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Forword

These lectures notes are available at : https://www-liphy.univ-
grenoble-alpes.fr/Lecture-Notes-and-Material-M1. They will be up-
graded during the lectures at regular intervals. Therefore, there is
no need to print them ! Students will be evaluated through home-
works (2) and final exam (50 %).
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Introduction : Why ?

What is soft matter/colloidal domain ? Polymers, surfactants, lig-
uid crystals, colloidal suspensions, gels (gelatine !), food etc.

What is the characteristic property of "soft order": Minute
changes in the chemistry makes big changes, i.e. has macroscopic
(mesoscopic) effects.

This is where Biology, physics and chemistry meet. Structures
of biological molecules depend on the interactions between atomes
and molecules, and the interplay between energy and entropy,
which results in the remarquable ability of biological systems to
self-assemble and control their own replication. It is interesting
to emphasize the concepts which bridge biology and the colloidal
domain.

Why colloids/soft-matter/bio-nanotech etc. are important ?
Numerous industrial applications (cosmetics, food industry, drug
delivery with multifonctional nanoparticles ...)

We assume:

1. Basic knowledge with essential principles for chemical struc-
tures, reactivity and bonding;

2. Basic Concepts of molecular biology;
3. Basic maths.

Remember: Soft matter is different from biology because self-
assembly is not synonymous of self-organization. However the
organization of cellular structures (functional and structural) de-
pends on a delicate interplay between energy and entropy. These
concepts are common to the three fields.

What are the characteristic properties of the colloidal domain ?

1. Mesoscale ( 1 - 100 ym) with marked consequences: We observe
huge thermal fluctuations !

2. Disordered: Polymers look like spaghetti; Liquid crystals (ob-
long molecules) are a state of matter which has properties be-
tween those of conventional liquids and those of solid crys-
tals. For instance, a liquid crystal may flow like a liquid, but
its molecules may be oriented in a crystal-like way. : see posi-
tional order and orientational order, Fig. ?? , huge fluctuations

Colloidal features

Worhobsy ® O %
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Fig. 1 Design of targeted nanoparticulate systems,
Figure 2.1: Design for drug-loaded
nanocarriers, such as liposomes,
nanoparticles, micelles etc. [? ]

Crystal Nematic Isotropic

: | :v\ \>
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[ \[/ ” Ny

Increasing temperature

Figure 2.2: Positional order gives
regular distances between molecules.
Orientational order means that groups
of molecules lie in the same direction.
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(thermal fluctuations, small number of molecules), (thermal and
non-thermal noise) noise.

3. Living systems are out-equilibrium systems. In equilibrium,
there is only one steady state. When systems are out of equilib-
rium, there can have more than in steady states.

4. Systems where connectivity plays an important role (see gels
and percolation)

5. Systems where geometry is not trivial (see self-similarity and
fractals)

6. Systems where the interactions between the (macro)molecules
are weak (very different from solid state physics). In particular:

(a) Van de Waals interactions: They are attractive and due to
dipole-dipole interaction which oriente each other so net
attraction results. For two spherical objects (geometry is im-
portant, distance d, radii R)) at small distance

AR
U=—-——— 2.1
12 d (21)
which means U > kT: Thermal energy is not strong enough to
overcome the Van der Waals interaction which dominates.

(b) Electrostatic interactions: They are generally screened be-
cause of counter ions in the solvent. Competition between
attractive van der Waals and repulsive electrical double-layer
forces determines the stability or instability of colloidal sys-
tems.

(c) Steric forces: are long range and important. Example are
stealth liposomes with a polymeric corona to prevent recogni-
tion by the immune system.

(d) Entropic forces (rubber elasticity which contact upon heat-
ing)

(e) Mechanics (ex: adhesion, biopolymers): bending, stretching.

Energy scales:

1. For ionic or covalent bond: Typically, 1 ev = 1.610~'J;

2. Soft order in physics and biology, thermal energy ~ 1/40 ev is
the relevant scale.

We have for the thermal energy
kT(300K) = % ev=410"12x 1077 (2.2)

Thus the convenient unit for the force is pN and the relevant scale
for the distance is nM.
General references for these lectures are:
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1. For the point of view of physics: Physical Biology of the Cell,
by Rob Phillips and al, Garland. Biological Physics, Energy,
information, life, by P. Nelson, Freeman.

2. For the point of chemistry: Physical Chemistry; P. Atkins and
Julio de Paula, Oxford

3. For the point of view of Biology: The molecules of Life, Physical
and chemical principles, by J. Kuriyan et al, Garland.
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Self-assembly of amphiphiles: Thermodynamics of in-

terface

3.1 Introduction: A brief note on history

The colloidal domain is where chemistry, biology and physics meet.
Membranes have a long history which started in 1890 with Ch. E.
Overton who discovered that cells are envolopped in a selectively
permeable layer. The story continued for more than a century. In
1972, Singer and Nicholson published a paper where they proposed
the so-called fluid mosaic model for cell membranes. This model
describes the membrane as a fluid, lipidic bilayer (lipid + choles-
terol) in which macromolecules and proteins are incorporated.

We will see that lipidic bilayers form spontaneously above a
well determined critical concentration. This is one of the most ele-
mentary form of spontaneous self-assembly where phospholipidic
molecules aggregate themselves into a thin bilayer (60 A thick) and
form a vesicle (small bag, ~ 20um). Self-assembly is a hot subject
in chemistry and in Nano-sciences in general. But it should not be
confused with self-organization. The latter is a much broader and
deeper subject. It is characteristic of active, i.e. out of equilibrium,
phenomena seen in living cells.

We start with simple amphiphilic molecules.

3.2 Amphiphilic molecules form aggregates with well-defined
properties: Aggregation at low concentration

Each lipid or surfactant has two well-defined parts: A hydrophobic
and a hydrophilic part. The hydrophobic effect is mainly due to
entropy : the non-polar part of the amphiphile modifies the struc-
ture of the surrounding water. In contrast, polar molecules or polar
parts of amphiphilic molecules strongly repeal each other because
of electrostatic interactions. If we put amphiphilic molecules into
water, they will locate at the air-water interface with their polar
head pouring into water and their tail will try to stand out. The
same is also true for surfactant molecules (SDS, sodium dodecyl
sulfate).

Fluide extra-cellulaire

ique  Filaments du
cytosquelette Cytoplasme

Figure 3.1: The fluid mosaic mem-
brane mode according to Singer and
Nicholson.

Barrier__ Ajr L\’\’\V\ Barrier
SANAY \\/\/\/\ )

[ ]

Figure 3.2: The Langmuir and
Langmuir-Blodgett techniques al-

low preparing molecular monolayers
and their transfer onto solid substrates

ap

Figure 3.3: An amphiphile is a chem-
ical compound possessing both hy-
drophilic (water-loving, polar) and
lipophilic (fat-loving) properties. Such
a compound is called amphiphilic

or amphipathic. This forms the basis
for a number of areas of research in
chemistry and biochemistry, notably
that of lipid polymorphism. Organic
compounds containing hydrophilic
groups at both ends of a prolate (in
the aggregate) molecule are called bo-
laamphiphilic. Common amphiphilic
substances are soaps, detergents and
lipoproteins.
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Assume that we have control on the concentration of surfactant

molecules. For concentration below 103 M, SDS molecules will |_|_ . TenSion_I_l
concentrate at the air-water interface. The surface tension decreases CE2C 0
with increasing the concentration of SDS. Above 1073 M, the sur- \I 1 I /
face tension is, however, almost constant. What happens ? Aggre- _)r PAESY AN (_
gate form spontaneously with well-defined properties. This critical

concentration is called the CMC (for critical micellar concentration).

The schizophrenic character of the molecule leads to the forma-
tion of aggregates called micelles. The hydrophobic tails protect ramé hart instrument c

themselves from water by forming a core while the polar heads stay Figure 3.4: At small concentration, SDS

outside (see Fig. ?? below for a textbook picture). However, beside molecules concentrate at the surface.
The surface tension (resistance to
stretch or to compress the film) can be
measured.

this textbook picture, on should note that

1. There is no denser core;

physi

2. The heads are not perfectly arranged;

3. The micelles are not shape-persistent.

8G° =-16.4 kJimol = 3917 kealimol

3.3 Surface tension

The e surfactant above
e eaten o o o eonor Soiacants e o e syt o eston

Molecules in a fluid feel a mutual attraction. When this attractive Figure 3.5: SDS.

force is overcome by thermal agitation, the molecules pass into a
gaseous phase. Let us first consider a free surface, for example that
between air and water, i.e. a liquid-gas interface. A water molecule
in the fluid bulk is surrounded by attractive neighbors, while a
molecule at the surface has a reduced number of such neighbors
and so in an energetically unfavorable state. The creation of new
surface is thus energetically costly, and a fluid system will act to
minimize surface areas.

To understand that surface tension can affect the shape of an
object, it is useful to recall the following theorem. Consider a given
volume V of incompressible material. What is the shape of an ob-
ject composed of this material that minimizes the area ? The answer
(in any dimension), is simple. The shape is a sphere. Therefore,
the sphere is the shape which minimizes surface tension at a given
volume.

Nomenclature: ¢ denotes the surface tension (at a fluid-gas inter-
face). A related concept is the interfacial tension (depending on the
context, this surface tension is noted either < or ¢) at a fluid-fluid or
fluid-solid interface.

If we use the c.g.s. system :

1. The unit of force is 1 dyne = 1 g cm 572 = 10~° N (roughly the

weight of a mosquito). i Haydeo cuabm o
Vogpor Mt / »
2. For the pressure 1 atm ~ 100 kPa = 10° N/m?= 10° dynes/cm?.
P Y 44 SO
3. The unit of ¢ (or 7) is dyne/cm = mN/m. V2 7 Q«_ _’T
% .
Agueons Aqueen
/V,\.,W M\LH/

Figure 3.6: Adsorption of surface-
active molecules as an orientational
monolayer at air-water or oil-water
interfaces.
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3.4 Surface activity

Materials such as short chain fatty acids and alcohols are soluble in
both water and oil solvents. The hydrocarbon part of the molecule
for its solubility in oil, while the polar part —-COOH or OH group
has sufficient affinity to water to water to drag a short-length non-
polar hydrocarbon chain into aqueous solution with it. If these
molecules become located at an air-water or an oil-water interface,
they are able to locate their hydrophilic headgroup in the aqueous
phase and allow the lipophilic hydrocarbon chain to escape into the
vapor or oil phase. The strong adsorption of such materials at sur-
faces or interfaces in the form of oriented MONOMOLECULAR LAYER
(monolayer) is termed surface activity. Surface active materials, i.e.
surfactants, consist of molecules containing both polar and non-
polar parts. By sitting at the interface, amphiphilic molecules lower
the surface tension of the interface.

3.5 How do we measure surface tension ?

There are many methods. The capillary rise method is the most
accurate one, since it dos not involve a disturbance of the interface.
The formula for capillary rise can be derived by balancing forces
on the liquid column. The weight of the liquid with density p is
balanced by the upward force due to surface tension. This formula
can also be derived using pressure balance.

_ rhApg
" 2cosf

which, for zero contact angle, reduces to

1

o= ErhApg (3-2)

(3.1)

Liquid  yoro

Water 72.8
Benzene 28.9
Acetone  23.7

Exercice 3.1 As usual, it is useful to define dimensionless numbers.
Check that the Bond number
 pga* Gravity

Bo _—
o Curvature

(3-3)

is a dimensionless ratio. The Bond number indicates the relative impor-
tance of forces induced by gravity and surface tension. Note that these
two forces are comparable when Bo = 1, which arises at a length scale
corresponding to the capillary length

le=y]— (3-4)

For water-air o = 70 dynes/cm, I. = 2 mn.

2nrocosH

[fe——

Figure 3.7: Capillary rise.

Table 3.1: Surface tension against water
for liquids at 20°C (in mN.m™1).
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For an example where gravity plays a role, see Fig. ?? where we
use the Evolver program to simulate a drop sitting on a substrate
with and without gravity.

3.6 Contact angle and wetting

In spreading wetting, a liquid already in contact with the solid
spreads so as to increase the solid-liquid and liquid-gas interfacial
areas and decreases the solid-gas area. Let us define the difference
between the surface energy (per unit area) of the substrate when
dry and wet:

S= Esubstrate (drY) - Esubstrate (Wet) = sG — (r)/SL + r)/LG) (3'5)

To remember this formula, it suffices to remind ourselves that
in the dry state, there is only one solid-gas interface. We have the
following cases:

1. S > 0: Total wetting. If the parameter S is positive, the liquid
spreads completely in order to lower its surface energy. Con-
dition favorable for this condition is a high value of ysg (high
energy surfaces like glass, clean silicon) and a lower value of g
(ethanol, toluene).

2. S < 0: The drop does not spread but, instead, forms at equilib-
rium a spherical cap resting on the substrate with a contact angle
6 . A liquid is said to be "mostly wetting" when 6 < 90°, and
"mostly non-wetting" when 6 > 90°.

To revover Young's equation, recall that the equilibrium is such
that the total surface free energy of the system is minimum, i.e.

YsGAsG + YsLAsL + TLGALG (3-6)

is a minimum (note that we consider the total energy, since the

7's are multiplied by the area of the interfaces). Consider a liquid
making an equilibrium contact angle, 6, to spread an infinitesimal
amount further, so as to cover an extra area, d A, of the solid sur-
face. The increase of liquid-gas interfacial area is, therefore, dA cos 6
and the increase of free energy is given by (see Fig. ??)

dG = ygdA + y1gdA cos 8 — ysgd A (3.7)

If the system is at equilibrium, dG = 0 (the first derivative is zero),
and

YsL + +71G cos 0 —ysg =0 (3-8)

known as the Young’s equation.

Remark 1 The wetting of a hydrophobic solid surface by an aqueous
medium is considerably helped by the addition of surface-active agents.

/Arj?j'é = =
AN
Lrsss
NS TAVAVAY

Figure 3.8: Effect of gravity on the
shape of a drop sitting on a substrate.
Two drops sitting on a substrate with
the same contact angle and the same
volume. For the top one, the gravity is
set to zero and the shape is a spherical
cap. For the bottom one, gravity is
such that its capillary length is smaller
than its radial dimension. In this

case, gravity influences the shape of
the drop and its shape is no more
spherical.

/
/

A0 Ligwid
/ N ﬁv@
47“—’ Aok do

Gos

Figure 3.9: Contact angle at the gas-
liquid-solid interface. The boundary of
the drop sitting on a solid surface can
be assimilated as a straight line with
contact angle 6.
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3.7 What is the hydrophobic effect ?

Hydrocarbons are only slightly soluble in water: they are hy-
drophobic. The accommodation of a hydrocarbon molecule in water
is accompanied by an increase in an associated free energy. The un-
favorable free energy change accompanying the dissolution of the
hydrocarbon results from structural changes in the solvent around
each solute molecule. This is the phenomenon of hydrophobic hy-
dration. The total volume of solvent so affected by a pair of solute
molecules is less when the two are close together than when they
are far apart, as illustrated schematically in Fig. ??. The result is an
effective, solvent-mediated attraction between the two. This is the
hydrophobic attraction.

3.8 Critical micellar concentration

Micelles (Example : Mayonnaise) We observe the following proper-
ties:
(i) Aggregate form spontaneously at a well-defined micelle con-

centration.

(ii) Aggregation is a start-stop process. Adding more surfactant
results in the formation of more micelles of the same size.

(iii) Aggregate have well-defined properties: The maximum radius
of a spherical micelle is set by the length of the hydrocarbon
chain.

(iv) The critical micelle concentration decreases with the chain
length.

Number of carbon atoms 8 10 12 14 16 18
cmc/1072 mol dm—3 140 33 86 22 058 023

We may think of the abrupt change between the freely dissolved
surfactant system and the micellar system as a phenomenon akin
to a phase transition. It is NOT, however, a phase transition, since
thermodynamic quantities do not experience any singularities as
one passes from one regime to the other one.

As we will see shortly, it, however, a cooperative phenomena. We
may first think aggregation as an accretion phenomena where one
adds one surfactant molecule at a time to build a micelle. This is
the stepwise way of thinking

S+(N-1)S—=S,+(N-2)S =S5+ (N-3)S = ...  (3.9)

We will not go this way: It does not give an abrupt change and
gives a broad distribution of micelle size. In contrast, we will as-
sume that N surfactant molecules decide to form 1 micelle at once.
[S] being the concentration of free surfactant,

NS — SN (3.10)

7 S L, S
/ \ 4 \
\ ! \
(@) " | 1 1
/ \ /
\ / \ ’
\\ s \s 4/

1 \

o (O O)
Figure 3.11: Two hydrophobic
molecules, (a) far apart, and (b)
close together. The regions within
the dashed curves represent schemat-
ically the volumes of solvent that are
significantly affected by the presence
of the solutes. The total volume so

affected by the pair is smaller in (b)
than in (a).

Table 3.2: Critical micelle concentration
for a homogous series of sodium alkyl
sulfates in water at 40°C.
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with equilibrium constant

S
Kn = 7[811\\11] (3.11)
The total surfactant concentration expressed in moles of monomers
is
[S)r = N[SN] + [S] = NKN[S]™ + [S] (3.12)

And we can rewrite the first equation as:
N{[Sn] = NKn S" (513)

so that Eqgs (?? + ??) gives the variations of the number of surfac-
tants in micelles, N [S]n;, versus the total number of moles of surfac-
tants (free + in micelles), [S]t.

When [S] is small, [Sn] is small and does not vary with St. We
have in this regime

d N[Sn]

Sk — Owhen N — o0 and [S] — 0 (3.14)

In the other limit where all surfactant molecules have gone into the
micelles, NKxn SN » S, we have [St] ~ N [SN]

dN[Sn]

W — 1when [S]T — (3.15)

Therefore, the slope between the two regime goes to infinity at
some magic concentration S. We call this concentration the crrTI-
CAL MICELLE CONCENTRATION, i.e. the CMC.

3.9 How surfactant molecules decrease the surface tension

Complexes systems are often composed of interfaces between dif-
ferent phases. The simplest example of such a system is an inter-
face between different phases (a liquid phase, a vapor phase and a
solid phase phases for a fluid layer atop a solid surface). Surfactant
molecules tend to aggregate at air water interfaces in such a way
that their polar head reside in water with their hydrocarbon in air.
For microemulsions (dispersion of droplets of oil in water), the sur-
factant molecules sit at the oil-water interface. Such interfaces are
generally refereed as "surfaces" with an energy proportional to the
area of contact between the two phases

The surface tension is given by the change in the free energy as
the amount of interfacial area is varied

OF
T 0A

Y (3-16)

and a surface tension is always positive or zero. It cannot be nega-
tive. If this the case, the system would be unstable with respect to
the creation of an infinite area of contact between the two phases
and the concept of an interfacial area would be meaningless (the
concept of interface assumes tacitly that the width of the interface

Constant ST

SC <V = spiky drop off in ST
CMC Point
JSC >Y

SurfactantConc. (SC)

SC < X = low change in ST

(LS) uoisuay adeying

Figure 3.12: Relation between surfac-
tant concentrations (SC) and surface
tension (ST) and CMC of surfactant.
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is much smaller than the other length scales characterizing the bulk
properties of the two phases in contact. An an example, take the
size of the droplet. If these two length scales are comparable, this
description does not make sense).

What does a surfactant molecule (soluble and insoluble) is to
decrease the surface tension. To see this, consider first the case of
a surfactant which is not soluble in the solution. This surfactant
behave as an ideal gas on the fluid with area A. For and ideal gas,
we will see that the entropy is

S=Ac(Incay—1) (3.17)

where ¢ is the area density of surfactant molecules:

0-7%
A

where N is the fixed number of surfactant molecules (remember

(3.18)

that the surfactant molecules are not soluble, so that they sit at the
interface). The notation o for the surface density is standard and
has the same meaning as the volume density p. In this formula
we shall derive later on, ag is a constant with the dimension of

a molecular area. S ins (??) is nothing more that the entropy of

a perfect gas in two dimensions. Going back to the free energy

Fs = U — TS of the interface, we must add to the bare surface
tension A7 (i.e. the surface tension in the absence of surfactants),
the contribution due to the surfactant molecules. This gives

Fs = y0A + ATo(Incag — 1) + Aoug (3.19)

where 1 is the difference in energy for a surfactant molecule on the
surface compared with the energy in the bulk. Remember (??), so
that o depends on A (Ns is fixed), so that Acuy = Nsugp. Taking the
derivative including the variation of o gives

Y=7—Tc (3-20)

so that the surface tension is decreased. This is so because when
the area in increased, the translational entropy of the surfactant
molecules is increased.

Remark 2 All this does NOT apply to bilayer where the only way to
change the area is to stretch tangentially to the bilayer. This mechanical
stretching has the form

1 a 2
fstretch = E'Y ( - 1) (3-21)

ao

where vy is called a surface tension constant. In this formula, a is the area
per polar head and ay is a reference state.

3.10 The packing parameter, Israelachvili (1976)

This a very useful concept. We introduce the following parameters:

21
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1. The surfactant tail volume vj.
2. The equilibrium area ay per molecule at the aggregate interface.

3. The tail length Ij.

For common surfactant with SINGLE tail

Zo _ 0.21 nm? (3.22)
lo
The packing parameter P is dimensionless
Y0
P=— .
2olo (3-23)

and is a geometrical parameter. As an example, consider a spherical
micelle with aggregation number g. We have

Veore = gV0:4/37TR3
A = gap

(3.24)
(3-25)

so that R = 3V /ag. For a spherical micelle with positive curvature
R < Iy, so that the the packing parameter P is less than 1/3.

Changes in the critical packing parameter P of surfactant molecules

give rise to different aggregation structures, see Fig. ??.
Typically, we have:

1. P < 1/3 for a single chain surfactant. Micelles are spherical.

2. 1/3 < P < 0.5 for single-chain surfactant with small head group
(or in conditions where the electrostatic interaction between the
headgroups are screaned). The micelles are cylindrical.

3. 0.5 < P < 1: Double-chain surfactants with large head group.
The aggregate structures are vesicles made up of bilayers.

3.11  The free energy model for micelles (according to Tanford,
1976)

This model explains the basic feature of micellization. Everything is
in the headgroup area. We formulate the standard free energy dif-
ference between a surfactant molecule present in the aggregate and
one in the singly dispersed state in water. In general, the tempera-
ture T and the pressure P are control parameter. Thus the appropri-
ate thermodynamics potential is the Gibbs free energy G(T, P): this
is an important point. You must use the thermodynamic potential
(free energy, Gibbs free energy ... which depends on the parameters
that are under our control. Having control on the pressure P is not
the same as having control on the volume V)

Surfactant molecules pass from the solution to the agrgegate
because they experience a smaller energy in the micelle. To com-
pute the difference, we must concentrate on the free energy per
molecule. In other words, we will focus on the chemical potential

oG

u(T,P) = ——

N (3.26)
T

P

Negative or reversed curvature

P>1
Water-in-oil

Oil-soluble micelles

Zero or planar curvature

Positive or normal curvature
P<1

Water-soluble micelles

Oil-in-water microemulsions

Figure 3.13:
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which is the energy one has to spend to add one molecule of sur-
factant to a system in the presence of the others.

Assuming aggregates with ¢ molecules, this free energy differ-
ence PER SURFACTANT is the sum of free contributions

(Al‘g) _ (Al‘s) N (Aﬂg> N (AP‘éz)
kT kT Transfer kT Interface kT

~~

- + +

(3-27)

Head

1. The first contribution is negative. By forming a micelle, surfac-
tant avoids the contact between hydrocarbon tails and water.
This free energy is independent of the size of the aggregate and
of its shape.

2. The second is positive and corrects the first one. There is a resid-
ual contact between water and hydrocarbon tails. This term is
proportional to the headgroup area: oa, where a typical value for
o = 50dynes/cm = 0.1kT/A2.

3. There is a headgroup electrostatic repulsion. This term is pro-
portional to 1/a (with some power depending on the model). For
interfaces composed of ionic headgroups, we take : a/a, where
« > 0is some phenomenological constant. This term can be
considered as the first term in the expansion of the interaction
free energy as per molecules in powers of the surface density of
headgroups pocl/a.

We now assume that micelles are in thermodynamics equilibrium.
The headgroup area is therefore the one which minimizes the free
energy. The first being independent of the headgroups, it drops out.
The system adjusts a at a,

x
a—;=0ata=ae (3.28)
or 12
%
ae = (E) (3-29)
with
g=1/a, (3-30)

in appropriate units, since we compare micelles of the same area
made of different surfactants.
In conclusion :

1. The tail transfer is responsible for aggregation, it has no influ-
ence nor on size or shape.

2. The size and the shape result from a trade-off between the resid-
ual contact and the headgroup repulsion.

Exercice 3.2 1. Consider a spherical micelle with aggregation number g
(the aggregation number is the number of lipids forming the micelle).
Recall that the packing parameter is defined as

Vo

P = M (3.31)

P=Vy/(a. lp)

Figure 3.14: Packing parameter
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where Vyy is the surfactant tail volume, a, is the equilibrium area per
molecule of the aggregate, and Iy is the fully extended tail length.

2. Give Viore and A. Deduce R (Viore = §V0 = 47TR3/3, A=ga, =
47tR?. R = 3Vy/a,.)

3. From the condition R < Iy, give the range for P where spherical mi-
celles can exist (the micelle core is packed with surfactant tails without
any empty space). P < 1/3

4. Repeat the same calculation for a cylindrical micelle (assume an infinite
cylinder and do the calculation per unit length). P < 1/2

5. Assume a bilayer of half-bilayer thickness R of the spherical vesicle. Do
the same calculation per unit area of the spherical vesicle. P < 1.

6. Therefore, if we know the molecular packing parameter, the shape and
size of the equilibrium aggregate can be readily identified. What is your
prediction for lipid with "small headgroup” and "large headgroup” ?
(micelles versus lamellae)

7. Assume that a single tail surfactant forms a micelle. What is your
prediction for the shape of the aggregate for a surfactant with the same
headgroup but with two tails ? (bilayers instead of micelles)

8. As we have seen, the influence of solvent is to decrease the surface ten-
sion of an interface. What happens if we had a surfactant to a micellar
solution ? (interfacial tension decreases, a, increases and P decreases.
Bilayers to micelles).



4
Gels and percolation

4.1 Introduction: What is a gel ?

Gelatin or gelatine (from Latin: gelatus meaning "stiff" or "frozen")
is a translucent, colorless, flavorless food ingredient, derived from
collagen taken from animal body parts. To make a gel, one must
start with at least two different constituents. The initial state is a
fluid (water) in which one dissolves a molecular compound (a poly-
mer or a protein). This state is the "sol". Under some circonstances
(PH, temperature, concentration), there is a phase transition. The
sol becomes a gel *. The gel has the mechanical properties of a solid
under the action of macroscopic forces (elasticity). Gel are impor-
tant for the food industry ... or the tire industry (vulcanisation)

Fig. ?? gives us a qualitative idea of what a polymer gel is (see [?

D:

1. Itis a reticular structure: the different component chains are
connected by means of bridges.

2. A gel is an open structure: in many cases, the gap between con-
stituent chains is filled with a large fraction of solvent. Local
physical measurements (spectroscopies, electronic or nuclear
resonance, etc.) then indicate liquid-type behavior. But mechan-
ical measurements on a large scale indicate the presence of a
solid-type elasticity. This duality is one of the features the most
interesting gels.

Bridges can be achieved by covalent bonds. But they can also be
obtained by physical mechanisms:

1. association of three chains to form a helix like gelatin, from a
collagen solution;

2. association by hydrogen bonding and Van der Waals forces as
for some polysaccharides;

3. association through micelles.

*In french: solution-glification

\

Figure 4.1: Qualitative image of a
polymeric gel: We have assumed here
that each node is connected with four

W/b»
‘Y—

SOL

(C))

Amas infini

(b)

Figure 4.2: Stage of gel formation a) in
the sol phase, there are a wide variety
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4.2 Sol-Gel transition

Let’s take as an example a polymerization reaction that produces
larger and larger branched molecules. At the beginning of the re-
action, the products are still relatively light: they form a fluid (or
"sol") whose viscosity increases over time. Then, at a certain point,
the situation changes dramatically: a giant molecule with a spatial
extension comparable to the dimensions of the container appears.
From that moment on, the system resists macroscopic mechanical
traction: it has become a gel.

One way to study this transition is to place a small magnetic
bead in a field gradient: it then undergoes a weak force a) in the
sol phase, this tends to give it a constant speed (proportional to
a viscosity 77) b) in the gel phase, the displacement of the ball is
constant and inversely proportional to a certain elastic modulus,
say E. One finds that both the viscosity and the the elastic modulus
have critical behavior (i.e. the viscosity 1 becomes infinites at the
transition and the rigidity modulus E becomes zero)

1. 7 =cte(pc—p) >, for p < pc (s > 0);
2. E=cte(p—pc), for p > p. (t > 0).

where s and t are critical exponents (independent on the way briges
are formed). This behavior is reminiscent of critical phase transi-
tions (second order near a critical point) and we are going to see
that the sol-gel transition can be connected to a general geometrical
phenomena called percolation, see Fig.??.

4.3 Percolation

As a brief introduction to percolation, consider a simple square
lattice (see Fig.??). Each bond in the lattice is occupied with prob-
ability p. A cluster of bonds is defined as the set of neighboring
occupied bonds. For simplicity, we only consider bond percolation
here because site percolation is similar in many respects. When

p = 0, all bonds are empty. For small p, there is a sparse population
of bonds resulting in only small clusters (top left). As p increases,
the mean size of the clusters grows (top right, bottom left) and
when p = 1, all bonds are occupied. Hence, as p increases from 0
to 1, there appears a specific value of p at which a large cluster, the
incipient percolation cluster, emerges providing full connectivity of
the network from one side to the other for the first time. The short-
est contiguous path on the percolating cluster is traced with red
(bottom left). If the size of the lattice approaches infinity, the tran-
sition from an unconnected to a connected lattice occurs sharply
when p crosses a critical threshold called the percolation threshold,
pc . Whatever property a bond represents, this property percolates
through the network and the emergence of the percolating cluster
represents a phase transition.

