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CHAPTER 1

INTRODUCTION: EQUILIBRIUM AND
NON-EQUILIBRIUM STATISTICAL

MECHANICS WITH SOME EXAMPLES,
GENERAL OVERVIEW

This chapter is a sneak preview of what will happen next

1. Some questions and useful references

Why do we need non-equilibrium statistical mechanics ?
(1) Nanotechnology, biophysics and chemistry are using or studying smaller and smaller

objects: nanomachines, biomolecules.
(2) Statistical fluctuations (thermal and others) and are relatively larger for these systems.
(3) Fluctuations may behave wildly different from the mean.
(4) Energy can sometimes flow from a cold source to a hot one. We may have more than

one reservoir: ’ssystems can be out of equilibrium.
(5) Small engines are not simple rescaled versions of their larger counterparts. They cannot

work at our scale.
What are we going to do in these lectures (introductory level):

(1) Non-equilibrium steady states: systems with heat currents and/or under external drive.
(2) What corresponds to the Boltzmann factor e−βH in non-equilibrium systems ? In

equilibrium, everything (in principle) can be computed from this distribution. For out
equilibrium systems, there is such prescription and we don’t know yet how to start
to compute the conductivity from a microscopic model. We shall see that we can
use the concepts of stochastic thermodynamics (developed from 1990) to determine
de probability P (C,C′) to jump from one microststate C′ to C. The equation which
describes the dynamics of P (C,C′), i.e. dP (C,C′)/dt is called the Master equation.

(3) Thermodynamic potentials are only defined in equilibrium and conjugated forces do
not derive from potentials (depend on the way transformations are performed).

(4) What about systems arbitrarily far from equilibrium?
(5) For small systems, everything fluctuates. Therefore, work and heat can only be defined

in a statistical sense. What are the definitions and the consequences ?
Useful references are:

(1) Equilibrium Statistical Physics, M. Plischke and B. Bergersen.
(2) Statistical Mechanics: Entropy, Order Parameters and Complexity, James Sethna.
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Figure 3: Examples of NESS. (A) An electric current I flowing through a resistance R and
maintained by a voltage source or control parameter V . (B) A fluid sheared between two plates
that move at speed v (the control parameter) relative to each other. (C) A chemical reaction
A → B coupled to ATP hydrolysis. The control parameter here are the concentrations of ATP
and ADP.

3.2.1 The master equation

Let us consider a stochastic system described by a generic variable C. This variable may stand
for the position of a bead in an optical trap, the velocity field of a fluid, the current passing
through a resistance, the number of native contacts in a protein, etc. A trajectory or path Γ
in configurational space is described by a discrete sequence of configurations in phase space,

Γ ≡ {C0, C1, C2, ..., CM} (1)

where the system occupies configuration Ck at time tk = k∆t and ∆t is the duration of the
discretized elementary time-step. In what follows we consider paths that start at C0 at time
t = 0 and end at the configuration CM at time t = M∆t. The continuous time limit is
recovered by taking M → ∞, ∆t → 0 for a fixed value of t.

Let ⟨(...)⟩ denote the average over all paths that start at t = 0 at configurations C0 initially
chosen from a distribution P0(C). We also define Pk(C) as the probability, measured over all
possible dynamical paths, that the system is in configuration C at time tk = k∆t. Probabilities
are normalized for any k, ∑

C
Pk(C) = 1 . (2)

The system is assumed to be in contact with a thermal bath at temperature T . We also
assume that the microscopic dynamics of the system is of the Markovian type: the probability
for the system to be at a given configuration and at a given time only depends on its previous
configuration. We then introduce the transition probability Wk(C → C′). This denotes the
probability for the system to change from C to C ′ at time-step k. According to the Bayes
formula,

Pk+1(C) =
∑

C′
Wk(C′ → C)Pk(C′) (3)

11

Figure 1. Examples of non-equilibrium systems: Discuss in each case why the
system is out of equilibrium.

(3) Noëelle Pottier. Physique statistique hors d’équilibre : équation de Boltzmann, réponse
lineaire. DEA. 2006. <cel-00092930>

(4) Bernard Derrida, cours du Collège de France 2015-2016, Fluctuations et grandes dévia-
tions autour du Second Principe, vidéos sur le site web du College de France, https://www.college-
de-france.fr/site/bernard-derrida/.

(5) Michel Le Bellac, Non equilibrium statistical mechanics. DEA. Cours aux Houches,
août 2007, 2007. <cel-00176063>

(6) Daniel Arovas Department of Physics University of California, San Diego, Lecture
Notes on Nonequilibrium Statistical Physics.

(7) L. Peliti, Doctoral Course on Fluctuation Relations and Nonequilibrium Thermody-
namics, http::www.peliti.org.

(8) P. Nozières, Variables d’état, fluctuations, irréversibilité: réflexions sur la thermody-
namique près et loin de l’équilibre, Cours du Collège de France, 1993-1994.

(9) Joel Keizer, Statistical thermodynamics of nonequilibrium Processes, Springer-Verlag,
1987.

(10) Dilip Kondepudi and Ilya Prigogine, Modern Thermodynamics, From Heat Engines to
dissipative structures, John Wiley & Sons, 1999.

(11) A wonderful conference: http://culturesciencesphysique.ens-lyon.fr/ressource/conference-
ScienceEnergie2012-physique-statistique-Mallick.xml by Kirone Mallick (in French).

Evaluation of the course:
(1) Homework: 20 %;
(2) Final exam: 80 %.

2. Equilibrium and non-equilibrium systems

An equilibrium system is a system where all observable quantities do not depend on time
and where there is no current (energy, entropy, particle). An isolated system is in
equilibrium. A system in contact with only one thermostat is in in equilibrium if observable
quantities are averaged over a time period much larger than the characteristic time of the
dynamics.

The simplest definition of non-equilibrium system is that it is not an equilibrium system
(!). Non-equilibrium systems are systems with an energy-particle flux from the outside to the
inside. As a prototypical example, glasses are aging systems and are in non-equilibrium. An
interesting case of non-equilibrium system is a system with stationary currents. This is the
case with a system in contact with two thermostats (particles, temperature) with a stationary
current. Energy can be injected and dissipated. Mechanical systems (sand bag) and fluid
systems (Couette flow) are systems where energy is injected at large scales and dissipated at
small scales, so that there is an energy flow.
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In summary, there are two general classes of non-equilibrium systems: (a) Systems which
were at equilibrium and are slightly perturbed so that they relax to equilibrium; (b) Stationary
states where the system stays in the same state as time elapses. Note that there are two ways
to inject energy into the system. The Couette flow of Fig. 1 where the energy is injected
through the boundaries and biological systems where energy (ATP) is consumed at the scale of
its molecular components. The latter class is also coined "active gels" and they are considered
as prototypical nonequilibrium systems.

