Fick’s law in d-dimensions
Bc
Bt
“ D∆c (19.1)

where cpxq is a concentration and D is the diffusion constant with
the dimension length2/time. The Laplacian is an operator with

∆c “
ÿ

i“1,d

B2c
Bx2

i
(19.2)

This equation results from a conservation law and is derived in two
steps. First, we define a current j with

Bc
Bt
`∇ ¨ j “ 0 (19.3)

and we assume that the current is proportional to the gradient of c

j “ ´D∇c (19.4)

where the minus sign tells us the current will flow down the gradi-
ent. Fick’s law is valid for concentrations which have been averaged
over many realizations. In other words, it is valid for situations
where we can neglect fluctuations. Here, we want more. We want
an equation for the probability itself.

To derive such an equation we go back to the random walk prob-
lem. For typographic reasons we will consider the 1d case where
sites are labeled by integer xi. Remember that the walker steps with
equal probability 1{2 to right or to the left at each time step. He (or
she !) never stays at rest. A realization (a sample) of the r.w. is the
series tx1, x2, . . . , xN´1u for the positions at successive times. Let
PpxN , tNq be the probability that the position x equal xN after N
steps, knowing that the r.w. started at the origin. Since he (or she)
never stops walking, this means that x “ xN ˘ a at time tN´1, where
a is the step size. Or,

PpxN , tNq “

1
2
rPpxN ´ a, tN´1q ` PpxN ` a, tN´1qs

(19.5)
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This equation is a recurrence equation for the probability and is
known as a Master equation. We solve this equation by subtracting
PpxN , tN´1q on both sides and dividing by ∆t (the time interval
between successive steps)

PpxN , tNq ´ PpxN , tN´1q

∆t
“

1
∆t
rPpxN ´ a, tN´1q ` PpxN ` a, tN´1q

´ 2PpxN , tN´1qs

(19.6)

We will take the "hydrodynamic" limit where

1. a is much smaller than all macroscopic lengths we will be inter-
ested in.

2. ∆t is also much smaller than all macroscopic times but larger
than microscopic times (random forces are correlated at micro-
scopic times).

In other words, we will separate the fast and the slow variables. In
this regime, the variable xi become a continuous variable and

PpxN , tNq ´ PpxN , tN´1q

∆t
“
BP
Bt

(19.7)

with

Ppx´ aq “ Ppxq ´ a
BP
Bx
`

a2

2
B2P
Bx2 (19.8)

Ppx` aq “ Ppxq ` a
BP
Bx
`

a2

2
B2P
Bx2 (19.9)

so that the discrete master equation is correctly approximated in the
hydrodynamic limit by a continuous process obeying a diffusion
equation

BP
Bt
“

a2

2∆t
B2P
Bx2 (19.10)

where D “ a2{2∆t is a finite constant. This equation can be gen-
eralised to arbitrary d dimensions and must be supplemented by
appropriate boundary conditions. We conclude that the conditional
probability Ppx, t|x “ 0, t “ 0q obeys a diffusion equation.

Exercice 19.1 Gaussian solutions:

1. Show that D “ a2{p2d∆tq in d dimensions.

2. Show directly that

Ppxq “
1

?
2πσ2

exp
!”

´x2{p2σ2q
ı)

(19.11)

with σ “ 2Dt is solution of the diffusion equation in 1 dimension.

3. Show

Ppxq “
1

p4πDtqd{2
exp

!”

´x2{p4Dtq
ı)

(19.12)

in arbitrary d dimensions.
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Exercice 19.2 Scaling. Scaling arguments are very helpful to get the
solutions of problems without solving differential equations. Here is an ex-
ample. You have been asked to cook the dammed chicken. It takes 1h 15 mn
to cook a 1.2 kg chicken. Yours weights 2 kg. What is the cooking time
in your case ? (hint : Scale the diffusion equation to have the same tem-
perature profile for both chickens. You can assume that the chicken has
spherical symmetry.)

It is common to work in different coordinate systems. In polar
coordinates, we have:

∆ f “
1
r
B

Br

ˆ

r
B f
Br

˙

`
1
r2
B2

Bθ2 2-d

∆ f “
1
r2
B

Br

ˆ

r2 B f
Br

˙

`
1

r2 sin θ

B

Bθ

ˆ

sin θ
B f
Bθ

˙

`
1
r2
B2

Bφ2 3-d

(19.13)

19.1.1 FRAP experiments

FRAP was developed in the 1970s as a technique to study protein
mobility in living cells by measuring the rate of fluorescence re-
covery at a bleached site. The FRAP technique originally found
success as a method to measure diffusion in cellular membranes
[42,43]; however, the recent advent and availability of both fluo-
rescent protein technology and confocal microscopy have led to a
marked increase in the use of FRAP for studying protein mobility
in the cell interior. The scope of these studies has expanded not
only to address diffusion rates, but also to assess protein dynamics
and interactions with other cellular components . FRAP has now
been adopted as a common technique for studying almost all as-
pects of cell biology, including chromatin structure, transcription,
mRNA mobility, protein recycling, signal transduction, cytoskeletal
dynamics, vesicle transport, cell adhesion and mitosis.

Commonly, FRAP results are analyzed qualitatively to determine
whether protein mobility is rapid or slow, whether binding inter-
actions are present, whether an immobile fraction exists, or how a
particular treatment (such as ATP depletion or a mutation in the
protein of interest) affects these properties. Several mathematical
models have been also developed to understand better the underly-
ing processes, to ensure the accuracy of a qualitative interpretation,
and to extract quantitative parameters from a FRAP curve.

Exercice 19.3 In a typical Frap experiment, one bleaches a spot of size R.
Use dimensional analysis to guess the characteristic time scale of typical
Frap recovery curve.

Two limit cases will be discussed during the lecture:

1. Diffusion-limited.

2. Reaction-limited where the recovery depends on the off rate of a
reaction (diffusion is assumed to be very fast)
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lipids diffuse ≈ 1 µm / sec
1 µm = 1 x 10-4 cm

k ≈ 2 Dm/λ2 

t0.5 = 0.693/k 
for λ = 3.5 µm 
k = 0.164 s-1 and 
t0.5 = 4.23 sec 
τ = 6 sec

Lipid bilayers are dynamic noncovalent structures Figure 19.1:

Exercice 19.4 We consider a Frap experiment for a single binding reac-
tion

F` S
kon
ÝÝÑ
ÐÝÝ

koff
C (19.14)

where F represents free proteins, S represents vacant binding sites, C
bound rFSs complexes.

1. What are the equations describing the binding reactions (including
reaction) ?

2. What is the concentration Feq ?

3. Assume that diffusion is very fast and that vacant sites are in excess.
How do you simplify these equations ?

4. We define kon
˚ Show that these equations reduce to

dc
dt
“ k˚onFeq ´ ko f f cptq (19.15)

5. The frap recovery data is the sum of the bound and free fluorescence.
Conclude that the intensity recovers as

Iptq “ 1´ exp
!”

´ko f f t
ı)

(19.16)

3. Modeling & FRAP

B. Diffusion

FRAP could also occur without the specific interactions. Simply the diffusion 
drives the exchange of molecules between bleached and non-bleached area. 

3. Modeling & FRAP

A. Specific Interactions

Bleach!

…then we bleach only the cluster. Immediately after the bleaching, all 
molecules consisting the cluster loses fluorescence. 

Figure 19.2: (a) Frap can occur with-
out specific interaction. Simply the
diffusion drives the exchange of
molecules between the bleached and
the non-bleached area. (b) Cluster
of molecules. There is a contnuous
exchange between the bound and the
un-bound molecules. If we bleach the
cluster, the molecules inside the cluster
loose fluoresence.

19.2 Boundary conditions for the diffusion equation

Eq. (??) is a partial differential equation and it makes no sense
to find a solution without specifying the boundary conditions.
Assume that we are interested in solving (??) on a domain Ω “

r0, Lsd. These are as follows:

1. One must specify the initial conditions at t “ 0 over the domain
of interest.

2. One must specify "something" (the value of c or the current) at
the boundary of this domain.



diffusion: macroscopic theory 123

Changing one of these conditions completely alters the solution
and the physical consequences ! Here are some of the most popular
boundary conditions for stationary solutions:

1. We fix the values of cpxq on the boundaries of Ω (i.e. cp0q “ cpLq
are given). If c “ 0, the boundary are absorbing. All the walkers
crossing the boundaries disappear (think of a random walk on a
roof: if you hit the border, you get out of the system !)

2. We fix the outward current dc{dn̂1. If dc{dn̂ “ 0, there is no 1 n̂ is the outward normal at the
boundary of Ω and dc{dn̂ “ n̂ ¨∇c.current. The boundaries are perfectly reflecting walls.

19.3 An example of first passage probability: The gambler ruin
problem

Consider a random walk on a finite interval of length N. The two
boundary sites are absorbing, i.e. the random walker immediately
disappears upon reaching these sites. Suppose that the starting
position of the random walk is n, with 0 ď n ď N. What is Fn,
the probability that the walker first reaches the boundary at site N,
i.e. without touching site number 0, first? We will write a simple
recursion relation for Fn.

Exercice 19.5 Consider the probability Fn.