‘(_',‘_o_nductance
Ressort
zJ=0 Zf=0
(a)
1 2 t 2
Jpp= oV T flp =Ky (XomXy)
(oHm) (HOOKE)

(b)

Figure 4.3: Analogies between mechan-
ical properties of gels and electrical
properties of percolation networks.

(a) Kirchoff’s law expresses that the
algebraic sum | of currents arriving

at a node is zero. The law of equilib-
rium of forces on a node has the same
structure. The analogue of Ohm’s law
is Hooke’s law.

o nfoncrolforf

Figure 4.4: Star polymer: tetrafunc-
tional poly(ethylene glycol) (PEG) with
active ester end groups; bifunctional
cross-linker: 1,14-diamino-3,6,9,12-
tetraoxatetradecane (amino-PEG4-
amine). (B) Stoichiometric mixture

of the star polymer and the cross-
linker in a good solvent. The system
is uniformly prepacked with the star
polymers. (C) Polymer gel formed

by end-linking of the star polymers
with the small cross-linkers via bond
percolation. 2D schematics are shown
instead of the real 3D polymer net-
work for the sake of legibility (see [?

D

E

Gel point = 58 min

G', G"(Pa)

10°
Reaction time (min)
Figure 4.5: E) Gelation of the star
polymers is confirmed by dynamic
viscoelastic measurements. G’ and G”
represent the storage and loss shear
moduli, respectively (see [? ]).



Let us now consider the probability P that a bond belongs to the
percolating cluster. It is easy to see that P itself also has singular
behavior, since P = 0 for p < p. (no connectivity across the lattice),
while P increases continuously for p > pc, eventually approaching
1. Close to the transition, just above p., P follows a power law

Poc(p — pe)P (4-1)

p=0.1 p=0.3

p=0.5 p=0.7

This transition is known as the percolation transition and it
conveniently models, for example, fluid flow through a porous
medium in which bonds present/absent in the lattice represent
open/blocked channels. While the numerical value of p. depends
on the type of lattice, the critical exponents such as § are indepen-
dent of the microscopic details of the lattice and only depend on
the dimension of the space. The percolation transition is similar
to other continuous phase transitions with P playing the role of
the ORDER PARAMETER and f the critical exponent of the order pa-
rameter. On average (i.e. averaging over many realizations of the
network, which is not self-averaging at p = p.), the infinite cluster
is self-similar or fractal.
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Figure 4.6: Bond percolation on a
square lattice (thin lines) for different
values of the probability p. Thick
line segments are occupied with
probability p. The red curve marks
the shortest percolating pathway at
p=pc=05.
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4.4 Self-similarity, fractals and all that

"How long is the coast of Britain ? " is the title of paper published
by Benoit Mandelbrot in 1967 where he shows that the degree of
complication of non-rectifiable curves (similar to the curve of Fig.
??) can be characterized by a quantity D that has many properties
of a "dimension", through it is fractional.

Consider the object of Fig. ??. This object illustrates diffusion-
limited growth (the simulation can be done more along the lines
of a standard molecular dynamics simulation where a particle is
allowed to freely random walk until it gets within a certain critical
range whereupon it is pulled onto the cluster). Imagine concentric
radii R centered at the middel of the cluster. The number particles
in a circle of radious R scales as

N(R)xcRP (4.2)

where D < d is a non-integer value (d is the dimension of
the embedding space). For a regular object embedded in a a d-

dimensional Euclidean space, this law would have the form N(R)ccR.

Cluster with non-trivial D are typically self-similar. This property
means that a larger part of the cluster after being reduced "looks
the same" as a smaller of the cluster before being reduced. This
feature can be visualized in Fig. ?? where parts of different sizes
(included into rectangular boxes) can be compared.

The volume of an object can be measured by covering it with
d — dimensional balls of radius I. Then the expression

V() = N()I* (4-3)

gives an estimate of the volume, where N(!) is the number of balls
needed to cover completely the object. D is defined through the
scaling of N(I) as a function of decreasing . For an euclidean struc-
ture in embedding dimension d, if we divide the scale [ by a factor
x, the number of balls needed to cover the object will increase by a
factor x?. For a non-trivial fractal structure, this is not the case, as
seen in the following exercice.

Exercice 4.1 Consider Figs ?? and ??. Show that the fractal dimensions
are D =1In3/In2 and In4/In2

Figure 4.7: A typical (stochastic) fractal
generated using a diffusion-limited
aggregation model.

ALL S A

Figure 4.8: The Sierpinski gasket.

oS e o

Centirse

.

Figure 4.9: The von Koch curve.



5
Energy and entropy

5.1 Quick reminder: Intensive and extensive parameters, inter-

nal energy and entropy

Thermodynamics focuses on macroscopic systems, i.e. systems
with a very large number of molecules. Thermodynamics ignores
fluctuations and should be applied with care to small systems,
i.e. single molecules. Thermodynamics seeks to describe static
equilibrium, which are states which system usually evolve.

What do we call a sample ? A sample is the system of interest.
The rest of the world is the surrounding where observations are
made. We can distinguish:

1. OPEN sysTEMS which can exchange both energy and matter with
the surrounding.

2. CLOSED sysTEMS which can exchange energy but no matter with
the surrounding.

3. ISOLATED sysTEMs with no exchange at all. Boring stuff !

To describe equilibrium and non-equilibrium we first introduce the
concept of internal energy U. U is the sum of the kinetic energy
of the components, of their potential energy and of their mutual
interaction energy.

Second, we distinguish between two types of variables:

1. EXTENSIVE VARIABLES such as internal energy, volume, number
N; of the component indexed by i. These variables scale with
the number of components (i.e. they double if we multiply the
number of components by two). In all cases, we can divide them
by the volume V' and define the appropriate density. Walls sep-
arate the system of interest from its surrounding and provide
boundary conditions. It is by manipulation of walls that exten-
sive parameters are altered.

2. INTENSIVE VARIABLES are variables such as the pressure P, the
temperature T or external fields such as an electrical field E
where it makes no sense to define a density. Manipulating inten-
sive variables is a way to apply work on the system.

Universe

o«
O

Surroundings
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Thermodynamics assumes that there exists equilibrium states
which are completely characterized by their internal energy, their
volume V and the number Nj, Ny, ... N, of components. Consider
two equilibrium states A and B differing in their internal energy.
We can measure the difference between them, Ug — U4, and we will
often work with differentials assuming that the two states differ
sightly. So, Up — U4 becomes dU.

The basic problem of thermodynamics is to determine the values
of the extensive parameters which gives a complete description of
the equilibrium states. Obviously, these parameters are "special".
As now usual in sciences, we seek for an optimum principle which,
in a more mathematical language, is equivalent to an extremum
principle. We POSTULATE that there exists a function, called the
entropy, of the extensive parameters

S=S(U,V,Ni,...,Ny) (5.1)

such that the values of the extensive parameters are such those that
maximise this function over the manifold of unconstrainted states.
From definition (??), the entropy S is also an extensive variable.
Under general assumptions, this equation can be inverted, so that
(??) is equivalent to

U=u(s,V,Ny,...,Ny) (5.2)

We compute the the first differential

ou ou ou
au = | —= as + () av + ( ) dN; .
( s )V,N,- ov S,N; Zl: ON; A Z 53

and we remark that the partial derivatives are INTENSIVE parame-

ters. We define

ou
().

ou
().

( ou ) = —;, the electrochemical potential of the ith component
ON;i ) sy

T, the temperature

—P, the pressure

(5-4)
and use this notation to write

dU = TdS — pdV + ) pidN; (5.5)
i

We will recognize in the next sections that TdS is the heat flux.
This equation summarizes the three possible ways for a system
to change its internal energy : heat flux, mechanical work, and
exchange of molecules. All that with the surroundings.

By definition an equation of state is a relationship which ex-
presses intensive parameters in terms of extensive parameters. For
example,

T=T@S,V,...,Nj...)
P=P(S,V,...,N;...) (5.6)

‘Hi :F’li(S/V/”-/Ni,...)

Quasi-static locus or_
Quasi-static process ™[+

Figure 5.1: The representation of the
hypersurface S = S(U,V, N) in the
thermodynamic configuration space.
This figure represents also a path for a
quasi-static process.



5.2 Interpretation of the extremum principle: entropy is mix-

ing

Consider Fig. ??. We assume that the membrane is permeable to
sucrose molecules. Sucrose will diffuse through the membrane
until the concentrations inside and outside the bag are equal. The
final equilibrium state is the state which maximizes the MIXING of
sucrose with water.

What is that determines the irreversible process that leads to it ?
Clearly, this is not a mechanical process. A mechanical system
reaches it equilibrium states by going down the scale of its mechan-
ical, i.e. potential, energy. Here, sucrose solutions are almost ideal,

meaning that their energy is almost independent of their concen-
tration. The main difference between the initial and final state lies
in the number of ways sucrose oleules are distributed over the total
volume. There are more ways to distribute sucrose molecules in a
large volume than in a small one. What the system does is that it
maximizes the mixing entropy.

What shows also the figure is tat work (and heat) exchanged
with the surroundings depends on the path taken from the initial
to the final state. We can do the experiment in a quasi-static way
by moving a permeable piston so that we reach reversibly the same
final state (uniform mixing).

5.3 The first law of thermodynamics

In the process of going from A to B, The work DONE on the system
is measured by the methods of mechanics and is associated with

a change in volume dV. We write for quasi-statics processes (the
meaning of d is explained below)

dW = —PdV (5.7)

where P is the pressure controlled from the surrounding. It is
sometimes noted P,y;.

We define the heat flux To the system as the difference in inter-
nal energy between the final and the initial state diminished by the
work done on the system.

dQ =dU — dW at constant mole number (5.8)

Note that this equation gives the definition of what we call heat and
that heat corresponds to an energy transfert. This equation is also
equivalent to

dU = dQ+ dW at constant mole number (5.9)

We now explain the meaning of the symbol 4. In the process of
going from A to B, the work done on the system depend a priori
on the process and different ways for going from A to B may give a
priori different works. Therefore, dW and dQ are the work and heat
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Pressure
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S
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solution

Membrane
piston

S

D

Sucrose
solution

(a) (b)

Figure 5.2: A dialysis experiment in
which sucrose will diffuse our if a
bag and water in until equilibrium is
attained. This process is irreversible
and no work is done. A way of doing
the same experiment reversibly. The
membrane of the piston is imper-
meable to sucrose and permeable to
water. If the pressure on the piston is
gradually reduced, the same final state
of uniform mixing is attained, see [? ].
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in a particular process. However, the energy difference dU between
two equilibrium states cannot depend on a particular path joining
them and we employ the usual differential symbol dU.

Since work and heat refer to particular modes of energy transfer,
each is measured in energy units. The practical units is the calorie,
or 418 J. Eq. (??) is the statement of the first law in thermodynam-
ics which can be formulated as follows.

Changes in energy occur as a consequence of adding and sub-
tracting heat, dQ, and work, dW to the system. Before going on, it
is important to make the sign convention clear. If we add energy
to the system by performing work, dW is always positive. If the
system does some kind of work, then dW < 0. If the system receive
heat, 4Q is positive. If the system loses heat during the process,
then 4Q is negative.

5.4 The definition of the Boltzmann’s entropy

In classical text books in thermodynamics, the entropy (from the
greek, evolution) is defined via the ratio

S== (5.10)

where Q is the heat and T the temperature. This leads to the for-
mulation of the second principle (a machine cannot perform work
without heat flux between two sources and these sources cannot be
at the same temperature)

In these lectures, it is more appropriate to use the definition
of Bolzmann. For a given macroscopic state, there exists a huge
number of microscopic configurations (states of the particules).
For example, we can divide a container into a grid of M compart-
ments. We decide that the size of the compartment is such that we
can put at most one molecule in one compartment. If there are N
molecules, we will assume N « M, i.e. diluted solutions. Here the
number the configurations W corresponds to the number of ways
we can distribute the N particules among the M compartments. In
the same way and for a gaz of particles, there are a large number
of different configurations (speed, position) for the particles which
gives the same macroscopic pressure.

We have the definition

S=kglnW (5.11)
Note 1 If we combine two systems, let say A and B molecules, then
Watp = Wa x Wg (5.12)
which means that entropy is additive (extensive)
Sa+B =54+ Ss (5.13)

as it should be.
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5.5 A mathematical interlude

The multiplicity, W, for N molecules distributed among M grid
points is (the size of the grid point is the size of a molecule, so there
is at most one molecule per compartment)

M!

W= N =N (5.14)

and is easy to demonstrate:

¢ M choices for the first molecule. There is, therefore, M — 1
choices for the second one (one molecule per box) and so on.
We have:
M!
sz(M—l)...(M—N—kl) (5.15)
e There are N choices for the first molecules, (N — 1) ones for the
second one etc. The way we draw the molecules does not matter,
since all all them leads to the same configuration. Therefore, we
divide by N!

We shall use the following formula (Stirling) which works very
well when 7 is large (n > 2 in practice)

n! = (n/e)" (5.16)
This means:
M!
InW=In——-——
= NIM - N)!
N N N N
N . . . N
~ —NIn M if (small concentration, or small mole fractlon)M «1
(5.17)
so that the entropy per unit volume is
S=—kpglnc (5.18)
Exercice 5.1 The exact approximation (Stirling formula) for n! is
n\"n 1
1= (=2 -
n! (e) V2 <1 + O(n)) (5.19)

Compare the left-and-right hand side for n= 3,4, and 10. Show that the use
of the simple Stirling formula ?? gives a reasonable approximation (it will
be useful to compute Inn! instead of n!).

The MULTIPLICITY of a system increases as the volume increases.
We consider a gas in a container. This container is divided into grid
boxes with at most one gas molecule per box. The multiplicity of
a molecular system is defined as the number of different config-
urations or conformations of the component atoms or molecules
that are equivalent. For what follows, it will be useful to use the
following definition:
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Definition 5.5.1 A STATE of system is characterized by the global
properties of the system, such as the temprature, pressure, or number of
molecules. A MICROSTATE is a specific configuration of molecules that is
consistent with the state. Each state corresponds to many different mi-
crostates, see Fig. ??.

Figure 5.3: The container is divided
into into boxes. The grid boxes need

Exercice 5.2 Compute the change in entropy for a a system of n molecules to be small enough to accomodate
in a system with N boxes. Using Stirling formula, show that the entropy only one molecule. When comparing
. . to systems, it is crucial to have the
increases as on increase the volume of the system forom N to 2N. same size for the grid boxes. Two

microstates (configurations) are shown
. . L. . for the same state.
5.5.1 The binomial distribution

This is the probability to get k successes in # trials for an event
occuring with probability p. The probability distribution is given by

P(x =k) = CRp(1 - pN* (5-20)

From the binomial expansion

1=1N=1-p+p"=(1-p+p)N = > Arfa-p"—*

k=0,N
(5.21)
we see that p(k) is normalized
>, plk)=1 (5.22)
k=0,N
The case p = 1/2 corresponds to flipping a coin.
0.20 [ e? Figure 5.4: Binomial distribution for
- p=0.1,05,0.7.
I °
015
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Exercice 5.3 Analogies between mismatches in DNA and coin flips.
During the replication process, errors (mismatches between the base pair)
are introduced are being introduced in the newly synthesized strand.

1. We denote the probability of a mismatch being introduced as p. What is
the mean value of mistakes ? (hints: remember k!/k = (k —1)!)
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5.5.2  The normal distribution

When the number of events is very large, the probability distribu-
tion of the normal distribution is well approximated by the Gaus-
sian (or normal) distribution. The normal random variable has
probability distribution

flx) = \/2;7 eXp{ [—(xz;?)z] } (5.23)

The mean is y and the variance is ¢?. As ¢ — 0, the random vari-

able is almost sure. With these definitions, (??) is normalised to 1,
so that the o — 0 limit gives the J-Dirac function.

4 , Figure 5.5: The normal distribution
tends to a Dirac distribution as o — 0.

-1.5 -1.0 -0.5 L 0.5 1.0 1.5

Exercice 5.4 If you have not done before, the following trick is useful. To

calculate o
2
f . dx exp{[—txx ]}

, evaluate first

[ axesp{[-e2]}] -
f:j txop{[ a2} [ ; dyexpf |-}

(5-24)

and use polar coordinates. While you are at it, take the derivative with

respect to « to calculate < X2 >,

5.6 The second law of thermodynamics

One statement of the second law of thermodynamics if that the
combined entropy of the system and the surroundings always in-
creases for a spontaneous process. This is equivalent to saying that
the entropy of a system and its surroundings has a maximum value
at equilibrium.
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To illustrate the application of maximum entropy principle, we
consider a simplified model for osmosis.

The system is divided into two halves by a semipermeable bar-
rier. The barrier allows type A molecules to pass freely, but blocks
the passage of the B molecules. For simplicity, we assume the same
number N of A and B molecules.

We divide each half of the chamber into M grid boxes with
M » N. The value of entropy on the left side of chamber can be
calculated as follows

S 5 M
—=—=NIn— .
b= =Ny (525)
We start from a situation where all the A molecules are on the
right with the B in the left half. Assume now that a fraction x
of A molecules have crossed the barrier. This means that xN A
molecules are in the compartment occupied by the B molecules
(which cannot cross the barrier). Since the two kinds of molecules
act independently of each other, the total entropy for the left com-
partment is the sum
S5 M M
— =NIn— In — .
ks NnN+anNx (5.26)
The right compartment has now (1 — x)N molecules and its entropy

is
Sy M

So the total entropy is therefore given by
S 5 S M
@7@+672Nlnﬁ N[xInx+(1—-x)In(1—-x)] (5.28)
and the change in entropy per A molecule (divide par N)
%S =—[xInx+ (1—x)In(1—x)] (5.29)
B

From the figure, see Fig ??, S is maximum when x = 1/2, meaning
that half of A molecules have diffused on the left half.

In this situation the B molecules in the left chamber contribute
a constant value to the total entropy and the volume of each com-
partment is held constant. As the A molecules move to the left, the
density in the left hand-side increases and the osmotic pressure
increases. This phenomenon is known as the osmotic pressure (if
living cells are transferred to low solute concentration, cells burst).

5.7 Consequences of the extremum principle N R
Figure 5.6:

Recall that the entropy is an extensive function. Therefore,
§=S(U,V,N) (5:30)

From this, we have for the internal energy U

dU = TdS — pdV + udN (5.31)



where —pdV is the work done on the system (the work provided
by the external force), and dN is the change in the number of
molecules (we consider one type of molecules). From this, one
finds,

_1 Pay _#
ds = lel+ TdV TdN (5.32)

where y is the chemical potential. We show that the statement that
the entropy is maximal implies that temperature, pressure and
chemical potentials for systems in contact are equal.

5.7.1  Thermal equilibrium

We consider the system and the surrounding and assume the com-
posite system is isolated. This means:

Usys + Usyr = constant (5.33)

as imposed by the closure of the composite system as a whole. We
also assume that (a) there is no exchange of matter between the
system and its surrounding and (b) that the volume is kept constant
(i.e. there is a test tube plug). According the extremum principle,
the values os Usys and Us,r will be such as to maximize the entropy

dS =0 (5-34)

The additivity of the entropy gives the relation:

S = Ssys(Usys, Vsys, - - ) 4 Ssur(Usur, Vsur, - - ) (5-35)

As Usys and Us,r are changed by energy transfert, the entropy

change is:
OSsys ) < OSsur )
s = (-~ dU,ys + au, 36
<6Usys Vsys e ausur Vsur " (5 3 )
From the definition of temperature
0S 1
we have . .
dS = ——dUsys + ——dUsyr (5.38)
Tsys Tsur

By the conservation equation dUsys + dUsyr = 0

1 1
ds = - —)dU .
( Tsys Tsur ) e (5 39)

Since the condition for extremum demands that dS vanishes, we
have as a condition for equilibrium

11
Tsys Tsur

(5.40)
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5.7.2  Mechanical equilibrium

The same argument gives

P =P (5-41)

Exercice 5.5 Assume no energy transfer and no transfer of molecules. So

aSs S
ds = L
<avsys

assur
Vs \% .
d i i <a‘/sur > Usur, Nsur d " (5 42)

Derive (2?) using Vsys + Vsyr = constant.

) Usys/ Nsys

5.7.3  Chemical equilibrium

Consider
2H; + O, — 2H,O (543)

We can write in general
00— Zjv]-Aj (5.44)

where vj are stoichiometric coefficients, (—2, —1,2) for the reaction
above. The fundamental equation of the system is

S=SU,V,Ny,...,N;) (5.45)

In the course of the chemical reaction, the total energy U and the
volume V remain fixed. The change in entropy is then

j=r
"
s = -] %dN,- (5.46)
j=1

Since the change in mole number are proportional to the stoichio-
metric coefficients

dSoc — %w (5.47)
Then the extremum principles dictates
D Hv =0 (548)
]
Example 5.1 If
A=Ay (5-49)
Then
1= 2 (5:50)

In summary, the principle of maximum entropy for system 1 + 2
leads to the conditions

1. Equilibrium for the chemical work pq = .
2. Equilibrium for the mechanical work p; = p».

3. No net heat transfert between T; = Tp.



5.8 Thermodynamic potentials

Consider gaz in a compartment of volume V. If we move the wall
(the piston), the volume changes and there is also a change in pres-
sure on the piston will follows the change in volume. Conversely,
if we change the pressure on the wall, the volume will follow the
change in pressure and will adapt to the new situation. We need,
therefore, a bookkeeping mechanism to manage this adaption
mechanism between an intensive variable and its extensive con-
jugate partner.

The whole thing is to focus on independent versus dependent
variables. The independent variable is the ONE that is changed by
the person who is doing the experiment. The dependent variable is
the oNE which depends on the outcome of the experiment. In the
preceding example:

1. Process of type 1: When we move the wall by a mechanical
system, the independent variable is the volume. The dependent
variable is the pressure on the piston.

2. Process of type 2: When we change the pressure on the piston,
the independent variable is the pressure, and the dependent one
is the volume.

Observe that an intensive dependent or independent variable is
always conjugated to an extensive independent or dependent vari-
able.

Consider again the energy differential

dU = TdS — PdV + uydN (5.51)

This equation means that the increase dU of U follows the ones of
(S, V,N) chosen as independent variables. This equation implies
also that the pressure P adapts to a change in V, since

ou
F=- (av)w

Experiments of type 1 controlling the volume are not of great in-

(5-52)

terest to the biochemist. Reactions usually take place in a test tube
at a constant pressure of 1 atm. The temperature is also constant.
To deal with type 2 experiments, see Fig. ??, write

G=U-TS+PV (5.53)
which defines the Gibbs free energy. Now differentiate
dG =dU —TdS — SdT + pdV + VdP = SdT + VAP + udN  (5.54)

which means that, from the point of view of G, the variables T, P, N
are the independent variables. So, we write

G = G(T,P,N) (5.55)
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Figure 5.7: (a) A process occurring
under conditions of constant volume
and temperature[? ].
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surroundings

surroundings

Figure 5.8: (b) A process occurring
under the conditions of constant
pressure and temperature.
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From Eq. (??), we see that dG = 0 when T, P, N are CONSTRAINED
by a reservoir. In other words, S, V and P adjust themselves to
make G EXTREMAL, actually MINIMAL see next section.

In short:

1. For processes occuring under the condition of constant volume,
use the free energy F = U — TS, see case (a) of Fig. ??.

2. For processes occuring under the condition of constant pressure,
use the Gibbs free energy G = F — PV, see case (b) of Fig. ??.

Remark 3 An important question in thermodynamics is to isolate the
control parameters and the companion parameters which adjust themselves
by (Gibbs) free energy minimization. For an intensive parameter deter-
mined by the experimental conditions (force or pressure), there is always
an extensive variable that adjusts (length or volume). The reciprocal is also
true. Minimizing the wrong free energy leads to non-sense. The following
example illustrate this point.

Consider Fig. ??. A polymer is grafted to a solid surface at one en
point. A bead is bound to the other end point. The bead can be observed
under the microscope because of its size and the elongation R can be
recorded. On can also apply a force F to the bead so that the polymer
can be stretched. What the characteristic force-extension curve R = R(F)
?

To answer we need two things. First, the correct free energy. Second
our minimization principle. Assume that the polymer behaves as a spring.
Its potential energy has therefore the form 1/2kR?, where k is some elastic
modulus. The control parameter is the force. The work done by the force is
FR, so we consider the Gibbs free energy

G = %kRz —FR (5.56)

Then, the elongation minimizes G. Plotting G as a function of R shows
that G has indeed a minimum at some R, = F/k. This is the equilib-
rium and one finds that at equilibrium G is independent of R, since R is
fixed by the force. Note that if we would have minimized 1/2kR? without
adding the work done by the force, the result would have been meaningless,
ie. R =0.

5.9  Minimum principle

We illustrate two points:

1. The free energy minimization is an alternative of the entropy
maximization.

2. The minimization of the free energy reflects the competition
between energy and entropy.

The enthalpy of the system is given by:

Hgys = Usys + PVsys (5-57)

Figure 5.9: A single molecule exper-
iment using a bead trapped in an
optical trap.

0.5

-0.5

Figure 5.10: Plot of 1/2kx? — Fx with
the minimum at x = F/k.



According to this equation, an infinitesimal change in the enthalpy
is given by
dHsys = dUsys + PdVgys + VsysdP (5.58)

If this change is made under constant pressure, then dP = 0 and

stys = dusys + Pstys (5'59)
Using
1 P
dssur = fdusur + fdvsur (5-60)
with
dusur = _dusys (5.61)
stur = _stys
we get
1 p
dSsur = *fdusys - fdvsys (5.62)

Comparing with (??), we get the following for the entropy change
of the surrounding when the process occur under constant pressure
1
dssur = *desys (5'63)

which means that the entropy changes of the surrounding is equal
to the heat transferred to the system.

For the process at constant pressure and constant temperature to
occur spontaneously, the total entropy must increase

dStotar = ASsys + dSsur = 0 (5.64)

which means:

We now define the Gibbs free energy
G=H-TS (5.66)

As the entropy and the enthalpy, G is a state function.

The change in Gibbs free energy is the amount of energy (or
heat) that can be converted to work. An infinitesimal change 4G is
given by

dG = dH — 5dT — TdS (5.67)

At constant temperature
dG = dH — TdS (5.68)
and using (2?), we find that the Gibbs free energy decreases
dG <0 at constante pressure and temperature (5.69)

Thus, a spontaneous process at constant temperature and pressure
always involve a decrease in Gibbs free energy. It follows that the
Gibbs free energy is minimum at equilibrium, see fig. ??.
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Figure 5.11: Illustration of the Gibbs
free energy change during a chemical
reaction. The reaction evolves till
the system reaches the minimum
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Exercice 5.6 EQUIVALENCE OF THE BOLZMAN ENTROPY AND OF THE
STATISTICAL ENTROPY

Consider a collection of N molecules distributed among t confor-
mational states. Each molecule can occupy a conformational state j,
j = 1,2,...t. Let Nj the number of molecules in the state j. We have:

>, Nj=N (5.70)
1<j<t

Recall that In the lecture we have defined the Bolzmann entropy as
S=kglnW (5.71)

where W is the multiplicity of the system. This follows naturally from
the idea that a system evolves naturally from less probable states to more
probable ones (a macroscopic state with high multiplicity is more likely to
be observed).

1. What the multiplicity of the distribution of N molecules ?

2. Use
InNjl = N;InN; - N (5.72)
for all N;j and show
N
W = m (5.73)
3. Let
pi = % (5.74)

be the fraction of the total number of molecules found in level i. Show

S=Nkg )] pjlnp; (5.75)

1<j<t

For a TYPICAL configuration, p; = N;/N is the probability that a molecule
is in conformational stet j. This last expression is the statistical definition
of entropy we shall use later on and this exercice demonstrates that the
definition of Bolzmann entropy is equivalent to the definition of statistical
entropy.

5.10 The statistical and thermodynamic definitions of entropy
are equivalent

5.10.1  The work done in an near-equilibrium process is related to the
change in entropy

Consider a volume expansion V; — V, which occurs in a series of
infinitesimally small steps. The work done by the experimentalist is

AW = —pdV (5.76)



so that for dV < 0, we have dW > 0. The process being quasi-static,
we van apply the ideal gas law

PV = uRT (5-77)
This means v
2
W = _J "RT 4V — —nRTIn 22 (5.78)
1 Vi

We assume also an isothermal process. This means that the energy
of the gas cannot change during the process. In accordance with the
fist law which states

dUu = dw + dg (5.79)

the system takes heat from the surrounding
Va
W+Q=0 = Q=nRTan (5.80)
1
Using the thermodynamic definition of entropy AS = Q/T, we get

AS = nRlIn v (5.81)
1%

5.10.2  Equivalence between the two definitions

To analyse the statistical entropy, we consider again a container di-
vided into M boxes. For large N et M (N is number of molecules),
we use Stirling formula to get

InW = NlIn % (5.82)

The volume Vj is related to M by V; = Muv,, where vy is the volume
of a box (equal to to the volume of one molecule). So, for system 1

1%
=kyNIn —— .
S1=kNIn Nog (5.83)
and
Vo
1

Or N = nNy, where Ny is the Avogadro number. We define R =
Nyky. Both definitions, see Egs. (2?) and (??) give the same result.
These definitions are, therefore, equivalent.
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6
Maximum work and Gibbs free energy: coupling work
to ATP hydrolysis

Our discussion has so far focused on a particular kind of work

involving changes in volume. This is called "expansion" work. The ‘
system can, however, do other kind of works without changing the 4 -

volume (in the sense defined below, the system is can be either a

transporter or a motor protein). This includes electrical work, in
which charges move against a gradient of electrical potential, and
chemical work, where the free energy change is due to change in
the number of molecules. The exquisite ability to extract work for a
chemical reaction a landmark property of biological systems.
Basically, we rely on mitochondria to synthesis ATP the energy
is stored from the synthesis of ATP from ADP and a phosphate.
This energy can be released from ATP hydrolysis, a reaction that is

used by a myriad energy requiring enzymes that maintain cellular
function.