3. Thermodynamics

Thermodynamics is a theory for macroscopic systems. One way to formulate the second
principle is to postulate that for there exists for each equilibrium system a function S we call
entropy. This function has the following property:

(1) It is only defined for systems in equilibrium;
(2) S depends only on macroscopic extensive parameters (state function);
(3) S is an additive function;
(4) S increases under changes of parameters and constraints. Transformations for which

∆S = 0 are called reversible transformations. The ones for which ∆S > 0 are called
irreversible;

(5) The entropy of a thermal bath depends on its energy:

(1) ∆S = −Q
T

where Q is the energy transferred to the system. Remember that this is the change
of entropy of the reservoir, so that if we want de change of entropy of the system,
we change the sign. When N particles are exchanged with a reservoir, the previous
formula becomes

(2) ∆S =
µN

T

where µ is the chemical potential.
As an example, consider a system cycling between different states i = 1, 2, . . . where the

state i is in contact with a thermostat at temperature Ti. Initially, the system is in contact
with thermostat i = 1. At each contact, there is an energy Qi transferred from the thermostat
i to the system and the total change in entropy for the thermostat is 1

(3) ∆Sther = −
∑

i

Qi

Ti

Since the cycle ends with thermostat i = 1, ∆Ssystem = 0.
According to the second principle

(4) ∆Stotal ≥ 0

so that we get the Clausius inequality

(5)
∑

i

Qi

Ti
≤ 0

The total energy is, however, conserved. If energy has been transferred to the system, work
has been extracted and this work is

(6) Wextracted =
∑

i

Qi

1Note the trick: We use the entropy of the thermostat which is so large that it is always in equilibrium. We
make no reference to the system that we consider as a black box and only count what goes in and out.
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2. Dans le cas particulier où on suppose que {l’état initial=l’état final}, s’il y a des évènements
tels que Wfourni > 0 (c’est à dire des évènements où de l’énergie est dissipée sous forme de
chaleur), il doit forcément y avoir aussi des évènements pour lesquels W < 0 de façon à
assurer que D

e��W
E

=

Z
P (W ) e��W dW = 1 .

Ces évènements où le travail fourni est négatif et qui violent donc le second principe peuvent
être observés expérimentalement sur des sysèmes su�samment petits comme des brins d’ARN
[17].

6.2 L’exemple de la machine de Szilard

La machine de Szilard fournit un exemple simple pour lequel la distribution du travail W peut
être déterminée explicitement : le système est constitué d’une seule particule dans un volume v en
contact avec un thermostat à la température T .

A l’instant initial, on introduit un séparation (un piston) qui sépare le volume v en deux régions
de volume v0 et v� v0 comme sur la figure. Puis on déplace ce piston très lentement de façon à ce
que dans l’état final le volume v0 soit devenu v1. Une fois en v1 on supprime la séparation. Pendant
tout ce processus, que l’on suppose très lent, la particule reste en équilibre avec le thermostat et a
donc sa vitesse distribuée selon une maxwellienne à cette température T .

T

v

v0

1 v

v0

1

Si le volume de la région occupée par la particule passe d’un volume vinitial à un volume vfinal

le travail W fourni est donné par

W = �
Z vfinal

vinitial

p dv = �kT log
vfinal

vinitial

où la pression exercée par la particule sur le piston est donnée par p = kT/v. (Cette expression
peut se justifier en disant que comme on déplace le piston très lentement, le mur subit un grand
nombre de collisions avec la particule. On peut ainsi utiliser l’expression de la pression d’un gaz
parfait. On pourrait aussi l’obtenir par le calcul en utilisant le fait qu’à chaque collision la particule
a une vitesse distribuée selon une maxwellienne à la température T ).

24

Figure 2. Depending on the initial condition, the wall is moved to the right
or to the left. Averaging is done on the two possibilities for the initial condition.

As an example, consider the case of a system cycling between 2 thermostats. From

(7)
Q1

T1
+
Q2

T2
≤ 0 Wextracted = Q1 +Q2

we get the Carnot’s inequality (after eliminating Q2)

(8) Wextracted ≤ Q1(1−
T2
T1

)

which sets an upper bound of the efficiency Wextracted/Q1 (Carnot) for T1 > T2.
Another interesting case is the one with only one thermostat. Clausius inequality implies

(9) Wextracted = Q ≤ 0 since ∆S ≥ 0

so that we cannot extract work is there is only one thermostat as it the case in equilibrium
system (there exists no perpetual machine). As seen later, this statement of the second prin-
ciple is only true for macroscopic systems where fluctuations are negligible. For very small
systems, fluctuations which are neglected in macroscopic thermodynamics, change this picture.
In these lectures , we will relate entropy to stochastic trajectories so that we will go beyond
thermodynamics (which considers only average quantities and not fluctuations).

In particular, we shall explain that there exists an exact equality which replaces the maxi-
mum work theorem (remember, there is always dissipation)

(10) Wextracted ≤ Finitial − Ffinal

where the equality holds only for reversible processes. This equality known as the Jarzynski
(1998) equality holds for reversible and irreversible processes and eq/ 10 is a consequence of it.

4. Can fluctuations beat the second principle ?

The Kelvin’s statement follows from the second principle: There is no way to extract useful
work from a single thermal reservoir. The following "Gedanken" experiment seems to violate
this principle. The best is to do the following exercice.

Exercice 1.1. Consider the setup of Fig. 2. At the initial instant, we introduce a separation
(a piston) that separates the volume v into two regions of volume v0 and v− v0 as in the figure.
Then we move this piston very slowly so that in the final state the volume v0 has become v1.
Once in v1 we remove the separation. During all this process, which is supposed to be very
slow, the particle remains in equilibrium with the thermostat and therefore has its velocity
distributed according to a Maxwellian at temperature T .

The perfect gas assumption is valid for one particle, so that pv = kT .
(1) What is the work W done on the system in the two situations of the figure ?
(2) What is the extracted work from the system in the two situations ?
(3) Compute < e−W > where < . . . > means averaging over the initial distribution. Can

W have an arbitrary sign ? What are the consequences ?
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Figure 12. Recovery of folding free energies in a three-helix junction RNA molecule [193].
(A) Secondary structure of the junction containing one stem and two helices. (B) Typical force–
extension curves during the unfolding process. The grey area corresponds to the work exerted on
the molecule for one of the unfolding curves. (C) Work distributions for the unfolding or forward
paths (F → U ) and the refolding or reverse (U → F) paths obtained from 1200 pulls. According
to the FT by Crooks (2) both distributions cross at W = !G . After subtracting the free energy
contribution coming from stretching the handles and the ssRNA these measurements provide a
direct measure of the free energy of the native structure.

or the bead in the trap exerts a mechanical work on the molecule that is given by

W =
∫ x f

x0

F dx (4)

where x0, x f are the initial and final extension of the molecule. In (4) we are assuming that
the molecular extension x is the externally controlled parameter (i.e. λ ≡ x), which is not
necessarily the case. However the corrections introduced by using (4) are shown to be often
small. The work (4) done upon the molecule along a given path corresponds to the area below
the FEC that is limited by the initial and final extensions, x0 and x f (grey shaded area in
figure 12(B)). Because the unfolding of the molecule is a stochastic (i.e. random) process, the
value of the force at which the molecule unfolds changes from experiment to experiment and
so does the value of the mechanical work required to unfold the molecule. Upon repetition of
the experiment many times a distribution of unfolding work values for the molecule to go from
the folded (F) to the unfolded (U ) state is obtained, PF→U (W ). A related work distribution
can be obtained if we reverse the pulling process by releasing the molecular extension at the
same speed at which the molecule was previously pulled, to allow the molecule to go from
the unfolded (U ) to the folded (F) state. In that case the molecule refolds by performing
mechanical work on the cantilever or the optical trap. Upon repetition of the folding process
many times the work distribution, PU→F (W ) can be also measured. The unfolding and
refolding work distributions can then be measured in stretching/releasing cycles; an example is
shown in figure 12(C).