1. What is F0 and FN ?(0, 1)

2. With probability 1{2, the walk steps to site n´ 1 at which the probabil-
ity to escape at site n´ 1 is Fn´1. Similarly, the walk steps at site n` 1
with probability 1{2. Show:

Fn “
1
2
pFn´1 ` Fn`1q (19.17)

3. Show Fn “ n{N.

This exit probability also represents the solution of the gambler
ruin problem. In a casino, you continue to bet as long as you have
money. Let n represent your wealth which that changes by a small
amount ˘1 with equal probability by a single beat with the casino.
You lose if your wealth hits zero and you break the casino is your
wealth hits N (the total sum of your wealth and the one of the
casino). This calculation shows that the probability to break the
casino is n{N. Conclusion: Owning the casino is a good idea, gam-
bling in the casino is a bad idea.

19.4 Diffusion limited chemical reactions

Exercice 19.6 Consider a perfect adsorbing sphere of radius a[? ]. A
molecule is initially located at a distance r0 of the center of the sphere.
In this problem, we will ask this simple question: What is the probability



124 physics of the colloidal domain - lecture notes

ppa, r0q for the molecule to be adsorbed ? It will turn our the answer is
simple. It is

ppa, r0q “
a
r0

(19.18)

and not as a2{r2 as if the movement where ballistic (in that case, the result
would be proportional to the cross-section). To answer to this problem,
consider a sphere of radius r0 ą a where the concentration is maintained
at c “ cm. Assume that there is a second sphere of radius b ą r0 where the
concentration is maintained at c “ 0 (adsorbing conditions).

1. Solve the stationary diffusion equation in the two regions with the
appropriate boundary conditions. To solve this equation, pose upr, tq “
rcpr, tq in the diffusion equation where r is the radial coordinate. What
is the equation for upr, tq ?

2. Compute the current at r “ a and r “ b.

3. Compute the total flux of particles through the spheres a and b.

4. What is the probability that a random walk starting at r0 bump into a
? Same question for b.

5. Let b Ñ8 and recover (??).

Figure 19.3: An absorbing sphere
for a solute diffusing in the bulk. The
concentration of solute decreases in the
vicinity of the sphere. This depletion
zone is characteristic of problem
controlled by diffusion.

Exercice 19.7 Consider the situation schematized in Fig. ??. Assume that
the concentration at r Ñ 8 is maintained at c0. The sphere of radius a
is covered by sensors with surface density σ. The rate of uptake of solute
molecules per unit surface is given by

dn
dt
“ σkoncpaq (19.19)
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This equation defines kon as the usual kinetic rate in chemical reaction.

1. If M is the total number of receptors, give M as a function of σ.

2. Show that solution of the 3-d diffusion equation with symmetry of
revolution is given by cprq “ β` α{r.

3. Using mass conservation, show

´4πr2 Jprq “ Mkoncpaq (19.20)

4. Use the last equation to compute the concentration as

cprq ´ cpaq “
Mkoncpaq

4πD

ˆ

1
a
´

1
r

˙

(19.21)

5. Show
cpaq “

c0

1`Mkon{p4πDaq
(19.22)

6. Plot cprq.

7. Deduce that the net adsorption rate is

k “
4πDaMkon

4πDa`Mkon
(19.23)

8. Investigate the two limits of a perfect adsorber, kon Ñ 8, and of a bad
adsorber, kon Ñ 0. Conclude that the net adsorption rate can be written
as

1
k
“

1
kon

`
1

kD
(19.24)

where 1{kD is a diffusion time which depends on the diffusion constant.
Thus, our boundary condition together with the diffusion equations
set two characteristic time scales. This is in contrast with the usual
condition of perfect adsorption with only one time scale.

Remark 6 The diffusion-limited rate constant 4πDa is the maximum
rate constant which can be observed (unit is is m3.molecules´1.s´1. In
Molar unit, rkas “ M´1, this result reads as 4000πDaN, where N is the
Avogadro number and where all lengths are in dm.

Exercice 19.8 We consider the bimolecular reaction

A` B ÝÝÑ AB (19.25)

for which the concentrations usually evolve according to the law of mass
action

drABs
dt

“ krAsrBs (19.26)

Usually, the on-rate k is independent of t. This will not be case here. We
assume that an A molecule and a B molecule react immediately to form a
complex AB when they encounter each other within a reaction radius, so
that the speed of reaction is limited by their encounter rate via diffusion.
We consider the case of spherical target A of radius a (d “ 3). One way
to formulate the problem is an idealized first passage process, in which the
A molecule is fixed while the B molecule diffuse around. Let cpr, tq be the
concentration of B molecules.

The initial conditions and the boundary conditions are as follows
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Figure 19.4: Diffusion limited reaction
rate. (a) Diffusing molecules B in
a neighborhood of a fixed target
molecule A with reaction radius a.
In (b) Quasi-static approximation for
calculating time-dependent reaction
rate.

(i) cpr, t “ 0q “ c0 for r ą a.

(ii) cpr “ a, tq “ 0, since there is an uptake of B molecules at r “ a.

(iii) cpr Ñ 8q “ c0 for a continuous supply of B molecules at infinity to
counterbalance the rate of uptake of B at r “ a.

1. Define upr, tq “ rupr, tq. What is the equivalent-diffusion equation for
upr, tq ?

2. To solve this equation with the appropriate boundary conditions for
upr, tq, introduce the Laplace transform of upr, tq

ũpr, sq “
ż 8

0
dt upr, tq exptr´stsu (19.27)

Show
sũpr, sq ´ rc0 “ Dũ2pr, sq (19.28)

3. Show
ũpr, sq “

c0

s

”

r´ a exp
!”

´pr´ aq
a

s{D
ı)ı (19.29)

4. We assume that the inverse Laplace transform of

s´1
”

1´ exp
!”

´r
a

s{D
ı)ı

is
erfpr

?
4Dtq

where
erfpzq “

2
?

π

ż z

0
e´r2

dr (19.30)

where rmerf is the error function, see Fig. ??. Show:

cpr, tq “ c0

´

1´
a
r

¯

`
ac0

r
erf

„

r´ a
?

Dt



(19.31)

5. Show that the time-dependent flux is

φ “ 4πa2Dc0

ˆ

1`
a

?
πDt

˙

(19.32)
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6. Make the t Ñ 8 limit. Show k “ 4πa2D. Remark that the rate k
depends on the diffusion constant D.

Exercice 19.9 The time-dependent reaction rate can be calculated us-
ing the quasi-static approximation. Because of it simplicity and general
applicability, we detail the calculation in arbitrary dimension d.

We divide the region exterior to the adsorbing sphere into two zones.
The "near" and the complementary "far" zone.

1. In the near zone, a ă r ď a`
?

Dt, it is assumed that diffusing parti-
cles have sufficient time to explore the domain before being adsorbed by
the target. The concentration is almost quasi static. What changes with
time is the locus of the boundary which increases as

?
Dt.

2. In the complementary far zone, it is assumed that the probability of
being adsorbed is negligible, since the particles are unlikely to diffuse
more than

?
Dt in a time t. Thus, cprq « c0 in the far zone.

1. Show that the static solution in 2d is cprq “ A` B ln r.

2. Match the solution to the boundary condition cpaq “ 0 and cpa `
?

Dtq “ c0 and show

cpr, tq «
c0 lnpr{aq

ln
`
?

Dt{a
˘ t ąą 1 (19.33)

3. Compute the time-dependent flux

Jptq “ 4πa2D
Bc
Br

ˇ

ˇ

ˇ

ˇ

r“a
(19.34)

4. How J depends on the size of the adsorbing sphere ? Conclude.

Figure 19.5: Plot of the function erfpzq.
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19.5 The Peclet number

The Peclet number is a dimensionless ratio. It is the ratio of two
rates. The first rate is the rate at which a particle moves some dis-
tance λ due to being carried along by the flow of the liquid. The
second rate is the rate at which it diffuses the same distance λ.
Here λ is whatever distance we are interested in. So, the Peclet
number is defined to be

Pe “
R1

R2
(19.35)

where

1. R1 = Rate at which flow carries molecules a distance λ.

2. Rate at which diffusion carries molecules a distance λ.

If the flow speed is u, the time taken to transport a molecule over a
distance λ is λ{u. The rate is therefore u{λ. In contrast, the time to
diffuse a distance λ is λ2{D. As a result, the rate is D{λ2. Thus,

Pe “
uλ

D
(19.36)

which depends on the length scale λ. On small scales, diffusion is
faster than flow. On macroscopic scale, flow is faster. For E. Coli
looking for nutriments, D « 10´5cm2{s (for phosphate molecules),
u “ 30µm{s (speed of E. coli), λ “ 2µm (size), Pe = 0.02.