Figure 6.1: Even at rest, a human body
As seen in Table ??, there are many possible ways to perform requires as much power as a 100-watt
lightbulb, from [? ].

work. Consider what happens to the free energy when a small
number of molecules moves from outside to the inside of the cell.
Let us say that the number of moles inside changes as n — n + dn.
For a mechanical displacement with a force F and a displacement
dr, we have

AG = f Fdr (6.1)

What is the equivalent of the MECHANICAL WORK (??) for our CHEM-
ICAL WORK which consists in transferring molecules ? If Ay is the
change in chemical potential between the outside and the inside,
the equivalent of (??) is

AG = JA‘M dn (6.2)

Th work is known as the cHEMICAL WORK. Note that there is a close
relationship between the change in free energy and the amount of
work done on the system. Actually, the change in free energy in

a process equal the maximum amount of work that can done or
extracted in a process.
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Table 6.1: Different types of works
that can be done by a system.

Type of work Intensive variable Extensive variable Work
Mechanical Force, F Change in distance, dr W = (Fdr
Expansion Pressure, P Change in Volume, V W = SPdV

Electrical Voltage Difference, AV Change in charge , dgq W =1§s6vyq
Surface Surface tension, ¢ Change in surface area, dA W = S'ydA
Chemical Chemical potential difference, Ay Change in the number of molecules, dn= W = {Audn

6.1 An example

Consider a kinesin motor protein moving a cargo vesicle along
a microtubule track. This motor protein is able to perform work
which is equal to

dw = Edr (6.3)

for a small displacement dr (corresponding to a "step" size). If the
motor protein "walks" at constant speed, the energy dissipated is
equal to the work done by the protein. In the preceding equation,
the force F is the resistive force due to friction and viscositywhich
counterbalances exactly the generating force of the kinetsin. In
other words, one can extract work from the kinesin motor protein.
The movement of the vesicle is powered by the hydrolysis of ATP
within the motor domain of the kinesin protein and the value of the
free energy change for hydrolysis

AGatp = —28kJ.mol ! (6.4)

is NEGATIVE and sets the limit of work that can be done (ex-
tracted) from the system. Recall the convention dw < 0 for work
done by the system (extracted from the system). Since F is resis-
tive, the vector product is negative indeed (in the opposite direction
of the movement). Although AGarp < 0, ATP hydrolysis is not
spontaneous because of a high energy barrier and this process is
controlled in cells by a number of kinase proteins.

This said, it is important to remember that a way to transform
free energy into work is to couple a chemical reaction to a mechan-
ical displacement. This has measured in single molecule experi-
ments[? ] and can be summarized as follows for a kinesin perform-
ing a 8-nm step per ATP molecule hydrolysed

Original Position + ATP —— (Original Position + 8 nm) + ADP + P;

(6.5)
It should be noted that the difference in energy is between the
total sum of the right and the total sum of the left member of this
equation.

6.2  Maximum work that can be extracted

It will be useful to derive the conditions imposed by thermodynam-
ics on the maximum work extracted from the hydrolysis of ATP.

Kinesin ‘walks’ along the microtubule
while carrying its cargo

Bead ki

or
vesicle

Figure 6.2: A kinesin protein walking
on a microtubule filament
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Consider a system coupled to a surrounding. In the preceding
example, the system is the sum of the ATP bound molecule with
the motor protein. As before, we have for the total variation of

entropy
dSsys + dssurr =0 (6.6)
with p
dssurr = _?‘] (6.7)

where dg is the heat transferred from the surrounding to the system
(when the surrounding gives heat, its entropy decreases).

From
dU = dw +dg (6.8)
One gets
1
ASeyrr = -7 (dU — dw) (6.9)
and
T (dSsys + dSSW,) = TdSsys —dU + dw (6.10)

For isothermal processes without expansion work (i.e. no change in
volume), this gives

—dG+dw>=0 or —AGarp+Aw=0 (6.11)
Since AG and Aw are both negative, we have in absolute value
|AGatp| = |Aw| (6.12)

Thus the maximum work that can be extracted from the process is
equal to the change in the Gibbs free energy for ATP hydrolysis.
Energy is the ability to do work: How do we convert chemical
energy into mechanical work ? The trick is to couple a reaction to a
mechanical process (rotation, translation, diffusion etc.).
Consider the hydrolysis of ATP

ATP + H,0O — ADP + P; + H,O (6.13)

where P; represents the phosphate ion (inorganic). In order to de-
termine whether the reaction will proceed spontaneously from left
to right, we need to determine the sign of the total change in energy

AG
products
AG = dG = G(products) — G(reactants) ’ fomosonace
reactants (6.14) ‘:4 . © -
= G(ADP + P; + H,0) — G(ATP + H,0) X g ﬁ;jo“ == N o &
s ‘ /\‘.(["ADP )

Since the free energy of a molecule changes with temperature, Figure 6.3: ATP loses its terminal

pressure, and wether it is pure or in mixture, one needs to know phosphate group upon hydrolysis.
the conditions for which a free energy change is reported. The free This reaction occurs rapidly in the

. forward direction when CATALYZED.
energy change is usually reported for the standard state (molar free

energy, i.e. for one mole) and for ATP hydrolysis is

AG = —28kJ.mol !
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So the reaction will proceed spontaneously to the right, because
the free energy of ATP in water is higher than the free energy of
ADP and P;. However, the energy barrier along the reaction coordi-
nate is so high that this reaction cannot happen spontaneously. We
need a catalyser, i.e. a molecule which lowers the energy barrier as
seen below.

As said before, the way to transform free energy into work is
to couple the ATP hydrolysis to an other chemical or mechanical
reaction. Then the maximum chemical or mechanical work which
can be extracted is bounded from above by the free energy change
is ATP hydrolysis.

Consider, for example, the maltose transporter with the reaction

H,O + ATP (in) + Maltose (out)

: (6.15)
—— ADP + P; + Maltose (in)

where the maltose is transported from the outside of the cell to the
inside by an enzyme which uses ATP hydrolysis®, see Fig. ??. The
cycle proceeds into 4 steps:

1. ATP binds to the inner face of the membrane and maltose binds
to the outer face. This is a high energy conformation of the trans-
porter.

2. The transporter relaxes this high energy conformation by mov-
ing the maltose inside the barrel.

3. Then, ATP can be hydrolysed resulting in the formation of ADP.
This is why the maltose transporter is an enzyme which catalyse
this reaction.

4. This conformation is unstable and relaxes by releasing the mal-
tose molecule in the inside of the cell (with ADP + P;).

In short, the gain in (chemical) energy due the hydrolysis of ATP is
used to drive a conformational change in the transporter. Coupling
the transporter molecule to ATP hydrolysis gives here a way to per-
form chemical work (the maltose molecule has been transferred
from the outside to the inside of the cell). This is this conforma-
tional change which allows the maltose molecule to be transported
through the barrel.

The next question is far from trivial: can we increase the con-
centration of maltose inside the cell so that the cycle will run the
other way around. In that case, the energy provided would be the
increase of entropy due to the maltose molecules flowing outside
the cell (remember F = U — TS). By the same token, this would
provide a way to synthesize ATP from ADP. The problem is that
we cannot increase the concentration of maltose to infinity without
reaching the sedimentation limit. The F-1ATPase motor protein
uses this strategy to synthesize ATP. This protein is molecular tur-
bine machine using protons flux. If the flux is driven one way, the
machine synthesize ATP and the machine can use ATP to drive the
flux of protons the other way.

| - _ —
£
.

Figure 6.4: The maltose transporter
which couples transport of maltose
molecules across the membrane with
ATP hydrolysis.

" Maltose = 2 glucose molecules to-
gether
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Entropy of mixing and chemical potential

We are concerned with the thermodynamics of self-assembly
of molecules (polymers, surfactants, phospholipids and so on).
We start by considering the mixing of two lipid species, or so-
lute/solvant, on a flat 2D membrane which reflect the behavior
of the miscibility of sucrose into water.

The simplest approach to calculate the entropy of mixing of Ny
molecules A with Np molecules B is to adopt a coarse-grained or
lattice model. In that case, we divide the membrane into N = N4 +
Np compartments (little cells). Molecules interchanges positions
by diffusion. The conformational probability of the last section
is replaced by the probability to distribute molecules among the
different compartments. This is the origine of the mixing entropy.

Let us distribute N4 of A molecules in N compartments. Since
the A molecules are indistinguishable, there are

N!

Nal(N — Ny)! (7.1)

ways to do it. All that remains is to place the B molecules. Since the
B molecules are also indistinguishable, there is only one way. Thus

N! N!
N4z!' (N —Ny)! Ny!Np!

Q= (7-2)

This expression is exact, but working with factorial is clumsy. To go
ahead, use the Stirling approximation

In(x)~x(Inx—1) x>»1 (7.3)
and get
Nga, Ng Np, Np
= k| A4+ ,E
S k[NnN—i—NnN ()

= —k[palnga + (1—¢a)In(1—pa)]

where ¢4 = N4y/N is the fraction of surface occupied by the A
molecules. We see that the mixing entropy depend sonly on the A
molecule and, from now on, it is simpler to drop the A and to take

Pa = ¢.

x OO0 X
O[O x|0O
Ox[x10[O

O[x|O|O] x
OO %1010

Figure 7.1: Lattice model to calculate
the entropy of mixing.
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7.1 Chemical potential

For a lattice model, it is much more convenient to work at fixed
total number of compartments. This is equivalent to work at a
given volume and the appropriate thermodynamic potential is the
free energy

F=U-TS (7.5)

The chemical potential per unit surface area is

oF
p= <0¢>T (7.6)

For ideal solutions, there is no energy U = 0. The free energy is
purely entropic. Taking the derivative of the In, we get:

¢
=kT1 :
I S (7.7)
Ideal solutions makes sense in the low density limit. In the hight
density limit, molecules start interacting and the ideal solution
concept is meaningless. For this reason, we take the small ¢ limit so
that

u=+pu+kT'lng (7.8)

where y is the chemical potential of a reference state. For a 3D-
problem, the surface fraction is replaced by the volume fraction and
¢ is usually replaced by the concentration c.

For any type of gas AT B (real or perfect) the partial pressure of
the gas A is defined as :

PA = XAp (7.9)

where x4 is the mole fraction of A.

a4 — _Na Xn — _Ng (7.10)
A_NA+NB B_NA+NB 7
The total pressure is sum of the partial pressures
patpp=p (7.11)

For a gas, the chemical potential is generally written in terms of the
of the partial pressures

A 64(T,P) +kTInpa/p
) (7.12)
0

(T,P) + kTInpg/p
where (T, P) is the chemical potential of the A or B component

in the PURE phase.
Note that the chemical potential for a ideal gas is

u(p) = po +kTInp (7.13)

where yg is the chemical potential of the reference state where
p=1atm.
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Exercice 7.1 Recall that as a consequence of the surface tension the pres-
sure difference across a curved interface is

1 1
Ap=9(—-+—5 )
p 7<R1+R2> (7.14)
where Ry, are the two radii of curvature. This expression reduces to

Ap = Z% (7.15)

for a spherical droplet. As a result, on expects that the vapor pressure over
of small liquid droplet is higher than over a flat surface.
Consider a droplet of gas phase with radius r. The surface tension is .

1. What is the increase in free energy when r increases by dr ? (since dr is
small, do this calculation to first order in dr).

2. To increase r by dr, we need to transfert molecules from the liquid
phase. Let dn be the number of moles transferred from the liquid phase
to droplet. If the liquid phase is at pressure pg and the gaz phase in the
droplet at pressure p, what is the corresponding change in Gibbs free
energy ?

3. Let M be the molar mass and pthe density of the liquid phase. What is
the relation between dn and dr ?

4. Deduce the Kelvin equation

RTIn 2 = 2M 5 Vi (7.16)
po pr r

where the molar volume Vy, is defined as M/p.
If Viy ~ 18.1 ml/mol (T = 300 K) , v = 721073 N.m~! (water):
P _
= Exp[1/r] (7.17)
Po
where r is in nM.

An important example of this phenomenon is to be found in the aging of
colloidal dispersion (referred to as Oswald ripening).

7.2 Osmosis: balancing entropy versus mechanics

Consider a system : solute (s, with Ns molecules) + solvant (H,O
with Ny, molecules). We calculate the chemical potential of the

solute as
. aGlfotul

Hs = 0N T,p
where the total Gibbs energy is the sum of:

(7.18)

1. The Gibbs energy of the solvant;
2. The internal energy of the solute;

3. The mixing entropy.

51
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This means:
Grotal = NHZOV%ZO(TI P) + Nses — Tsmixing (7.19)
Taking the derivative, we have the chemical potential per solute
molecule
N,
us(T,p) =€+ kTn £ where ¢=— (7.20)
co VBox

and cgp = Np,0/Vpox is a reference concentration for which we chose
to take us(T, P) = 0.

Consider now a bacterium overcrowded in the interior with
components. The exterior is at much mower concentration in these
components. Let N;, be the concentration at the inside and in the
outside. The system + the surrounding being isolated:

N. + N; = const , which means dN; = —dN, (7.21)
The difference in Gibbs free energy is therefore
dG = (pi — pe)dN; (7.22)

must decrease and y; — jt, is the driving force for mass transport.
The difference in solute concentration leads to a mechanical force
called the osmotic pressure. Cells are able to prevent swelling due
to this osmotic pressure and consume a lot of energy to do that.

We now proceed to derive the osmotic pressure difference. Since
the membrane is permeable to water (and not to other stuff), we
have equality of the chemical potential for water molecules between
subsystems i (interior) and e (exterior)

:uf-lzo = P‘iizo (723)

Recall the entropy of mixing,

Nu,0 N
Smix = —kp [ NppboIn ———*=— + NyIn ————— 2
mix B [ H,0 In NHZO T Ns s NHzO T Ns (7 4)
Since the ratio Ns/Npy,0 is small, we have
NHzO _ NHzO + NS - NS Ns
= ~1- (7.25)
NH,0 + Ns Ni,0 + Ns Nh,0
and N N
S S
~ (7.26)
Nu,0 +Ns  Nu,0 7
Finally, we can use
N,
In(1—€)=—€ with e=——> (7.27)
N,0
so that the mixing entropy is very well approximated by
N,
Smix ~ —kp [Ns In N = - Ns] (7-28)
H,O

Po

Osmotic pressure:

T=09gAh

Po

pure solvent

p | p+m withsolute
L

Figure 7.2:
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Finally, from ??, the chemical potential of the water molecules is

1 N,
! ) =0 A s
Hiol(T, pi) = pio(T, pi) —kT Nrio

(7.29)

Since water can pass through the membrane, we have equality

of the chemical potentials on both sides. On the outside of the
membrane, there is no solute, so that the chemical potential is the
one of the reference state at p,

]’tf-le(Tl Pe) = ”%QO(TI Pe) (7.30)
and N
szo(T/ Pe)o = ]’[IO—IZO(T/ pl) - N > kT (731)
H,O

so that p, # p; for this equality to hold. We can, however, assume

that the difference p, — p; is small, so that we can Taylor expand the
left hand-side

0
#r,0(T, pe) = pi,0(T, i) + (pe — pi)a% (7.32)
Following the definition of the chemical potential
6w _ oG 39
FZON = op N | op 733
From oG
dG = —-SdT +Vdp+ udN — V = ) (7.34)
So u = pv, where v is the volume per molecule (v = V/Np,,).
Finally,
oo . Ns oo N
PP = o = Mo L~ VT (7.35)

which is known as the Van’t Hoff law.

Exercice 7.2 Consider Fig. ??. Discuss why the right column of the
U-tube raises higher than the column on the left.

7.3 Nerst Potential: Balancing entropy versus electrostatic

Exercice 7.3 MEMBRANE AND ELECTROCHEMICAL CELLS: The concept
of chemical potential is very general and can be extended to systems in an
electrical field. Recall the definition of the Faraday constant: F = Nae
(N4 Avogadro’s number, e electric charge). Consider two compartments,
say i (for interior of the cell) and e (for exterior of the cell), at electric
potentials @1 . The electrical potentials are assumed to be homogenous in
both compartments. Take kgT = 4.31072! ] for a human body, so that
kT /e ~ 25 mV (check).

1. What is the electrochemical potential fi; ,(¢) for a ion with charge Ze
in the two compartments ?

2. Assume that the membrane is permeable to K, but not to C1~. What
is the condition for equilibrium ? Do we have one or two conditions ?
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3. Assume the concentrations are 0.1M on left and 1M on the right
compartment. What is the voltage drop ¢; — @, across the membrane ?

4. The typical voltage drop across a membrane is —90mV (the interior
of a cell is at lower potential). Assume the concentration of Na™ and
Ca*" as given in table below (measured values). Show that the calcu-
lated values is in sharp contradiction with the measured value. Biolo-
gists should explain why.

Exercice 7.4 1. Consider now the much weaker gravitational potential
field (gravity constant g). Assume that the chemical moiety has molar
mass M. What is the gravitational energy of thin slice of material at
height h ? Check your result by computing the vectorial force.

2. Assume now that this chemical compound is a perfect gaz. Compute
the chemical potential at height h. Start to derive this result with the
concentration at height h and transform your result using the pressure .

3. What is the condition for equilibrium on the chemical potential ?What
is the pressure at height h (consider that p(h = 0) is known).

K+ Na+ Ca2+ Table 7.1: Ion cgncentratlons. and
the Nerst potential for small ions
within the cell. The Nerst potential
corresponds to the calculated value.

Intracellular concentration 155mM  12mM  10~% mM

Extracellular concentration 4 mM 145 mM 1.5 mM For sodium and potassium, the value
Nerst potential (calculated) —98mV 67 mV 130 mV of the Nerst potential has the wrong
sign.

7.4 lon channels and neuronal dynamics
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Surface phenomena

8.1 Capillary condensation

Consider a vapor, ie. water, in contact with a solid surface. If the
corresponding liquid wets the surface, the vapor will have a ten-
dency to form a wetting film. At a given T, this film will be formed
at a vapor pressure p LOWER than the bulk saturation pressure py.
The relative humidity is is defined by the ratio p/py, so that 100%
humidity means that the vapor is in equilibrium with liquid (p is
actually the partial pressure of the vapor phase).

The chemical potential of the vapor is (per mole)

Hg = pg+RTInp (8.1)
while the chemical potential of the condensed bulk liquid is
= g + RTInpg (8.2)

The free energy change in forming a liquid film of thickness J of
an area A involves a transfer from vapor to liquid of 6A/V; moles,
where V7, represents the molar volume of the liquid. There is also a
change in surface energy

(V1o + ¥s1 = Ys0) A (8:3)
The free energy change is therefore

6A
T RTIEY (3 4 7 = 70 A (8.4
L p

and this free energy energy change is zero when the liquid pressure
is such that

Vi
RTIn % = % (')’sv — Vsl — 'Ylg) (8.5)

Surface condensation occurs if the liquid wets the surface. The
right-hand side is positive, and the the pressure p < pg. The prob-
lem with this derivation is that we have treated the thickness of
the film J as given. Going further needs to discuss intermolecular
forces in details.

Even for a liquid that does not wet the surf ace, condensation
with p < pg can occurs if the surface arrangement is favorable. Con-
sider two planar parallel surfaces with a gap of thickness / in equi-
librium with a bulk vapor phase. If the geometry of the condensate
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is a cylinder the number of mole in the condensate is hA/V;. Com-
paring the two situations where the gap is either filled with water
or with vapor, the free energy change in the condensation is

hA

AG = Z2RTIN P2 4 2(7y — 7e0)A (8.6)

VL p
where the term 7, is absent since the liquid fill completely the
interstice. The factor arises owing to the presence of two interfaces.
Condensation occurs at the threshold pressure where AG = 0. This
means

2V, 2V,
RTInEY = St (5 = 70) = = E o cos 8)

An interesting consequence of this formula is the change in relative
humidity when we compare a wetting surface for which 6 is small,
cos @ = 1, with a hydrophobic surface for which 6 > /2 (therefore,
cosf < 0). A surface has always cracks or pores at the microscopic
level and this problem gives the conditions for drying the surface.
If the liquid wets the surface, il will take a vapor pressure less than
the equilibrium liquid-vapor pressure to dry the surface. For an
hydrophobic surface where cos6 < 0, il will take a vapor pressure
larger than the equilibrium pressure to have a film, so that drying
will occur even at the equilibrium py.

8.2 Langmuir adsorption
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Non-ideal solutions: Binary solutions

The phase behavior of a lipid system depends on the pressure, tem-
perature, and exact membrane composition. The maximum number
of phases P that can coexist in a given system is determined by the
Gibbs phase rule

P=C—-F+2 (9.1)

Here C is the number of components and F denote the number of
independent intensive variables. For a binary system, C = 2 and

F = 2 (temperature and pressure), and hence P = 2. In a binary
system only two coexisting phases are possible. In a ternary system
(cholesterol, saturated lipid and unsaturated one), coexistence of 3
phases are possible. Compositions for a ternary system are com-
monly represented using a triangle as in Fig. ?? and an example is
shown in Fig. ??. Other examples in biology are lipid rafts for celle
membranes whose biological function is still a matter of debate.

9.1 Introduction to the mixing free energy

Due to the near incompressibility of liquids the energy and en-
thalpy differ by a constant term pV. Therefore, if we compare two
states at the same pressure, the enthalpy change is equal to the
energy change

AH = AU (9.2)

It follows that the changes in Helmhotz free energy equal changes
in Gibbs free energy. The thermodynamic internal energy U equals
the total intermolecular interaction

All molecules
E= > w (93)

i>j
For the mixing of two pure liquids into a randomized mixture
AEmixing = Emixing —Eo (9-4)

where Ej is the energy of unmixed liquid. Assume Ey = 0 to make
things simple.

To calculate AEjying, we define w4p as the interaction energy
for a pair of nearest neighbor compartment. If two neighboring

Figure 9.1: The composition of a
ternary system consisting of com-
ponents A, B, and C can be repre-
sented on a triangular graph because
xa + xp + xc = 1. The composition
corresponds to a point P inside an
equilateral triangle of unit side length.
The mole fraction are the lengths of
the line drawn parallel to the sides of
the triangle. For ternary systems, see [?

1

Cholesterol

Low-T,, High-Ty,

Figure 9.2: Illustrative phase diagram
for a ternary lipid mixture containing
low- and high-melting temperature
lipids and cholesterol[? ].
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compartments are occupied by a A and B molecule, respectively,
the mixing energy for this pair is

WAB (9:5)

The mixing energy is thus

AEmixing = WABPAB (9:6)

where p 43 is the probability to have a nearest neighbor A—B

pair. The probability that a compartment is occupied by a type

A molecule is N4/N. Given that a compartment is occupied is by
a type A molecule, the probability that one its z neighbor is occu-
pied by a type B molecule is Ng/N. Therefore, the probability for a
compartment to have a A—B bond is

Na Ng
NN ©7)

The last equation is the mixing energy per compartment. To have
the total the total mixing energy, we sum up over all compartments

Na Ng
AEmixing = Z WwABZ (9-8)
All compartments

The term in the sum is the same for all compartments. Therefore,

AEmixing = NwABZWW (9.9)

This equation is known as the Flory-Huggins theory to investigate
binary systems.
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Exercice 9.1 The purpose of this exercise is to study the phase transition
phenomenon for binary solutions. One considers a mixture of A and

B lipids. As before, we imagine that the membrane can be divided into

N cells which contain either A or B lipids (one per each cell). The total
number of A lipids is N4 and the total number of lipids of type B is Np.
The lattice is supposed to be a square lattice with coordination number

z = 4 (number of nearest neighbors). Because of the afore mentioned
constraint, we have N = N4 + Np.

1. In this problem, we will follow a mean-field approach where all quan-
tities are average quantities. This allows us to use occupancy prob-
abilities. Assuming Ny A lipids with Ny for B-lipids, what are the
probabilities for a cell to be occupied by a A lipid or a B lipid ?

2. Given that a compartment is occupied is by a type A molecule, the
probability that one its z neighbor is occupied by a type B molecule is
Ng/N. What is the probability for a compartment to have a A—B bond
as a function of z ?

3. To calculate the enthalpy of mixing AEixing, we define w zp as the
interaction energy for a pair of nearest neighbor compartment. What is,

on average, the mixing enthalpy per cell due to this interaction anergy
?

4. Till now, we have assumed that the contact energy waa for a AA
pair or wpp for a BB pair is zero. We want to know how the previous
equation is modified when waa # 0, or wpp # 0. To do this, we have
to count the number n 4 of AA pairs and the number npp of BB pairs.

Given that a A molecule is either engaged in AA or a AB pair, zN 4 is
the total number of pairs where A molecules are engaged. Give zN 4 as
a function of na4 and np. Give zNp as a function of npp and np

5. Show that the total mixing energy becomes (sum over all cells) :

N4 Ng 1 1
EMixing = Nz— = <wAB —5WaA— 2w33> + Eo (9.10)
where 1 1
Ey = EzwAANA + iszBNB (9.11)

is the energy of the pure states.

6. Give the mixing entropy for a system of N4 and Ng lipid molecules
distributed among N = N4 + Np.

7. Show that the mixing free energy can be expressed as

AGmixing(Tr p,Na, NB) = NA,u?q(Tz P) + NB,”%(Tr P)+

Ny Np
NpkgTIn | ———— NgkgTIn | —————
AP n<NA+NB)+ e n(NA+NB
N4Np
A8
+ NA+NB
(9.12)

where A is a parameter. Give A as a function of the other parameters.

Figure 9.3: A—B binary solution.

At high temperature, entropy rules
with perfect mixing for the A and B
molecules. At lower temperature, the
energy of contact between the A and B
atoms wins. Phase separation occurs
between a B rich phase and a A rich
phase (i.e. B poor phase).

<
o

o o
IS o

©

molar free energy g
<
w

0.2 0.4 0.6 0.8
concentration x

N

Figure 9.4: Gibbs free energy per
particle for a binary solution as a
function of concentration x = x4

of the A species . Dark red curve is

for T > T, and blue red curve is for

T < T.. The Gibbs free energy is

not convex for T < T indicating an
instability towards phase separation
between a A rich phase and a A

poor phase. The dotted line is the
double tangent construction giving the
concentration of A molecule in the rich
and poor phase.
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8. As usual the state of the system is the state which minimizes the Gibbs

free energy. We have N = N4 + Np. For A > 0, what kind of phase the

term
N4Npg
Ny + Np

does favor ? Discuss the competition between the mixing entropy term
and this term as a function of the temperature ?

9. Define the variable x = x4 = Ny/(Na + Np). What is xp as a
function of x ?

10. Define

§(T,p,) = G(T,p,0)/(Na +N) = . G(T,p)  (913)

Write g(p, T, x) as a function of x.

11. In order for the system to be stable into relatively A-rich and B-rich
regions, we consider the plots of G(T, P, x) as a function of x for dif-
ferent temperatures T as in Fig. ??. What happens if G has the shape
of the upper blue curve ? (Remember that for the system to be stable
against any fluctuation Ax, g(x — Ax) + g(x + Ax) < 2g(x). The last
inequality means that g(x) must be a convex function of x. To answer
this question, consider the total Gibbs free energy and divide the system
in two).

12. Consider again Fig. ??. Identify on x axis the pure A system and
the pure B system. Draw an arrow to sketch the experimental protocol
when the system is quenched from high to low temperatures.

13. Since x 4 is the only variable, we can simplify our notation and take
X4 = x. Show

§(T, p,x) = xpy(T, P) + (1 — x)up(T, P)
+ kT [xInx + (1 —x)In(1 —x)] (9.14)
+ Ax(1—x)

14. In order for the system to be stable against phase separation, we must
have that ¢(T, p, x) to be a convex function of x. Thus, we must calcu-
late the second derivative. Show :

0%g 1

1
8 kT [x + H] —2A(1—2x) (9.15)

15. The solution of the equation 0°g/0x> = 0 gives a condition T*(x)
known as the spinodal. What is the maximum value achieved by the

< 06 SINGLE PHASE REGION
function x(1 —x) for0 <x<1? 2 ===
v 0.4
Deduce that the system phase separates if T < T* < kg/2A. Conclude z
. . . . . g 02
from question 1. In this case the two phases are said to immiscible, or, E
equivalently, there exists @ SOLUBILITY GAP. T ool

0o 02 04 06 08 1
concentration x

Figure 9.5: Phase diagram for the

binary system. The black curve is the

coexistence curve, and the dark red

curve is the spinodal. A-rich material

is to left and B-rich to the right.
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16. If two phases coexist, they must have equal chemical potential (as
well as same temperature and pressure, which is why G is a useful
function). The chemical potentials associated with each component are

oG .
Wi=oN ot = A,B (9.16)
1
where the partial derivatives are taken with all other variables constant.
Using
J[N, .
Hi= E)N?g] i=AB (9.17)
1
and
08 o 08 Ox
aNl‘ - ; 6xk 6N1' (9.18)
where the sum runs over k = A and k = B, show
_ .. %8 g i
M= gt g ;xk - AB (9-19)

which shows that y; # % as one would have naively expected.

17. In our problem, the total number of particles is conserved N = Ny +
Ng. Deduce
g= . Xifi (9-20)
i=A,B
18. Since xpo + xp = 1, x4 and xp are not independent. We take x 4 as
the independent variable. Show that the chemical potential are
B 1,8
6XA 6xA

0
VB:g_xAﬁ

pa =8+
(9.21)

where g and its derivative are now functions of x 4 only.

19. Consider the coexistence of two phases 1 and 2. Let x 4 1 the concen-
tration of A in the phase number 1 and x 4 5 the concentration of A in
phase number 2. For the B molecules, we have xp1 or Xp .

The phases can coexist if the chemical potential of the two components
in both phases are equal

pa(xan) =palxa2)

(9-22)
pB(xa1) = pp(xa2)
Show that this condition implies
g _ 08 _ 8(xap) —8g(xan)
a‘x:x/“ - ax‘x:x” - (xa2—x41) (9:23)

This condition is known as the double tangent, see Fig. ??.
20.