Figure 3. From Ritord16. Experiments on single molecules (here, RNA) are
able to probe the "work distribution" during molecular folding and unfolding and
to measure free energy changes. Since these experiments probe small systems with
large statistical fluctuations, the field is termed "stochastic thermodynamics" to
differentiate from standard thermodynamics (which concentrates on macroscopic averages.

Although such a discussion may appear quite abstract, we will see that fluctuation theorems
have many applications in the lab. These experiments are based on the Crooks equality between
the forward and reverse paths between two states with free energy difference ∆F

(11)
PF (W )

PR(−W )
= exp

{[
W −∆F

T

]}

During the lectures, we will discuss the experiment schematized in Fig. 3 (with other experi-
ments such as the ones testing the minimum dissipation necessary to erase a bit of information,
see the Landauer principle).

5. The principle of detailed balance

How can we decide that a system is or is not in equilibrium ? In equilibrium, there is no
net flux (matter, energy etc.). This is entailed in the principle of detailed balance.

Consider the following reaction for a molecule with two internal states (i.e. two configura-
tions). Let us call these two configurations C, C ′:

(12) C
kC→C′−−−−→←−−−−
kC′→C

C′

Call pC the probability to observe a molecule in state C and pC′ for state C ′. If the rate kC→C′

is interpreted as the conditional probability to jump from configuration C to configuration C ′

per unit times given that the molecule is in state C ′, the flux (actually, a probability flux) from
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Figure 4. The local currents for the molecule with two configurations C and
C ′. To make this picture generic, the probabilities pC,C′ depend on time t.

C to C ′ is

(13) Flux from C → C ′ = kC→C′pC

since to go from C to C ′, the molecule has to be in configuration C first. If we draw analogies
with chemical kinetics, we have simply replaced the concentration of molecules in a given state
by the probability to find the molecule in this state and the usual kinetic rate constant by the
appropriate conditional probabilities.

The principle of detailed balance can be stated as follows: In the sate of equilibrium, every
elementary transformation is balanced by its exact opposite reverse. Detailed balance is con-
nected to time-reversal symmetry which is fundamental microscopic property for Hamiltonian
system. See Fig. 5. If there is no net flux between C and C ′, then

(14) kC→C′pC = kC′→CpC′

where kC→C′ is the rate per unit time for the transition from C to C ′ and pCkC→C′ is the flux
from C to C ′. Using Boltzmann law gives the classical result

(15)
kC→C′

kC′→C

=
pC′

pC
∝ exp{[(EC − EC′)/kBT ]}

we will demonstrate later.
It is also valid for the exchange of matter and energy between two volume elements of a

system in equilibrium. The amount of matter or energy between two regions of a system is
balanced in detail: the amount of matter going from X to Y is balanced by exactly the reverse
process. This principle does not hold for non-equilibrium processes (see ref.1).

In conclusion: Violation of detailed balance is the source of macroscopic currents which
maintain the system far from equilibrium. This violation can be due to different factors: (i)
the existence of an external driving force that pushes the particles in a given direction; (ii) the
presence of reservoirs of unequal chemical potential (or temperature) that generates a current.
We will see that the principle of detailed balance is a consequence of the time-reversibility of
the underlying Hamiltonian dynamics (the converse is also true).

Exercice 1.2. Consider the cycle of Fig. 5 with rate constants kA→B, kB→C , . . . and
probabilities pA, pB, pC to be in state A,B or C. Show that equilibrium implies

(16)
kA→BkB→CkC→A

kB→AkA→CkC→B

= 1

which means that the probability to run clockwise is equal to the probability to run counter-
clockwise ( Hints: Write a system of equations for dpA/dt, dpB/dt, dpc/dt).
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Figure 9.1 The principle of detailed balance. (a)
The equilibrium between three interconverting com-
pounds A, Band C is a result of "detailed balance"
between each pair of compounds. (b) Although a
conversion from one compound to another can also
produce concentrations that remain constant in time,
this is not the equilibrium state. (c) The principle of
detailed balance has a more general validity. The
exchange of matter (or energy) between any·· two
regions of a system is balanced in detail; the amount
ofmatter going from X to Y is balanced by exactly the
reverse process, etc.

equilibrium and a living cell that is in an organized state far from
thermodynamic equilibrium. Removal of a small part of the water droplet does
not change the state of of the droplet, but removing a small part of a
living cell may have a drastic influence on other parts of the cell.

9.5 Entropy Production due to Chemical Reactions

The formalism of the previous sections can now be used to relate entropy
production to reaction rates more explicitly. In Chapter 4 we have seen from

Figure 5. The equilibrium between three interconverting compounds A, B
and C is the result of detailed balance between each pair compounds. The right
picture shows a cycle. Although conversion from one compound to the other
can produce concentration that remains constant in time, this state is not an
equilibrium state. Why ?

6. Phase space

Non-equilibrium and equilibrium statistical mechanics share the same tools. The basic
purpose of non-equilibrium statistical mechanics is to describe the dynamics of the system in
the phase space (master and Fokker-Planck equation).

Let p, q be the momentum and the position vectors of N particules. The phase space is
defined as the (q, p) phase with (huge) dimension 6N . Assume we have a Hamiltonian

(17) H(p, q) =
∑

i

p2i
2m

+
∑

i<j

U(qi − qj) +
∑

i

V (qi, t)

The first term is the kinetic energy, the second is the interaction between the particles and the
third is the potential energy. It may depend on the time t. V (qi, t) takes into account the walls
and it plays an analogous role to a piston in thermodynamics.

The dynamics of the system is given by the Hamilton’s equations

(18) q̇ =
∂H

∂p
ṗ = −∂H

∂q

and the system evolves along a trajectory (which cannot intersect itself because there is only
one trajectory for a given initial condition). For hamiltonian dynamics, trajectories are dense.
This means that we can define a density ρ(p, q, t) and that we can try to define an entropy via
the formula

(19) S(t) = −k
∫
dpdq ρ(p, q, t) ln ρ(p, q, t)

Because of ergodicity (time average equals to ensemble average) ρ is constant. If ρ = 1/Ω,
where Ω is the volume of phase space. This gives the Bolzmann’s formula

(20) S = k lnΩ

This is nice but (19) cannot be correct. We will demonstrate that if S is defined this way, then
S is constant and cannot increase. We will seek for an another definition (the whole problem
of out of equilibrium thermodynamic is to define thermodynamic functions even if the system
is a non-equilibrium system).

There are two well-known theorems in Hamiltonian dynamics. Before stating these two
theorems, we have:

Definition 6.1. The dynamic is a one-parameter family of transformation in phase space

(21) gt : (p(0),q(0))→ (p(t),q(t))

Theorem 1. Liouville: The volume is conserved. For all domains D:

(22) Vol.gtD = Vol.D
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Theorem 2. Poincaré: This theorem states that, for almost all "initial conditions",
a conservative dynamic system whose phase space is of finite "volume" will repeatedly pass
through time as close as one wants to its initial condition.

This theorem sheds new light on the notion of irreversibility. If a system returns arbitrarily
close to its starting point, where does the fact that macrocopic systems appear irreversible
come from? The answer is that Poincare’s return time increases very rapidly with the number
of degrees of freedom. By coupling a particle with a thermal bath (i.e. by sending this number
to infinity and replacing discrete sums by integrals), even if the coupling is weak, we will be
able to simulate the irreversibility at the end of the course.