19.6 Diffusion in a force field

We have considered so far a free brownian particle. What happens
if the particle is subjected to an external force F ? If this force derive
from a potential φpxq, the current is the sum of the usual drift term
and a mobility term

J “ ´µPpxq∇φ´D∇P (19.37)

where the mobility µ is yet undetermined.
Conservation of probability requires

BP
Bt
“ ∇ ¨ J (19.38)

and translates into

BP
Bt
“
B

Bx
r´µPpxq∇φ´D∇Ps (19.39)

Assuming stationarity

´µPpxq∇φ´D∇P “ 0

or
dP
dx
“ ´

µ

D
dφ

dx
Ppxq

(19.40)

whose solution is given by

Ppxq “
1
Z

e´
µ
D φpxq (19.41)



diffusion: macroscopic theory 129

where Z is some normalization constant. Remark that we have
made no statement concerning equilibrium and we have only hypo-
thetized that the process is stationary. If the process at equilibrium,
we recover the Bolzmann’s distribution if the Einstein relation holds

µ

D
“

1
kT

(19.42)

Although this derivation is general, it is interesting to state clearly
the hypotheses tacitly made to get (??). Since the probability Ppx, tq
does depend only on the position and not on the speed, we have
tacitly assumed that the speed relaxes very fast to some local equi-
librium. Actually, (??) is only valid in the strong friction limit.

Figure 19.6: Three successive
monomers of a flexible polymer
chain. The angle θ is fixed, but the
upper monomer can rotate by an angle
φ. The three segments are coplanar
when φ “ 0 (trans-configuration) and
this configuration corresponds to the
true minimum energy configuration
(see Fig. ??). The two gauche configu-
rations are obtained when φ “ ˘1200.

Remark 7 In classical mechanics particles at rest occupy minimum
energy states. Here, due to thermal fluctuations, the particle has a finite
probability ppUiq to be in a state of energy Ui above the minimum energy
state. Assuming thermal equilibrium, the probability ppUiq is

ppUiq “
1
Z

er´Ui{kTs (19.43)
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Figure 19.7: Potential profile as a
function of the angle φ defined in
Figure ??. The potential barriers are
small with respect to the thermal
energy kT, so that the polymer adopts
the three configuration with almost
equal probability

where Z “
ř

i expt´Ui{kTu so that
ř

i pi “ 1.
Consider a molecule with two conformational states with reaction

coordinate x. The probability to be state 1 is p1 “ 1{Z exptt´U1{kTuu
(1 ÝÝÑÐÝÝ 2). We have

p1

p2
“ exptr´pU1 ´U2q{kTsu (19.44)

At very low temperature, p1{p2 " 1 so that the only observable state is
actually the minimum energy state. At finite temperature, however, state
2 is observable with a finite probability. This property is crucial for flexible
polymer chains. The energy between successive groups is a function of
one angle φ. The potential barrier ∆ε between the two cis and the trans
configuration is small, so that the chain is a flexible coil.

Exercice 19.10 Application : The Debye-Hückel theory. Interactions that
occur between electrical charges fixed at surface and those which are free in
solution play an important role in colloidal systems.

We consider negatively charged wall that is infinite in the x and y
direction. The distance from the charged surface is z. The charge density
on the wall is σ. Let Φpzq be the electrical potential. Because of Gauss’s
law

dΦ
dz
“ ´

σ

ε0εr
(19.45)

The adjacent solution contains positively charged and negatively charged
ions in equal quantity with homogeneous density c0 when φpzq “ 0. We
assume that the ions bare a charge ˘Ze.

1. Calculate c˘pzq as a function of Φpzq.

2. Write Gauss’s theorem in the solution

∆Φpzq “ ´
ρpxq
ε0εr

(19.46)

and show

∆Ψpzq “ ´
2eZc0

ε0εr
sinh

„

ZeΨpzq
kT



(19.47)
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3. Without solving this equation, show that there exists a characteristic
length scale lp which enters into the problem.

4. Assume

sinh
„

ZeΨpzq
kT



«
ZeΨpzq

kT
(19.48)

and solve the differential equation. What is the physical interpretation
of lp ?

5. Assume that the ions come from the dissociation of NaCl (0.1 M).
What is the order of magnitude of lp ?

19.7 A First-passage problem: The escape over a potential bar-
rier

We consider a brownian particle in a field of force. The force is the
derivative of a potential Vpxq and to want the calculate the prob-
ability to escape from a metastable state. We will assume that the
barrier is sufficiently large with respect to kT so that the particule
will neither come back after having passed over the barrier. This
problem is a first passage problem.

The x coordinate is a reaction coordinate. For a chemical reac-
tion, x corresponds to the relative distance between two molecules
A and B When the relative distance between the two molecules is
small, the two molecules form a chemical complex. The transloca-
tion of the particle over the barrier is, therefore, equivalent to the
dissociation of the complex A´B.

If we assume first order kinetics, we describe the reaction as

drA´Bs
dt

“ ´koff rA´Bs (19.49)

where koff has the dimension of 1/time. This is the characteristic
time one has to wait before the chemical bond break spontaneously
because of thermal fluctuations. In the Kramers problem, this time
is the first passage time over the barrier.

BP
Bt
`
B J
Bx
“ 0 (19.50)

where

J “ ´
1
µ

Ppxq
dV
dx
´D

dP
dx

(19.51)

In what follows, we assume that the barrier is large with respect to
kT

VM ´VA " kT (19.52)

and we compute the off-rate from the current of particle escaping
from A

ko f f “
J

nA
(19.53)

where nA is the number of particles in A. The current is small, so
nA does not vary. ko f f has the right dimension, since koff “ 1{time.
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A

B

M

Figure 19.8: Potential profile for a
brownian particle. The effect of a force
applied to the equivalent chemical
bond is to lower the potential barrier.

In a stationary regime, the current is constant

J “ constant (19.54)

independent of the reaction coordinate x, since all particle which
escape neither come back. Using (??) we obtain:

BV
Bx

Ppxq ` kT
BP
Bx
“ ´µJ (19.55)

The general solution of this equation is

Ppxq “ apxqe´Vpxq{kT

apxq “
Jµ

kT

ż x0

x
dx1 e`Vpx1q{kT

(19.56)

where x0 is a constant of integration to determined by the bound-
ary conditions.

These are as follows:

1. nA is known because the number of particle near A is given
by the Bolzman’s distribution (there is only a small number of
particles which can escape)

nA “

ż

dx Ppxq “
ż

dx apxqe´Vpxq{kT

9apxAqe´VA{kT
(19.57)

where Vpxq “ VA ` . . . in the domain where the integrand is not
small (see Comment ??).

2. We define an arbitrary point B at the right of the barrier. The
exact locus of B will not matter. We take Ppx “ xBq “ 0 at B as
the equivalent condition for the particle neither to come back.
We have, therefore, x0 “ xB, so that PpxBq “ 0.
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From (??) we get the current

J “
kT
µ

apxq
şxB

x eVpyq{kT dy
(19.58)

in particular for x “ xA

J “
kT
µ

apxAq
şxB

xA
eVpyq{kT dy

(19.59)

But
ż xB

xA

eVpyq{kT dy9eVM{kT (19.60)

since VM " VA and VM " VB. Taking the ratio, we get the well-
known Arrhenius factor (Kramers, 1940)

ko f f “
J

nA
9e´pVM´VAq{kT (19.61)

Remark 8 We want to evaluate the integral

I “
ż `8

´8

dx gpxqeλ f pxq (19.62)

where λ " 1 and where the function f pxq has a maximum. A useful ap-
proximation is the saddle-point method. Since f pxq possesses a maximum
at some point x0, the dominant contribution to the integral comes from a
domain centred around x0. We Taylor expand f pxq to second order

f pxq “ f px0q `
1
2
px´ x0q

2 f 2px0q ` . . . (19.63)

and

I “gpx0qeλ f px0q

ż `8

´8

dx e
1
2 px´x0q

2 f2px0q

“

d

2π

| f 2px0q|
gpx0qeλ f px0q λ " 1

(19.64)

If f pxq possesses a minimum, take λ ă 0

I «

d

2π

| f 2px0q|
gpx0qeλ f px0q | λ |" 1 (19.65)

Exercice 19.11 Use this approximation for the integral representation of
n!

pn` 1q! “
ż 8

0
dt tn´1e´t (19.66)

Exercice 19.12 Path integral method. The Langevin equation can be
written as

f ptq “ µ
dx
dt
`

dV
dx

(19.67)

We know that the random force f ptq is drawn from a Gaussian distribu-
tion

Pr f ptqs9 exp
"„

´
1

4µkT

ż

dt f ptq2
*

(19.68)
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1. Why Eq. (??) is valid ?

2. Explain formula (??).

3. Show that the probability to observe a trajectory is

Prxptqs “

J exp

#

„

´
1

4µkT

ż

dt
ˆ

µ
dx
dt
`

dV
dx

˙2
+

(19.69)

where J is independent of T (don’t try to calculate J ). At low temper-
ature, the exponential will dominate and we will drily ignore thereafter
J



20
Introduction to stochastic processes

In a world of objects as small as living cells, R « 10µm, transport
of molecules is effected by diffusion, rather than bulk flow, move-
ment is rested by viscosity and not by inertia[? ]. To illustrate this
statement, it is interesting to compute characteristic orders of mag-
nitude1 . The average density ρ of a protein is about 1.2 times the 1 Applying Newton’s law, the equation

of motion of a particle immersed into a
medium of viscosity η is

M
d2x
dt2 ` 6πηR

dx
dt
“ 0

This known as the Stokes law, where
the drag coefficient 6πηR is pro-
portional to the size of the object.
Rigorously speaking, for this law to
be valid, the object is assumed to be
spherical. If not, small logarithmic
corrections enter into this formula
without dramatic consequences.

one of water. The size of a cell is about 10µm. The mass of cell is
therefore M « 5 10´12kg. When a small object of the size of a cell
cruises into water, it experiences a drag flow in the direction oppo-
site to its velocity.