21. From the Maxwell construction, show that the two phases coexist if
temperature and concentration are related by

A 1-—-2x

Teoex(x) = 6@ (9.24)

61
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22. Consider the phase diagram of Fig. ??. Find on which line of this
diagram are located the points with the double tangents of Fig. ??.
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9.2 Non-ideal solutions: Polymer solutions, the Flory-Huiggins
theory for polymers

Up to now we have considered ideal solutions. This approximation
may be correct for gas, but solutions are very, very non-ideal. As

a first example of non-ideal solutions, we concentrate on the case
where the solvent and the solute are not of the same size. This is
the case for polymer solutions where the solute is assumed to be

a macromolecule composed of N monomeric units, where N is

a large number. An other case non-ideal solutions is the case of
electrolyte solutions (Coulomb forces are not weak).

Implicit in many of our solution thermodynamic equations is
the assumption that the solute and solvent particles are of similar
sizes and occupy similar volumes. A good example is the entropy
of mixing. If we mix gas A in voule V4 and gas B in volume Vg
the final volume occupied by both gases is V4 + V. The entropy
change is

Va VB
ASixing = —k [nA In Vit Ve +npln M] (9.25)

with volume fractions defined as:

Va VB

A B 26
Pa=vve BTV v (9-26)

A polymer solution can be visualized in the same way as a regu-
lar solution: the solvent and solute occupy a lattice. The difference
is that the polymer occupies more than a single lattice site. We as-
sume each monomer occupies a lattice site as shown below, where
each monomer is a dark circle and the monomers are connected
into a polymer. The solvent molecules are shown as open circles.
Actually, what counts is the center of mass of the molecule.

Suppose the lattice has M sites, M plays the role of the total
volume. There are N, polymer molecules each with N monomer

units and N; solvent molecules. Therefore, M = NN, + N;s. We now o9 ®
define the solvent and polymer volume fractions: o o9
N,N :0::‘93
N,

gs=7; and ¢y =— (927) ¢ ¢

*o o

The total entropy of mixing a the polymer and a solvent is o9 ¢

oo

ASpizing = —k [NsIn¢ps + Ny In ¢, | (9.28)

so the entropy per site is q

Asmixing Gbp
M - —k | ¢psIngps + N In ¢y (9.29)

random walk.

which is the usual entropy of mixing is N = 1.

This formula is far from trivial because of the Nj In ¢, term (one
should expect NN instead of Nj). The simplest way to understand
that its correct is to note that the mixing entropy should be propor-
tional to the total number of chains, N, (only the center of mass of

63

Figure 9.6: Flory model for a polymer.
Each mer occupies a single compart-
ment and the chain is visualized as a
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the chains counts when we place the chain on a lattice), but the vol-
ume fraction should be the one of the monomers (thus the ¢, term
within the Log). De Gennes writes this formula with the symmetric

form
ASmixing .

i —k [4)5 In¢s + (P—Z\’; In % (9.30)
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The Bolzmann-Gibbs distribution

10.1 Statistical entropy

Proteins can adopt many conformational states as a function of
generalized forces. For example, Fig. ?? schematizes different types
of ionic channels with two conformational states: open and closed.
Recording the ionic current in a patch clamp experiment allows to
measure the probability p;_ » to be in one of the conformational
states.

With this example in mind, consider a hypothetic protein with ()
conformational states. First, we define the probabilistic entropy as’

i=0
S=—k Z pilnp; (10.1)
i=1
where p; is the probability to find the system in state i. This defini-
tion is equivalent to well-known formula®

S=klnQ (10.2)

where k is the Bolzmann constant and where () stands for the num-
ber of microscopic states accessible to the system under given
constraints. To go from the first equation to the second one, take
pi = 1/€). So, when all microscopic states have equal probability,
the Bolzmann definition is equivalent to the probabilistic definition.
Proteins, however, like other systems have many conformational
states which differ in energy, so that the probabilities are not equal.
Does the probabilistic entropy agree with the thermodynamic
entropy ? To answer this equation, we should do statistical physics
and this is not our purpose. Here it suffices to show that the en-
tropy defined this way is an extensive property.

Exercice 10.1 Suppose that we have two proteins A and B with N and
M conformational states. The entropy of for each protein is

Sa= Y. pilnp; Sg= ) pjnp; (10.3)

1<i<N 1<j<M

Consider now the ensemble A + B. Each state (i, ) of the ensemble is the
product of the state i of the protein A with the state j of protein B.

* This godlike contraption is due to
Shannon in the 4oth.

* This other godlike contraption is due
to Bolzmann in 1897.
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1. What is the probability p; ; to observe the microstates i and the j ?

2. The conformations of the two molecules are independent so that the
joint probability is the product of the probabilities. What is the entropy
for the combinaison C of A and B ?

3. Check that the entropy is extensive indeed

Sa+p=5A+Sp (10.4)

10.2 Bolzmann-Gibbs distribution

Consider again an hypothetical molecule with (2 conformational
states. The Bolzmann-Gibbs distribution is the distribution proba-
bility to observe the molecule in state i

pi= le’Ei/kT i=1,...,Q (10.5)
Z
Since
Z pi=1 (10.6)
i
the normalization constant is equal to
Z = Z ¢~ PEi B=1/kgT (10.7)
1<i<Q

This normalization constant is called the partition sum.
Where (??) does come from ? Here it suffices to say that if we fix
the mean energy

<E>= Z piE; (10.8)
i

Then the Bolzmann distribution is the one which maxiM1ZzEs the
entropy. Since the entropy measures (returning to our physical
intuition) the randomness or disorder of the system, the Bolzmann
distribution is the ‘most random’ or ’least structured” distribution
that can generate the mean energy.
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Exercice 10.2 One of the principal result in statistical mechanics states
that that the average energy associated with every degree of freedom is
1/2kgT. This statement is the known as the equipartition of energy. As-
sume that the cost of energy of a hypothetical protein is E = 1/2kx?, where
x is the elongation of the protein in the x-direction.

1. Check this result.

2. What is the mean energy for a two-dimensional deformation E =
1/2k(x? + y?) and a three-dimensional case E = 1/2k(x? + y* + z?)

Exercice 10.3 We are going to show that the open probability of an ion
channel depend on membrane tension.

1. Consider first a two-states model where the channel is either closed or
open. We label the state of the channel via a variable o and when o = 0,
the channel is closed, but when o = 1, the channel is open. For the
case for which there is no external driving force, the energy E(0) is a
function of the internal state o = 0,1. We write:

E(c) =0eg+ (1 —0)eq (10.9)
What are €y and €1?

2. What is the probability to observe the channel in the open state et what
is the probability to observe the channel in the closed state ?

3. When a bacterial cell is subjected to osmotic shock, the resulting flow of
water across the cell membrane results in osmotic tension. The channels
reply by opening. We thus introduce the energy as a function of the
applied tension T as

E(c)=0eg+ (1—0)e] —0TAA (10.10)

where the term cTAA favors the open state and reflect the fact that
membrane tension favors the open states. What is the probability popen
to observe the channel in the open state ? Draw a graph of popen as a
fun function of o ?

4. What is o ? Conclude.
Exercice 10.4 Consider the mixing entropy
S(n) =kg[NInN —nlnn— (N —n)In(N —n)] (10.11)

Suppose that one solute molecule is removed from solution by binding to
a protein receptor. The change in free energy has two contributions. The
first is associated with the enthalpy binding, the second is the change in
entropy due to the change of n — n — 1 molecules in the solution.

1. If the binding energy is €, give the change in free energy as a function
of the concentration ¢ = n/N. Call this result AE.

2. Recall Bolzmann’s law for a macro-molecule with j = 1,2,...N
internal states
pj = e Pijz j=1,2,...N (10.12)

Compute Z (recall that probabilities have to be normalized).
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3. Ome application of the chemical potential is to ligand-gated ion chan-
nels. Suppose that the ion channel receptor can be in two states : un-
bound by a ligand (C) or bound by a ligand (o). Give pc and po as a
function of AE.

4. As shown in Fig. ??, these probability are experimentally accessible.
Using single molecule devices which mesure the electrical current
passing through a ionic canal (patch-clamp), one mesures the time spent
topen in the open conformation. Assume that topen + toose i the time
of observation. What is po as a function of these two times ?

Exercice 10.5 In this exercice we will explore simple thermodynamic
model for gene or protein regulation, by studying how the concentration of
a transcription factor (TF) relates to the to promoter occupancy. A TF is
present in solution at concentration c in the cell. On the DNA, there is a
single specific binding site that can be empty or occupied by this TF. When
the site is occupied, the regulated gene will transcribed into mRNA, see
Fig. ?2. The problem of requlation by agonist3 is central in biology*

Suppose that a site is occupied of empty. The different states of this site
are therefore labeled by a number n = 0, 1. We assume that the unoccupied
state has zero energy.

1. Assume that there is a binding energy E favoring the occupied state,
relative to the reference energy 0 in the unbound state. But in order
to occupy the state, one needs to remove one molecule of TF from the
solution. Let y be the chemical potential of TF. What is the energy cost
of removing a single TF molecule from the solution ?

2. What is the probability for this site to be occupied ?
3. What is the partition sum Z ?

4. Show that we can write

c
c+ Ky

(10.13)

and give Ky as a function of E. Plot P(n = 1) as a function of c.

5. In the limit of relatively large concentrations, we can treat the concen-
trations c as a continuous variable and describe the regulatory process
by a differential equation. If becomes n a number between 0 and 1, we
can interpret n as the "probability of the site” to be occupied, we write

dn
i kic(t)(1—n)—k_n
where k. is the on-rate and k_ is the off-rate. Interpret this equation.

Give k_ [k as a fucntion of E.

(10.14)

6. Suppose now that we make a model somewhat more complicated. We

consider 2 binding sites and consider the 4 possible values (00, 01, 10, 11).

Suppose moreover that there is COOPERATIVITY - if both sites are occu-
pied there an additional favorable energy contribution € to the total

energy energy of the state (11). What is the partition sum of the system
?

Channel . !

closed

Channel

apon M L L‘“J" L'L‘J u
Figure 10.1: The opening of a ionic
ion-channel is all-or-none and is a
stochastic event. The probability for
channel opening is the fractional time
passed in the open conformation. Such
experimental results are routine using
patch-clamp setups.

3 Recall the definition of an agonist
in biochemistry: A substance that
attaches to a receptor and directly
causes a response in the organism.

4 There are many drugs that act as
agonists ligands (L) which means they
"turn on" their target receptor (RL)
so that it induces its normal down-
stream signalling. Examples of such
drugs include: growth hormones,
insulin, steroids and G-protein cou-
pled Recetor(GCPR) ligands such as
morphine (opiods), neurotransmit-
ters and scent/aroma compounds. In
general you can improve the potency
of these drugs by improve their bind-
ing dissociation constant K for their
receptor.

1 geneg
1 ———"
" n
binding
site

Figure 10.2: The simplest regulatory
graph, where an input transcription
factor at concentration c regulates the
output expression level of mRNA by
binding to a binding site n, which can
be empty or occupied.
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7. What is p(11) ?

8. When e « u — E, i.e. when the gain in energy € is larger that the
favorable enerqy u — E of transferring one molecule in an empty site,
we can assume

e ETH « eT2Eme42p (10.15)
show
2
P(].l) = W (10.16)
and give K.
9. In molecular biology, Hill functions (or sigmoidal functions) are de-
fined as
ch
€)= —— 10.1
0= 5 (10.17

where h is known as the Hill coefficient. We have seen how such phe-
nomenological curves arise in thermodynamics. Assume for simplicity
Ky = 1 and plot the occupancy f(c) as a function of c for increasing
values of the Hill coefficient h.

Exercice 10.6 Consider a molecule with 1 < n < N internal states.

1. Since the internal energy is a random variable, it is of interest to com-
pute the mean < E >. Call

Z = Zexp{[—ﬁEn]} B = % (10.18)
Show:
<E>= _(67? (10.19)

2. The specific heat is the energy to increase the the temperature by one
units. In other term: Cy = 0 < E > /0T. Show that the specific heat is
related tot he fluctuations of E (second cumulant)

Cy <E’>—-<E >2] (10.20)

gl

This result is general. Response functions, i.e. how a system responds
to an external perturbation, are related to the fluctuations of the quan-
tity coupled to the perturbation.

Exercice 10.7 INTRODUCTION TO THE DEBYE-HUCKEL THEORY: Sur-
faces of nanoparticles in solvent are electrically charged. This is is due
to:

1. lononization of surface groups;
2. Adsorption of ions to previously uncharged surfaces;
3. Charge transfert: Acid-Base reaction for example.

Interactions that occur between fixed charges at surface and those which
are free in solution play an important role. Charged surface are character-
ized by:
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® The density o of surface charges;
* An electrical potential .

We assume that the adjacent solution contains electrolyte and is char-
acterized by bulk concentration (i.e. number of molecules per unit volume)
Cion- Let z; be the ion valency. We want to determine the relationship be-
tween o and Py and also how the potential and the distribution of ions
varies with distance from the charged interface.

We consider negatively charged wall that is infinite in the x and y
direction. The distance from the charged surface is z. The charge density
on the wall is o. Let ®(z) be the electrical potential. Because of Gauss’s

law
ad 1o

dz  epey

(10.21)

The adjacent solution contains positively charged and negatively charged
ions in equal quantity with homogeneous density cy when ¢(z) = 0. We
assume that the ions bare a charge +z;e.

1. Because the ions in solution are free and respond to the electrical fields,
the solution’s charge distribution is not independently known. In ad-
dition to the electrostatic interaction energy, we must also consider the
entropy associated withe the solution’s ion distribution. The electro-
static interaction favors an ordered and well localized ion arrangement,
but entropy strives to generate a random distribution. Recall that this
compromise between entropy and energy results in the Bolzmann distri-
bution.

The potential energy of a charge q in an an electrical potential ®(z) is
q®(z). Check this formula using the relation between the electrical field
E and the electrical potential ®(z). It suffices to compute the force due
to the electrical field (remember E = —V ®).

2. Calculate c+(z) as a function of ®(z) (use Bolzmann law).

3. In electrostatics, the Poisson equation gives the relationship between
the electrical charges and the electrical potential ®(z). It takes the form
(er is the relative permittivity of the water, €, = 80)

_ Pfree ions (x)

AD(z) = coc
.

(10.22)

and show

d>® e —zied
47 = _6076221-60 exp{— le } (10.23)
r =
1

"nen

where each ion "i" (concentration cy) carries a charge z; (ion valency).
Typically (i.e. z; = 1 for NaCl in solution)

4. Use the identity

d (df\* _&fdf
e (dz) = ZEE (10.24)
to show that the potential ¢(z) solves the differential equation:
_, 2ezicg . z;ed(z)
AD(z) = + s smh[ T (10.25)

‘ Parts of double layer

Guoy diffuse layer
Stern layer M. Hubbe

Figure 10.3:
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This equation is known as the Poisson-Bolzmann equation. There is
fundamental approximation involved in this derivation. We have ne-
glected the electrical potential due to the ions and have only considered
the external potential due the charges on the surface.

. Without solving this equation, show that there exists a characteristic
length scale 1, which enters into the problem. What is your interpreta-
tion ?

. To solve this equation we need appropriate boundary conditions.
Electro-neutrality requires that the surface charge be fully neutral-
ized by ions in solution, and at sufficiently large distance E = 0. What
is the condition on d®/dz as z — +o0 ?

. The other condition is similar to the condition governing the electrical
field inside a capacitor. What is

dd
e lz=0 =7 (10.26)

. Assume

T ~ T (10.27)

and solve the differential equation. Give l,. What is the physical inter-
pretation of I, ? Are electrostatic interaction relevant in cells and if yes

sinh [ziecb(z)] z;e®(z)

at which scale ?

. Assume that the ions come from the dissociation of NaCl (0.15 M).
What is the order of magnitude of I, ? (For future reference, I,/ 1 =
0.3/0(1)/2 where cq is in Mol) (hints: kT = 4.110721], e, = 78.5, ¢y =
8.8510~12F /m)
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11
Electrostatic interactions, Van der Waals interaction,
DLVO theory for colloidal dispersions

Competition between attractive van der Waals and repulsive double-
layer (electrostatic) forces determine the stability of colloidal sys-
tems.

11.1  Debye-Hckel theory

Surfaces of nanoparticles in solvent are electrically charged. This is
is due to:

1. lononization of surface groups;
2. Adsorption of ions to previously uncharged surfaces;
3. Charge transfert: Acid-Base reaction for example.

Interactions that occur between fixed charges at surface and those
which are free in solution play an important role. Charged surface
are characterized by:

® The density o of surface charges;
¢ An electrical potential ®.

We assume that the adjacent solution contains electrolyte and is
characterized by bulk concentration (i.e. number of molecules per
unit volume) cjon. Let z; be the ion valency. We want to determine
the relationship between ¢ and ® and also the potential and the
distribution of ions varies with distance from the charged interface.

Exercice 11.1 We consider negatively charged wall that is infinite in the
x and y direction. The distance from the charged surface is z. The charge
density on the wall is 0. Let ®(z) be the electrical potential. Because of

Gauss’s law
dd B o

dz  epey
The adjacent solution contains positively charged and negatively charged
ions in equal quantity with homogeneous density co when ¢(z) = 0. We
assume that the ions bare a charge +z;e.

(11.1)
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1. Because the ions in solution are free and respond to the electrical fields,
the solution’s charge distribution is not independently known. In ad-
dition to the electrostatic interaction energy, we must also consider the
entropy associated withe the solution’s ion distribution. The electro-
static interaction favors an ordered and well localized ion arrangement,
but entropy strives to generate a random distribution. Recall that this
compromise between entropy and energy results in the Bolzmann distri-

bution. ‘ Parts of double layer
The potential energy of a charge q in an an electrical potential ®(z) is ® ~
Q)
q®(z). Check this formula using the relation between the electrical field @
E and the electrical potential ®(z) e
P & \':F‘n
2. Calculate c+(z) as a function of ®(z) (use Bolzmann law). ;- o Tt
Stern layer ’ ’ M. Hubbe

3. The Poisson equation gives the relationship between the electrical
charges and the electrical potential O(z). It takes the form

Figure 11.1:

. O freeions (x)

AD(z) = coc
.

(11.2)

and show

2ez;ico . z;ed(z)
AD(z) = i h|= .
(z) =+ o, sin [ T (11.3)
This equation is known as the Poisson-Bolzmann equation. There is
Sfundamental approximation involved in this derivation. We have ne-
glected the electrical potential due to the ions and have only considered
the external potential due the charges on the surface.

4. Without solving this equation, show that there exists a characteristic
length scale 1, which enters into the problem. What is your interpreta-
tion ?

5. To solve this equation we need appropriate boundary conditions.
Electro-neutrality requires that the surface charge be fully neutral-
ized by ions in solution, and at sufficiently large distance E = 0. What
is the condition on d®/dz as z — +o0 ?

6. The other condition is similar to the condition governing the electrical
field inside a capacitor. What is

——lz=0=? (11.4)

7. Assume

sinh [ziecb(z)] z;ed(z)

T N T (11.5)

and solve the differential equation. Give l,. What is the physical inter-
pretation of 1, ?

8. Assume that the ions come from the dissociation of NaCl (0.1 M).
What is the order of magnitude of 1, ? (For future reference, I,/ 1=

0.3/cy/%)
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11.2  Zeta potential

Zeta potential is the charge that develops at the interface between
a solid surface and its liquid medium. This potential, which is
measured in MilliVolts, may arise by any of several mechanisms.
Among these are the dissociation of ionogenic groups in the parti-
cle surface and the differential adsorption of solution ions into the
surface region. The net charge at the particle surface affects the ion
distribution in the nearby region, increasing the concentration of
counterions close to the surface. Thus, an electrical double layer is
formed in the region of the particle-liquid interface.

This double layer (upper part of figure) consists of two parts:
an inner region that includes ions bound relatively tightly to the
surface, and an outer region where a balance of electrostatic forces
and random thermal motion determines the ion distribution. The
potential in this region, therefore, decays with increasing distance
from the surface until, at sufficient distance, it reaches the bulk
solution value, conventionally taken to be zero. This decay is shown
by the lower part of the figure and the indication is given that the
zeta potential is the value at the surface of shear.

In an electric field, as in microelectrophoresis, each particle and
its most closely associated ions move through the solution as a unit,
and the potential at the surface of shear between this unit and the
surrounding medium is known as the zeta potential. When a layer
of macromolecules is adsorbed on the particles surface, it shifts the
shear plane further from the surface and alters the zeta potential.

Zeta potential is therefore a function of the surface charge of the
particle, any adsorbed layer at the interface, and the nature and
composition of the surrounding suspension medium. It can be ex-
perimentally determined and, because it reflects the effective charge
on the particles and is therefore related to the electrostatic repul-
sion between them, the zeta potential has proven to be extremely
relevant to the practical study and control of colloidal stability and
flocculation processes.

11.3  Electrostatic interaction between two plane surfaces

11.4 Van der Waals interaction

Competition between attractive van der Waals and repulsive double-
layer forces determines the stability or instability of colloidal sys-
tems.
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DLVO theory
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Figure 11.3: . DLVO theory: The total
interaction potential between two
colloidal particles is the sum of the
attractive Van de Waals interaction and
the repulsive electrostatic repulsion.






12
Brownian motion and random walk

12.1 Introduction

A polymer chain is a chain of several polyatomic units called
monomers and look like a cooked spaghetti. In this chapter we
will look at static or time averaged properties of polymers by em-
ploying different models. In particular we will investigate the end-
to-end distance and the radius of gyration (i.e. its averaged size

in solution) as a function of the number of monomers (index of
polymerization). In this chapter, chains are "ideal", meaning that
self-avoidance effects are neglected (two monomers can occupy
the same place). We will limit ourselves ti polymer in good sol-
vents where the interaction between the monomers and the solvent
molecules are attractive.

12.2  The central limit theorem

The normal random variable has probability distribution

) = e [—(;j)z]} (121)

27102

The mean is y and the variance is c2. As ¢ — 0, the random vari-
able is almost sure. With these definitions, (??) is normalized to 1,
so that the ¢ — 0 limit gives the J-Dirac distribution (where all the
‘mass’ is concentrated on one point on the x axis .

The generalization to N variables is straightforward

P(x) = P({xi}) =

1 1 _ (12.2)
e w2 )

where x is the transpose of the vector x with dimension N.

For example, we can consider a vector in d-dimension (d =
1,2,3) with components (11,17, ...74) on a vector basis (orhonormal)
Ay, y,... 0y

R=r0 +rbx+...7504 (12.3)

The vector R is said to normally distributed if 71, 13, ..., are nor-

VAN

-15 -1.0 -0.5 05 1.0 15

Figure 12.1: The normal distribution
tends to a Dirac distribution as ¢ — 0
(peaked at one point).
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mally distributed (mean y;, variance o;)

1 (ri — 1i)?
P(R) = exps | — — (12.4)
(2n)doios .. .03 i:l,z;...d 207
or
1 1 2
PR) = ———— —— > (ri—p (12.5)

ex
V(2m)do F 202, G4
in the usual case where all 0; and y; are equal to o or .

Exercice 12.1 If you have not done before, the following trick is useful. To

[ axexp{[-ax’]}

calculate

Evaluate first

[ axesp{[-e2]}] -

[ vep{[-es]} [ dvese{ [ et

and use polar coordinates. Don’t forget

dexdy...=j:nd¢fooodr... (12.7)

While you are at it, take the derivative with respect to « to calculate <

x2 >,

(12.6)

In his most restrictive form, the central limit theorem goes as
follows:

Let X1, X, X3, ..., X, be a sequence of n and identically dis-
tributed variables having each finite value of expectation y and

_ Zizl,n Xi —hy
o\/n

The distribution for Y}, approaches the standard distribution as

variance 2. Form

Y, (12.8)

n — 0.

12.3 One-dimensional random-walk

A polymer chain can be seen as a random walk. Here we define
what we mean by that and consider the stochastic movement of
particles on a lattice. We reduce the problem to its barest essential
and consider the motion of particles along one axis only. All par-
ticles start at time f = 0 at the origin and execute a random walk
according to the following rule :

1. Each particle steps to the right or to the left once every T sec-
onds with a velocity +vy. The corresponding distance travelled
without changing direction is thus § = v, 7.
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2. the probability from going to right is 1/2, and the probability of
going to the left at each step is 1/2. The particle by interacting
with the water molecule forgets the preceding journey. The walk
is not biased.

3. Each particle moves independently of all other particles. There is
no interaction among particles.

The motion of one single particle is not of interest, since we cannot
predict what it will be. This is an example of a random process
(stochastic process). We want to characterize the PROBABILITY to be
at a certain distance after N steps. Ind = 2 or d = 3, the path taken
by our stochastic molecules correspond to one configuration of a
polymer chain with N mers. What we want to do is to average over
the configurations of a polymer.

The consequences of this random walk picture are striking :

1. On average, the particle goes nowhere. the mean displacement is

zero < x >= 0.

2. On average, the root-mean-square displacement is proportional
to the square-root of the time and NOT to the time v/ < x2 >oct.
This point will be discussed later on in a next chapter.

We consider an ensemble of Z particles. Let x;(N) the displace-
ment of ith particule after the Nth step. We have

xi(N)=x;(N—-1)+1 (12.9)

For half of the particles, the + sign will apply and for the other
half, we will choose the — sign.
On average

x;(N) (12.10)

which means

<x(N)> =2 3 [N -1)£1]
i=1,Z (12.11)
=<x(N-1)>

Therefore : One average, the particle goes nowhere. The distribu-
tion which characterizes the spreading is symmetrical withe respect
to the origin.

We compute the root-mean square displacement. For the ith
particle, we take the square

x(N)? = x;(N —1)? + 2lx;(N — 1) + I (12.12)

and compute the mean

(12.13)

R

Figure 12.2:
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which means :
< x*(N) >= NI? (12.14)

Consider now the bond vectors u(i) = x(i + 1) — x(i). A bond
vector corresponds one mer in our polymer analogy. Then the u(i)
are independent random variables with:

1. Zero mean: (u(i)) =0
2. Equal variance: (u(i)?) = {(x(i + 1) — x(i))?) = I2

We have for the end-to-end distance between the starting and the
end point

R = Eu(i) (12.15)

so that our preceding conclusion applies. R is the sum of indepen-
dent random variables with a given mean and variance, so that R is
normally distributed.
We have
(R%) = NI? (12.16)

Ford =1

—1/2 R2
P(N,R) = (ang) exp{ l_ﬂ{%} } (12.17)

For d = 3, one can do the same calculation as before. The cal-
culation is similar. What happens in the x , y or z directions are
independent and things are symmetric in the x, y, z directions. We
have (note the factor 3):

1 ()= ) = () =0,
2 (=GP =) =P3;

so that
(% + <y2> +{(Z2 =12 (12.18)

After N steps, one finds
(R?) = NI? (12.19)

and the distribution is

27R? 2 3R?
P(N,R) = 3 expi | —5pa (12.20)
0

12.4 The random walk results are universal

One can ask if the results of the random walk model will survive in
more realistic situations. The answer is yes. They will survive and
they are model independent as long as we don’t make drastic chan-
ges. This property is called universality. There are things which
matter and things which do not.
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For an ideal random walk (a self-avoiding random walk is not
ideal), one always finds that the typical size of the region that the
random walk inspects is proportional to ¢!/2

V< RZ >t v =1/2Ideal Random Walk (12.21)

or to N'/2 where N is the number of steps. The mathematical sign
oc means proportional to. When we coin the term "universal", we
mean that v does not change, but that the prefactor can. In general,
v will not depend on the geometry of the network. If we take a
square or a triangular lattice, the exponent v will not change. If
the length of the step is not more fixed but if it is drawn from a
probability distribution, v will not change either (if this probability
distribution is not pathological). For an ideal random walk, the
exponent v does not depend on the dimension of space. For a self-
avoiding random-walk, it does as long as the dimension of space is
less than 4.

Remark 4 Let p(d) be the probability that a random walk on d-dimensional
lattice return to the origin (after an infinite number of steps). In 1921,
Pélya proved that

p(1) =p(2) =1but p(d) <1ford>2 (12.22)

Another way to say that is: "All roads lead to Rome except the cosmic
paths | ”

This can be seen as follows. Consider a random walk of N steps on
a lattice. The region inspected by the random walk has size \/N. This
corresponds to N/ different sites if the sites are DISTINCT, i.e. counted
once. The density of visited sites is therefore N/N%2 = 1/N%/2=1 which
growths with N if d < 2. The random will start at some point to visit the
same site many times. One says that the walk is recurrent. For d > 3, the
density decreases meaning that the random walk has a chance to escape.
The random walk is transient. The case d = 2 is more problematic, but the
random walk has a probability 1 to return to the origin.

12.5 Thermodynamic functions

We assume that all conformations with a given end-to-end distance
are of equal energy. Absorbing all constants into the reference en-

tropy:
S(R,N) = kyIn P(N,R) (12.23)
which gives
3kR?
S—59— SN (12.24)

The free energy is then

3kR?
FZE_TS:POJ'_W (12.25)

We see that the free energy is related quadratically to the end-to-
end vector, as if the chain is an entropic spring.
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12.6 The Gaussian Chain

This is a second alternative model kown as the Gaussian chain.
A gaussian chain is a collection of beads connected by springs
playing the role of harmonic oscillators. The potential exerted on
two successive beads is

3
Up(r;) = P

where 1; is the vector between them. The spring constant is similar

kg Tri2 (12.26)

to the spring constant of the freely joined chain.