For a large system, the trajectory in phase space is chaotic. It means that two trajectories
with almost equal initial conditions will be completely different after a short period of time.
This is the way how randomness comes into play in statistical mechanics. Since it is hopeless
to define the initial conditions with an infinite precision, we are forced to coarse grain the phase
space into small boxes. The size of the boxes have nothing to do with the uncertainty principle
of Heisenberg. There are here because we want to do statistics. If pi is the probability to find
the system in box i, then the correct definition of entropy is

(23) S = −k
∑

i

pi ln pi

The problem is now to find how the pi’s evolves with time. This is a central part in statistical
mechanics and the equation of evolution is known as the master equation. Using this master
equation, we will show that entropy increases.

Exercice 1.3. The Fundamental Theorem of Natural Selection (Derrida):
In the 1930s, the biologist and statistician Ronald Fisher showed that the fertility of a popu-
lation increases on average as the variance of fertility increases. This theorem shows that the
fertility of a population increases even in the absence of mutations. Fisher’s result is obtained
in a manner very similar to the calculation for the variance of energy or the number of particles
that we shall see in the following. The starting point is to consider a model where the number
of individuals ni, whose fertility is σi, evolves according to

(24)
dni

dt
= σini

and to assume that the fertility σi is perfectly transmitted to the descendants without being
modified. Show that the mean fertility

(25) ⟨σ⟩ =
∑

i niσi∑
i ni

evolves according to

(26)
d ⟨σ⟩
dt

=
〈
σ2
〉
− ⟨σ⟩2

Conclude (It is remarkable that the response of fecundity to a temporal change is given by the
variance of that fecundity much as the derivative of energy with respect to temperature was
given by the variance of that energy).

7. The Liouville equation

In statistical mechanics, average quantities are determined by the phase space distribution
function f(p,q, t) or more simply f(X, t). The probability of finding the system state in a
region dX at time t is f(X, t)dX = pi, where the index i labels the cell i. Probability is
conserved; the total probability that the system is somewhere is unity at all times:

(27)
∫
dXf(X, t) = 1
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As in fluid or electrodynamics, whenever an integral of a quantity is conserved over an entire
domain, there is a conservation law of the form:

(28)
∂ρ

∂t
= − ∂

∂X
· (ρV)

where V is a velocity and ρ a density. This equation tells us that the rate of change is simply
equal to the divergence of a current. In phase space, the coordinates are the position q and the
momentum p, so

(29)
∂

∂X
→
(
∂

∂q
,
∂

∂p

)
V→

(
∂q

∂t
,
∂p

∂t

)

and

(30)
∂f

∂t
= − ∂

∂q
·
(
dq

dt
f(q,p, t)

)
− ∂

∂p
·
(
dp

dt
f(q,p, t)

)

Using Hamilton equation, we can define an operator (called the Liouville operator)

(31) L =
∂H

∂p
· ∂
∂q
− ∂H

∂q
· ∂
∂p

so that the Liouville equation is

(32)
∂f

∂t
= −Lf

This equation has the formal operator solution:
(33) f(X, t) = e−tLf(X, 0)

The forme of this solution will be useful when we discuss the Fokker-Planck equation when one
adds noise to the Liouville equation.

Remark. (1) For time reversal properties of a noisy signal (equilibrium versus non
equilibrium), see18;

(2) For interesting comments on detailed by balance, see1;
(3) Broken detailed balance and entropy production in the human brain, see? .





CHAPTER 2

STOCHASTIC VARIABLES

1. Fundamental definitions

The natural mathematical setting of probability is set theory: Sets are collections of objects.
In probability theory, each object is identified with an event. Let Ω be the set of all events
and A, B ⊂ Ω. For example, if we study the spreading of a disease in a population, the whole
population is Ω, the group of people who have the disease is A and the set of individuals who
tested positive for the disease is B. All that seems familiar ...

The set A\B contains all ω such that ω ∈ A and ω /∈ B.
We have the three basic axioms:
(1) To each set A is associated a non-negative real number P (A) called the probability of

A.
(2) P (Ω) = 1.
(3) If Ai is a collection of disjoint sets, i.e. Ai ∩ Aj = ∅, ∀i, j

(34) P (∪iAi) =
∑

i

P (Ai)

and the following property holds:

(35) P (Ω\A) = 1− P (A)

2. Bayesian Statistics

We introduce two additional probabilities:
(1) The joint probability for sets A and B together P (A ∩B).
(2) The conditional probability of B given A.

We can compute the joint probability P (A ∩B) = P (B ∩ A) in two ways:

(36) P (A ∪B) = P (A|B)P (B) = P (B|A)P (A).
Thus,

(37) P (A|B) =
P (B|A)P (A)

P (B)

a result known as Bayes’ theorem.
If the event space Ω is partitioned as {Ai}, then

(38) P (B) =
∑

i

P (B|Ai)P (Ai)

17
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so that,

(39) P (Ai|B) =
P (B|Ai)∑

i P (B|Ai)P (Ai)

Example 2.1. As an example, consider the following problem in epidemiology. Suppose
there is a rare but highly contagious disease A which occurs in 0.01% of the general population.
Suppose further that there is a simple test for the disease which is accurate 99.99% of the time.
That is, out of every 10,000 tests, the correct answer is returned 9,999 times, and the incorrect
answer is returned only once.

Now let us administer the test to a large group of people from the general population. Those
who test positive are quarantined. Question: what is the probability that someone chosen at
random from the quarantined group actually has the disease?

We use Bayes’ theorem with the binary partition A,Ω\A, meaning that we divide the
population in two groups (the ones who have the disease and the other ones). Let B denote the
event that an individual tests positive. Anyone from the quarantine group has tested positive.
Given this datum, we want to know the probability that that person has the disease. That is,
we want P (A|B). But, what we know is P (B|A) = 0.9999 !

Actually, we know more. Applying (39) with A1 = A and A2 = Ω\A, we have

(40) P (A) = 0.0001 P (B|A) = 0.9999 P (Ω\A) = 0.9999 P (B|Ω\A) = 0.0001

and

(41) P (A|B) =
0.9999× 0.001

0.9999× 0.0001 + 0.0001× 0.9999
=

1

2
!

despite the test being 99.99% accurate. The reason is that, given the rarity of the disease in
the general population, the number of false positives is statistically equal to the number of true
positives.

For continuous distributions, we speak of probability density. We then have

(42) P (y) =

∫
P (y|x)P (x) dx

and

(43) P (x|y) = P (y|x)P (x)∫
dx′P (y|x′)P (x′)

In probability theory, the quantities P (Ai) are called the prior distribution.