At small Reynolds numbers (see later for a definition), the drag
force is 6πηR ˆ velocity, where η is the viscosity of water η “

10´3kg m´1 s´1. The ratio

τ “
Mass
6πηR

“ Characteristic time (20.1)

has the dimension of a time. For objects of the same size as cells,
we find τ “ 210´5s. If the object cruises at a speed of 10µ s´1, the
distance traveled after the "operator" shut down the propellers is
about 2 10´4µ m. This is of the order of Å and this is much less
than the size of the object ! To compare with our macroscopic
world, we can think about a tanker. The size of a tanker is about
380m, its weight is about 400 106kg. If we assume that the same
formula holds true for the drag coefficient of the tanker - this as-
sumption is silly - we find τ “ 5.6104s. If the speed of the tanker
is initially 15nm{h “ 15 ˆ 1.6km{h, the distance cruised before
its stops, is about 223km. Obviously, there is something wrong -
the Stokes formula does not apply to a tanker - but the difference
between the cell and the tanker (viscosity versus inertia) is striking !

The idea that we can go down the scale of sizes while enjoying
the peaceful life also silly. In a 1966 well-known Hollywood movie
directed by Richard Fleischer, a scientist is nearly assassinated. In
order to save him, a submarine is shrunken to microscopic size and
injected into his blood stream with a small crew. Problems arise
almost as soon as they enter the bloodstream. This was foreseen
. . . The thermal energy of thermal motion kT is enough to perturb
drastically small object movements. The passengers of the subma-
rine imagined by Fleischer actually experience a very hectic life due
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Figure 20.1: The fantastic voyage
directed by Richard Fleischer.
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to incessant impacts of molecules bumping onto the submarine. It
would be very hard for them to survive to such blitz ! Obviously
fluctuations matter in the small world.

These lectures are about the biophysical constraints with the fo-
cus on noise and diffusion imposed by the smallness of the objects
"cruising" in the micro and nano-world. Such biophysical con-
straints matter as soon as we try to detect and count molecules. The
principles at work at the scale of nano-micro objects are very differ-
ent in nature from what we know from our every day experiences
and they matter in the design of experimental setups.

20.1 A short review of probability theory

20.2 Introduction
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Dessins de Catherine Belœil

Stéphane Mallarmé

Un coup de dés jamais
n’abolira le hasard

Figure 20.2: ’Un coup de dés jamais
n’abolira le hasard. Poême de S.
Mallarmé, 1897.
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Random or "unsure" variables are essential in physics: They play
a fundamental role in quantum theory, statistical mechanics, and
kinetic theory. They are also crucially involved in the analysis of
uncertainty in experimental data. We review here the concepts of
random variable theory that will be needed later [? ].

20.3 Cumulative distribution and probability density function

Let us consider a random variable and ask what is the probability
for x to be less than some value, say a. This random variable x is
regarded as specified if one knows the cumulative distribution
function

Fpaq “ Pcpx ď aq a Ps ´8,`8r (20.2)

where Pcp. . .q is the probability of occurrence of the event x ď a.
The cumulative distribution Fpxq has the following properties

1. Fp0q “ 0, Fp1q “ 1.

2. If x1 ă x2 then Fpx1q ď Fpx2q.

3. Fpx` 0q “ Fpxq (continuity from the right).

The probability density function is introduced by taking the deriva-
tive (if it exists)

ppxq “
dF
dx

(20.3)

20.4 Continuous probability distribution versus discrete vari-
ables

20.4.1 Discrete random variables - I

Let us start with a random variable with possible values xn, n “
1, . . . , K. Since the outcome spans a discrete set of values, it is called
a discrete random variable. If x “ xn with probability pn

K
ÿ

n“1

pn “ 1 (20.4)

The expectation of x is

ă X ą“
K
ÿ

n“1

pnxn (20.5)

and the variance of x is

ă x2 ą ´ ă x ą2“

K
ÿ

n“1

pnx2
n ´

˜

K
ÿ

n“1

pnxn

¸2

ě 0 (20.6)
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20.4.2 Continuous random variables

In this case, ppxq does not exist only at a ’few’ discrete points
(countable set). We have ppxq ě 0, @x and

ż `8

´8

dx ppxq “ 1

The probability to find x in the interval x P rx1, x2s is simply equal
to the integral

Ppx1 ď x ď x2q “

ż x2

x1

dx ppxq (20.7)

To determine the probability density function ppaq for a given a,
we perform the experiment n times and count the number of trials
∆npaq such that the result is a ď x ď a` ∆a

ppaq∆a “
∆npaq

n
(20.8)

20.4.3 Discrete random variables - II

Figure 20.3: Cumulative distribu-
tion function for a discrete random
variable.

This section introduces the δ functions. The meaning is the same
as in subsection 1. In the case of a discrete random vraiable, the cu-
mulative distribution function resembles a staircase. We introduce
the Dirac δ-distribution specified by the integral property

ż `8

´8

dx φpxqδpx´ x0q “ φpx0q (20.9)

where φ is an arbitrary test continuous function. In the case of
discrete random variable, the cumulative probability distribution is
discontinuous at x0 and

dF
dx

ˇ

ˇ

ˇ

ˇ

x“x0

“ kδpx´ x0q (20.10)

where k “ Fpx0`q´ Fpx0´q is the step height.
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In particular, if Fpxq is the Heaviside function defines as

Fpxq “ θpxq “

$

&

%

1 x ě 0

0 otherwise
(20.11)

Then
dθ

dx
“ δpxq (20.12)

As a result, the probability density for a discrete random variable
(assuming that the random variable takes the value xn with proba-
bility pn is

f pxq “
ÿ

n
pnδpx´ xnq (20.13)

We have for any function of the random variable x, φpxq

φpxq “
ż

dx φpxq “
ÿ

n
pnφpxnq (20.14)

20.5 Change of variable

Given a random variable with density distribution ppxq , and a new
random variable y defined by the transformation

y “ gpxq (20.15)

the probability density qpyq of this new variable is given by

qpyq “
ż `8

´8

ppxqδpy´ gpxqqdx (20.16)

This is equivalent to say

qpyq∆y “ ppxq∆x (20.17)

for all intervals ∆y image of ∆x by the application gpxq. Taking the
limit ∆x Ñ 0, we get the formula

qpyq “ ppxq
„
∣∣∣∣
dg
dx

∣∣∣∣
´1

(20.18)

Remark that we take the absolute value and that we have assumed
that gpxq is one-to-one.

Exercice 20.1 A random variable x is uniformly distributed in the inter-
val r0, 1s. Find the probability density of the random variable y “ ´ ln x.

20.6 Moments and cumulants

The expectation value ă x ą of a random variable is taken as

ă x ą“

$

&

%

ş`8

´8
dx xppxq Continuous

ř

n xppxnq Discrete
(20.19)
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Higher moments are defined in the same way, k is not necessarily
an integer

ă xk ą“

$

&

%

ş`8

´8
dx xk ppxq Continuous

ř

n xk ppxnq Discrete
(20.20)

For k “ 2, we define the variance (σ is called the standard devia-
tion)

ă σ2 ą“ă x2 ą ´ ă x ą2 (20.21)

with the important result

σ2 ě 0 since ă x2 ąěă x ą2 (20.22)

A central point in physics is to characterize the correlations be-
tween random variables. Let x and y be these random variables, we
define

ă xy ąc“ă xy ą ´ ă x ąă y ą (20.23)

If x and y are independent, then ă xy ą“ă x ąă y ą, so that
ăă xy ąą“ 0. Take now y “ x and define the cumulant of order 2
by

ă x2 ąc“ă x2 ą ´ ă x ą2 (20.24)

which is nothing but the variance. Higher cumulants will be de-
fined shortly using the generating function. For the moment, it
suffices to say that cumulants probe how far the random variable x
is from being deterministic (i.e. with only one possible value). Cu-
mulants are one other way to write the probability density function,
since both quantities are related.

We define the characteristic function

φpωq “ă eiωx ą“

ż `8

´8

dx eiωx ppxq (20.25)

where φpωq and ppxq contain the same information, since they
are Fourier transform of each other. Cumulants are defined from
ln φpωq by taking the logarithmic derivative

dn

dωn ln φpωq

ˇ

ˇ

ˇ

ˇ

ω“0
“ in ă xn ąc (20.26)

Or, equivalently, by series expanding

ă eiωx ą“ exp

##

ÿ

ně1

in ωn

n!
ă xn ąc

++

“

ÿ

ně0

in ωn

n!
ă xn ą

(20.27)

This formula may seem a little awkward, note the way the cumu-
lants enter into the exponential, but it is of constant use. We can
already kill the suspense and state that the only distribution with
zero cumulants for n ą 2 is the Gaussian probability distribution.
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Exercice 20.2 Use
ż `8

´8

e´ax2
e´ikx “

c

π

a
e´k2{4a2

(20.28)

and demonstrate the preceding statement.