Exercice 12.2 The probability distribution for a single segment is given
by the Bolzmann weight

p(ri) =C eXP{ (kLBI(}) } (12.27)

where C is a normalization constant
C Jdrip(ri) =1 (12.28)

Show (using polar coordinates):

C= (27‘[12> (12.29)

A more lengthy calculation gives that the end-to-end distribution is
again Gaussian

27R2 e 3R?
P(N,R) = 3 exp “oR2 (12.30)
0

We note now that since each segment of the Gaussian chain

is independent of the others, a chain of length N may be con-
structed by stringing two chains of length N and N, together with
N + N> = N. Noting this, we can trivially find the distribution
function of the vector connecting any two arbitrary segments m and
n in a Gaussian chain. In particular, the average distance between
monomers 1 and m is

(R —Ru)?) = |m —n|I? (12.31)

Exercice 12.3 The purpose of this problem is to compute the radius of
gyration of a Gaussian chain. We define the coordinates of the center of
gravity as

1 m=N
Rg = N mz::l Ry, (12.32)

The radius of gyration is

R = 4 SX(Ri - Rg)) (12:33)

Figure 12.3:
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1. Show that the following two equations are correct

> 1 » 1 )
R} _<N;Ri fﬁ;;Rl.R,@

L 55 2 (12:34)
=Nz ((Ri =Rm)%)
2N? =
2. Using (??), show
1 N N
R§ = 5Nz Z Z |n — m|I? (12.35)
m=1n=1
3. The last expression can be transformed into an integral as
) 12 N N
R ~ WJ@ dnJO dm|n — m|
2 (N ; (12.36)
= mfo dn‘[0 dm (n —m)
Performing the last integral, show
1
R2 = ~(RY? (12.37)

12.7  The freely rotating chain

This is a model where the angle 6 between two consecutive seg-
ments is fixed, but each segment can rotate freely in the ¢ direction.
This model is also called the Kratky-Porod wormlike chain. This
model has some kind of "memory" but the end-to-end distance still
scales with v/N.

When N » 1:

R=+R2= l\/N (HCOSG> (12.38)

(1—cos®)

Exercice 12.4 An ideal chain trapped in a tube: Consider a chain in a ) ) )
Figure 12.4: . The freely rotating chain.

cylindrical tube of diameter D « Ry, see Fig. ??. We have D » 1, so The angle 8 is fixed but segments can
that the chain retains some lateral wiggling. What is the length of tube R| rotate and draw a cone whose apex is
a vertex.

occupied by the chain ?

Exercice 12.5 Consider a particle that hops at discrete times between b
neighboring sites on a onedimensional lattice with unit spacing. At each

step, the random walker moves a unit distance to the right with probability

5
~

p or to left with probability g = 1 — p. Let P(N, r) denote the probability Ro
that the particle is at site r at the Nth time step. Figure 12.5: A chain of N mers within
a tube of diameter D. The length
1. Show occupied by chain is R.
P(N,r)=pP(N—-1,r—1)+qP(N—1,r+1) (12.39)

2. Introduce the generating function

G(N, k) = Z ¥ P(N,r) ke [—m, +m] (12.40)

r=-—00,+00
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Show
cd\" P m
<_ldk) G(N, k) o =< > (12.41)
Show
G(N,k) = (peik + qe_ik) G(N —1,k) (12.42)
Assume that the particle starts at the origin
P(0,7) = do,r (12.43)
Show N
G(N, k) = (pe* +ge™*) (12.44)

Deduce that P(N, r) is the binomial distribution

N!
_ N (N41r)/2,(N-r)/2
P(N,r) (M)I(M)lp q (12.45)
2 )\ )
Use Stirling approximation and show

Py(x) — #e*[x*N(P*Q)]ZﬁNW (12.46)

A/2tNpq

What is < x >. Take p = q = 1/2 and recover the result given in the
lecture.

Exercice 12.6 Consider a random walk on a finite interval of length N.
The two boundary sites are absorbing, i.e. the random walker immediately

disappears upon reaching these sites. Suppose that the starting position of
the random walk is n, with 0 < n < N. What is F,, the probability that
the walker first reaches the boundary at site N, i.e. without touching site

number 0, first? We will write a simple recursion relation for F,. Consider
the probability F,.

1.

2.

What is Fy and Fy ?

With probability 1/2, the walk steps to site n — 1 at which the probabil-
ity to escape at site n — 1 is F,_1. Similarly, the walk steps at site n + 1
with probability 1/2. Show:

1

F, = > (Fue1 + Fut1) (12.47)

. Show F, = n/N. In a fair coin-toss game, the probability that a

gambler ruins the casino equals the wealth of the gambler divided by the

combined wealth of the gambler and the casino. Is gambling a good idea
?

. Introduce the step size a. Write

F,11 = F(x = na+a) = F(x) + aF'(x) + a®/2F" (x) (12.48)
Show that F(x) solves the Laplace equation
AF =0 (12.49)

so that "exit problems” ara analogous to electrostatic problems.
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Entropic elasticity of polymer chains, self-avoidance,

and persistence

13.1  Force-extension curve

As a first trivial example, consider a spring with rigidity k. Let x
its extension at rest. We apply a force F to the spring. The equiva-
lent of the Gibbs energy is

1
G(F) = Ek(x—xo)z—Fx (13.1)
where we work in an ensemble where we control F (which plays an
equivalent role as the pressure P for a gas). The state of the state
minimizes G at a given force F. Taking the derivative with respect
to x to find the minimum gives

k(x —xg) —F =0 or x=co+£ (13.2)
In this simple example, U = 1/2k(x — xp)? and S = 0 (no entropy for
macroscopic spring).

Macromolecules and biopolymers are elastic and single molecule
experiments probe their elasticity. We illustrate this in the case of an
ideal polymer.

This an example where we minimize the Gibbs free energy to
find the equation of state of a polymer. We consider a simple poly-
mer model composed of sequences of N rigid segments of length [
and able to point in any direction independently of each other. We
attach the polymer at one end on a surface and apply a force at the
other end: see Fig. ??. What is the relation between the extension R
and the force F ?

n We pose this problem to illustrate two points:

1. Elasticity can be entropic.

2. The conformational state of the chain results from the min-
imization of G. By minimizing G we realize our ambition to
equilibrate energy with entropy.

As a starting point, we consider the instantaneous end-to-end
vector R. Because of the rules for addition of vectors, R is the sum

Figure 3, Schematic view of {a) energetic and (b)
entropic springs. The red amows depict the external
forces stretching the molecule.

Figure 13.1:

Figure 13.2: A single molecule ex-
periment using a bead trapped in an
optical trap.
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of the bond vectors u; = xj11 — x; with
R =) [u = X1 —x] (13.3)
i

where x;11 — X;j is the bond vector for one single mer. We assume
that we have N mers.

Since the bond vectors are random variables, the end-to-end
vector vector is also a random variable and is Gaussian. It follows
that probability distribution of R has the form

27R3 7 3R2
P(N,R) = 3 expy | —5a (13.4)
0

where R2 = NI2.
There is no energy associated with a given macroscopic exten-

sion R, since the bond vectors can take any direction they want.
Therefore, U = 0. To calculate G = U — TS, we need to compute
the entropy. We have seen in the sucrose diffusion experiment that
entropy is connected to the number of configurations that the chain
can adopt given a configure R. The more configurations we have
for a given end to end distance R, the largest the probability to
observe a given end to end distance . So we find the entropy

S=kInW =klnP(N 12)—§kR—2 (13.5)
Assume
3, .R?
U-TS =+kTInP(N,R) ~ +§kTﬁ + constant (13.6)
0

and check that the entropy decreases when R increases: why ?

Since we work at constant force, that is to say constant pressure
in the preceding language, the system minimises G = U — TS — FR,
where FR is the equivalent of PV:

3 .R?
G(T,F) = EkTﬁ —FR (13.7)
0

This is exactly what we had before: The only variable left is R and
R will spontaneously choose the value which minimizes G(T, F):
see plot of Fig. ?2. Therefore,

R NI
F = 3kTR—% or R= 31(7’1"1: (13.8)
From the classical spring example F = kx, we see that the polymer
possesses a "spring rigidity k " inversely proportional to T, why ?

Exercice 13.1 Consider an ideal chain carrying charges +e at both ends.
What will be its relative elongation in a field of E = 30103V /m (I = 2,
N = 10%). Remember kgT = 1/40eV.

06
04
02
20, 6 08 A0 12 14

-02

Figure 13.3: Plot of x> — x. Note the
minimum.

A

trapped
object

_

optical . ENVS
force Fopt & .

Frmax

Figure 13.4: Principle of the external
force measurement using an optical
trap. The particle is made of a dielec-
tric material, meaning that the particle
is trapped at the place where the in-
tensity of the electric field is maximum
(A) When no external force is applied,
trapped particle is resting at its equi-
librium position in the trap with no
net optical force Fyp; acting on it. (B)
External force Foyx¢ causes displacement
Ax of the trapped particle from its
equilibrium position; consequently,
optical force F, starts acting on the
particle that is equal in size and op-
posite in direction to Fy¢. For small
displacements from the equilibrium,
relationship F,pr =??kAx holds where
k is the optical trap stiffness. Maximal
external force that can be measured is
Fuax[? ]
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13.2  Flory theory for self-avoiding walks or polymers

What is missing up to now for the calculating the shape of poly-
mers is the effect of STERIC INTERACTIONS. An argument due to
Flory takes these interactions into account.

Suppose that we have a chain with N monomers with radius R.
Then the average density of monomers is

N

R

(13.9)
where d is the dimension of space. Assuming short-ranged interac-
tions, we add a term to the free energy which counts the number of
self-interactions. On average the probability to find a monomer in a
unit volume is c. Then the probability to find two monomers at the
same place within the volume R is

cxc (13.10)

So the energy per unit volume for self-intersection is proportional
to
u(T)xcxc (13.11)

The total energy is this energy integrated over the whole volume R?

c C d
M(T)ﬁﬁ

which much positive, since increasing the density increases the

(13.12)

number of contacts. The scale of this penalty energy is propor-
tional to some function #(T) in good solvents (we distinguish good
solvents where the polymer "loves" the contacts with the solvent
molecules from the poor solvent case where the polymer forms a
globule to protect himself from the solvent)

Adding the entropic spring energy gives for the total free energy

G = ~kT—5 + u(T)— — R* (13.13)

where Ry = NI2.
This free energy is minimized when the radius R is such that

g—g =0 (13.14)
or
R(N) = (“f}’z)wm NN (13.19)
with
V= dS? for d<4 andv=1/2 above (13.16)

When d =1, v = 1. As anticipated, self-avoidance in d = 1 makes
the chain straight ! Ind = 2, v = 3/4 which is exact. Ind = 3,
v = 3/5 which is extremely closed to exact (numerical) value 0.5880.

87
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13.3 Persistence length of a polymer

Let us start with a continuous model for the chain. Each point on
the polymer chain is perfectly defined if we know the distance of
this point to the origin along the chain. This distance should not be
confused with the flying distance to the origin

r = OM(s) (13.17)
where s is the arclength. The tangent vector at some point is de-
fined as JOM

t= T(S) (13.18)

where we take the derivative for each component (x(s), y(s), z(s)).
Integrating the tangent gives back the end-to-end distance
OM(s) = JL L)M(S)ds (13.19)
0 ds
For a discrete chain, the tangent t; at node i is simply the vector
between node i and i + 1. Depending on the context, one can use
either a continuous or a discrete approach.
To evaluate the correlation between two tangents separated by
a distance s along the chain, we shall make use of the following
property
< c0sbs, 55 >=< 0805, 5, >< COS s, 55 > (13.20)

where s, is any point between s and s3.
Exercice 13.2 To prove this, separate into perpendicular and parallel

components as (we do the calculation is d = 2 for simplicity: For any
vectot, the perpendicular vector is well defined)

o= (i) (b)) (13.21)
s = (i3 1)ix+ (I3 13)iy (13.22)
with |ty > = |ia] = I2.
t-ry = |rif[k2|cos b (13.23)
ity = [illiz]cos(m/2-612) (13.24)
= |i1[z | sin6r 2 (13.25)
We have
i) -3 = (i1 1) (i3 - 1) + P (F1 1y ) (F3 - B7) (13.26)
s0 that
costl 3 = cosbypcosbr s+ sinbysinbdy ;3 (13.27)
From Fig. ??, we see that each time we have one configuration with 01 5,
we have a symmetric configuration with —01 5. Using sin(—0) = —sin6,
we get that the average of the sin are equal to zero
< sinfqypsinfr; >=0 (13.28)
so that Vs € [s1, s3]
< €cosbs, s, >=< oS 05, 5, >< COS s, 55 > (13.29)

Figure 13.5: The persistence length sets
the scale of the correlation between

the tangent at different points of the
chain. If we change the angle of the
tangent at some point s, what is the
probability that the tangent at a distant
point s3 will see this change ? Because
of the exponential dependence of (??),
the persistence length sets the domain
of influence of a perturbation. If this
length is large, the polymer is rigid.

If this length os small, the polymer is
easily deformed.
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The only function with this property is the exponential, so that

cos(8(s — 1)) = exp{[—Is — tl/1]} (13.30) ¥/ﬁ

Recall that a correlation function can be interpreted as a proba- /4\
bility. If we rotate the tangent at a given point, what is the proba-
bility that a node located at a distance s of this point will feel our
perturbation ? Formula (??) shows that the domain of influence of ) ! ) )

. . Figure 13.6: 4 configurations to il-
our perturbation is actually small and not larger than /. Because of lustrate the symmetry 61, —

we can write

the exponential, nodes at distance s marger than ! will not feel the —b12, 023 = —023.
perturbation and will fluctuate indepedently.
ConcrusioN : Our problem is to connect ! to the rigidity of the
polymer. For ideal chains with no internal energy, ! is very small.
For more rigid polymers which resists bending, I is much larger
(see table ??).

Actin 15 um Table 13.1: Persistence length of some
Microtubules | 1 —6mm polymers.
ADN 50 nm
Dextran 0.5nm

PE.G. 0.7nm







14
Single-Molecule Mechanics

14.1  Optical tweezers

A single laser beam focused by a high numerical aperture micro-

scope objective is able to trap dielectric particles, usually micro- ChnliAeren,
L3
spheres, near the lens focus. Such an arrangement is called optical
tweezers and has a wide range of applications in physics and biol- frbein, ,
ogy. e
772 .

. . beads am o

14.2  Atomic force microscopy ool Mop.

Atomic Force Microscopy (AFM) appears as a very natural tool to
work in the single molecule domain. This apparatus was originally
designed to visualize surfaces with atomic scale resolution. Its
working principle is to scan the surface of a sample with a very
sensitive position detector and to record the modulation of the
topological signal. The AFM relies on a very thin cantilever as a
detector. Somewhat similar to the needle of a dj’s record player, this
micro-fabricated beam is typically 100 microns long, 10 microns
wide and a fraction of a micron thick. It has an extremely sharp
tip at its end (radius of curvature in the tens of nanometers). The
position of this cantilever is measured by reflecting a collimated
laser beam onto its surface and imaging the light spot on a two- or
four- quadrant diode detector. The sample is scanned horizontally
by a XY piezo stage, providing atomic resolution.

As we have stated, the AFM is primarly a visualization tool
and its use as a single molecule micro-manipulation device is a
secondary feature. The very sensitive cantilever has motivated re-
searchers to use this device to measure the force required to stretch
a biopolymer or to break a molecular bond. To achieve this goal,
the operator stops the horizontal sample-scanning process and gen-
tly moves the cantilever vertically above the sample while recording
its deflection. The AFM provides some natural features :

1. The position of the cantilever can be adjusted with sub-nanometer
resolution and the vertical scanning speed can be high.

2. The deflection of the cantilever is also read with sub-nanometer
resolution, and the response time is in the milli-seconde range.
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3. The AFM may be used to visualize the sample.

4. Strong forces in the nanoNewton range may be applied to the
sample.

The force sensitivity of the AFM is related to the cantilever size
and stiffness. Different cantilevers provide a range of stiffness from
1 N/m to 1073N/m(or 1pN to 1nN per nanometer) of cantilever
deflection. A very common error consists in saying that the best
sensor is the one with the smallest stiffness. We shall see that the
best sensor (in term of signal to noise) in in fact the smallest de-
vice. Since the cantilever size is typically 100 microns they are not
the best sensors in terms of noise. A strong effort is under way to
reduce the size of the cantilever to improve their signal to noise.
Typically the minimum force measured with the AFM is 5 pN.

Exercice 14.1 In order to measure forces accurately with an AFM, it is
important to measure the cantilever spring constant. Experimentally, the
basic idea is to look at the fluctuations of the tip of the cantilever (see Fig.
22).

The force exerted on the cantilever can be deduced from Hooke’s law
F = —kx.

1. Assume F = 0. Show that the fluctuations see in Fig. ?? are the ones of
an abstract particle in a potential well 1/2kx?.

2

2. From this, you should deduce an expression for < x= >.

3. Do the integral (they have been done somewhere during the lecture)
and show 1 1
Ek <x?>= EkBT (14.1)

4. We want now to measure an applied force. Assume F # 0. Show that
the fluctuations < 6d> > of the tip around the new position d obey a
relation similar to (2?).

5. Deduce that the incertitude on the force measured by looking at the
mean deflection point is

< 6F? >= (kklgT)l/2 (14.2)

6. Do you prefer to choose a rigid or a soft cantilever to measure the force
?

Déplacement de lextrémité

Figure 14.1: Position of the cantilever
tip as a function of time. Due to ther-
mal fluctuations, the tip experiences
strong random displacements.
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How to convert chemical energy into work

15.1 The detailed balance principle

This principle reads as follows: In the state of equilibrium, every
elementary transformation is balanced by its exact opposite or re-
verse, see Fig. ??. This is equivalent to say: At equilibrium, the

number of processes destroying situation A and creating situation B

will be equal to the number of processes producing A and destroy-
ing B. If you know the probability of a transition from a state A to
the other state B of a physical system (in some appropriate time
unit), and you also know the probability of the reverse reaction,
then you automatically know what is equilibrium condition for N
molecules distributed in the two states:

NyP(A — B) = NgP(B — A) (15.1)

where N = Ny + Np and where N4 and Np are the "occupation
number" (i.e. the number of molecules in state A or B) and this
condition only applies to equilibrium systems.

This property is useful to distinguish equilibrium from non-
equilibrium systems and is synonymous of a symmetry. When
detailed balance is broken, time-reversal symmetry is also broken.
In case (b) of the companion figure, the cycle runs clockwise and
not anti-clockwise. As a result, there is a macroscopic flux A —

B — C — A of matter (or of information). This is not possible is
the system at equilibrium, since there is not flux for an equilibrium
system (the absence of flux is the essence of equilibrium systems).

In particular, living cells are out-equilibrium system, and de-
tailed balance is always broken. The reason for this is that cell uses
chemical energy to perform work. Therefore, energy (ATP con-
sumption) is fed into the system into and cells are open systems
to energy fluxes. This is evident if we drive an energy flux into
a reaction, the reverse reaction will provide energy. This point is
particularly well illustrated in the case of the F;-ATPase rotary mo-
tor. This rotary motor is able to synthesis ATP (from ADP) with
a proton flux (through change of conformations of the molecule).
The synthase is fully reversible in that hydrolysis of ATP drives the
REVERSE flux of protons (in the reverse direction).

A'\——> B A —» B
N4 ¥
@ ®
Figure 15.1: The principle of detailed
balance. (a) The equilibrium between
three interconverting compounds A,
Band C is a result of "detailed balance"
between each pair of compounds.
(b) Although a conversion from one
compound to another can also produce
concentrations that remain constant in
time, this is not the equilibrium state,
since the cycle runs only way and

detailed balance is broken between the
two ways of running the cycle.
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Thus, the principle of detailed balance has a more general valid-
ity.

Detailed balance implies that rates constant and equilibrium
ratios are not independent. Rate constant for chemical reaction are
equivalent to the transition probabilities P(A — B) we have seen
before. As an example, consider the reaction

X+Y=—2Z (15.2)
The forward and reverse reaction rates are
Ry = kraxay and R, = krazz (15.3)

where the a’s are the activities (i.e. concentrations). At equilibrium,
there is an exact balance between the forward and the reverse rates,
meaning that the fluxes equal each other

2
kfﬂxtly = kraz (15.4)

o1 . oy . b annnsepeane cen

so that we get the equilibrium condition between the concentrations s e e }Nmeatm and
e e . 7 crosslinking
(the activities) and the chemical rates Sga/ g . N
Ada{tcr 4 L(‘:;‘S’ capping

ke a3 S o2 ]
K(T) = = = Z (155) Cons‘r‘:c:m: % Decomtructor Undcrosslmkmgb
k ava materil @ o '% 2 and disassembly

r X Y Recycler o 69
In other words, there is a relationship between the equilibrium ooy ot cmporers

constants and the reaction rates. Figure 15.2: There are three basic steps

involved in the assembly of protrusive,
branched actin-filament networks:

. . . . s . : filament elongation; nucleation and
merizes in the immediate vicinity of the membrane. When it polymerizes, cross-linking of new filaments from

the membrane is pushed forwards. Consider Fig. 22. Can you tell why filaments close to the membrane; and
capping of filaments. Disassembly of

the network involves a separate set of
this question, you have to guess where energy is added to the system and proteins that severs the filaments and

released from the system and you have discuss the process with the help of recycles the subunits.
an energy diagram.

Exercice 15.1 If you are a biologist: Actin is a biopolymer which poly-

the cycle represented in this figure run only anti-clockwise ? To answer to

Exercice 15.2 One may ask if the principle of detailed balance depends
on the details of the chemical mechanism. To see this, assume that the
preceding reaction consists of two steps (a) and (b) as follows:

X + X t:f W .
WY %zz+x (150
which ultimately achieves
X+Y=—=2Z (15.7)
What are the ratios ks ko
o and " (15.8)

as a function of the activities a’s ? Show that the equilibrium concentra-
tions of X, Y and Z obey a relationship independent of the concentration of
W
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15.2 Standard Free-enerqy changes: How to convert chemical
energy into work

Energy is the ability to do work: How do we convert chemical
energy into mechanical work ? The trick is to couple a reaction to a
mechanical process (rotation, translation, diffusion etc.).

Consider the hydrolysis of ATP

ATP + HyO — ADP + P; + H,O (15.9)

where P; represents the phosphate ion. In order to determine
whether the reaction will proceed spontaneously from left to right,
we need to determine the sign of the total change in energy AG

products w o norganic

AG = dG = G(products) — G(reactants) ) D G
reactants (15,10) L‘ - . . o . 5

~ “’ﬁ_l N {:0/ i o
= G(ADP + P;) — G(ATP + H,0) W e W h

¢ - & ADP
Since the free energy of a molecule changes with temperature, Figure 15.3: ATP loses its terminal
pressure, and wether it is pure or in mixture, one needs to know phosphate group upon hydrolysis.
the conditions for which a free energy change is reported. The free This reaction occurs rapidly in the

. forward direction when CATALYZED.
energy change is usually reported for the standard state (molar free

energy, i.e. for one mole) and for ATP hydrolysis is
AG = —28KkJ.mol~!

So the reaction will proceed spontaneously to the right, because
the free energy of ATP in water is higher than the free energy of
ADP and P;. However, the energy barrier along the reaction coordi-
nate is so high that this reaction cannot happen spontaneously. We
need a catalyser, i.e. a molecule which lowers the energy barrier as T

seen below. . Ty 4%
The way to transform free energy into work is to couple the ATP m = T e
hydrolysis to an other chemical or mechanical reaction. Then the ‘ ‘ g B ‘
maximum chemical or mechanical work which can be extracted is S ; A
bounded from above by the free energy change is ATP hydrolysis. m — 200 C—
Consider, for example, the maltose transporter with the reaction S 5 -
L
H,O + ATP (in) + Maltose (out) ( ) Figure 15.4: The maltose transporter
. 15.11 which couples transport of maltose
ADP + P; + Maltose (in) molecules across the membrane with
where the maltose is transported from the outside of the cell to the ATP hydrolysis.
inside by an enzyme which uses ATP hydrolysis®, see Fig. ??. The * Maltose = 2 glucose molecules to-

cycle proceeds into 4 steps: gether

1. ATP binds to the inner face of the membrane and maltose binds
to the outer face. This is a high energy conformation of the trans-
porter.

2. The transporter relaxes this high energy conformation by mov-
ing the maltose inside the barrel.

3. Then, ATP can be hydrolysed resulting in the formation of ADP.
This is why the maltose transporter is an enzyme which catalyse
this reaction.



96 PHYSICS OF THE COLLOIDAL DOMAIN - LECTURE NOTES

4. This conformation is unstable and relaxes by releasing the mal-
tose molecule in the inside of the cell (with ADP + P;).

In short, the gain in (chemical) energy due the hydrolysis of ATP

is used to drive a conformational change in the transporter. This is
this conformational change which allows the maltose molecule to
be transported through the barrel. Since energy is provided by ATP
hydrolysis, the system maltose molecule + transporter is open to
an energy flux. As in the detailed balance section, the cycle can run
only one way if energy is provided by ATP hydrolysis.

15.3 The F-1ATPase motor

The next question is far from trivial: can we increase the concen-
tration of maltose inside the cell so that the cycle will run the other
way around. In that case, the energy provided would be the in-
crease of entropy due to the maltose molecules flowing outside the
cell (remember F = U — TS). By the same token, this would provide
a way to synthesize ATP from ADP. The problem is that we cannot
increase the concentration of maltose to infinity without reaching
the sedimentation limit. The F-1ATPase motor protein uses this
strategy to synthesize ATP. This protein is molecular turbine ma-
chine using protons flux. If the flux is driven one way, the machine
synthesize ATP and the machine can use ATP to drive the flux of
protons the other way.

15.4 Free energy and work

We have seen that the change of Gibbs free energy is the amount of
energy which can be converted into work during a process. What
kind of work do we refer to ? As summarized in Table ??, expan-
sion work, meaning varying the volume of the system, is not the
only kind of work which can be done on the system. Chemical
work involves changes in the number of molecules of a certain
species, such as in chemical reaction or transport across a concen-
tration gradient.

Consider what happens to the free energy when a small number
of molecules moves from outside to the inside of the cell. Let us
say that the number of moles inside changes as n — 1 + dn. For a
mechanical displacement with a force F and a displacement dr, we
have

AG = f Fdr (15.12)

What is the equivalent of the mechanical work (??) for our CHEM-
ICAL WORK which consists in transferring molecules ? If Ay is the
change in chemical potential between the outside and the inside,
the equivalent of (??) is

AG = JA}A dn (15.13)
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Table 15.1: Different types of work

that can be done Dy a system.

Type of work Intensive variable Extensive variable Work
Mechanical Force, F Change in distance, dr W = (Fdr
Expansion Pressure, P Change in Volume, V W = (Pdv

Electrical Voltage Difference, AV Change in charge , dg W ({AVq
Surface Surface tension, y Change in surface area, dA W = {ydA

Chemical Chemical potential difference, A Change in the number of molecules, dn~ W = {Audn

Note that there is a close relationship between the change in free
energy and the amount of work done on the system. Actually, the
change in free energy in a process equal the maximum amount of Conformational
work that can done or extracted in a process. change

The coupling of ATP hydrolysis discussed in the preceding sec-
tion to work underlies many processes in biology. It is also an ex-
ample where a chemical work can be transferred into mechanical

work, i.e. a change of a protein conformation. Consider a kinesin Weak :  Tight
motor protein. This motor is able to transport vesicles along micro- binding  binding
tubule tracks, see Fig. ??. The work DONE by the kinesin is equal E

to the resistive force F due to friction and viscosity times the dis- 2

placement dr. This is formula (??) with the appropriate sign. The

movement of the kinesin is powered the hydrolysis of ATP within Displac sisiit

the motor domains with a change in free AG given by (??). The o+
amount of work delivered by the kinesin is limited by AG given by [S)leffaul’?:ll‘?na
(22).

The synthesis of ATP is coupled to the movement of ions across

the membrane, down a concentration gradient. - m +

Rebinding
to MT

e = 3

Weak Tight
binding binding

Figure 15.5: Kinesins are motor pro-
teins which "walk" along microtubule
tracks in "hand-over-hand" manner
with each head taking 16 nm steps.

In solution both ends are bound to
ADP. The binding of one head to a
microtubule causes the release of ADP
which is rapidly replaced by ATP.

The binding of ATP forces the second
head to diffuse forward and brings

it to the next binding site. While the
trailing head hydrolyses ATP into
ADP, the leading head releases ADP
and get bound to ATP. As the result,
the process starts again. The motion is
directional, because the microtubule
tracks break symmetry so that diffu-
sion is more effective from the left to
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15.5 Feynman’s ratchets

Diffusion is an isotropic process which can not generate directed
motion. However, e.g. for biological systems directed motion is
essential, e.g. in intracellular transport. This is what we have seen
for the maltose transporter. Is it possible to build a rectifier for
diffusion which leads to a directed transport? The answer to this
question is the so-called ratchet or Brownian ratchet. Before we
discuss ratchets for diffusion in more detail we have a brief look at
the famous Feynman ratchet and pawl.

The Feynman-Smoluchowski ratchet is a simple machine which
consists of a paddle wheel and a ratchet. The ratchet has asymmet-
ric paddles so that the pawl only allows its motion in one direction.

The full Feynman-Smoluchowski ratchet is shown in ??. The
ratchet is kept in a heat bath of temperature T, and coupled to
a paddle wheel in a different heat bath with temperature T7. It
appears as it is possible to use this machine to extract useful work
from heat at thermal equilibrium and lift the weight m. This would
be a violation of Second Law of Thermodynamics.

The idea behind this is the following. The molecules in the heat
baths undergo random Brownian motion with a mean kinetic en-
ergy determined by its temperature. Assuming that the device is
small enough so that the even single collisions with molecules can
turn the paddle. These collisions tend to turn the paddle in both
directions with the same probability. However, the ratchet prevents
the motion in one direction. Effectively this appears to lead to a
turning of the system in one direction, lifting the weight in the
process.

Feynman'’s analysis shows that this is not true and so the Sec-
ond Law is not violated. One also has to consider collisions of the
molecules with the pawl. These will lift the pawl from time to time
allowing motion in the "forbidden" direction. Effectively no net
rotation arises if the heat baths are at the same temperature Ty = T;.

Note that chemists have been able to construct molecular ratchets

and address some of the conceptual issues that pertain[? ], see fig.
?2.

15.6  Rectifying Brownian motion

How can we get directional motion ? This is a problem known

as rectification of diffusion. Many experiments have been pro-
posed and we follow reference [? ]. In order to get a directional
motion, the particle is subjected to a potential which is periodically
switched on and off. A ratchet potential U(x) is periodic, time-
dependent and not reflexion symmetric. The last point is crucial.