3. Average, moments and cumulants

Averages are defined as:

(44) < xp >=

∫
dx xpP (x) p ∈ R

when it is possible (i.e. when the integral converges).
Cumulants tell us if the fluctuations are large. For example, for large fluctuations < x2 >

will significantly differ from < x >2. Thus we define

< x >c = < x >(45)
< xixj >c = < xixj > − < xi >< xj >(46)

< xixjxk >c = < xixjxk > − < xixj >< xk > − < xjxk >< xi >

− < xixk >< xj > +2 < xj >< xj >< xk >(47)

A very useful interpretation of cumulants is that they tell us about fluctuations. Are they
large or small compared to the mean values ? Take, for example

(48) < x2 >c=< x2 > − < x >2
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If the distribution of x is almost centered on a value x0 (take δ(x − x0)), then < x2 >c≃ 0.
However, if the distribution of x is broad enough
(49) < x2 > − < x >2≫< x >2

4. Characteristic functions-Cumulants

The characteristic function of a stochastic variable x is

(50) G(k) =< eikx >=

∫
eikxP (x)dx

This function generates the moments µn by Taylor’s expanding the exponential:

(51) G(k) =
∑

n≥0

(ik)n

n!
µn

Note. The moments may not necessarily exist. As an example, consider the Lorantzian :

(52) P (x) =
1

π

γ

(x− a)2 + γ2

The cumulants κm are of constant use in statistical physics. They are defined via the same
generating function :

(53) G(k) = e
∑

n≥1
(ik)n

n!
κm

Or,

(54) lnG(k) =
∑

n≥1

(ik)n

n!
κm

We have κ1 = µ1, κ2 = σ2, κ3 = µ3 − 3µ2µ1 + 2µ3
1.

Example 4.1. The Gaussian distribution:

(55) P (x) =
1

2πσ2
exp

{[
−(x− µ)2

2σ2

]}

has the following generating function

(56) G(k) = exp

{[
ikµ− 1

2
σk2
]}

with lnG(k) = ikµ− 1
2
σk2, so that the cumulants of order ≥ 3 vanish.

5. Calculations rules

Consider the mapping x → y = f(x). We assume that x is distributed as Px(x). What is
the distribution Py(x) ? We have

(57) Py(y)∆y =

∫

y<f(x)<y+δy

dxPx(x)

Thus,

(58) Py(y) =

∫
dxPx(x)δ(f(x)− y)

Remember the composition rule of the Dirac delta distribution

(59) δ(g(x)) =
∑

i

δ(x− xi)
|g′(xi)|

with xi being the zeros of g(x). We plug this formula into (58) and get the result.

Exercice 2.1. Show that
(60) Gy(k) =< eikf(x) >
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6. Stochastic processes

A stochastic process X = {X(t), t ∈ T} is a collection of random variables. That is, for
each t, X(t) is a random variable. Depending on the situation, we have continuous or discrete
stochastic processes depending on wether the time t is a continuous or a discrete variable. Any
realization of X is a sample path.

A prototypical example of a stochastic process is a random walk of a particle that move along
a discrete set of lattice sites. At each time step ti, the particle moves to right with probability
1/2 and to the left with probability 1/2 and the set of positions X(ti) is a stochastic process.

7. Some basic distributions

7.1. The multinomial distribution. Consider N molecules distributed in Nc compart-
ments that are connected by diffusion. The steady-state distribution is spatially uniform, and
it is known that it is multinomial with mean and variance (i = compartment i):1

(63) Mi =
N

Nc

σ2
i =Mi(1−

1

Nc

) =
N

Nc

(
1− N

Nc

)

We can adopt the coefficient c = σi/Mi as a mesure of the noise. We have:

(64) c =

√
Nc − 1

N

7.2. The Gaussian distribution. see Appendix

7.3. The Poisson distribution. Let us consider a counting process N(t), t ≥ 0 such
that:

(i) N(0) = 0.
(ii) The process has independent increments.
(iii) The number of events in any interval t is Poisson distributed with mean λ. That is, for

all t and s

(65) P [N(t+ s)−N(s) = n] = e−λt (λt)
n

n!

which means that < N(t) >= λt.
A key property of a Poisson process is that it the only memoryless distribution and that the
interarrival time distribution (i.e. the distribution of elapsed times between two consecutive
events) is exponentialy distributed. As a prototypical example, let us consider the chemical
reaction

(66) A
k−−→ B

with rate k. The probability density for the time τ it takes a single-turnover trajectory is

(67) p(τ) = k exp(−kτ)
We deal with the subject through an exercise17.

1The definition of the multinomial distribution is as follows:

(61) P(N1 = n1, N2 = n2, . . . , Nm = nm) =
n!

n1! . . . nm!
pn1
1 . . . pnm

m

with the constraints:

(62)
∑

i=1,m

Ni = m
∑

i=1,m

pi = 1

What is pi for the diffusion problem?
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Exercice 2.2. The exponential distribution.
Let x be a random variable with exponential distribution:

(68) f(x) =

{
λe−λx, x ≥ 0

0, x < 0

(1) Compute the moment generating function < etx >, t < λ and show < x2 >= 2/λ2

and compute the variance. What is the probability P (x) to observe the variable in the
interval [x,∞[ ?

(2) A random variable x is said to be without memory if the c.d.f. (cumulative probability
distribution) obeys

(69) P (x > s+ t|x > t) = P (x > s)

If we think of x as being the lifetime of some molecule, then Equation (69) states that
the probability that the molecule lives for at least s+ t hours given that it has survived
t hours is the same as the initial probability that it lives for at least s hours. In other
words, if the molecule is alive at time t, then the distribution of the remaining amount
of time that it survives is the same as the original lifetime distribution; that is, the
molecule does not remember that it has already been in use for a time t. Show that
this condition is equivalent to:

(70)
P (x > s+ t, x > t)

P (x > t)
= P (x > s)

or

(71) P (x > s+ t) = P (x > s)P (x > t)

(3) Show that exponentially distributed random variables are memoryless.
(4) Interpret X as being the lifetime of some item. Suppose that X has survived a time t

and we want to compute the probability that it will not survive for an additional time
dt. This probability is called the hazard (or failure) function. Show

(72) P (X ∈ (t, t+ dt)|X > t) =
P (X ∈ (t, t+ dt))

P (X > t)

Compute this probability for an exponential process. It follows that the distribution
of remaining life for a t-year-old item is the same as for a new item (check).

(5) Define the sequence Tn, n, n = 1, 2, . . . as the sequence of interarrival times of a count-
ing process. For example if T1 = 5 and T2 = 15, then the first event would have
occurred at time 5 and the second at time 15. We define the waiting time until the
nth event as

(73) Sn =
∑

i=1,n

Xi

where the Xi’s are the sequence of interarrival times

(74)
T1 = X1

T2 = X1 +X2

...

Sn is, therefore, a random variable, each of which being distributed with density
λ exp(−λx). Recall that the density of the sum of two independent random variables
can be found by convolving their densities. Show by recurrence that

(75) fSn(t) = e−λt λ
ntn−1

(n− 1)!
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7.4. The Boltzmann distribution. As an application of the Bolzmann distribution of
a fluctuating quantity. The fluctuation amplitude is determined by the equipartition theorem
which tells us that that each distinct mode is just the thermal energy kBT . We consider the
case of an ideal solution of average solute concentration c consisting of nc solute molecules in a
volume V , c = nc/V .

The minimum work at constant pressure and temperature to create a small fluctuation δnc

having equilibrium potential µc(T, P ) is ∆W = δG − µcδnc. Expanding around equilibrium,
first order term disappears leaving

(76) ∆W =
1

2

∂µc

∂nc

|(P,T )(δnc)
2

The probability of this fluctuation is given by the Bolzmann distribution:

(77) ∝ e−W/kBT

The resulting Gaussian distribution of δnc yields the mean square number fluctuation as

(78) < (δnc)
2 >=

kBT

∂µc/∂nc|(P, T )
In an ideal or very dilute solution the chemical potential is

(79) µc = KBT lnnc/V + const.

Therefore,

(80) < (δnc)
2 >= nc

Note that the temperature dependence cancels although we are dealing with thermal fluctua-
tions.