Exercice 20.3 Physical limit of biochemical signaling[? ]. We want to
count molecules with a sensor of size a. Let c̄ the mean concentration of
molecules and we expect to count on average N̄ „ c̄a3 molecules. What
is the noise associated with this measurement? A volume of size a can be
cleared by diffusion is a time τD „ a2{D. What is the fractional accuracy
if we integrate a measure over a time τ ? (δc{c̄ „ 1{

?
Dac̄τ).

20.7 Examples of distribution

20.7.1 The binomial distribution

This is the probability to get k successes in n trials for an event
occuring with probability p. The probability distribution is given by

Ppx “ kq “ Ck
n pkp1´ pqn´k (20.29)

The probability for no success in N trials is p1´ pqN and the prob-
ability for at least one success is 1´ p1´ pqN . The case p “ 1{2
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0.05
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0.15

0.20 Figure 20.4: Binomial distribution for
p “ 0.1, 0.5, 0.7.

corresponds to flipping a coin.

20.7.2 The normal distribution

The normal random variable has probability distribution

f pxq “
1

?
2πσ2

exp
"„

´
px´ µq2

2σ2

*

(20.30)

The mean is µ and the variance is σ2. As σ Ñ 0, the random vari-
able is almost sure. With these definitions, (??) is normalised to 1,
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5 10 15 20 25 30 35

0.2
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0.6

0.8

1.0 Figure 20.5: Cumulative probability
distribution for the binomial distribu-
tion.
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3

4 Figure 20.6: The normal distribution
tends to a Dirac distribution as σ Ñ 0.
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so that the σ Ñ 0 limit gives the δ-Dirac function. The generaliza-
tion to multiple variables is

Ppxq “ Pptxiuq “

1
a

p2πqNdetC
exp

"„

´
1
2

xT ¨ C´1 ¨ x
* (20.31)

where xT is the transpose of the vector x.

Exercice 20.4 This distribution is correctly normalized as it can be shown
when C is diagonal. This will the case here. While you are at it, also show

ln detC “ tr ln C (20.32)

Exercice 20.5 If you have not done before, the following trick is useful. To
calculate

ż `8

´8

dx exp
!”

´αx2
ı)

, evaluate first

„
ż `8

´8

dx exp
!”

´αx2
ı)

2

“

ż `8

´8

dx exp
!”

´αx2
ı)

ż `8

´8

dy exp
!”

´αy2
ı)

(20.33)

and use polar coordinates. While you are at it, take the derivative with
respect to α to calculate ă x2 ą.

Exercice 20.6 Use this to show that the Fourier transform is a gaussian.
Show that the only probability distribution with culants equal to zero for
n ą 2 is a gaussian probability distribution.

20.7.3 The Poisson distribution

This distribution is of tremendous importance both in physics and
in chemistry. Photons statistics is Poissonian as the distribution
of molecules in chemical kinetics. Poisson’s statistic follows the
limit of rare events for the binomial distribution. We make p ! 1,
therefore

p1´ pqN´n “ epN´nq lnp1´pq « e´Np (20.34)

Second2 2 Use the Stiling’s formula l! «
pl{eql

?
2πlN!

pN ´ nq!
« Nn (20.35)

and we arrive at:

PpN, nq “ pNpqne´Np{n! (20.36)

Often the symbol λ “ Np is assigned. λ is the number of heads
in N tosses. For the Poisson distribution, both the mean and the
variance are equal to λ

ă x ą“ λ σ2 “ă x2 ą ´ ă x ą2“ λ (20.37)
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Exercice 20.7 Consider an assembly if m radioactive atoms. Two char-
acteristics are important in understanding radioactive decay. First, the
probability per unit time that an undecayed atom will decay within an
infinitesimal time interval ∆t is constant

Probability of decay in∆t
∆t

Ñ a as ∆t Ñ 0 (20.38)

where a is the probability per unit time of observing a decay. Seconds,
the atom are independent; the state of one atom does not affect another.
What is the probability to observe r decays in each time interval ? answ.
Define µ “ pm, i.e. the average number of radioactive decays in each time
interval.

Exercice 20.8 Let X have range t0, 1, 2, 3, . . .u and pXpjq “ eλλj{j! for
all j (Poison distribution with mean λ).

1. Compute gptq “ă exptritjsu ą, i2 “ ´1.

2. Compute ă X ą, ă X2 ą and ă X2 ą ´ ă X2 ą.

20.7.4 The Bolzmann distribution

Figure 20.7: The simplest model of
a molecule with two conformational
states. Along some molecular coor-
dinate x, the potential energy V1xq
has two minima separated by a bar-
rier. The height of the barrier is the
activation energy Eact which will deter-
mine the rate of reaction through the
Arrhenius law, k9e´Eact{kT .

Consider a two-conformational states molecules with energy E˘.
the probability to observe the molecule in the state ` is given by

p` “
e´βE`

e´βE` ` e´βE´
β “ 1{kT (20.39)

Observe p` ` p´ “ 1 as it should be.
As shown in Fig. ??, these probability are experimentally acces-

sible. Using single molecule devices which mesure the electrical
current passing through a ionic canal (patch-clamp), one mesures
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the time spent topen in the open conformation. The probability to
find the canal in the open conformation at an arbitrary time t is
given by

popen “
topen

topen ` tclose
(20.40)

where topen ` tclose is the time of observation. Remark that we
assume that the statistics on an ensemble of many channels at the
same time are the same as the statistics on a single channel in the
course of time. If true, this property in fundamental and it is called
ergodicity: ensemble averages and time average are equivalent.

Ligand-gated ion channel Voltage-gated ion channel 

From Ion Channels and Disease, Frances M. Ashcroft, Academic Press, 2000 

Ion Channels Are Gated Pores That Are 
Selective For Transported Ions 

Note: All-or-none openings, stochastic 

Figure 20.8: The opening of a ionic
ion-channel is all-or-none and is a
stochastic event. The probability for
channel opening is the fractional time
passed in the open conformation. Such
experimental results are routine using
patch-clamp setups.

20.8 Consequence of the binomial coefficient: the mixing entropy

Suppose that there are N0 solvent molecules and n solute molecules.
We assume n ! N0. For simplicity, let us represent the solution in
terms of N “ N0 ` n boxes that can be either occupied by a solute
or a solvent molecule. The number of different configurations for
given n, N is given by the combinatorial factor for distributing n
items in N boxes:

Ωpnq “
N!

n!pN ´ nq!
(20.41)

Recall the definition of the Bolzmann’s entropy

Spnq “ k ln Ω (20.42)

where k is the Bolzmann’s constant. So, we take logs and use the
Stirling Formula

ln N! « N ln N ´ N `
1
2

lnp2πNq (20.43)

and we have the entropy of mixing

Spnq “ k rN ln N ´ n ln n´ pN ´ nq lnpN ´ nqs (20.44)

It is often useful to consider the mixing entropy per unit volume, or,
here, per box. The concentration of solute is φ “ n{N

Spφq{N “ φ ln φ` p1´ φq lnp1´ φq (20.45)

From thermodynamics, the free energy per box is (U “ 0 for an
ideal solution)

F “ U ´ TS

“ ´kT rφ ln φ` p1´ φq lnp1´ φqs
(20.46)

and we recover the usual formula for the chemical potential

µ “ kT ln
φ

1´ φ
« kT ln φ (20.47)
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20.9 The central limit theorem

In his most restrictive form, the central limit theorem goes as fol-
lows:

Theorem 20.1 Let X1, X2, X3, . . . , Xn be a sequence of n and identically
distributed variables having each finite value of expectation µ and variance
σ2. Form

Yn “

ř

i“1,n Xi ´ nµ

σ
?

n
(20.48)

The distribution for Yn approaches the standard distribution as n Ñ8.

As shown by Lyapounov (1901), this theorem holds even if the
independent variables Xi’s have non-identical distributions.

Exercice 20.9 Consider the Cauchy distribution with probability density:

f pxq “
1

πp1` x2q
(20.49)

In this exercice we are going to demonstrate the following property: If X
and Y are two independent random variables with Cauchy distribution,
then the variable Z “ pX`Yq{2 is also Cauchy distributed. This property
does not contradict the central limit theorem. The reason for this is that
the first and the second moments do not exist for a Cauchy distribution,
since x

1` x2 « 1{x x " 1

x2

1` x2 « 1 x " 1
(20.50)

and the integrals diverge,

ă x2 ą“

ż `8

´8

dx
x2

π
`

1` x2
˘ “ 8 (20.51)

The method of characteristic functions is going to be very useful. Let X
and Y be two independent random variables

1. Show ă eitpX`Yq ą“ă eitX ąă eitY ą for any t

2. Assume the following result

kXptq “
ż `8

´8

eitx dx
πp1` x2q

“ e´|t| (20.52)

Deduce
kZ“pX`Yq{2ptq “ e´|t| (20.53)

which is the characteristic function au a Cauchy distribution. This
leads to the conclusion that Z “ pX`Yq{2 is Cauchy distributed.