If the potential is switched on the particles are driven by the
force F = —U’(x) towards the minima of the potential. If now the
potential is switched off, the particles start to diffuse isotropically
. Next the potential is switched on again after some time. Again

Figure 15.7: A ratchet consists of (a) a
wheel with asymmetric paddles. The
pawl (2) allows its motion only in one
direction. A string that holds the pawl
against the wheel(c) Here clockwise
motion is not possible.

Figure 15.8: The Feynman-
Smoluchowski ratchet consists of a
paddle wheel (in heat bath of temper-
ature T7) and a ratchet (in heat bath

of temperature T5). At first sight it
appears that this system can extract
useful work (lifting the weight m) from
heat (random fluctuations) in a system
in thermal equilibrium. This would
imply a violation of the Second Law of
Thermodynamics.

Figure 15.9: Two molecules candidate
for (1) the wheel and (2) the pawl and
string.

Figure 15.10: Schematic illustration
of an asymmetric pumping. When
the potential is switched on, particles
move to minima of the U(x); After the
potential is switched off (U(x, t) = 0)
the particles start diffusing symmet-
rically; If the potential is switched on
again the particles are captured in the
minima again; due to the asymmetry
of U(x) more a captured in the mini-
mum to the left than that to the right
of the original position.
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the particles are driven by the force to the minima of the potential.
However due to the lack of reflection symmetry more particles will
be captured in the minimum to the left than in the minimum to the
right of the original position. Repeating this switching will then
generate an effective current to the left (in general: in the direction
of the maximum which is closer to the original position).

15.7  Equilibrium constants and chemical potential

In studying chemical reactions, one is interested in the number of
molecules of various type as a function of time. Chemical reaction
changes one type of molecules into another. For example,

kf

3H; + Np —— 2NHj3

15.1
- (15.14)

In chemical equilibrium, the concentrations [X] of various molecules
satisfy the law of mass action

[NH;3]?

K = NP

(15.15)
More generally, we can write (v; can be either positive or negative)

o — Z Y.¥ (15.16)

1
with
Keq = Kd_l = H[Ai]vi

i

(15.17)

The law of mass action can be motivated as follows. For homoge-
nous system, i.e. small systems with large diffusion constants, the
probability to find a N> molecule in an arbitrary subvolume is pro-
portional to the concentration. by the same token, the probability to
find 3 Hy molecules is proportional to [H,]*? Thus, the joint proba-
bility to have one N> molecules together with 3 Hj is proportional
to the product [N7] [Hz]® and the forward reaction rate per unit
volume is k¢[Nz] [Hy]. The backward reaction rate is similarly pro-
portional to k,[NH3]? and the equilibrium takes place when both
flux are equal.

ky[NH3]* = k¢[No] [Ho]? (15.18)
or for the dissociation constant
Ky =ky/ky (15.19)

When the reaction takes place, it changes the number of molecules
and the energy G(T, P, N)

oG oG oG
- ANNH; + =——ANN, + ——— AN,
aNNH3

ONN, ONH, (15.20)
= 2)iNH; — PN, — 3P,

AG

position detector

laser diode O

cantilever

avidine I-\_;]

Piczoclectric stage

Figure 15.11: An Atomic Force Micro-
scop setup.
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Using the chemical potential for ideal solution y = kT In X + p, the
minimum energy condition AG = 0 for equilibrium gives

2In[NH3] — In[N2] = 3In[Hz] = —2p0,NH; + HoN, + 3poNH; = AGo
(15.21)
and we find that the equilibrium constant depends exponentially
on the net internal free energy difference AGy between the reactants
and the product
Keq = Ko exp{[~AGo/kT]} (15.22)

with Ky being a prefactor (here equal to 1 but oc1/T3).

Remark 5 The exponential dependence of the equilibrium constant
should not be confused with the Arhenius factor.

15.8 Problems

1. There are three properties of enthalpy to keep in mind. The first
is that the change in enthalpy is the heat supplied at constant
pressure. The second is that H is a state function. The third is
that the slope C, = AH/AT is the heat capacity at constant
pressure.

(a) Ethanol is is brought to the boil at 1 atm. When an elec-
tric current of 0.682 A from a 12.0 supply is passed for 500 s
through a heating coil immersed in the liquid, the temperature
is found constant but 4.33 g of ethanol is vaporized. What is
the molar enthalpy of vaporization of ethanol (M = 46.07
g.mol~1) ? answ: 4.35 x 10* J.mol 1.

(b) Assuming that enthalpy is a state function, what is the rela-
tion between the enthalpy change for a forward process and
the reverse process (i.e. vaporization and condensation) ?

(c) Consider an arbitrary chemical reaction with stoichiometric
coefficients v;. What is the enthalpy change associated with
this reaction in terms of the molar enthalpy of the reactants
and products ?

2. Consider a perfect gas undergoing isothermal expansion at tem-
perature T between volume V; and V. For a reversible process
the amount of work done on the system is

Vs
w=— pdV (15.23)
Vi
(a) What the amount of heat gy supplied to the system ? hint:
first law of thermodynamics.

(b) Use the thermodynamic relationship

AS = qr;V (15.24)

and compute the change in entropy for the gas.

PA

;B
v
xB

o —
Position x

Figure 15.12: Barrier-crossing potential,
see [? . Energy E as a function of
some reaction coordinate x for a chem-
ical reaction. The dots schematically
represent how many molecules are at
each position. The reactants (left) are
separated from the products (right) by
an energy barrier B. The rate of reac-
tion is the the number of molecules
crossing the top of the energy barrier.
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(c) The entropy is state function. Use the entropy of mixing to
evaluate the change of entropy and compare your result with
the preceding question.

(d) Assume that the heat capacity is contant over the range of
temperature of interest. Using (??), show that

T
AS =C, 1an (15.25)
i

(e) Discuss why AS > 0if Tf > T,.

(f) Can you guess why the temperature appears in the denomi-
nator of (2?) ?

3. Suppose that we had a tiny system of 4 molecules A, B, C, D that
could occupy threee equally spaced levels of energy 0, €, and 2e.
We know that the total energy of the system is 4e.

(a) Make explicit with an energy diagram some of the 19 possi-
ble combinaisons.

(b) What is the entropy of this system ?

(c) Assume that the total energy is proportional to the tempera-
ture T. What happens if we increase the temparature ? What
happensif T =07

(d) Residual entropy: For some substances, the entropy is
greater than zero at T = 0. Calculate the residual entropy
for a gas of N molecules which can occupy two positions.

15.9 Langmuir-Hill function: Ligand recognition

As a biological case with very broad applicability, we start by con-
sidering binding problems in which several different molecular

species can exist either separately or in complexes. The simplest Ty S T ]
receptor-binding system can exist in one of the two microstates: ; b e, ;

~oignat Ligand Dose

Response

kor
FECso=Ka=1

bound and unbound, see Fig. ?2.

To calculate the probability p for a receptor of being bound to a Figure 15.13:
ligand, we observe that the fraction ¢ is nothing but this probability
per unit area At equilibrium, the generalized force to transfert

molecules from one state to the other one yy — u is equal to zero:

# = Ho (15.26)
which means ¢
—€+kT1In T—¢ = o (15.27)
e(Ho—€)/kT
p (15.28)

T 14 elmo—e)/kT
Since the chemical potential which serve as a reference is equal
to the chemical potential of the ligands in solution iy = kT In/,
where [ is the volume fraction of ligands in solution. Because ! is
proportional to the concentration of ligands L, the probability for
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a receptor of being occupied depend on the concentration of free

ligands as
le—¢€/kT
pl) = T = (15.29)
or UK
_ d
P(l) - 1 + Z/Kd (1530)

where K; is the equilibrium dissociation constant at which the
receptor has a probability of being occupied of 1/2.



16
Surface Thermodynamics

Previous : particular case of a most general problem, i.e. adsorp-
tion on a surface. Now: How surface tension varies with parti-
cle/molecule adsorption ?

A colloidal system represents a multiphase (heterogeneous)
system, in which at least one of the phases exists in the form of
very small particles: typically smaller than 1 mm but still much
larger than the molecules. Such particles are related to phenomena
like Brownian motion, diffusion, and osmosis. The terms micro-
heterogeneous system and disperse system (dispersion) are more
general because they include also bicontinuous systems (in which
none of the phases is split into separate particles) and systems
containing larger, non-Brownian, particles. The term dispersion is
often used as a synonym of colloidal system. Examples for gas-in-
liquid dispersions are the foams or the boiling liquids. Gas-in-solid o

s s s yvarying

B 2] B J composition

8

A A~ Region of
dispersions are the various porous media like filtration membranes, s }

sorbents, catalysts and isolation materials.

(b) Real system

As a rule the fluid dispersions (emulsions, foams) are stabilized (o} Ideal system
Figure 16.1: Representation of an

by adsorption layers of amphiphile molecules. Th an be ioni
y adsorptio yers o phuphtie molecuies ese ¢ € 1onic interface between bulk phase « and .

and nonionic surfactants, lipids, proteins, etc. All of them have the
property to lower the value of the surface (or interfacial) tension, o,
in accordance with the Gibbs adsorption equation

do = — Z Tidy; (16.1)
i

where
1. I is the surface concentration (adsorption) of the ith component.
2. y; is it chemical potential.

Note that if a species absorbs to a surface I'; > 0 and the sur-
face tension decreases as the chemical potential of that species is
increased.

Consider solute

po = p§ + RTIncy (16.2)

1 do

= _““°
2 RT dIncy

(16.3)
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which means generally a strong decrease in the surface tension if
we increase the bulk concentration.

16.1  Thermal fluctuations of interfaces: Fourier methods

Fourier methods are based on representing arbitrary signals as
weighted sums of complex sinusoids. They are intuitive, apply to
a large class of interesting signal processing systems and physical
effects, and numerical Fourier analysis can be performed very ef-
ficiently. Here we want to characterize the thermal fluctuations of
interfaces in terms of Fourier components.

Remind that an interface separates two phases, e.g. liquid-gas
and has a width. This width is typically of molecular size. We are
interested in phenomena which occur in a typical length scale much
larger than the typical width of the interface. For example, the
shape of the interface may experience sinusoidal variations due
to thermal fluctuations with a wave length much larger than this
width. In this limit the interface may be seen as infinitely thin. The
interface is, therefore, seen as a mathematical surface with a free
energy proportional to its area.

F =0 x Area (16.4)

where ¢ is the surface tension. To represent the surface, we use the
following representation for the position vector

Position vector = (x,y, h(x,y)) (16.5)

where the height h(x, y) is the coordinate of a point along the z
direction. h(x,y) is a function of the other coordinates. For a finite
interface along the x and y directions

0<x<L and 0<y<L (16.6)

Without loss of generality, we will assume that the surface is
clamped along a frame.
The area of the surface is given by

A= H dxdy \/1+ (2xh)? + (0yh)?

0<x,y<L

:L2+% f f [(8xh)2+(ayh)2]

0<x,y<L

(16.7)

where we have assumed that the height h(x,y) and the derivates
are small. The interface fluctuates if h(x, y) is not a constant. In this
case, there is an excess in free energy equal to

AF = f dxdy (@) + (41| (16.8)
0<xy<L

We want to calculate the average of < AF > when the interface
is subjected to thermal fluctuations which make h(x, y) random

Position vector: s = (x, y, h (x, y))

Tangent vectors along xandy:  r, =(1,0,4,) r,=(0,1,A))

oh oh
where —=h, |or—=h,
ox 4

Plane tangent to the surface at (x, y, h (X, y)):

H=G-‘><r})7 (—h‘.—h,.l)
- |r,><r}| 6+I1f+hf ;2

Figure 16.2: Monge representation of a
surface.
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variables. In particular, we want to calculate the mean-squared
fluctuation
< h(x,y)* > (16.9)

Forget for the moment about the y direction. Then h(x) is only a
function of the x coordinate. In Fourier coordinates we define

h(x) = %Zeiq"ﬁq g=2mn/L n=0,2,...,L-1 (16.10)
q

Exercice 16.1 1. Show
- 1 L .
h = —f dx h(x)e ™ (16.11)
VL Jo )

2. Show -
AF = EZqz‘fl(q)‘z (16.12)
q

3. By analogy with a spring, show that

~ 2 kT
h = 6.
W) = = 7 (16.13)
IN TWO DIMENSIONS, 4 in the Fourier transform is a vector
q = qxlx + gylly (16.14)

where i1, and 7, are unit vectors along the x and y direction. The
definition of the Fourier transform is

h(x,y) = 9T, r = xiy + yily (16.15)

1
v
and the same result as in Eq. (??) holds.

Exercice 16.2 Show

kT ~ 2
= 55 2 < @) >
q
_mew (16.16)
270 JorjL 4
kT

=55 In(L/a)

AF

This result shows that the mean square fluctuations diverge with
the system size.

Exercice 16.3 For typical values (¢ = 100dyne/cm? with 1dyne =
1075N, a = 3 and L = 1cm) what is the value of the”divergence”. Grav-
ity acting in the z-direction, explain why we can introduce a gravitational
energy per unit area pgh® and show that this divergence disappears.

16.2 Ratchets
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17
The geometry of curvature: A quick reminder
L
O ;% +H20

In this chapter, we introduce what we mean by curvature. Curva- ;;
ture is one of the most important concept in differential geometry
and we shall use this language to characterize both vesicle shapes OO
and membrane fluctuations. g
, ==

surface embedded in a 3 or more dimensional space, i.e; varieties.

Differential geometry is a field of mathematics which describes / ?;g;égg
tures. One answer is that membrane are characterized by two

One may wonder why this language is adapted to colloidal struc- @

very different length scales. On the one side, the bilayer is only
50 Athick. On the other side, a typical vesicle has a radius of 20 .

Figure 17.1:

This huge separation of length scales allows us to see a bilayer as a
thin sheet. Surfaces are, therefore, an abstract concept well adapted
for our modeling.

The concept of curvature is useful if we want to understand the
concept of bending energy. When small vesicles change their shape,
there is a gain or a cost in bending energy. The bending energy is
very different from surface energy of surfactant monolayers inter-
face which proportional to the area of the interface. As we will see
shortly, we can have highly bend surfaces without cost of energy.

Example 17.1 Assume for the moment that the bending energy of a
sphere with a radius R is proportional to 1/R?. Then its total bending
energy is integrated over the total area

1 , 1 L
Epend = EK X 4mTR” % R2 = 27K (17.1) Figure 17.2: Healphy red blood cells
have a biconcave shape that is ex-
where the factor 1/2 is a numerical convention and where x is a constant plained by curvature energy

which is material dependent. We will explain why the bending energy per
unit of area is the square of the inverse of the radius of the sphere. We see
that the cost of bending is scale invariant. A small or a large sphere have

the same energy.

17.1  The geometry of a plane curve

We proceed by introducing the curvature. Let ¢; and ¢; be the tan-
gents, nn1 and n, the normals, at two neighboring points P; and

P,. Let he intersection of the normals be at M. Clearly, the angle

Figure 17.3:
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between the tangent is equal to the angle between the normal
() = L(ny,n2) (17.2)

Let P, approaches P; along the curve. In general, the ratio

niny . 1
pho PP, R (17:3)

approaches a limit. The ratio 1/R is called the curvature and the the
factor R which has the dimension of a length is called the radius of
curvature. This quantity is also defined in another way as follows.
We consider the point P; and two neighboring points on the curve.
These three points define a circle whose radius is R when the two
neighboring pints approaches P;.

At some exceptional points, the radius of curvature may be in-
finite. At these points, the circle of curvature degenerates into a
straight line and is thus identical with the tangent. At such point
the tangent crosses the curve, so that the point is a point of inflec-
tion.

A curve has two natural or intrinsic coordinates. The first is the
arc length which measures the distance along the curve starting at
one arbitrary point. The second is the curvature. The only line of
constant curvature is the circle.

17.2  The geometry of a 2d-surface embedded in 3d

At each point P, we can elevate a normal vector n. Any plane
which contain the normal vector intersects the surface along a
curve C. Since this curve is planar, we know how to calculate the
radius of circle tangent to C at P. Call R the radius of curvature. If
we now rotate the plane by an angle ¢ around the normal n, the
radius R(¢) becomes a function of ¢. For different ¢ values, it has a
maximum and a minimum, since it is a periodic function of ¢ with
the symmetry ¢ — —¢.

The general formula whose derivation we will omit here for the
curvature of the normal section is the the follwing formula found
by Euler:

R™ R R (17-4)

where R; anf R; are the radius of curvature when ¢ = 0, 77/2
(principal axes).
Let us call H the mean curvature :

1 1 1
H= = +
2 (Rmax Rmin)

B 1/1 . 1 (17.5)
- 2\R, "R,

for any directions 1, 2 perpendicular to each other. Eq. (??) has two
important features :

Figure 17.4:

Kn(9)
1L

S S

Figure 17.5:
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- There are two radii of curvature for a surface instead of one for a
line: There are two possible directions in the tangent plane.

- Radii of curvature have sign and it is possible to construct min-
imal surfaces where H = 0 everywhere. Both radii of curvature
are small but they have opposite sign so that the mean curvature
is zero (see Fig. ??)

How do we determine the value and the sign of the two radii
of curvature ? We need to parametrize the surface and our energy
must be independent on our parametrization (the energy must be
the same if we use polar and rectangular coordinates) and indepen-
dent on what we call the exterior and the interior. For a sphere, the
volume enclosed by the envelop is usually called the interior. But
this definition is arbitrary and if exchange the role of exterior and
the interior, then the radii of curvature changes sign. Our energy
must however be independent of this convention.

17.3 Application of the concept of curvature to the elasticity of

surfactant layers

From what we have previously discussed, the interesting concept is

the mean curvature:
H— 1 L 1
"Ry Ry

which is a quantity which varies as one moves along the surface.

(17.6)

The sign of this H is a matter of pure convention. For a vesicle,
what we call inside and outside is arbitrary. However, if we change
convention, the sign of H changes. But the energy cannot change. It
is the same to say that if we bend a surface upwards or downwards,
the energy cost will be the same. Therefore the bending energy of

a vesicle depends on the square of the mean curvature and we will
write

1
Ebending = EKJ ds (ZH)Z (17.7)

where « is the bending constant which is phospholipid dependent.
The following exercice helps to understand why the dimension
(1D, a wire, or 2D, a surface) is crucial for the bending energy as a
function of the scale of the object.

Exercice 17.1 1. Consider a rope of length 27tR bend into a circle with
radius of curvature R. What is the bending energy ?

2. Consider a spherical vesicle. What is the bending energy of this vesi-
cle ? How does it scale with R ? Compare with te first question and
discuss the effect of dimensionality.

The following explains why curvature is important for thin shell
elasticity.

One the most fundamental application of the concept of curva-
ture is the variation of an elementary area as one moves along the
normal at one point on a reference surface.

—_ -

Figure 17.6: Example a constant
curvature surface with symmetry of
revolution. Revolving a curve around
the z-axis gives a surface where each
point has coordinate (#,z). The circles
with radius R,, correspond to the
curvature along a meridian. Note
that the center of these circles can be
on both sides of the surface (so that
the mean curvature changes sign).
The curvature along a parallel is
shown by the inner circle of radius
r/sin§ with a center lying on the
z-axis. This example is the only non-
trivial constant mean curvature (i.e.
H = cst. > 0) surface of symmetry of
revolution (Delaunnay surfaces).

y & // -
P 4 Q / o ¥ .

E4S" / e 8

B/ [ aa20NS

VASE

Figure 17.7: Confocal image of an ar-

tificial vesicle made of phospholipids.

Note that the resemblance between

these Myelin shapes and the Delaunay
surface is striking.

- Y -

Energetically unfavorable

M

l phospholipid bilayer

edges exposed to water
m ™

sealed phospholipid vesicle
no edges exposed to water

Energetically favorable

Figure 17.8:
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Let us consider such a point P on an arbitrary surface with nor-
mal n. A neighborhood of P has a surface element dA. If € is a
small number, we can construct a new surface element as follows.
To each point in the neighborhood of P, let us move by a distance €
along the normal. This application maps the all points in the neigh-
borhood of P to only one point in the neighborhood of P’ image of
P. The new neighborhood has an area dA’.

To simplify the notations, we define c; = 1/R; and ¢; = 1/R,. We
have

dA" =dA (1 +e(c1 + ) + ezclcz) +0(e% (17.8)

where the O(e®) means that all other therms are negligible.

Exercice 17.2 Demonstrate this formula in the case where the surface is a
sphere

Eq. (??) is at the heart of all elastic theories of surfactant mono-
layers and bilayers'. For a monoloyer of thickness /, the free energy
PER MOLECULE is the sum of three contributions

1
f= Jur, - | r000 4 S (17.9)
~—— 0 ~——
Entropic tail _ Head —head interaction
Lateral compressibility
where the integral extends NORMAL to the interface. The second
term include the work done to change the area per lipid at some
distance x from a reference surface via the lateral pressure 7(x).
The third is the contribution due the interaction between the head
groups.
Using for the area per lipid at a distance x along the normal

a(x) = a(0)(1 + x(c1 + ¢2) + x°c102) (17.10)

gives a bending energy as a sum of two contribution integrated
over the lateral surface of the whole monolayer.

%K Jj dS(c1 + )% + kj dScycp (17.11)

The elastic constant entering into (??) are function of the tensile
stress along the normal. The bending modulus x and the Gaus-
sian modulus & are macroscopic constants depending on different
moments of the tensile stress

1
K = 2a(0)jxn(x)dx (17.12)
lo
k= a(O)fxzrf(x)dx (17.13)
0

This model assumes that the head group interaction gives no contri-
bution to the bending modulus. Experiments show that this indeed
the case. Only varying the length of the hydrophobic tails changes
the bending modulus.

*See I. Szleifer et al, ]. Chem Phys, 92,
6800, 1990

h

stretching
/ compression \
g neutral surface

Figure 17.9: Figure 2: When a piece
of material is bent, the outer side
is stretched, while the inner side is
compressed. Using our knowledge
of the elastic behavior, we can thus
predict its resistance to bending.
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17.4 A toy model for the curvature energy

Let us assume that the energy per lipid molecule has the simple
form of a Hook’s energy

f= keI L) (1712

The incompressibility of the chains implies that the volume v
occupied by the layer is constant. When the layer is flat, the volume
is simply agls. When the layer is bent, the volume occupied by a
chain depends on curvature. To lowest order in [

vy = apl (1 + é(cl + c2)> (17.15)

Exercice 17.3 Demonstrate this formula using Eq.(2?)

Thus, the incompressibility condition relates the volume vy to
the chain length I. When the curvature changes, the length [ adjusts
itself to keep the same volume v per lipid.

Solving for I(vg), we get

I =1 <1 - %5(61 + c2)> (17.16)
We get the curvature energy per lipid.

2
(c1 +c2) (17.17)

f=

To get the total energy of the monolayer, we can sum over the lipid

Do (17.18)

or, more conveniently, introduce a surface density of lipids p = cst.

1
E= 5K Jf dS (c1 + ¢2)? (17.19)
where the bending modulus « is an elastic constant.
Lo
K= Ekslop (17.20)
Sometimes, it is useful to define the mean curvature at a point P of
a surface 1
H= 3 (c1+¢2) (17.21)

A crucial theorem states that the mean curvature does not depend
on the way the surface is parametrized, i.e. on the way axes are
labeled. We can use many different ways to parametrize the surface
and we will always get the same result. Therefore, the curvature
energy in ?? is a well defined quantity which does not care on the
way we parametrize the problem.
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17.5 A note on units

As other things, quantities have dimension : length, second or en-
ergy. For a surface, the bending constant appearing in (??) has the
dimension of an energy, since the mean curvature has the dimen-
sion of 1 over length, the bending modulus has the dimension of an
energy. Typically, the value of « is about 30 kpT.

Units depend on where you are coming from (chemist, biolo-
gists or physicists) but also on the problem at hand. We use the
most convenient ones. A key idea in physics is to specify the units
of things. Lengths are expressed in meters, times in seconds and
Forces in Newton (N). These units are perfectly adapted to the
macroscopic world. Using them to describe the microscopic world
is very clumsy. In general, lengths are expressed in p.m or n.m.
Forces at the scale of the cell are in the range of the pico-Newton
(10712N) to the nano-Newton (1077 N) range.

By definition, the work done by a force is

W = force x distance (17.22)

Here is the table of conversion between the different units which
seem appropriate at the scale of a cell :

12 kCal/mol = 810~2°] /molecule = 0.5¢V = 20kgT (17.23)

where kgT is the standard unit used to describe thermal forces (T is
the temperateure and kg is the Bolzmann constant). We have

1kpT = 4.1pN.nm (17.24)

and kpT is thus an appropriate unit, since forces are in the pico-
Newton range and distances are in nanometer range.

17.6  The spontaneous curvature

For geometric raisons, we have seen that some amphiphilic molecules
prefer to bend the interface. The curvature energy (??) is not appro-
priate. Because (c1 + c;)? is always positive, the minimum energy
state is the one for which

c1+c=0 (17.25)

This equation defines what people call a minimal surface , i.e.
the shape of a soap film. The only minimal surfaces with symmetry
of revolution are the planes and the catenoid.

If the surface is naturally bent, we will change our definition and
will define the an energy as

E = %KJ dS(cp +cp— co)2 (17.26)

where ¢ is called the spontaneous curvature.

1MPa+

100kPa 4 Colloidal
cracks Stratum Friction
1okPat comeum

Stress

Platelets Liquid droplets
1kPa I Dictyostelium
Fibroblasts, slugs
endothelial
100Pa 4+ cells
Epithelial cell
Neuronal ™ golgnies and

tropod:
el pie 1 Gastropods
cones

+ + + + +
1um 10um 100um 1mm 10mm
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Figure 17.10: From R.W. Style et al.,
Soft Matter, 4047, 2014

Figure 17.11: This surface

is called the catenoid. See

http:/ /infima.ba/2012/02/05/the-
geometry-of-soap-films-and-soap-
bubbles/.

Figure 17.12: Costa
minimal surface : see
http:/ /bugmani23.com/MinimalSurfaces/index.html
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17.7 The Gaussian curvature

We have seen that the mean curvature H, cf. (??) is invariant under
reparametrization of the surface. there is also an other quantity
independent on the way we decide to describe the surface. This
quantity is the Gauss curvature, i.e. the product of the two inverses
of the radii of curvature cjcy.

For a cLOSED surface, it took Gauss to understand and to demon-
strate that this quantity when integrated over the surface is a con-
stant

Negativé'éurvature

§d$ cicp =4n(1-g) (17.27)

What do we mean by that ? Take a sphere, an ellipsoid or any Psie Gyvatut

surface with no hole, you will get always te same result. The inte-
grated Gauss curvature depends only on the genius of the surface.
For the torus torus pictured aside, the result will differ from the
sphere. The torus has a hole, but the result will not differ if we dis-
place the hole out of center. For this reason, the Gaussian curvature
is not an appropriate way to gauge energy changes. This is however

. . . Figure 17.13: A torus.
a way to characterize changes in topologies.

113






18

Bilayer elasticity : The example of vesicles

18.1  The different meanings of surface tension

There are different meanings for what we call "surface tension". We
read the following in Wikipedia : "At liquid-air interfaces, surface
tension results from the greater attraction of liquid molecules to
each other (due to cohesion) than to the molecules in the air (due to
adhesion). The net effect is an inward force at its surface that causes
the liquid to behave as if its surface were covered with a stretched
elastic membrane. Thus, the surface becomes under tension from
the imbalanced forces, which is probably where the term "surface
tension" came from."

This description is perfectly correct for an air-liquid interface
where molecules diffuse continuously between the bulk and the
interface. It can non only have an elastic origin, but it is also en-
tropic per nature. The surface tension at the liquid-air interface will
depend on the temperature.

The situation we have in mind for vesicles is rather different.
There is no exchange between the bilayers and the surrounding
medium. On the time scales of experiments, the number of phos-
pholipids on the vesicle surface is therefore constant. The only
way to change the area is to stretch tangentially the bilayer, i.e. to
change the area per lipid headgroup. This stretching energy has the
form

1 a 2
fstretch = 5‘7 ( - 1) (18.1)

ao

and the constant ¢ is a surface tension like term. For vesicle stretch-
ing is very dangerous. The bilayer lyses quite easily and the varia-
tions of area per lipid headgroup are small if the vesicle keeps its
integrity. The total area of a vesicle is thus constant.

18.2  Mechanisms for bending

There are two main approaches. If a lipid bilayer consists of two
identical monolayers, it tends to remain flat; because its structure

is symmetrical with respect to the mid-plane, there are no physical
reasons for it to bend in any direction. So, a straightforward way to

0+do
\ \
1]

r dr
Figure 18.1: The surface tension fixes
the angle of contact between a drop
and a substrate.

Figure 18.2: Cartoon of a giant vesi-
cle whose size is about 20 ym. The
thickness of the bilayer is very small
compared to the size of the vesicle.
There is no exchange of lipids between
the solution and the bilayer. Flip-flop
of molecules between the two leaflets
is also rare. Vesicles adopt a shape
optimizing a curvature energy with
the constraint of constant surface and
volume.
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cause membrane bending is to create bilayer asymmetry. The sec-
ond approach is to impose physical constraints on the membrane,
such as frames or scaffolds that enforce bilayer curva- ture. Both
lipids and proteins can be used to implement each of these two
strategies *

Bilayer asymmetry can be achieved by generating a difference
in the lipid compositions of the two monolayers. Lipid molecules
of different kinds can be seen as the elements of a mosaic, with
various shapes similar to cylinders, cones or inverted cones. If, for
example, there are more inverted cone-like molecules in the outer
monolayer than in the inner monolayer, the bilayer will tend to
adopt a concave shape . Alternatively, asymmetry can be created by
introducing more lipid molecules into one monolayer than in the
other. The membrane will then bulge in the direction of the mono-
layer that has the larger number of molecules. Proteins can generate
membrane asymmetry by inserting their hydrophobic domains
into the lipid bilayer matrix on one side of a membrane, causing
the membrane to bulge towards the affected monolayer. Most
membrane-bound proteins have the potential to do this, because
they already have hydro- phobic domains inserted into membranes
to anchor themselves. A theoretical analysis6 of this hydrophobic
insertion mechanism has revealed that the largest membrane curva-
tures are generated by shallow insertions that penetrate the external
membrane monolayer only to about a third of its thickness. Com-
mon protein domains, such as amphipathic a-helices (which contain
both hydrophobic and hydrophilic parts) and short hydrophobic
loops, induce membrane curvature in this way, and are predicted to
be much more effective than lipids in doing so.