8. Multivariate Gaussian distribution

Let x ∈ Rn. and A a symmetric positive definite n × n real matrix. The multivariate
Gaussian distribution is

(81) P (x) =
1

Z
exp

{[
−1

2
xxTAx− bTx

]}

Using Appendix A for Gausian integrals, the characteristic function turns out to be:

(82) G(k) = exp

{[
−1

2
kTA−1k− ikTA−1

]}

For an arbitrary joint probability distribution, we define the second order cumulant from the
covariance matrix

(83) < xixj >c=< (xi− < xi >xi
)(xj− < xj >xj

) >

where

(84) < xi >xi
=

∫
dxxiP (x)

The variables xi and xj are said to be uncorrelated if and only if :

(85) < xixj >c= 0

If A is diagonal, then A−1 is also diagonal. The second order cross cumulant vanishes and the
two variable are independent. The equivalence between the two properties is due to the fact
that we have taken a Gaussian probability distribution. Otherwise, this equivalence is false
(see next).

Uncorrelated does not mean independent. We have seen that two variables are
uncorrelated if and only if < xixj >c= 0. Two variables are said to be independent if and
only if p(x, y) = px(x)py(y). Are these two notions equivalent ? The answer is no! See next
examples.
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13

2.1 Computing correlations 6

case in which they are perfectly linearly correlated and |Rij | = 1. R can be taken as a
measure of the goodness-of-fit if the model dependence is linear, i.e. �j = A�i + B.

Despite being conceptually appealing and easy to estimate from the data, correlation
has at least two problems as a generic measure of dependency. Firstly, it does not capture
non-linear relationships, as shown in Fig 2.1b; secondly, when � take on discrete values
that are not ordered (e.g. a set of possible multiple-choice responses on a test), the linear
correlation loses its meaning, although the problem itself is well posed (e.g. What is the
correlation between two answers on a multiple-choice test across respondents?).
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I=1.4 bits, C=0.94

2.1a: Linear correla-
tion.
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2.1b: Nonlinear cor-
relation.
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2.1c: No correlation.

Figure 2.1: Correlation coe⇥cient and mutual information as measures of dependency. Left panel:
the points drawn from a joint distribution that embodies linear dependence plus noise have both a
high mutual information and high linear correlation. Middle panel: in case of nonlinear dependence,
the correlation coe⇥cient can be zero although the variables are clearly strongly correlated. Right
panel: if the joint probability distribution is a product of factor distributions for both variables,
then the correlation coe⇥cient and the mutual information measures are zero.

There is an alternative way of defining dependency, or correlation, between two variables
due to Shannon (Shannon, 1948; Cover and Thomas, 1991). Let us suppose that both �i

and �j are drawn from a joint distribution p(�i,�j). For argument’s sake, suppose further
that we do not know anything about the value of �i. Then the entropy of p(�j):

S[p(�j)] = �
�

d�j p(�j) log2 p(�j) (2.3)

is a useful measure of uncertainty about the value of �j , and, as defined above, is a value
measured in bits. This information-theoretic entropy is equivalent to physical entropy up to
a multiplicative constant, and is defined up to an additive constant (connected to the finite
resolution of �) for continuous variables, with a straightforward generalization for discrete
variables.

We have assumed that �i and �j have been drawn from an underlying joint distribution;
in contrast to the case above, if we actually know something about �i, our uncertainty
about �j might be reduced. The uncertainty in �j that remains if the value of �i is known
is again defined by the (conditional) entropy:

S[p(�j |�i)] = �
�

d�j p(�j |�i) log2 p(�j |�i). (2.4)

We can now define the mutual information between elements �i and �j as:

I(�i;�j) = S[p(�j)]� ⇥S[p(�j |�i)]⇤p(�i), (2.5)

FIG. 8: Examples of two variables, drawn from three joint
distributions. Shown are the scatterplots of example draws.
On the left, the variables are linearly correlated, and the cor-
relation is close to 1. In the middle, the variables are interde-
pendent, but not in a linear sense. The correlation coe�cient
is 0, but measures of statistical dependence, such as mutual
information, give non-zero value. Note that we are looking
for a general measure of interdependency: if we had a model
that assumes that x and y lie on a circle, we could fit that
particular model or use a measure that makes the circular as-
sumption. Instead, we would like to find a measure that de-
tects the dependency without making any assumptions about
the distribution from which the data has been drawn. On the
right, the variables are statistically independent, and both
linear correlation and mutual information give zero signal.

could measure pairs of (c, g) values while the network per-
forms its function, and scatterplot them as in Fig 9. The
line represents a smooth (mean) input/output relation
and guides our eyes. In the case of the mock measure-
ments in Fig 9A, knowing the value of the output would
tell us only a little about which value of the input gener-
ated it (or vice versa – knowing the input constrains the
value of the output quite poorly). However in the case of
the input/output relation in Fig 9B, knowing the value
of output would reduce our uncertainty about the input
by a significant amount. Intuitively we would be led to
say that in “noisy” case A there is a small amount of
information between the input and the output, while in
case B there is more. From this example we see that in-
formation about g obtained by knowing c can be viewed
as a “reduction in uncertainty” about g due to the knowl-
edge of c. In order to formalize this notion we must first
define uncertainty, which we do by means of the familiar
concept of entropy.

Physicists often learn about entropy in the micro-
canonical ensemble, where it is simply defined as a mea-
sure of how many states are accessible in an isolated sys-
tem at fixed energy, pressure and particle number. In this
case all, say M , states that the system can find itself in,
are equally likely, therefore the probability distribution pi

over a set of states i, such as the particle configurations,
is uniform, pi = 1/M . The entropy just counts the num-
ber of states, S = kBT log2 M . The entropies in other
ensembles, including the canonical ensemble, are then in-
troduced via a Legendre transform. For example in the
canonical ensemble one allows for the energy to fluctuate,
keeping the mean energy fixed. As a result, the system
can now find itself in many energy states, with di↵erent
probabilities. Here we will start with directly defining

FIG. 9: A schematic depiction of two mock measurements
(dots) of an output g as a function of input c. A) A case
where measuring the output does not greatly decrease our
uncertainty about the input. This input/output relation has
little information. B) In this case the input/output relation
is informative: measuring the output significantly reduces our
uncertainty about the input. The grey line denotes a chosen
value of the output, and the arrows mark the uncertainty in
the input for that chosen value of the output.

the canonical entropy:

S = �
X

i

pi log2 pi, (46)

which will be a key quantity of interest. In information
theory and computer science the canonical entropy (up
to the choice of units) is referred to as Shannon entropy.
The intuition behind this form of entropy is similar to
that of the microcanonical entropy – it counts the num-
ber of accessible states, but now all of these states need
not be equally likely. We are trying to define a measure of
“accesible states,” but if their probabilities are unequal,
some of the states are in fact less accessible than others.
To correct for this we must weigh the log2 pi contribution
to the entropy by the the probability pi of observing that
state, S = �Pi pi log pi. By convention used in infor-
mation theory we chose the units where kBT = 1. The
logarithm base 2 defines a unit called a bit, which is an
entropy of a binary variable that has two equally acces-
sible states. In general in the case of M equally probable
states, we recover

S = �
MX

x=1

1/M log2(1/M) = log2 M [bits]. (47)

According to this formula, the uncertainty in the out-
come of a fair coin toss is 1 bit, whereas the uncertainty
of an outcome with a biased coin is necessarily less than
1 bit, allowing the owner of such a coin to make money
in betting games. Entropy is nothing else but a measure
of the uncertainty of a random variable distributed ac-
cording to a given distribution P = {pi}, i = 1, . . . , M .
Entropy is always positive, measured in bits, and in the
discrete case always takes a value between two limits:
0  S[P ]  log2 M . The entropy (uncertainity) is zero
when the distribution has its whole weight of 1 concen-

Figure 1. Examples of two variables x, y drawn from three joint distributions.
Shown are the scatterplots of example draws. After ref.19.