20.10 Correlation functions and Conditional probability distri-
bution

Consider a function xptq that varies in time. We define the Fourier
transform with the conventions

x̃pωq “
ş`8

´8
dte`iωtxptq (20.54)

xptq “
ş`8

´8
dω
2π e´iωt x̃pωq (20.55)
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In particular, the Dirac-delta distribution has the useful integral
representation

δptq “
ż `8

´8

dω

2π
e´iωt (20.56)

We are interested in situations in which the variations of xptq are
random, drawn out of some distribution. xptq is said to be stochas-
tic process. A good approximation of the mean is calculated by
sampling the signal at times ttiui“1,N

ă x ą“
1
N

ÿ

i“1,N

xptiq N " 1 (20.57)

We define the following three probabilities

1. The probability Ppx, tq that xptq takes a given value x at time t.

2. The joint probability Ppx2, t2; x1, t1q that xptq takes the value x2 at
t “ t2 and that it takes another value x1 at time t “ t1.

3. The conditional probability Ppx2, t2|x1, t1q that the random vari-
able takes the value x “ x2 at time t2 given that x “ x1 “ xpt1q at
time t1 prior to t2.

The following rule applies

Ppx2, t2; x1, t1q “ Ppx2, t2|x1, t1qPpx1, t1q (20.58)

Note that the kinetic rate constants introduce above are actually
conditional probabilities.

In a stationary process all probability distributions are invari-
ant under time translation t Ñ t` τ. Therefore:

Ppx, tq “ Ppxq independent of t (20.59)

Ppx2, t2; x1, t1q “ Ppx2, t2 ´ t1; x1, 0q (20.60)

Ppx2, t2|x1, t1q “ Ppx2, t2 ´ t1|x1, 0q (20.61)

We want to know how the signal xptq is correlated in time. To char-
acterize these correlations we build the correlation function

Cpt, τq “ă pxptq´ ă x ąqpxpt` τq´ ă x ąq ą (20.62)

For stationary processes, time translational invariance implies that
Cpt, τq does depend only on the time interval τ

Cpt, τq “ Cpτq (20.63)
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time instants. A simple calculation results in 

E {x[n]} = 2p − 1 = µx (9.28) 
{

1 m = 0 
E {x[n + m]x[n]} = 

(2p − 1)2 m = 0 ̸ (9.29) 

Cxx[m] = E{(x[n + m] − µx)(x[n] − µx)} (9.30) 
= {1 − (2p − 1)2}δ[m] = 4p(1 − p)δ[m] . (9.31) 

EXAMPLE 9.7 Random telegraph wave 

A useful example of a CT random process that we’ll make occasional reference 
to is the random telegraph wave. A representative sample function of a random 
telegraph wave process is shown in Figure 9.4. The random telegraph wave can be 
defined through the following two properties: 

✲ t 

x(t) 
+1 

−1 

FIGURE 9.4 One realization of a random telegraph wave. 

1. X(0) = ±1 with probability 0.5. 
2. X(t) changes polarity at Poisson times, i.e., the probability of k sign changes�

in a time interval of length T is�

(λT )ke−λT 
P(k sign changes in an interval of length T ) = . (9.32) 

k! 

Property 2 implies that the probability of a non-negative, even number of sign 
changes in an interval of length T is 

∞
(λT )k ∞

1 + (−1)k (λT )k 
P(a non-negative even # of sign changes) = 

∑ e−λT 
= e−λT 

∑ 
k!� 2 k! 

k=0 k=0 
k even 

(9.33) 
Using the identity 

∞
(λT )k 

λT 
∑

e = 
k! 

k=0 

⃝Alan V. Oppenheim and George C. Verghese, 2010 c

Figure 20.9:

Example 20.1 A useful example of correlation function is for the ran-
dom telegraph wave, see fig. ?? for a representative sample function. This
process can be defined through the following two properties:

1. xptq “ ˘1 with probability 0.5.
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2. xptq changes polarity at Poisson times, i.e., the probability of k sign
changes in a time interval T is

Ppk signs changes in Tq “
pλTqke´λT

k!
(20.64)

What is
ă pxpt1q´ ă x ąqpxpt2q´ ă x ąq ą

“ă xpt1qxpt2q ą ?
(20.65)

Other way to ask the same question. For t2 " t1, the value of xpt2q is
independent of the value of xpt1q at t1, because the time interval is so large
that there is no correlation. However, when t2 is almost equal to t1, what
happens at t “ t2 is certainly correlated with what happened at t “ t1.
There is a range for the correlation.

The trick is to compute the probability pe,o of even and odd number of
sign change between the time interval t2 ´ t1. If we know this probability
pe or po, we can compute the correlation function

ă xpt2qxpt1q ą“ ppx2 “ x1qpe

´ ppx2 “ ´x1qpo
(20.66)

since the product ă xpt1qxpt2q ą can only take the values ˘1.
We have:

pe “
ÿ

k even

pλTqke´λT

k!

“ e´λT
ÿ

kě0

1` p´1qk

2
pλTqk

k!

“ e´λT eλT ` e´λT

2

“
1
2

´

1` e´2λT
¯

(20.67)

Similarly

po “
1
2

´

1´ e´2λT
¯

(20.68)

so that
ă xpt2qxpt1q ą“ e´2λ|t2´t1| (20.69)

The values of x2 at time t2 are therefore correlated with the values of x
at time t1, but the correlations decreases exponentially. When |t2 ´ t1| ą

1{p2λq, the exponential is so small that it is almost 0. Therefore, 1{2λ sets
a characteristic correlation time.

A very general property of the correlation function is that it
tends to zero as τ tends to infinity. When the time interval is large
enough, what happens at t and at t ` τ is not correlated and the
mean of the product tends to product of the means

lim
τÑ`8

ă pxptq´ ă x ąqpxpt` τq´ ă x ąq ą“

lim
τÑ8

ă pxptq´ ă x ąq ąă pxpt` τq´ ă x ąq ą“ 0
(20.70)

What happens between time t “ 0 and t “ `8 depends on the
particular case considered. The function cpτq is not necessarily de-
creasing but it can oscillate. Fig ?? is taken from ref. [? ]. It shows
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runs, 1 M of NaCl was added to the solution to discrimi-
nate between hydrodynamic interactions and possible ef-
fects of surface charges. However, no difference in the
data obtained from either solution was discernible. This
is consistent with the fact that although van der Waals
and Coulombic forces are significant at this experiment’s
force sensitivity, they do not vary appreciably over the
distance the beads move in their traps and thus do not
contribute to the cross correlations. The solutions were
hermetically sealed in a sample cell with a depth of ap-
proximately 100 mm and a width of 18 mm. The optical
potential was applied by means of a dual-beam optical
tweezers apparatus. Two orthogonally polarized beams
from an Nd:YAG laser at l ≠ 1064 nm with an inten-
sity of 80 mW each were focused with an immersion-oil
microscope objective (Olympus PlanApo 60 3 1.4) into
the sample, with the focal plane lying approximately at a
depth of 20 mm inside the sample cell. Each of the laser
beams holds one of the microspheres in its focus, pro-
viding the harmonic potential wells for our experiment.
The lateral separation between focal spots and thus the
mean separation E between the particles along the x axis
was varied between 2 and 15 mm. The position of the
beads was measured by imaging the light scattered from
the spheres onto quadrant photodiodes. For this purpose,
a microscope objective s20 3 0.4d is placed on the other
side of the sample cell. A polarizing beam splitter sepa-
rates the light from the two traps before it is focused onto
the quadrant photodiodes. A sketch of the apparatus is
shown in Fig. 1. To reduce the polarization cross talk and
interference phenomena between the two traps, the two
trapping beams are chopped alternately at a frequency of
100 kHz. Synchronous data acquisition yields positional
data for each of the particles that were contaminated by
less than a few parts per thousand from cross talk be-
tween the traps. Typically, 107 data points representing
the position of the particles in their traps were acquired
at a rate of 50 kHz for each measurement, allowing us to
measure forces as low as 10 fN. Subsequent data process-
ing consisted of subtraction of a base line stemming from
the dark current of the photodiode and normalization by
the photodiode sum intensity to account for laser power
fluctuations. Eventually, the autocorrelation functions for
each of the particles as well as their cross correlation was
calculated. From the latter, an offset resulting from long-
term drifts of the experimental apparatus was subtracted.
Representative correlation functions are shown in Fig. 2.
The optical traps were calibrated by measuring the au-

tocorrelation function of a bead in one trap with the
other trap empty. One expects to find an exponential
relaxation whose time constant t

x

is the friction coef-
ficient of the bead divided by the lateral spring con-
stant k of the trap. The friction coefficient is known
to within a few percent, and thus the trap strength can
be determined. The spring constants of the traps were
balanced to within a few percent. In the experimen-

FIG. 1. Schematic diagram of the optical tweezer apparatus.
Two orthogonally polarized laser beams are focused into the
sample cell, where each of them holds a microsphere. The
light scattered from the microspheres is collected with a second
microscope objective, separated by a polarizing beam splitter,
and focused onto a position sensitive quadrant photodiode.
Data points are acquired with 20 msec time resolution and an
ultimate position resolution of ,1 nm. The force sensitivity is
,200 f Ny

p
Hz.

tally obtained autocorrelation functions we also see a
second exponential with a different time constant, both
with and without a second bead present. This sec-
ond time constant is typically an order of magnitude
longer than t

x

, and the corresponding amplitude is about
20% of the principal exponential. We attribute this sec-
ond time constant to the motion of the bead along the
weaker z axis of the trap, which couples to a small

FIG. 2. Longitudinal correlation functions of the position of
the two beads. The upper curve shows the autocorrelation
function of a single bead in its trap, together with a double
exponential fit. The lower curves show the cross-correlation
functions of two beads held at separations of 9.8, 4.8, and
3.1 mm, respectively, together with the theoretically predicted
curves, as detailed in the text. Only every third of the
experimentally obtained data points is shown.