18.3 Curvature energy and constraints

Since the membrane is permeable to water, one might expect that
the volume of the enclosed fluid can adjust freely. However, if ad-
ditional molecules are present in the aqueous solution such as ions
or impurities, which cannot move through the membrane, any net
transfer of water will lead to an osmotic pressure. Typically, such a
pressure is huge on the scale of the bending energy. A small vari-
ation of volume will led to a large osmotic stress that the vesicle
cannot sustain. The only way to keep its closed shape is to allow
only tiny changes in volume. Consequently, the enclosed volume
is essentially fixed by the number of enclosed, osmotically active
molecules and by the concentration of these molecules in the ex-
terior fluid through the requirement that the osmotic pressure is
essentially zero.

In summary, the shape of a vesicle minimizes a curvature energy

%K Jf ds (c1+c¢p — cO)2 (18.2)

with the two constraints :

* Michael Kozlov. Nature, 463, 439,
2010.

b Hydrophobic
insertion

d Scaffolding

Figure 18.3: Lipid asymmetry. (a)
This occurs when each monolayer is
enriched with lipid molecules of dif-
ferent shapes (such as the orange and
green molecules shown) and/or when
one monolayer contains more lipid
molecules than the other. (b)Proteins
cause membrane asymmetry by in-
serting their hydrophobic domains
into one side of the bilayer. (c) When
bilayer matrices contain domains
consisting of different lipid phases
(such as the ordered (brown) and
disordered (purple) regions shown),
the boundaries between the domains
tend to contract, causing the inter-
vening region to bend. (d), Finally,
proteins bound to the bilayer can act
as scaffolds that force curvature on the
membrane.
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Figure 18.4: A numerical shape of a
vesicle showing a bud
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1. Given volume.

2. Given total area.

Exercice 18.1 The volume of a sphere is 47tR3 /3and its area is 47TR?.

Consider a vesicle with an arbitrary shape and we define the radius of the
equivalent area sphere, i.e. A = 47tR3. Define the parameter /\

v = V/[4rtR3/3] (18.3)

1. What is the shape of vesicle if v = 1. In general, do we have 47TR3/3 >

I
V (why ?) or v < 1. 10 ym
Figure 18.5: Effect of thermal fluctua-
2. Assume a large enough spontaneous curvature. Imagine an experi- tions on vesicle shapes

mental setup where you can increase the area while keeping the volume
constant. What could happen ? See Fig. ?2.

18.4 A note on thermal fluctuations

For typical vesicles, the bending modulus is of the order of ¥ ~

25kgT. This does not mean that the shapes do not experience any
random undulations due to thermal fluctuations, see figure on the
side. Thermal fluctuations are very difficult to analyse in spherical
geometries. For almost plane membranes, it is much more easy to

analyse. We will discuss two effects during the lecture.

1. Entropic forces and entropic pressure for a membrane bumping Figure 18.6: Two fluctuating bilayers
with their abstract representation.

The two membrane bump onto each
. . . other and this creates a repulsive force
2. Entropic surface tension effects for a fluctuating membrane. between the two membranes. The
strength of this repulsive interaction
. . . can be of the same order of magnitude
18.5 Micropipette experiments than the Van der Waals forces which is
an attractive force.

into a wall.

We study the mechanical properties of living cells in order to un-
derstand their response to stress in the circulation and the tissues.
For example, by characterizing the response of white cells to an
applied pressure we learn how these cells flow through the smallest
vessels of the body and migrate within tissue to sites of infection.
In addition, by measuring the response of cells to applied forces
and stresses, we learn about the underlying structure of a cell. R
Does it behave like a liquid or a solid? What molecular structure ' :
is responsible for its behavior? How do mechanical and chemi-
cal stimuli alter its behavior? How do we study and measure the

mechanical properties of the cell ? 3 , ‘
. ey i) o)
The cell must be deformed in some way by a known force or | .
stress and its deformation must be measured. The diamee of the faced ed €l s approimarely s i o

the swollen cell is about 6 um. The scale bars indicate 5 pm.

Figure 18.7:






19
Diffusion: Macroscopic theory

A useful reference for this chapter is the book of H. Berg.

19.1  Einstein Diffusion equation

We start with Fick’s law in d-dimensions

oc

— = DAc 19.1

pn (19.1)
where c(x) is a concentration and D is the diffusion constant with
the dimension length? /time. The Laplacian is an operator with

Ac = Z oc (19.2)

This equation results from a conservation law and is derived in two
steps. First, we define a current j with

G TVii= (19.3)
and we assume that the current is proportional to the gradient of ¢
j=-DVc (19-4)

where the minus sign tells us the current will flow down the gradi-
ent. Fick’s law is valid for concentrations which have been averaged
over many realizations. In other words, it is valid for situations
where we can neglect fluctuations. Here, we want more. We want
an equation for the probability itself.

To derive such an equation we go back to the random walk prob-
lem. For typographic reasons we will consider the 1d case where
sites are labeled by integer x;. Remember that the walker steps with
equal probability 1/2 to right or to the left at each time step. He (or
she !) never stays at rest. A realization (a sample) of the r.w. is the
series {x1, xp,...,xN—1} for the positions at successive times. Let
P(xn,tN) be the probability that the position x equal xy after N
steps, knowing that the r.w. started at the origin. Since he (or she)
never stops walking, this means that x = xx + a at time fy_;, where
a is the step size. Or,

P(ertN) =
1 (19.5)

5 [P(xn —a,tn_1) + P(xn +4a,tN-1)]
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This equation is a recurrence equation for the probability and is
known as a Master equation. We solve this equation by subtracting
P(xn,tn—1) on both sides and dividing by At (the time interval
between successive steps)

P(xn, tn) — P(xn, EN-1) _
At

1
—[P(xny —a,tn—1) + P(xy +a,tN_1) (19.6)

At
—2P(xN, tN—1)]

We will take the "hydrodynamic" limit where

1. a is much smaller than all macroscopic lengths we will be inter-
ested in.

2. At is also much smaller than all macroscopic times but larger
than microscopic times (random forces are correlated at micro-
scopic times).

In other words, we will separate the fast and the slow variables. In
this regime, the variable x; become a continuous variable and

P(xn,tn) — P(xn,tn—1) 0P

Al = (19.7)
with
oP a2 d%p
P(x—a) = P(x) — as + > o2 (19.8)
oP  a? P
P(x+a) = P(x) +as_+ > = (19.9)

so that the discrete master equation is correctly approximated in the
hydrodynamic limit by a continuous process obeying a diffusion
equation
oP  a* °P
ot 2Atox%
where D = a?/2At is a finite constant. This equation can be gen-

(19.10)

eralised to arbitrary d dimensions and must be supplemented by
appropriate boundary conditions. We conclude that the conditional
probability P(x,t|x = 0,t = 0) obeys a diffusion equation.

Exercice 19.1 Gaussian solutions:
1. Show that D = a?/(2dAt) in d dimensions.

2. Show directly that
_ 1 2 2
P(x) = m exp{[—x /(20' )]} (19.11)

with o = 2Dt is solution of the diffusion equation in 1 dimension.

3. Show

P(x) = W exp{ [—xz/(4Dt)] } (19.12)

in arbitrary d dimensions.
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Exercice 19.2 Scaling. Scaling arquments are very helpful to get the
solutions of problems without solving differential equations. Here is an ex-
ample. You have been asked to cook the dammed chicken. It takes 1h 15 mn
to cook a 1.2 kg chicken. Yours weights 2 kg. What is the cooking time

in your case ? (hint : Scale the diffusion equation to have the same tem-
perature profile for both chickens. You can assume that the chicken has
spherical symmetry.)

It is common to work in different coordinate systems. In polar
coordinates, we have:

2
Af = 1(?<r(9f>+16 2-d

ror \ or) 12002
_ 10 (a0f 10 (o
A= 25 <r 6r>+r25in969 (smeae (19-13)
1 02
Taag

19.1.1 FRAP experiments

FRAP was developed in the 1970s as a technique to study protein
mobility in living cells by measuring the rate of fluorescence re-
covery at a bleached site. The FRAP technique originally found
success as a method to measure diffusion in cellular membranes
[42,43]; however, the recent advent and availability of both fluo-
rescent protein technology and confocal microscopy have led to a
marked increase in the use of FRAP for studying protein mobility
in the cell interior. The scope of these studies has expanded not
only to address diffusion rates, but also to assess protein dynamics
and interactions with other cellular components . FRAP has now
been adopted as a common technique for studying almost all as-
pects of cell biology, including chromatin structure, transcription,
mRNA mobility, protein recycling, signal transduction, cytoskeletal
dynamics, vesicle transport, cell adhesion and mitosis.

Commonly, FRAP results are analyzed qualitatively to determine
whether protein mobility is rapid or slow, whether binding inter-
actions are present, whether an immobile fraction exists, or how a
particular treatment (such as ATP depletion or a mutation in the
protein of interest) affects these properties. Several mathematical
models have been also developed to understand better the underly-
ing processes, to ensure the accuracy of a qualitative interpretation,
and to extract quantitative parameters from a FRAP curve.

Exercice 19.3 In a typical Frap experiment, one bleaches a spot of size R.
Use dimensional analysis to guess the characteristic time scale of typical
Frap recovery curve.

Two limit cases will be discussed during the lecture:
1. Diffusion-limited.

2. Reaction-limited where the recovery depends on the off rate of a
reaction (diffusion is assumed to be very fast)
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Lipid bilayers are dynamic noncovalent structures Figure 19.1:
(A) . I BLEACH
3t B3 3t c
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Figure 10-40 part 1 of 2. Molecular Biology of the Cell, 4th Edition.

Exercice 19.4 We consider a Frap experiment for a single binding reac-
tion .
F+S—>C (19.14)

Koff
where F represents free proteins, S represents vacant binding sites, C
bound [FS] complexes.

1. What are the equations describing the binding reactions (including
reaction) ?

2. What is the concentration Foq ?

3. Assume that diffusion is very fast and that vacant sites are in excess.
How do you simplify these equations ?
4. We define kon™ Show that these equations reduce to

dc
ar konFeq — kogre(t) (19.15)

5. The frap recovery data is the sum of the bound and free fluorescence.
Conclude that the intensity recovers as

I(t)=1- exp{ [—kofft]} (19.16)

N o , 000 00 900 00
19.2  Boundary conditions for the diffusion equation 0000090000

Eq. (??) is a partial differential equation and it makes no sense
to find a solution without specifying the boundary conditions.
Assume that we are interested in solving (??) on a domain () =
[0, L]¢. These are as follows:

1. One must specify the initial conditions at ¢ = 0 over the domain
of interest.

2. One must specify "something" (the value of c or the current) at Figure 19.2: (a) Frap can occur with-
the boundary of this domain. out specific interaction. Simply the

diffusion drives the exchange of
molecules between the bleached and
the non-bleached area. (b) Cluster
of molecules. There is a contnuous
exchange between the bound and the
un-bound molecules. If we bleach the
cluster, the molecules inside the cluster
loose fluoresence.
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Changing one of these conditions completely alters the solution
and the physical consequences ! Here are some of the most popular
boundary conditions for stationary solutions:

1. We fix the values of ¢(x) on the boundaries of Q) (i.e. ¢(0) = c(L)
are given). If ¢ = 0, the boundary are absorbing. All the walkers
crossing the boundaries disappear (think of a random walk on a
roof: if you hit the border, you get out of the system !)

2. We fix the outward current dc/di*. If dc/dii = 0, there is no ' 11 is the outward normal at the

current. The boundaries are perfectly reflecting walls. boundary of ) and de/df = fi- Ve.

19.3 An example of first passage probability: The gambler ruin
problem

Consider a random walk on a finite interval of length N. The two
boundary sites are absorbing, i.e. the random walker immediately
disappears upon reaching these sites. Suppose that the starting
position of the random walk is n, with 0 < n < N. Whatis F,,
the probability that the walker first reaches the boundary at site N,
i.e. without touching site number 0, first? We will write a simple
recursion relation for F,.

Exercice 19.5 Consider the probability F;.
1. What is Fy and Fy 7(0,1)

2. With probability 1/2, the walk steps to site n — 1 at which the probabil-
ity to escape at site n — 1 is F,_q. Similarly, the walk steps at site n + 1
with probability 1/2. Show:

1
F, = 5 (Fu—1 + Fut1) (19.17)

3. Show F, = n/N.

This exit probability also represents the solution of the gambler
ruin problem. In a casino, you continue to bet as long as you have
money. Let n represent your wealth which that changes by a small
amount +1 with equal probability by a single beat with the casino.
You lose if your wealth hits zero and you break the casino is your
wealth hits N (the total sum of your wealth and the one of the
casino). This calculation shows that the probability to break the
casino is n/N. Conclusion: Owning the casino is a good idea, gam-
bling in the casino is a bad idea.

19.4 Diffusion limited chemical reactions

Exercice 19.6 Consider a perfect adsorbing sphere of radius a[? ]. A
molecule is initially located at a distance 1o of the center of the sphere.
In this problem, we will ask this simple question: What is the probability
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p(a, ry) for the molecule to be adsorbed ? It will turn our the answer is
simple. It is

a
p(a,ro) = — (19.18)
ro

and not as a? /1’2 as if the movement where ballistic (in that case, the result
would be proportional to the cross-section). To answer to this problem,
consider a sphere of radius ry > a where the concentration is maintained
at ¢ = cy,. Assume that there is a second sphere of radius b > ry where the
concentration is maintained at ¢ = 0 (adsorbing conditions).

1. Solve the stationary diffusion equation in the two regions with the
appropriate boundary conditions. To solve this equation, pose u(r,t) =
re(r, t) in the diffusion equation where r is the radial coordinate. What
is the equation for u(r,t) ?

N

. Compute the current at r = aand r = b.

. Compute the total flux of particles through the spheres a and b.

W

4. What is the probability that a random walk starting at vy bump into a
? Same question for b.

5. Let b — oo and recover (2?).

Figure 19.3: An absorbing sphere

for a solute diffusing in the bulk. The
concentration of solute decreases in the
vicinity of the sphere. This depletion
«n ) zone is characteristic of problem

. . - controlled by diffusion.
. "
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Exercice 19.7 Consider the situation schematized in Fig. ??. Assume that
the concentration at r — oo is maintained at cy. The sphere of radius a

is covered by sensors with surface density o. The rate of uptake of solute
molecules per unit surface is given by

dn
o8 = Okonc(a) (19.19)
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This equation defines ko, as the usual kinetic rate in chemical reaction.
1. If M is the total number of receptors, give M as a function of o.

2. Show that solution of the 3-d diffusion equation with symmetry of
revolution is given by c(r) = B+ a/r.

3. Using mass conservation, show

—47tr?](r) = Mkopc(a) (19.20)

4. Use the last equation to compute the concentration as

_ Mkopc(a) (11
c(r)—c(a) = D \777 (19.21)
5. Show
c(a) = il (19.22)
1+ Mkon/(47tDa) o
6. Plot c(r).
7. Deduce that the net adsorption rate is
_ 4nDaMk,, (19.23)
" 47Da + Mkoy 9-23

8. Investigate the two limits of a perfect adsorber, ko, — 0, and of a bad
adsorber, ko, — 0. Conclude that the net adsorption rate can be written

as
1 1 1

k= kon + ko (19.24)
where 1/kp is a diffusion time which depends on the diffusion constant.
Thus, our boundary condition together with the diffusion equations
set two characteristic time scales. This is in contrast with the usual

condition of perfect adsorption with only one time scale.

Remark 6 The diffusion-limited rate constant 4rtDa is the maximum
rate constant which can be observed (unit is is m3.molecules—'.s~1. In
Molar unit, [k,] = M~ this result reads as 40007tDaN, where N is the
Avogadro number and where all lengths are in dm.

Exercice 19.8 We consider the bimolecular reaction
A+B— AB (19.25)

for which the concentrations usually evolve according to the law of mass
action A[AB|
EE2 — KA (19.26)

Usually, the on-rate k is independent of t. This will not be case here. We
assume that an A molecule and a B molecule react immediately to form a
complex AB when they encounter each other within a reaction radius, so
that the speed of reaction is limited by their encounter rate via diffusion.
We consider the case of spherical target A of radius a (d = 3). One way
to formulate the problem is an idealized first passage process, in which the
A molecule is fixed while the B molecule diffuse around. Let c(r, t) be the
concentration of B molecules.
The initial conditions and the boundary conditions are as follows
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(i) c(r,t =0)=cgforr>a.
(ii) c(r = a,t) = 0, since there is an uptake of B molecules at r = a.

(iii) c(r — ) = cq for a continuous supply of B molecules at infinity to
counterbalance the rate of uptake of B at r = a.

1. Define u(r,t) = ru(r,t). What is the equivalent-diffusion equation for
u(r,t)?

2. To solve this equation with the appropriate boundary conditions for
u(r, t), introduce the Laplace transform of u(r, t)

i(r,s) = JOOO dtu(r, t) exp{[—st]} (19.27)

Show
sii(r,s) —rco = Dit"(r,5) (19.28)

3. Show
ﬁ(T,S) =

reew{[-avipl)]

4. We assume that the inverse Laplace transform of

1wl [y

is
erf(rv4Dt)

where

erf(z) = 2 JZ e dr (19.30)

VT Jo '

where rmerf is the error function, see Fig. ??. Show:

_ I WY e

c(r, t) = cg (1 r) + . erf [\/ﬁ] (19.31)

5. Show that the time-dependent flux is

¢ = 47ta® Dy (1 + 7th> (19.32)

Figure 19.4: Diffusion limited reaction
rate. (a) Diffusing molecules B in

a neighborhood of a fixed target
molecule A with reaction radius a.

In (b) Quasi-static approximation for
calculating time-dependent reaction
rate.
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6. Make the t — oo limit. Show k = 47ma?D. Remark that the rate k

depends on the diffusion constant D.

Exercice 19.9 The time-dependent reaction rate can be calculated us-

ing the quasi-static approximation. Because of it simplicity and general

applicability, we detail the calculation in arbitrary dimension d.

We divide the region exterior to the adsorbing sphere into two zones.

The "near” and the complementary “far” zone.

1.

In the near zone, a < r < a + /D¢, it is assumed that diffusing parti-
cles have sufficient time to explore the domain before being adsorbed by
the target. The concentration is almost quasi static. What changes with
time is the locus of the boundary which increases as /Dt.

In the complementary far zone, it is assumed that the probability of
being adsorbed is negligible, since the particles are unlikely to diffuse
more than /Dt in a time t. Thus, c(v) ~ cq in the far zone.

. Show that the static solution in 2d is c¢(r) = A + Blnr.

Match the solution to the boundary condition c(a) = 0and c(a +
v/'Dt) = ¢ and show

_ coln(r/a)
o(r,t) ~ 7ln(\/§/a) F>>1 (19-33)

Compute the time-dependent flux

oc
J(t) = 4ma® D= (19.34)
r=a

How | depends on the size of the adsorbing sphere ? Conclude.
1.0 i

05+

-1.0F

Figure 19.5: Plot of the function erf(z).
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19.5 The Peclet number

The Peclet number is a dimensionless ratio. It is the ratio of two
rates. The first rate is the rate at which a particle moves some dis-
tance A due to being carried along by the flow of the liquid. The
second rate is the rate at which it diffuses the same distance A.
Here A is whatever distance we are interested in. So, the Peclet

number is defined to be R
1

Pe =
e Rz

(1935)
where

1. Ry = Rate at which flow carries molecules a distance A.

2. Rate at which diffusion carries molecules a distance A.

If the flow speed is u, the time taken to transport a molecule over a
distance A is A/u. The rate is therefore u/A. In contrast, the time to
diffuse a distance A is A2 /D. As a result, the rate is D/ A2. Thus,

UA

Pe =
°~D

(19.36)

which depends on the length scale A. On small scales, diffusion is
faster than flow. On macroscopic scale, flow is faster. For E. Coli
looking for nutriments, D ~ 10~2cm?/s (for phosphate molecules),
u = 30um/s (speed of E. coli), A = 2um (size), Pe = 0.02.

19.6  Diffusion in a force field

We have considered so far a free brownian particle. What happens
if the particle is subjected to an external force F ? If this force derive
from a potential ¢(x), the current is the sum of the usual drift term
and a mobility term

] = —uP(x)V¢—DVP (19.37)

where the mobility y is yet undetermined.
Conservation of probability requires
oP
T V-] (19:38)
and translates into

oP @
~ = 2 [-#P(x)Vg—DVP] (19.39)

Assuming stationarity

—uP(x)V¢ —DVP =0
dP ud¢ (19.40)
or E = —BEP(X)

whose solution is given by

P(x) = %e_%"’(x) (19.41)
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where Z is some normalization constant. Remark that we have
made no statement concerning equilibrium and we have only hypo-
thetized that the process is stationary. If the process at equilibrium,
we recover the Bolzmann'’s distribution if the Einstein relation holds
% = % (19-42)
Although this derivation is general, it is interesting to state clearly
the hypotheses tacitly made to get (??). Since the probability P(x,t)
does depend only on the position and not on the speed, we have
tacitly assumed that the speed relaxes very fast to some local equi-
librium. Actually, (??) is only valid in the strong friction limit.

Figure 19.6: Three successive
monomers of a flexible polymer

chain. The angle 6 is fixed, but the
upper monomer can rotate by an angle

129

Q '\ ¢. The three segments are coplanar
— ] ne L= = when ¢ = 0 (trans-configuration) and

’» e ~ this configuration corresponds to the
| S true minimum energy configuration

Ch-3 P= 0 trans
Y= 120° gauche (g+)
P =-120° gauche (g-)

Remark 7 In classical mechanics particles at rest occupy minimum
energy states. Here, due to thermal fluctuations, the particle has a finite
probability p(U;) to be in a state of energy U; above the minimum energy
state. Assuming thermal equilibrium, the probability p(U;) is

1 4
p(U;) = el ~H/ATI (19.43)

(see Fig. 2?). The two gauche configu-
rations are obtained when ¢ = +1200.
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Energy € 4

" trans )
— — ——————————
-180 -120 -60 0 60 120 180
angle P

where Z = Y ;exp{—U;/kT} so that 3, p; = 1.

Consider a molecule with two conformational states with reaction
coordinate x. The probability to be state 1 is py = 1/Z exp{{—U1/kT}}
(1 == 2). We have

% — exp{[—(U; — Uy)/kT]} (19.44)

At very low temperature, p1/pa » 1 so that the only observable state is
actually the minimum energy state. At finite temperature, however, state
2 is observable with a finite probability. This property is crucial for flexible
polymer chains. The energy between successive groups is a function of
one angle ¢. The potential barrier Ae between the two cis and the trans
configuration is small, so that the chain is a flexible coil.

Exercice 19.10 Application : The Debye-Hiickel theory. Interactions that
occur between electrical charges fixed at surface and those which are free in
solution play an important role in colloidal systems.

We consider negatively charged wall that is infinite in the x and y
direction. The distance from the charged surface is z. The charge density
on the wall is . Let ®(z) be the electrical potential. Because of Gauss’s

law
dd B o

dz  eper

(19-45)

The adjacent solution contains positively charged and negatively charged
ions in equal quantity with homogeneous density cy when ¢(z) = 0. We
assume that the ions bare a charge +Ze.

1. Calculate c+(z) as a function of ®(z).

2. Write Gauss’s theorem in the solution

AD(z) = _p) (19.46)

and show

(19.47)

Figure 19.7: Potential profile as a
function of the angle ¢ defined in
Figure ??. The potential barriers are
small with respect to the thermal
energy kT, so that the polymer adopts
the three configuration with almost
equal probability
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3. Without solving this equation, show that there exists a characteristic
length scale 1, which enters into the problem.

4. Assume

Ze¥ Ze¥
sinh[ ekT(z)] ~ ekT(z) (19.48)

and solve the differential equation. What is the physical interpretation
oflp ?

5. Assume that the ions come from the dissociation of NaCl (0.1 M).
What is the order of magnitude of I, ?

19.7 A First-passage problem: The escape over a potential bar-
rier

We consider a brownian particle in a field of force. The force is the
derivative of a potential V(x) and to want the calculate the prob-
ability to escape from a metastable state. We will assume that the
barrier is sufficiently large with respect to kT so that the particule
will neither come back after having passed over the barrier. This
problem is a first passage problem.

The x coordinate is a reaction coordinate. For a chemical reac-
tion, x corresponds to the relative distance between two molecules
A and B When the relative distance between the two molecules is
small, the two molecules form a chemical complex. The transloca-
tion of the particle over the barrier is, therefore, equivalent to the
dissociation of the complex A—B.

If we assume first order kinetics, we describe the reaction as

d[A-B]
dt

= —Koff [A—B] (19.49)

where kg has the dimension of 1/time. This is the characteristic
time one has to wait before the chemical bond break spontaneously
because of thermal fluctuations. In the Kramers problem, this time
is the first passage time over the barrier.

|
n + Pl 0 (19.50)
where 1 av ap
=——P(x)-—— —-D— .
J=—3P0 5 P (19.51)
In what follows, we assume that the barrier is large with respect to
kT
Vm—Va » kT (19.52)
and we compute the off-rate from the current of particle escaping
from A |
Kopr = " (19.53)

where 14 is the number of particles in A. The current is small, so
n4 does not vary. k, ff has the right dimension, since kog = 1/time.
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Y

In a stationary regime, the current is constant
] = constant (19.54)

independent of the reaction coordinate x, since all particle which
escape neither come back. Using (??) we obtain:

ov oP
EP(X) +kT67 =—uJ (19.55)

The general solution of this equation is

P(x) = a(x)e” VKT

X , 19.56
o) = 2 [ ay ervirie (19:50)
X

where x is a constant of integration to determined by the bound-
ary conditions.
These are as follows:

1. ny4 is known because the number of particle near A is given
by the Bolzman’s distribution (there is only a small number of
particles which can escape)

ny = fde(x) =dea(x)e_v(x)/kT

o= Va/kT

(19.57)
oca(xa)

where V(x) = V4 + ... in the domain where the integrand is not
small (see Comment ??).

2. We define an arbitrary point B at the right of the barrier. The
exact locus of B will not matter. We take P(x = xp) = 0 at B as
the equivalent condition for the particle neither to come back.
We have, therefore, xg = xp, so that P(xg) = 0.

Figure 19.8: Potential profile for a
brownian particle. The effect of a force
applied to the equivalent chemical
bond is to lower the potential barrier.
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From (??) we get the current

KT at)
]_ ‘u SJJ;B eV(y)/kT dy (1958)
in particular for x = x4
kT a(xa)
] = 7% (19.59)
But -
f eV W)/KT dyoceVM/kT (19.60)
XA

since Vjy » V4 and V)y » V3. Taking the ratio, we get the well-
known Arrhenius factor (Kramers, 1940)

Kopf = Loce (Via—Va)/kT (19.61)
na

Remark 8 We want to evaluate the integral
+00
I= J dx g(x)e)‘f(x) (19.62)
—0

where A » 1 and where the function f(x) has a maximum. A useful ap-

proximation is the saddle-point method. Since f(x) possesses a maximum
at some point xq, the dominant contribution to the integral comes from a

domain centred around xy. We Taylor expand f(x) to second order

f(x) = f(xo) + %(x —x0)%f"(x0) + ... (19.63)

and

I :8(x0)eAf(XO) fﬂo dx e2(x=x0)*f" (x0)

- (19.64)
a0 A1
If f(x) possesses a minimum, take A < 0
Loy [0 (A1 (19.65)

Exercice 19.11 Use this approximation for the integral representation of
n!

0
(n+1)! = J dtt" et (19.66)
0
Exercice 19.12 Path integral method. The Langevin equation can be
written as p v
x
D =p— 4 — .
fO) =pn+ (19.67)

We know that the random force f(t) is drawn from a Gaussian distribu-

PLrOIexp] | -z [ a2 | (19.68)

tion
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1. Why Eq. (??) is valid ?
2. Explain formula (??).

3. Show that the probability to observe a trajectory is

Plx(t)] =

1 dx dv\|? (19.69)
jexp{[—WJdt (ydt + dx)] }

where J is independent of T (don’t try to calculate [J). At low temper-
ature, the exponential will dominate and we will drily ignore thereafter

J



20
Introduction to stochastic processes

In a world of objects as small as living cells, R ~ 10um, transport
of molecules is effected by diffusion, rather than bulk flow, move-
ment is rested by viscosity and not by inertia[? ]. To illustrate this
statement, it is interesting to compute characteristic orders of mag-
nitude’ . The average density p of a protein is about 1.2 times the
one of water. The size of a cell is about 10um. The mass of cell is
therefore M ~ 510~ '2kg. When a small object of the size of a cell
cruises into water, it experiences a drag flow in the direction oppo-
site to its velocity.