Exercice 2.3. Consider the three examples of Fig. 1. Tell in each case if the variables are
correlated or not. What are the values of < xy > and < xy >c in the second example.

Exercice 2.4. Let x be a Gaussian distributed random variable with < x >= 0 and σ2 = 1.
Let w to take the value ±1 with equal weight and define y = wx.

(1) Show that:

(86) P (x, y) =
1√
2π

exp
{[
−x2/2

]}1
2
(δ(x+ y) + δ(x− y))

(2) Show that:

Px(x) =

∫
dyP (x, y) =

1√
2π

exp
{[
−x2/2

]}
(87)

Py(y) =

∫
dxP (x, y) =

1√
2π

exp
{[
−y2/2

]}
(88)

so that P (x, y) ̸= Px(x)Py(y).
(3) Show that ≪ xy ≫=

∫
dxdyxyP (x, y) = 0.

Exercice 2.5. For a multivariate Gaussian distribution with zero mean, the following
properties holds (due to Novikov)

(89) ⟨xif(x)⟩ =
∑

m

⟨xixm⟩
〈
∂f

∂xm

〉

Use this property to recover Wick’s formula

(90) ⟨xixkxlxm⟩ = ⟨xixk⟩ ⟨xlxm⟩+ ⟨xixl⟩ ⟨xkxm⟩+ ⟨xixm⟩ ⟨xkxl⟩

9. Central limit theorem - Stable distributions

The importance of the Gaussian distribution is due to the fact that it is an ’attractor’ in
the space of distributions with finite variance. This theorem states the following:

If the distributions Pxi
(xi) have zero mean and variance σ2, the distribution of the scaled

sum :

(91) y =
1√
n

∑

1≤i≤n

xi

approaches

(92) Py(y) =
1√
2πσ2

e−z2/2σ2

The central limit theorem remains true if the variable are not identically distributed. What
happens is the variance diverge ? This leads to a more general class known as stable distribu-
tions.
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We give only an example. Levi distributions with maximum at x = 0 are such that their
characteristic function is of the form:

(93) G(k) = exp{[−|k|µ]}, with 0 < µ ≤ 2

The case µ = 1 is the Cauchy distribution and µ = 2 corresponds to a Gaussian distribution.
We cannot have µ > 2, since the probability density has to be positive. For µ ̸= 2, P (x)
behaves as P (x) ≃ 1/|x|µ+1, which yields to a divergent variance.

These distributions are called stable distributions because of the following definition:
Let x1 and x2 be independent stochastic variables with the same probability distribution

P (x). The distribution P (x) is stable if for any constants a and b the stochastic variable
ax1 + bx2 has the same distribution as cx+ d with appropriate c and d.

10. Entropy and probability

Since the work of C. Shannon, we say that entropy is a measure of information (or more
precisely et depending on the context, entropy measures how information is transmitted, or
measure measure the amount of information necessary to describe a random variable). Suppose
we observe that an event occurs with probability p. We associate with observation an amount
of information I(p). The information I(p) should satisfy the following desiderata:

(1) Information is non-negative, I(p) > 0.
(2) If two events occurs independently, their joint probability is p1× p2. Information must

be additive.
(3) I(p) is a continuous function of p.
(4) There is no information to an event which is always observed, i.e. I(1) = 0.

From this properties it follows that the only possible function is (this is a theorem that we do
not demonstrate because of time)

(94) I(p) = −A ln p

where A is constant which can be adsorbate in the definition of the logarithm by changing the
base2. Note that a rare event with p≪ 1 contains a lot information: It is like finding a useful
message lost in noisy data.

Now if we have a set of events labeled by an integer n which occur with probability pn,
what is the expected amount of information in N observations ? Since each event occurs Npn
times, the average information per observation is

(95) S =
< IN >

N
= −

∑

n

pn ln pn

which defines the entropy. Maximizing S is therefore equivalent of maximizing the information
per observation.

Exercice 2.6. From Ref.6. We decide to measure the entropy using ln2

(1) What is the entropy of a fair coin ?
(2) Let X = 1 with probability p and X = 0 with probability 1 − p. Draw a graph of

the entropy associated withe the random variable X and explain why it is maximal or
minimal at some value of p.

(3) Consider a random variable which has a uniform distribution over 32 outcomes. How
many bits suffice the describe the outcome ? (5)

(4) Compute the entropy of this random variable.
(5) Compute the entropy associated with 8 outcomes with probabilities

(1/2, 1/4, 1/8, 1/16, 1/65, 1/64, 1/64, 1/64, 1/64, 1/64)

Conclude.
2If I(p) = ln2 1/p, I is measured in bits. The meaning has nothing to do with a variable whose value is 0

or 1.
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The relative entropy, also known as the Kullback-Leibler divergence between two probability
distribution on a random variable is a measure of the distance between them. Formally, given
two probability distributions p(x) and q(x) over a discrete random variable, the relative entropy
given by D(p||q) is defined as follows:

(96) D(p||q) =
∑

n

pn ln
pn
qn

In the definition above 0 ln 0
0
= 0.

We have D(p||p) = 0. We remark that the divergence is not symmetric. That is, D(p||q) =
D(q||p) is not necessarily true. Intuitively, the entropy of a random variable with a probability
distribution p(x) is related to how p(x) diverges from the uniform distribution. Taking qn = 1
to simulate the uniform probability distribution, we find:

(97) S = −D(p||Uniform)

D is also called the divergence in the literature.

Exercice 2.7. Mutual information19. We want to find some measure of the statistical
interdependence of an input c and an output x. One can quantify this in terms of how much
one’s uncertainty in x is reduced by knowing c. Prior knowing c, the entropy is

(98) S(Px) = −
∫
dxP (x) ln2 P (x)

After c is specified, the entropy is

(99) S(Px|c) = −
∫
dxP (x|c) ln2(P (x|c)

So we define the mutual information by

(100) I(c;x) =

∫
P (c)

(
S(Px)− S(Px|c)

)
dc

(1) Show that I(c;x) is symmetric (use P (x) =
∫
dcP (x, c) and Bayes’ theorem) .