2212

Figure 20.10: Longitudinal correlation
functions of the position of the two
beads. The upper curve shows the
autocorrelation function of a single
bead in its trap, together with a double
exponential fit. The lower curves show
the cross-correlation functions of two
beads held at separations of 9.8, 4.8,
and 3.1 µm, respectively.

the correlation function of positions of a bead in an optical trap
with a double well potential. For a single bead (upper curve), the
correlation function decreases gently to zero. When two beads are
present in the trap, one in each well, the shape of the correlation
function changes considerably because of hydrodynamic interac-
tions between the two beads.

An interesting physical interpretation of the correlation function
is also made by forming the ratio

ă pxptq´ ă x ąqpxpt` τq´ ă x ąq ą
ă pxptq´ ă x ąq2 ą

(20.71)

where the denominator scales the correlation function to 1 at t “
0. This quotient is nothing but the probability that the random
variable takes the value xpt` τq at time t` τ knowing that x “ xptq
at t. This a conditional probability distribution. Quite often we may
find the notation

ă x2 ąc“ăă x2 ąą“ă pxptq´ ă x ąq2 ą (20.72)

Remark 9 Note that two random variables are independent if their join
probability distribution can be factorized into two independent factors

Ppx, yq “ PxpxqPypyq (20.73)

Two random variables x, y can be such that their cross-correlation van-
ishes without being statistically independent, see next exercice.

Exercice 20.10 Uncorrelated does not mean independent. Let x be a
Gaussian distributed random variable with ă x ą“ 0 and σ2 “ 1. Let w
to take the value ˘1 with equal weight and define y “ wx.

1. Use δ-function to complete the formula:

Ppx, yq “
1

?
2π

exp
!”

´x2{2
ı)1

2
p. . .q (20.74)
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2. Show that:

Pxpxq “
ş

dyPpx, yq “ 1?
2π

exp
 “

´x2{2
‰(

(20.75)

Pypyq “
ş

dxPpx, yq “ 1?
2π

exp
 “

´y2{2
‰(

(20.76)

so that Ppx, yq ‰ PxpxqPypyq.

3. Show that the cross-correlation vanishes

ă xy ąc“

ĳ

dxdy xyPpx, yq “ 0 (20.77)

Exercice 20.11 Consider the following problem in epidemiology. Suppose
there is a rare but contagious disease A which occurs in 0.01% of the pop-
ulation. Suppose further that there is a simple test for the disease which is
accurate 99.99% of the time (that is, out of every 10,000 tests, the correct
answer is returned 9,999 times, and the incorrect answer is returned only
once. Now let us administer the test to a large group of people from the
general population. Those who test positive are quarantined. What is the
probability that someone chosen at random from the quarantined group
actually has the disease ?

Let A be the event that someone picked at random has the disease. We
have PpAq “ 0.01 and PpΩzAq “ 1´ PpAq. Let B denote the event
than an individual tests positive. We want to calculate the conditional
probability PpA|Bq

From Baye’s theorem

PpAY Bq “ PpA|BqPpBq “ PpB|AqPpAq (20.78)

Therefore

PpA|Bq “
PpB|AqPpAq

PpBq
(20.79)

with PpAq “ 0.0001 and PpB|Aq “ 0.9999. Therefore PpB|ΩzAq “
1´ PpB|Aq “ 0.0001 But

PpBq “ PpB|AqPpAq ` PpB|ΩzAqPppΩzAq (20.80)

We conclude
PpA|Bq “ 1{2 (20.81)

Exercice 20.12 Let us calculate the probability of having n particles in
a subvolume V, for a box having total volume KV and total number of
particle T “ KN0.

1. Find the exact formula for this probability: n particles in V, with a
total of T particles in KV ? (Hint: What is the probability that the first
n particles fall in the subvolume V, and the the remainder T ´ n fall
outside in the subvolume pK ´ 1qV. How many ways are there to pick
n particles from T total particles ? )

2. The Poisson probability distribution

ρn “ ane´a{n! (20.82)
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arises whenever there is a large number of possible events T each of
which with a small probability a{T. Show

ÿ

n
ρn “ 1 (20.83)

3. As K Ñ `8, show that the probability that n particles fall in the
subvolume V has the Poisson distribution (??). What is a ?(You will
need to use the fact that e´a “ pexptr´1{KsuqKa « p1 ´ 1{KqKa

as K Ñ 8 and the fact that n ! T.). Here we do not assume that n
is large. The Poisson distribution is valid even if there are only a few
events. (answ. you should get T!{n!pT ´ nq!p1{Kqnp1´ 1{KqT´n. Use
T “ KN0, where N0 is the mean number of particles after T trials.
The same calculation as in the lectures fives 1{n!pN0Kqnp1{Kqne´N0 .
Therefore, a “ N0.)

4. Show that the variance in the number of particles found in volume V is
equal to N0, the expected number of particles in the volume

ă pn´ ă n ąq2 ą“ N0 (20.84)

Exercice 20.13 Consider a particle that hops at discrete times between
neighboring sites on a one-dimensional lattice with unit spacing. At each
step, the random walker moves a unit distance to the right with probability
p or to left with probability q “ 1´ p. Let PpN, rq denote the probability
that the particle is at site r at the Nth time step.

1. Show

PpN, rq “ pPpN ´ 1, r´ 1q ` qPpN ´ 1, r` 1q (20.85)

2. Introduce the generating function

GpN, kq “
ÿ

r“´8,`8
eikrPpN, rq k P r´π,`πs (20.86)

Show
ˆ

´i
d
dk

˙m
GpN, kq

∣∣∣∣
k“0

“ă rm ą (20.87)

3. Show
GpN, kq “

´

peik ` qe´ik
¯

GpN ´ 1, kq (20.88)

4. Assume that the particle starts at the origin

Pp0, rq “ δ0,r (20.89)

Show
GpN, kq “

´

peik ` qe´ik
¯N

(20.90)

5. Deduce that PpN, rq is the binomial distribution

PpN, rq “
N!

´

N`r
2

¯

!
´

N´r
2

¯

!
ppN`rq{2qpN´rq{2 (20.91)
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6. Use Stirling approximation and show that

PNpxq Ñ
1

a

2πNpq
e´rx´Npp´qqs2{2Npq (20.92)

7. Take p “ q “ 1{2 and recover the result given in the lecture.

Exercice 20.14 Consider the Cauchy distribution with probability den-
sity:

f pxq “
1

πp1` x2q
(20.93)

In this exercice we are going to demonstrate the following property: If X
and Y are two independent random variables with Cauchy distribution,
then the variable Z “ pX`Yq{2 is also Cauchy distributed. This property
does not contradict the central limit theorem. The reason for this is that
the first and the second moments do not exist for a Cauchy distribution,
since

x
1` x2 « 1{x x " 1

x2

1` x2 « 1 x " 1
(20.94)

and the integrals diverge,

ă x2 ą“

ż `8

´8

dx
x2

π
`

1` x2
˘ “ 8 (20.95)

The method of characteristic functions is going to be very useful. Let X
and Y be two independent random variables

1. Show ă eitpX`Yq ą“ă eitX ąă eitY ą for any t

2. Assume the following result

kXptq “
ż `8

´8

eitx dx
πp1` x2q

“ e´|t| (20.96)

Deduce
kZ“pX`Yq{2ptq “ e´|t| (20.97)

which is the characteristic function au a Cauchy distribution. This
leads to the conclusion that Z “ pX`Yq{2 is Cauchy distributed.

Exercice 20.15 For a symmetric diffusion on a line, the probability den-
sity

Prob[ particle x P px, x` dxq] “ Ppx, tqdx (20.98)

satisfies the diffusion equation

BP
Bt
“ D

B2P
Bx2 (20.99)

supplemented by the initial condition Ppx, t “ 0q “ δpxq.

1. If L denotes the units of length and T denotes the time units, what is
the dimension of D ?
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2. We are interested in the mean square displacement

ă x2 ą“

ż `8

´8

x2Ppx, tqdx (20.100)

Since Ppx, tq solves (??), ă x2 ą should depend on D and t. What is
the only combinaison of these parameters with dimension L2 ? Deduce
ă x2 ą as a function of t.

Exercice 20.16 We consider the integral

ż `8

´8

exp
!”

´ak2 ´ ikx
ı)

dk

Complete the square (ak2 ` ikx “ apk` ix{2aq2 ´ x2{4aq and remember
ş`8

´8
exp

 “

´ay2‰( “
a

π{a.
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Exercices

1. Stirling formula The Stirling approximation is useful in a variety
of different contexts. The goal of the present problem is to work
through some of the maths.

(a) Begin by showing that

n! “
ż 8

0
xne´xdx (21.1)

To demonstrate this, use repeated integration by parts

(b) Make plot of the integrand xne´x for various values of n.
What is the value of x at the maximum ?