At small Reynolds numbers (see later for a definition), the drag
force is 67ty R x velocity, where 7 is the viscosity of water =
10~3kgm~1s~1. The ratio

Mass
T =3

67k = Characteristic time (20.1)

has the dimension of a time. For objects of the same size as cells,
we find T = 2107 %s. If the object cruises at a speed of 10u s71 the
distance traveled after the "operator" shut down the propellers is
about 210~*y m. This is of the order of A and this is much less
than the size of the object ! To compare with our macroscopic
world, we can think about a tanker. The size of a tanker is about
380m, its weight is about 400 10°kg. If we assume that the same
formula holds true for the drag coefficient of the tanker - this as-
sumption is silly - we find T = 5.610%s. If the speed of the tanker
is initially 15nm/h = 15 x 1.6km/h, the distance cruised before
its stops, is about 223km. Obviously, there is something wrong -
the Stokes formula does not apply to a tanker - but the difference
between the cell and the tanker (viscosity versus inertia) is striking !
The idea that we can go down the scale of sizes while enjoying
the peaceful life also silly. In a 1966 well-known Hollywood movie
directed by Richard Fleischer, a scientist is nearly assassinated. In
order to save him, a submarine is shrunken to microscopic size and
injected into his blood stream with a small crew. Problems arise
almost as soon as they enter the bloodstream. This was foreseen
... The thermal energy of thermal motion kT is enough to perturb
drastically small object movements. The passengers of the subma-
rine imagined by Fleischer actually experience a very hectic life due

* Applying Newton’s law, the equation
of motion of a particle immersed into a
medium of viscosity 7 is
d%x dx

Mﬁ + 67t R T
This known as the Stokes law, where
the drag coefficient 67t R is pro-
portional to the size of the object.
Rigorously speaking, for this law to
be valid, the object is assumed to be
spherical. If not, small logarithmic
corrections enter into this formula
without dramatic consequences.

0
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Figure 20.1: The fantastic voyage
directed by Richard Fleischer.
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to incessant impacts of molecules bumping onto the submarine. It
would be very hard for them to survive to such blitz ! Obviously
fluctuations matter in the small world.

These lectures are about the biophysical constraints with the fo-
cus on noise and diffusion imposed by the smallness of the objects
"cruising” in the micro and nano-world. Such biophysical con-
straints matter as soon as we try to detect and count molecules. The
principles at work at the scale of nano-micro objects are very differ-
ent in nature from what we know from our every day experiences
and they matter in the design of experimental setups.

20.1 A short review of probability theory
20.2 Introduction
Figure 20.2: "Un coup de dés jamais

n’abolira le hasard. Poéme de S.
Mallarmé, 1897.
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Random or "unsure" variables are essential in physics: They play
a fundamental role in quantum theory, statistical mechanics, and
kinetic theory. They are also crucially involved in the analysis of
uncertainty in experimental data. We review here the concepts of
random variable theory that will be needed later [? ].

20.3 Cumulative distribution and probability density function

Let us consider a random variable and ask what is the probability
for x to be less than some value, say a. This random variable x is
regarded as specified if one knows the cumulative distribution
function

F(a) =P.(x<a) ae€]—o,+0| (20.2)

where P,(...) is the probability of occurrence of the event x < a.
The cumulative distribution F(x) has the following properties

2. If x; < xp then F(x71) < F(xp).
3. F(x+0) = F(x) (continuity from the right).

The probability density function is introduced by taking the deriva-
tive (if it exists)

dF
pex) = (20)

20.4 Continuous probability distribution versus discrete vari-
ables

20.4.1 Discrete random variables - |

Let us start with a random variable with possible values x,, n =
1,...,K. Since the outcome spans a discrete set of values, it is called
a discrete random variable. If x = x,, with probability p,

K
M pa=1 (209
n=1
The expectation of x is
K
<X>= Z PnXn (20.5)
n=1

and the variance of x is

K K 2
<x?> - <x>2= Z pnX? — (Z pnxn> =0 (20.6)
n=1

n=1
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20.4.2  Continuous random variables

In this case, p(x) does not exist only at a few” discrete points
(countable set). We have p(x) > 0, Vx and

JJFOO dxp(x)=1

—00

The probability to find x in the interval x € [x1, x2] is simply equal
to the integral

X2

P(xy <x<x) = J dx p(x) (20.7)

X1
To determine the probability density function p(a) for a given a,
we perform the experiment n times and count the number of trials
An(a) such that the resultisa < x <a+ Aa

_ An(a)

p(a)Aa o

(20.8)

20.4.3 Discrete random variables - 11

Curmilalyve dsiremeion fEnctin phot

This section introduces the ¢ functions. The meaning is the same
as in subsection 1. In the case of a discrete random vraiable, the cu-
mulative distribution function resembles a staircase. We introduce
the Dirac J-distribution specified by the integral property

+00
| dxgmot—x0) = plxo) (209)
—00

where ¢ is an arbitrary test continuous function. In the case of
discrete random variable, the cumulative probability distribution is
discontinuous at x¢ and

dF
T = kd(x — xp) (20.10)

X=X0

where k = F(xo+) — F(xg—) is the step height.

Figure 20.3: Cumulative distribu-
tion function for a discrete random
variable.
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In particular, if F(x) is the Heaviside function defines as

1 x>0
F(x) =0(x) = ¥ (20.11)
0 otherwise
Then p
0
i 4(x) (20.12)

As a result, the probability density for a discrete random variable
(assuming that the random variable takes the value x, with proba-
bility p, is
flx) = 2 Pné(x — xn) (20.13)
n

We have for any function of the random variable x, ¢(x)

#0) = [ dx9) = 3 pugli) (2014)

20.5 Change of variable

Given a random variable with density distribution p(x) , and a new
random variable y defined by the transformation

y=g(x) (20.15)

the probability density g(y) of this new variable is given by
+o0
1) = | psty - gv)x (20.16)
—o0

This is equivalent to say

q(y)Ay = p(x)Ax (20.17)

for all intervals Ay image of Ax by the application g(x). Taking the
limit Ax — 0, we get the formula

a8

-1
Iy ] (20.18)

1) = p()|

Remark that we take the absolute value and that we have assumed
that g(x) is one-to-one.

Exercice 20.1 A random variable x is uniformly distributed in the inter-
val [0, 1]. Find the probability density of the random variable y = — In x.

20.6 Moments and cumulants

The expectation value < x > of a random variable is taken as

e {szoo dxxp(x) Continuous (20.10)

>u Xp(xy) Discrete
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Higher moments are defined in the same way, k is not necessarily
an integer

40 k .
dx x*p(x) Continuous
<xk>={)® p(x) (20.20)
3 x*p(x,) Discrete

For k = 2, we define the variance (¢ is called the standard devia-
tion)

<0?>=<x®>—<x>? (20.21)

with the important result

2 2

02 >0since <x?>><x> (20.22)

A central point in physics is to characterize the correlations be-
tween random variables. Let x and y be these random variables, we
define

<XY >e=<XY>—<x><Y> (20.23)

If x and y are independent, then < xy >=< x >< y >, so that
<< xy >>= 0. Take now y = x and define the cumulant of order 2
by

<x?>=<x’>—<x>? (20.24)

which is nothing but the variance. Higher cumulants will be de-
fined shortly using the generating function. For the moment, it
suffices to say that cumulants probe how far the random variable x
is from being deterministic (i.e. with only one possible value). Cu-
mulants are one other way to write the probability density function,
since both quantities are related.

We define the characteristic function

) +0 )
Pp(w) =< e'F >= f dx e “*p(x) (20.25)

where ¢(w) and p(x) contain the same information, since they
are Fourier transform of each other. Cumulants are defined from
In ¢(w) by taking the logarithmic derivative

d}’l
dw"

=" <x" >, (20.26)

In ¢(w)

w=0

Or, equivalently, by series expanding

<% >=exp Z "— <x">cp =
n!
n=1

n
e
Zz”—<x”>
n!

n=0

(20.27)

This formula may seem a little awkward, note the way the cumu-
lants enter into the exponential, but it is of constant use. We can

already kill the suspense and state that the only distribution with
zero cumulants for n > 2 is the Gaussian probability distribution.

141



142 PHYSICS OF THE COLLOIDAL DOMAIN - LECTURE NOTES

Exercice 20.2 Use

+00
_ay2 g 7T _ 32 2
o= oxt pmikx [T —k /4a
. a

and demonstrate the preceding statement.

(20.28)

Exercice 20.3 Physical limit of biochemical signaling[? ]. We want to
count molecules with a sensor of size a. Let ¢ the mean concentration of
molecules and we expect to count on average N ~ ¢a® molecules. What
is the noise associated with this measurement? A volume of size a can be
cleared by diffusion is a time Tp ~ a®/D. What is the fractional accuracy
if we integrate a measure over a time T ? (5c/¢ ~ 1/v/Dact).

20.7 Examples of distribution

20.7.1  The binomial distribution

This is the probability to get k successes in 7 trials for an event

occuring with probability p. The probability distribution is given by

P(x = k) = Ckp*(1 - p)"*

The probability for no success in N trials is (1 — p)N and the prob-

(20.29)

ability for at least one success is 1 — (1 — p)N. The case p = 1/2

020 o
0.15
0.10 -

0.05 -

corresponds to flipping a coin.

20.7.2  The normal distribution

The normal random variable has probability distribution

- o527

The mean is p and the variance is ¢?. As ¢ — 0, the random vari-

(20.30)

able is almost sure. With these definitions, (??) is normalised to 1,

Figure 20.4: Binomial distribution for
p=0.1,05,0.7.
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Figure 20.5: Cumulative probability
distribution for the binomial distribu-
tion.

Figure 20.6: The normal distribution
tends to a Dirac distribution as ¢ — 0.
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so that the ¢ — 0 limit gives the J-Dirac function. The generaliza-
tion to multiple variables is

P(x) = P({xi}) =

1 Lr ~
@m)VdetC eXp{ [zx o ] }

where x” is the transpose of the vector x.

(20.31)

Exercice 20.4 This distribution is correctly normalized as it can be shown
when C is diagonal. This will the case here. While you are at it, also show

IndetC = trinC (20.32)

Exercice 20.5 If you have not done before, the following trick is useful. To

calculate o
2
J . dxexp{[—txx ]}

, evaluate first

[ e[ -]y -

j*: trexpf[~a?]} J*: dyexp{ [~}

and use polar coordinates. While you are at it, take the derivative with
2

(20.33)

respect to « to calculate < x* >.

Exercice 20.6 Use this to show that the Fourier transform is a gaussian.
Show that the only probability distribution with culants equal to zero for
n > 2 is a gaussian probability distribution.

20.7.3 The Poisson distribution

This distribution is of tremendous importance both in physics and
in chemistry. Photons statistics is Poissonian as the distribution
of molecules in chemical kinetics. Poisson’s statistic follows the
limit of rare events for the binomial distribution. We make p « 1,

therefore
(1= p)N=" = ((N=m)In(1=p) , ,~Np (20.34)
2
Second NI .,
R N (20.35)
and we arrive at:
P(N,n) = (Np)"e NP /n! (20.36)

Often the symbol A = Np is assigned. A is the number of heads
in N tosses. For the Poisson distribution, both the mean and the
variance are equal to A

2 2 2

<x>=A F=<x">-<x>=A (20.37)

2 Use the Stiling’s formula I! ~

(I/e)'\/2rl
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Exercice 20.7 Consider an assembly if m radioactive atoms. Two char-
acteristics are important in understanding radioactive decay. First, the
probability per unit time that an undecayed atom will decay within an
infinitesimal time interval At is constant

Probability of decay inAt

Af —aas At -0 (20.38)

where a is the probability per unit time of observing a decay. Seconds,

the atom are independent; the state of one atom does not affect another.
What is the probability to observe r decays in each time interval ? answ.
Define y = pm, i.e. the average number of radioactive decays in each time
interval.

Exercice 20.8 Let X have range {0,1,2,3,...} and px(j) = e*A/j! for
all j (Poison distribution with mean A).

1. Compute g(t) =< exp{[itj]} >, i* = —1.

2. Compute < X >, < X?> >and < X*> > — < X2 >.

20.7.4 The Bolzmann distribution

Figure 20.7: The simplest model of

a molecule with two conformational
states. Along some molecular coor-
dinate x, the potential energy V'x)

has two minima separated by a bar-
rier. The height of the barrier is the
energy activation energy E;+ which will deter-
mine the rate of reaction through the
Arrhenius law, koce™ Eact/kT |

Eac:

molecular coordinate

Consider a two-conformational states molecules with energy E+.
the probability to observe the molecule in the state + is given by

gfﬁEJr
P+ = e—PEr 1 o PE= p=1/kT (20.39)

Observe py + p— =1 as it should be.

As shown in Fig. ??, these probability are experimentally acces-
sible. Using single molecule devices which mesure the electrical
current passing through a ionic canal (patch-clamp), one mesures
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the time spent topen in the open conformation. The probability to
find the canal in the open conformation at an arbitrary time t is
given by

fopen

Popen = (20.40)

topen + telose
where topen + tose is the time of observation. Remark that we
assume that the statistics on an ensemble of many channels at the
same time are the same as the statistics on a single channel in the
course of time. If true, this property in fundamental and it is called
ergodicity: ensemble averages and time average are equivalent.

Channel - Figure 20.8: The opening of a ionic
closed ion-channel is all-or-none and is a
stochastic event. The probability for
Channel channel opening is the fractional time
open passed in the open conformation. Such

experimental results are routine using
patch-clamp setups.

20.8 Consequence of the binomial coefficient: the mixing entropy

Suppose that there are Ny solvent molecules and 7 solute molecules.
We assume n « Np. For simplicity, let us represent the solution in
terms of N = Np + n boxes that can be either occupied by a solute
or a solvent molecule. The number of different configurations for
given n, N is given by the combinatorial factor for distributing n
items in N boxes:

0 N!
(n) = m (20.41)
Recall the definition of the Bolzmann’s entropy
S(n) =kInQ (20.42)

where k is the Bolzmann’s constant. So, we take logs and use the
Stirling Formula

InN!'~ NInN—- N + %ln(ZnN) (20.43)
and we have the entropy of mixing
S(n) =k[NInN —nlnn— (N —n)In(N —n)] (20.44)

It is often useful to consider the mixing entropy per unit volume, or,
here, per box. The concentration of solute is ¢ = n/N

5(¢)/N = ¢Ing + (1—¢)In(1 - ¢) (20.45)

From thermodynamics, the free energy per box is (U = 0 for an
ideal solution)

F=U-TS
(20.46)
= —kT[pIng +(1—-¢)In(1 —¢)]
and we recover the usual formula for the chemical potential
u=kTIn N kTIng (20.47)

1-¢
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20.9 The central limit theorem

In his most restrictive form, the central limit theorem goes as fol-
lows:

Theorem 20.1 Let Xy, Xp, X3,..., Xy be a sequence of n and identically
distributed variables having each finite value of expectation y and variance

Zi=1,n Xi— nyu
Y, = Y- (20.48)

The distribution for Y, approaches the standard distribution as n — co.

2. Form

As shown by Lyapounov (1901), this theorem holds even if the
independent variables X;’s have non-identical distributions.

Exercice 20.9 Consider the Cauchy distribution with probability density:

Fx) =

(1+x2)
In this exercice we are going to demonstrate the following property: If X

(20.49)

and Y are two independent random variables with Cauchy distribution,
then the variable Z = (X +Y)/2 is also Cauchy distributed. This property
does not contradict the central limit theorem. The reason for this is that
the first and the second moments do not exist for a Cauchy distribution,
since

1 J:sz ~1/x x>»1
2 (20.50)
T2 1 x»1
and the integrals diverge,
) +00 x2
<x°>= dx ———< = 20.51
LO A1+ ) (20.51)

The method of characteristic functions is going to be very useful. Let X
and Y be two independent random variables
ity

1. Show < etX+Y) > — < otX o < oY > for any ¢

2. Assume the following result
0
kx(t) = froo eit"n(lﬂ:_xxz) = eI (20.52)
Deduce
kz—(x+1)2(t) = eI (20.53)
which is the characteristic function au a Cauchy distribution. This
leads to the conclusion that Z = (X +Y)/2 is Cauchy distributed.

20.10 Correlation functions and Conditional probability distri-

bution

Consider a function x(#) that varies in time. We define the Fourier
transform with the conventions

Hw) =TT dtet@lx(t) (20.54)
x(t) = J_“Sg g—%e_i“’tf(w) (20.55)
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In particular, the Dirac-delta distribution has the useful integral
representation
+00

o(t) = fioo ;l%e_lwt (20.56)
We are interested in situations in which the variations of x(¢) are
random, drawn out of some distribution. x(#) is said to be stochas-
tic process. A good approximation of the mean is calculated by
sampling the signal at times {t;};—1 x

1

N
i=T,N

<x>= x(t) N»1 (20.57)

We define the following three probabilities
1. The probability P(x, t) that x(t) takes a given value x at time t.

2. The joint probability P(xy, tp; x1,t1) that x(¢) takes the value x; at
t = t, AND that it takes another value x; at time ¢ = #;.

3. The conditional probability P(xy, t|x1,t1) that the random vari-
able takes the value x = x; at time f; GIVEN that x = x; = x(¢1) at
time t; prior to t.

The following rule applies
P(xp,tp; x1,t1) = P(xp, tp|x1,t1)P(x1, t1) (20.58)

Note that the kinetic rate constants introduce above are actually
conditional probabilities.

In a STATIONARY process all probability distributions are invari-
ant under time translation ¢+ — t 4 7. Therefore:

P(x,t) = P(x) independent of ¢ (20.59)
P(xy, ta;x1,t1) = Plxg, ta —t;x1,0) (20.60)
P(xy, ta|x1, 1) = P(xz,t2 — t1]x1,0) (20.61)

We want to know how the signal x(t) is correlated in time. To char-
acterize these correlations we build the correlation function

Ctt)=<(x()—<x>)(x(t+17)—<x>)> (20.62)

For stationary processes, time translational invariance implies that
C(t, ) does depend only on the time interval T

C(t,T) = C(1) (20.63)

Example 20.1 A useful example of correlation function is for the ran-
dom telegraph wave, see fig. ?? for a representative sample function. This
process can be defined through the following two properties:

1. x(t) = +1 with probability 0.5.

x(t

T

O

Figure 20.9:

[ ]
I
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2. x(t) changes polarity at Poisson times, i.e., the probability of k sign
changes in a time interval T is

k,—AT
P(k signs changes in T) = % (20.64)
What is
< (x(t1)— <x>)(x(t)— <x>)>
(20.65)

=< x(t1)x(t2) > ?

Other way to ask the same question. For tp » t1, the value of x(t) is
independent of the value of x(t1) at t1, because the time interval is so large
that there is no correlation. However, when t; is almost equal to t1, what
happens at t = t, is certainly correlated with what happened at t = 1.
There is a range for the correlation.

The trick is to compute the probability p., of even and odd number of
sign change between the time interval ty — t1. If we know this probability
Pe OF p,, we can compute the correlation function

< x(t2)x(t1) >=p(x2 = x1)pe

(20.66)
—plx2 = —x1)po
since the product < x(t1)x(t) > can only take the values +1.
We have: AT
(AT)*e~
pes L
k even
- 1+ (=1F (AT
Ly LDt OT)
k=0 ' (20.67)
AT AT 4 p=AT
B 2
_1 —2AT
=5 (1 +e )
Similarly
1
Po=15 (1 — e_ZAT) (20.68)
so that
< x(tp)x(t1) >= e~ 2Al=h (20.69)

The values of x; at time t, are therefore correlated with the values of x
at time t1, but the correlations decreases exponentially. When |ty — t1| >
1/(2A), the exponential is so small that it is almost 0. Therefore, 1/2A sets
a characteristic correlation time.

A very general property of the correlation function is that it
tends to zero as T tends to infinity. When the time interval is large
enough, what happens at t and at ¢ + T is not correlated and the
mean of the product tends to product of the means

Iim <(x(t)—<x>)(x(t+7)—<x>)>=
T—+00

(20.70)

lingo <(x(t)—<x>)><(x(t+17)—<x>)>=0

T
What happens between time t = 0 and t = 400 depends on the
particular case considered. The function ¢(7) is not necessarily de-
creasing but it can oscillate. Fig ?? is taken from ref. [? ]. It shows
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Figure 20.10: Longitudinal correlation
functions of the position of the two

300
) L beads. The upper curve shows the
- 20 o autocorrelation function of a single
G 200 NE bead in its trap, together with a double
g L 10 £ exponential fit. The lower curves show
~ 100 c the cross-correlation functions of two
s D09%90 _g beads held at separations of 9.8, 4.8,
® 0 L o % and 3.1 um, respectively.
e L =
= o Q
S 100 4 L o
8 100 ] L 10 @
- I N
3 ] I ]
T 200 1 [ o
] C -20
-300 +——————1— ——
0 1 2 3 4
time (ms)

the correlation function of positions of a bead in an optical trap
with a double well potential. For a single bead (upper curve), the
correlation function decreases gently to zero. When two beads are
present in the trap, one in each well, the shape of the correlation
function changes considerably because of hydrodynamic interac-
tions between the two beads.

An interesting physical interpretation of the correlation function
is also made by forming the ratio

<(x(t)—<x>)(x(t+1)—<x>)>
<(x(t)— <x>)?>

(20.71)

where the denominator scales the correlation function to 1 at t =

0. This quotient is nothing but the probability that the random
variable takes the value x(f + T) at time ¢ + 7 knowing that x = x(f)
at . This a conditional probability distribution. Quite often we may
find the notation

<x? >i=<< x? >>=< (x(H)— < x>)? > (20.72)

Remark 9 Note that two random variables are independent if their join
probability distribution can be factorized into two independent factors

P(x,y) = Px(x)Py(y) (20.73)

Two random variables x, y can be such that their cross-correlation van-
ishes without being statistically independent, see next exercice.

Exercice 20.10 Uncorrelated does not mean independent. Let x be a
Gaussian distributed random variable with < x >= 0 and 0> = 1. Let w
to take the value +1 with equal weight and define y = wx.

1. Use d-function to complete the formula:

P(x,y) = \/;7[ exp{ [—x2/2] }% (-.)) (20.74)
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2. Show that:
Py(x) = §dyP(x,y) = = exp{[-2?/2]} (20.75)
Py(y) = §dxP(x,y) = \/Lﬁ exp{[-v?/2]} (20.76)

so that P(x,y) # Px(x)Py(y).

3. Show that the cross-correlation vanishes
< XY >c= f dxdy xyP(x,y) =0 (20.77)

Exercice 20.11 Consider the following problem in epidemiology. Suppose
there is a rare but contagious disease A which occurs in 0.01% of the pop-
ulation. Suppose further that there is a simple test for the disease which is
accurate 99.99% of the time (that is, out of every 10,000 tests, the correct
answer is returned 9,999 times, and the incorrect answer is returned only
once. Now let us administer the test to a large group of people from the
general population. Those who test positive are quarantined. What is the
probability that someone chosen at random from the quarantined group
actually has the disease ?

Let A be the event that someone picked at random has the disease. We
have P(A) = 0.01 and P(Q\A) = 1 — P(A). Let B denote the event
than an individual tests positive. We want to calculate the conditional
probability P(A|B)

From Baye's theorem

P(A U B) = P(A|B)P(B) = P(B|A)P(A) (20.78)
Therefore
P(A|B) = P(BI;?I);;(A) (20.79)

with P(A) = 0.0001 and P(B|A) = 0.9999. Therefore P(B|OQ\A) =
1—P(B|A) = 0.0001 But

P(B) = P(B|A)P(A) + P(B|Q\A)P((O\A) (20.80)

We conclude
P(A|B) =1/2 (20.81)

Exercice 20.12 Let us calculate the probability of having n particles in
a subvolume V, for a box having total volume KV and total number of
particle T = KNj.

1. Find the exact formula for this probability: n particles in V, with a
total of T particles in KV ? (Hint: What is the probability that the first
n particles fall in the subvolume V, and the the remainder T — n fall
outside in the subvolume (K — 1)V. How many ways are there to pick
n particles from T total particles ? )

2. The Poisson probability distribution

pn =a"e”"/n! (20.82)
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arises whenever there is a large number of possible events T each of
which with a small probability a/T. Show

an =1 (20.83)

3. As K — 400, show that the probability that n particles fall in the
subvolume V has the Poisson distribution (2?). What is a ?(You will
need to use the fact that e = (exp{[-1/K]})X* ~ (1 —1/K)Ka
as K — oo and the fact that n « T.). Here we do not assume that n
is large. The Poisson distribution is valid even if there are only a few
events. (answ. you should get T'/n!(T —n)!(1/K)"(1 — 1/K)T=". Use
T = KNy, where Ny is the mean number of particles after T trials.
The same calculation as in the lectures fives 1/n!(NoK)"(1/K)"e~No.
Therefore, a = Ny.)

4. Show that the variance in the number of particles found in volume V is
equal to Ny, the expected number of particles in the volume

< (n— <n>)*>=Np (20.83)

Exercice 20.13 Consider a particle that hops at discrete times between
neighboring sites on a one-dimensional lattice with unit spacing. At each
step, the random walker moves a unit distance to the right with probability
p or to left with probability g = 1 — p. Let P(N, r) denote the probability
that the particle is at site r at the Nth time step.

1. Show

P(N,r)=pP(N-1,r—1)+gqP(N—-1,r+1) (20.85)

2. Introduce the generating function

GINk= > €“P(N,r) ke[-m +n] (20.86)
r=—00,400
Show
d m
—i— | G(N,k) =<1 > (20.87)
dk o
3. Show
G(N,k) = (peik + qe—ik) G(N —1,k) (20.88)

4. Assume that the particle starts at the origin
P(0,r) = 0o, (20.89)

Show N
G(N,k) = (pe”‘ + qe_ik) (20.90)

5. Deduce that P(N,r) is the binomial distribution

|
P(N’ r) — LP(N+7)/2‘1(N7T)/Z (20.91)
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6. Use Stirling approximation and show that

PN(x) — #ei[xiN(piq)]z/ZNpq (20.92)

A/2tNpq

7. Take p = g = 1/2 and recover the result given in the lecture.

Exercice 20.14 Consider the Cauchy distribution with probability den-
sity:
1
flx) = 71122 (20.93)

In this exercice we are going to demonstrate the following property: If X
and Y are two independent random variables with Cauchy distribution,
then the variable Z = (X +Y)/2 is also Cauchy distributed. This property
does not contradict the central limit theorem. The reason for this is that
the first and the second moments do not exist for a Cauchy distribution,

since .
a2’ 1/x x>»1
2 (20.94)
——~1 x>»1
1+ x2
and the integrals diverge,
) +00 2
<X >= dx —— = 20.
J;oo (1 + x2) (20.95)

The method of characteristic functions is going to be very useful. Let X
and Y be two independent random variables

1. Show < etXHY) >—< X > < oY > for any ¢

2. Assume the following result
+00 | dx
kx(t) = it 2 — oI .96
X = | e e (20.9)
Deduce
kz— x4y a(t) = eI (20.97)
which is the characteristic function au a Cauchy distribution. This
leads to the conclusion that Z = (X +Y)/2 is Cauchy distributed.
Exercice 20.15 For a symmetric diffusion on a line, the probability den-
sity
Prob| particle x € (x,x + dx)] = P(x, t)dx (20.98)

satisfies the diffusion equation

P _ 0w
o o 99
supplemented by the initial condition P(x,t = 0) = J(x).

1. If L denotes the units of length and T denotes the time units, what is
the dimension of D ?
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2. We are interested in the mean square displacement

+o0
<x?>= J x?P(x, t)dx (20.100)
—00

Since P(x,t) solves (2?), < x2 > should depend on D and t. What is
the only combinaison of these parameters with dimension L? ? Deduce

< x% > as a function of t.

Exercice 20.16 We consider the integral

F: exp{ | ~ak® — ikx | }dk

Complete the square (ak? + ikx = a(k + ix/2a)* — x? /4a) and remember

% exp{[-ay?]} = V/Ja
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Exercices

1. Stirling formula The Stirling approximation is useful in a variety
of different contexts. The goal of the present problem is to work
through some of the maths.

(a) Begin by showing that

o0

n! = j xte ™ dx (21.1)
0

To demonstrate this, use repeated integration by parts

(b) Make plot of the integrand x"e™* for various values of #.
What is the value of x at the maximum ?

(c) Show that the integral can be written as

Q0
J e Ty (21.2)
0

and give f(x). Show that f(x) has a maximum.

(d) Expand the logarithm around the maximum to second order
and use our result on gaussian integrals to show

n! ~ n"e"\2nn (21.3)

2. Bayesian Statistics We introduce two additional probabilities:
(a) The joint probability for sets A and B together P(A, B).
(b) The conditional probability of B given A.

We can compute the joint probability P(A,B) = P(B, A) in two
ways:

P(A,B) = P(A|B)P(B) = P(B, A)P(A). (21.4)
Thus,
P(A,B) = P(B'I;?;I;(A) (21.5)

a result known as Bayes’ theorem.

If the event space Q) is partitioned as {A;}, then

P(B) = Y P(B|A;)P(4) (21.6)

so that,
P(B|A;

PR = S RBIA)PA) (217
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3. As an example, consider the following problem in epidemiology.
Suppose there is a rare but highly contagious disease A which
occurs in 0.01% of the general population. Suppose further that
there is a simple test for the disease which is accurate 99.99% of
the time. That is, out of every 10,000 tests, the correct answer is
returned 9,999 times, and the incorrect answer is returned only
once. Now let us administer the test to a large group of people
from the general population. Those who test positive are quar-
antined. Question: what is the probability that someone chosen
at random from the quarantine group actually has the disease?
We use Bayes’ theorem with the binary partition A, Q\A. Let B
denote the event that an individual tests positive. Anyone from
the quarantine group has tested positive. Given this datum, we
want to know the probability that that person has the disease.
That is, we want P(A|B).

Applying (??) with A] = A and A; = O\A, we have

P(A) =0.0001 P(BJA)=0.9999 P(O\A)=0.9999 P(B|Q\A) = 0.0001
(21.8)
and

0.9999 x 0.001 1
P(A|B) = _ L _
(AIB) = 59999 x 0.0001 1 0.0001 x 0.9999 _ 2 (21.9)

despite the test being 99.99% accurate. The reason is that, given
the rarity of the disease in the general population, the number
of false positives is statistically equal to the number of true posi-
tives.

4. Two stochastic variables x and y are said to be independent if
and only if
P(x,y) = P(x)P(y) (21.10)

Examine Fig. ?? and tell if the variables are independent.

Figure 21.1: Three examples of two
variables drawn from three distribu-
tions. Shown are the scatter plots of
examples drawn. For each example,
tell if the variable are correlated and-or
if they are independent. After Tkacik
etal. [? ]

1=1.4 bits, C=0.94 1=0.7 bits, C=0 1=0,C=0

ot
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In preparation

Gibbs-Thomson effect, see [? ]
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