(c) Show that the integral can be written as
ż 8

0
e´ f pxqdx (21.2)

and give f pxq. Show that f pxq has a maximum.

(d) Expand the logarithm around the maximum to second order
and use our result on gaussian integrals to show

n! « nnen
?

2πn (21.3)

2. Bayesian Statistics We introduce two additional probabilities:

(a) The joint probability for sets A and B together PpA, Bq.

(b) The conditional probability of B given A.

We can compute the joint probability PpA, Bq “ PpB, Aq in two
ways:

PpA, Bq “ PpA|BqPpBq “ PpB, AqPpAq. (21.4)

Thus,

PpA, Bq “
PpB, AqPpAq

PpBq
(21.5)

a result known as Bayes’ theorem.

If the event space Ω is partitioned as tAiu, then

PpBq “
ÿ

i

PpB|AiqPpAiq (21.6)

so that,

PpAi|Bq “
PpB|Ai

ř

i PpB|AiqPpAiq
(21.7)
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3. As an example, consider the following problem in epidemiology.
Suppose there is a rare but highly contagious disease A which
occurs in 0.01% of the general population. Suppose further that
there is a simple test for the disease which is accurate 99.99% of
the time. That is, out of every 10,000 tests, the correct answer is
returned 9,999 times, and the incorrect answer is returned only
once. Now let us administer the test to a large group of people
from the general population. Those who test positive are quar-
antined. Question: what is the probability that someone chosen
at random from the quarantine group actually has the disease?
We use Bayes’ theorem with the binary partition A, ΩzA. Let B
denote the event that an individual tests positive. Anyone from
the quarantine group has tested positive. Given this datum, we
want to know the probability that that person has the disease.
That is, we want PpA|Bq.

Applying p??q with A1 “ A and A2 “ ΩzA, we have

PpAq “ 0.0001 PpB|Aq “ 0.9999 PpΩzAq “ 0.9999 PpB|ΩzAq “ 0.0001
(21.8)

and

PpA|Bq “
0.9999ˆ 0.001

0.9999ˆ 0.0001` 0.0001ˆ 0.9999
“

1
2

! (21.9)

despite the test being 99.99% accurate. The reason is that, given
the rarity of the disease in the general population, the number
of false positives is statistically equal to the number of true posi-
tives.

4. Two stochastic variables x and y are said to be independent if
and only if

Ppx, yq “ PpxqPpyq (21.10)

Examine Fig. ?? and tell if the variables are independent.
13

2.1 Computing correlations 6

case in which they are perfectly linearly correlated and |Rij | = 1. R can be taken as a
measure of the goodness-of-fit if the model dependence is linear, i.e. �j = A�i + B.

Despite being conceptually appealing and easy to estimate from the data, correlation
has at least two problems as a generic measure of dependency. Firstly, it does not capture
non-linear relationships, as shown in Fig 2.1b; secondly, when � take on discrete values
that are not ordered (e.g. a set of possible multiple-choice responses on a test), the linear
correlation loses its meaning, although the problem itself is well posed (e.g. What is the
correlation between two answers on a multiple-choice test across respondents?).
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2.1a: Linear correla-
tion.
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2.1b: Nonlinear cor-
relation.
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2.1c: No correlation.

Figure 2.1: Correlation coe⇥cient and mutual information as measures of dependency. Left panel:
the points drawn from a joint distribution that embodies linear dependence plus noise have both a
high mutual information and high linear correlation. Middle panel: in case of nonlinear dependence,
the correlation coe⇥cient can be zero although the variables are clearly strongly correlated. Right
panel: if the joint probability distribution is a product of factor distributions for both variables,
then the correlation coe⇥cient and the mutual information measures are zero.

There is an alternative way of defining dependency, or correlation, between two variables
due to Shannon (Shannon, 1948; Cover and Thomas, 1991). Let us suppose that both �i

and �j are drawn from a joint distribution p(�i,�j). For argument’s sake, suppose further
that we do not know anything about the value of �i. Then the entropy of p(�j):

S[p(�j)] = �
�

d�j p(�j) log2 p(�j) (2.3)

is a useful measure of uncertainty about the value of �j , and, as defined above, is a value
measured in bits. This information-theoretic entropy is equivalent to physical entropy up to
a multiplicative constant, and is defined up to an additive constant (connected to the finite
resolution of �) for continuous variables, with a straightforward generalization for discrete
variables.

We have assumed that �i and �j have been drawn from an underlying joint distribution;
in contrast to the case above, if we actually know something about �i, our uncertainty
about �j might be reduced. The uncertainty in �j that remains if the value of �i is known
is again defined by the (conditional) entropy:

S[p(�j |�i)] = �
�

d�j p(�j |�i) log2 p(�j |�i). (2.4)

We can now define the mutual information between elements �i and �j as:

I(�i;�j) = S[p(�j)] � ⇥S[p(�j |�i)]⇤p(�i), (2.5)

FIG. 8: Examples of two variables, drawn from three joint
distributions. Shown are the scatterplots of example draws.
On the left, the variables are linearly correlated, and the cor-
relation is close to 1. In the middle, the variables are interde-
pendent, but not in a linear sense. The correlation coe�cient
is 0, but measures of statistical dependence, such as mutual
information, give non-zero value. Note that we are looking
for a general measure of interdependency: if we had a model
that assumes that x and y lie on a circle, we could fit that
particular model or use a measure that makes the circular as-
sumption. Instead, we would like to find a measure that de-
tects the dependency without making any assumptions about
the distribution from which the data has been drawn. On the
right, the variables are statistically independent, and both
linear correlation and mutual information give zero signal.

could measure pairs of (c, g) values while the network per-
forms its function, and scatterplot them as in Fig 9. The
line represents a smooth (mean) input/output relation
and guides our eyes. In the case of the mock measure-
ments in Fig 9A, knowing the value of the output would
tell us only a little about which value of the input gener-
ated it (or vice versa – knowing the input constrains the
value of the output quite poorly). However in the case of
the input/output relation in Fig 9B, knowing the value
of output would reduce our uncertainty about the input
by a significant amount. Intuitively we would be led to
say that in “noisy” case A there is a small amount of
information between the input and the output, while in
case B there is more. From this example we see that in-
formation about g obtained by knowing c can be viewed
as a “reduction in uncertainty” about g due to the knowl-
edge of c. In order to formalize this notion we must first
define uncertainty, which we do by means of the familiar
concept of entropy.

Physicists often learn about entropy in the micro-
canonical ensemble, where it is simply defined as a mea-
sure of how many states are accessible in an isolated sys-
tem at fixed energy, pressure and particle number. In this
case all, say M , states that the system can find itself in,
are equally likely, therefore the probability distribution pi

over a set of states i, such as the particle configurations,
is uniform, pi = 1/M . The entropy just counts the num-
ber of states, S = kBT log2 M . The entropies in other
ensembles, including the canonical ensemble, are then in-
troduced via a Legendre transform. For example in the
canonical ensemble one allows for the energy to fluctuate,
keeping the mean energy fixed. As a result, the system
can now find itself in many energy states, with di↵erent
probabilities. Here we will start with directly defining
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FIG. 9: A schematic depiction of two mock measurements
(dots) of an output g as a function of input c. A) A case
where measuring the output does not greatly decrease our
uncertainty about the input. This input/output relation has
little information. B) In this case the input/output relation
is informative: measuring the output significantly reduces our
uncertainty about the input. The grey line denotes a chosen
value of the output, and the arrows mark the uncertainty in
the input for that chosen value of the output.

the canonical entropy:

S = �
X

i

pi log2 pi, (46)

which will be a key quantity of interest. In information
theory and computer science the canonical entropy (up
to the choice of units) is referred to as Shannon entropy.
The intuition behind this form of entropy is similar to
that of the microcanonical entropy – it counts the num-
ber of accessible states, but now all of these states need
not be equally likely. We are trying to define a measure of
“accesible states,” but if their probabilities are unequal,
some of the states are in fact less accessible than others.
To correct for this we must weigh the log2 pi contribution
to the entropy by the the probability pi of observing that
state, S = �Pi pi log pi. By convention used in infor-
mation theory we chose the units where kBT = 1. The
logarithm base 2 defines a unit called a bit, which is an
entropy of a binary variable that has two equally acces-
sible states. In general in the case of M equally probable
states, we recover

S = �
MX

x=1

1/M log2(1/M) = log2 M [bits]. (47)

According to this formula, the uncertainty in the out-
come of a fair coin toss is 1 bit, whereas the uncertainty
of an outcome with a biased coin is necessarily less than
1 bit, allowing the owner of such a coin to make money
in betting games. Entropy is nothing else but a measure
of the uncertainty of a random variable distributed ac-
cording to a given distribution P = {pi}, i = 1, . . . , M .
Entropy is always positive, measured in bits, and in the
discrete case always takes a value between two limits:
0  S[P ]  log2 M . The entropy (uncertainity) is zero
when the distribution has its whole weight of 1 concen-

Figure 21.1: Three examples of two
variables drawn from three distribu-
tions. Shown are the scatter plots of
examples drawn. For each example,
tell if the variable are correlated and-or
if they are independent. After Tkačik
et al. [? ].
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In preparation

Gibbs-Thomson effect, see [? ]
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