(2) What happens if the input and the output are independent ?
(3) Show that the entropy of P (c)

(101) P (c) =
1√
2πσ2

c

e
N̄

(c−c̄)2

2σ2
c

is S(P ) = ln2

√
2πσ2

c

(4) As an illustration, suppose that an input signal is corrupted by an additive Gaussian
noise

(102) x = c+ ξ

where the process (i.e. transmission line) changes the input c into the output x, c→ x.
We identify P (ξ) with P (x|c) so that

(103) P (x|c) = P (ξ) =
1√
2πσ2

exp
{[
(x− c)2 /2σ2

]}

where σ2 can be identified with the noise due the "transmission line".
(a) We assume that the input itself c is a also a Gaussian distributed random variable

(with c̄ = 0)

(104) P (c) =
1√
2πσ2

c

e
N̄

(c−c̄)2

2σ2
c

Show that the probability distribution of x is a Gaussian (use P (x) =
∫
dcPc(c)Pξ(x−

c)).
(b) What is the mutual information ?
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(c) Find I(c;x) (answ.: 1/2 ln2(1 + σ2
c/σ

2)). What is the usual definition of the ratio
σ2
c/σ

2 ?
(5) Let us now prove that the Gaussian distribution maximizes the entropy subject to a

variance constraint. Consider the following functional

(105) L[p(c)] = −
∫
dcP (c) lnP (c)− λ0

∫
dcP (c)− λ1

∫
dc cP (c)− λ2

∫
dcc2P (c)

with Lagrange multipliers. Solve the optimisation problem for a desired mean and
variance. This shows that the Gaussian distribution has the largest entropy given the
variance.

11. Correlation functions

Let us define for a random variable x(t) (which can be a vector)3:
(1) The probability P (x, t) that the random variable x(t) has a certain value x at time t.
(2) The joint probability P (x2, t2;x1, t1) that this random variable has a certain value x2

at t2 and, also, that it has an another value x1 at time t1.
(3) The conditional probability P (x2, t2|x1, t1) that the random variable takes the value

x2 at time t2 given that x1 = x(t1) at time t1 prior to t2.
Recall:

(106) P (x2, t2;x1, t1) = P (x2, t2|x1, t1)P (x1, t1)
In a stationary process all probability distributions are invariant under time translation t →
t+ τ . Therefore:

P (x, t) = P (x) independent of t(107)
P (x2, t2;x1, t1) = P (x2, t2 − t1;x1, 0)(108)
P (x2, t2|x1, t1) = P (x2, t2 − t1|x1, 0)(109)

Consider a stationary process. Its probability distribution function is normalized as follows (x0
is the initial condition):

(110) 1 =

∫
dxP (x) =

∫ ∫
dxdx0 P (x, τ ;x0, 0)

which means

(111)
∫
dxP (x, τ |x0, 0) = 1

Taking the limit τ → 0, we have

(112) lim
τ→0

P (x, τ |x0, 0) = δ(x− x0)

For any functions f(x) and g(x), we define the correlations:

(113) < f(x1)f(x0) >=

∫ ∫
dx1dx0 f(x1)g(x0)P (x1, t1;x0, t0)

We can also the conditional average (conditional to the initial condition)

(114) < f(x) >x0
τ =

∫
dx f(x)P (x, τ |x0, τ)

which depends on τ and on x0. A simple calculation leads to:

(115) < f(x)g(x0) >=<< f(x) >x0
τ g(x0) >

where the outside bracket "⟨⟩ " means that we average over all initial conditions x0. We see that
here that there is a physical interpretation between a correlation function and a conditional

3We use the same notation to indicate both the random variable and the value that it can assume.
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Figure 1. Biochemical prediction. (A) A sensory network
(black box) with output x (red) senses an extracellular lig-
and s (black) via noisy ligand-bound receptors ` (blue). (B)
Example traces (solid lines) of Markovian (� = 1, red) and
non-Markovian (NM) signals s (! = 1, ⌘ = 4, 2, 0.5, down-
wards), yielding outputs x of exponential responders with
µ = 1 (dashed). Predictive information I[x, s⌧ ] in nats
(ln 2 nats = 1 bit) for Markovian signals (C) and NM sig-
nals with damping ⌘ = 1/2 (D), as a function of the speed µ
of an exponential responder, for di↵erent prediction intervals
⌧ , and for noise level # = 0 (solid lines) and # = 0.1 (dashed
lines). Dotted line in (C) denotes µti.

ity density p(s(t + ⌧)|s(t), s(t0), . . . ) really depends on
the signal values at t > t0 > · · · . For Markovian in-
put, the only dependence is on s(t), and perfect instan-
taneous readout of s(t) would in fact be the optimal pre-
diction strategy for all future s(t + ⌧) [5]. However, in
the presence of input noise ⇠, arising from, e.g, receptor-
ligand binding, the responder senses the degraded signal
`(t) = s(t) + ⇠(t). Then even for Markovian s, the added
noise makes p(s(t + ⌧)|`(t), `(t0), . . . ) dependent on past
values `(t0), . . . , since they help determine the current
input s(t) by averaging over the noise ⇠, and then from
s(t) the future s(t + ⌧). Thus a slow response can help
prediction of any noisy signal via the mechanism of time
integration (which also improves accuracy for constant,
noisy signals [10–17]). As detailed below, for NM signals,
another prediction mechanism exists: A responder with
memory enables readout of additional information from
past signals s(t0), . . . , improving predictions by exploit-
ing signal correlations.

We take the input signal s(t) to be stationary Gaus-
sian, characterized by hs(t0)s(t0 + t)i = �2

srs(t) where
rs denotes the normalized autocorrelation function, and
�s, the signal amplitude. For Markovian processes,
rs(t) = exp(��t). A family of NM signals can be
generated via a harmonic oscillator defined by @!tq =
p, @!tp = �q � ⌘p +

p
2⌘ with unit white noise  , by

letting s ⌘ q, see Fig. 1B. The damping parameter ⌘
controls the signal statistics: in the overdamped regime
⌘ > 2, rs(t) is monotonically decreasing, while for ⌘ < 2

it is oscillatory with period approaching T = 2⇡/!; in
both cases, the signal s obeys Gaussian statistics. This
family of signals allows analytical results and interpo-
lates from Markovian to non-Markovian, long-range cor-
related, oscillatory signals. We model input noise as
white, h⇠(t)⇠(t0)i = �2

s#
2�(t � t0), where # is the rela-

tive noise strength.
Concerning the responder, we focus on linear signaling

networks [12, 18] which a↵ord analytical results and often
describe information transmission remarkably well [19–
21]. Since we are interested in how prediction depends
on the correlations and noise in the input, we consider
responders in the deterministic limit. The output x(t) =R t

�1 k(t� t0)`(t0)dt0 of the network is then determined by
its linear response function k(t).

The predictive power of a signal-responder system
is measured in a rigorous and biologically relevant
way [5] by the predictive mutual information I[x, s⌧ ] =⌦
log p(x,s⌧ )

p(x)p(s⌧ )

↵
between the current output x(t) and the

future input s⌧ ⌘ s(t + ⌧). Since x is jointly Gaussian
with the input, the predictive information reduces to a
function I[x, s⌧ ] = � 1

2 log(1 � r2
xs⌧

) of the input-output
correlation coe�cient

rxs⌧
=

 (⌧)

[⌃+ ⌅]1/2
. (1)

The overlap integral  (⌧) ⌘
R1
0

k(t)rs(t + ⌧)dt is the
part of the normalized output variance �2

x/�2
s that is

correlated with the prediction target s⌧ . The denomi-
nator splits �2

x/�2
s into contributions from past signal,

⌃ ⌘
R1
0

k(t)rs(t � t0)k(t0)dtdt0, and past noise ⌅ ⌘
#2
R1
0

k(t)2dt [5].
We first consider a push-pull network, consisting of a

single layer in which the output x is directly activated by
the receptor. It is characterized by an exponential kernel
k(t) / exp(�µt) with response speed µ. Fig. 1C shows
how accurately such a network can predict Markovian
signals, as measured by the predictive information I, ob-
tained analytically from Eq. 1 [5]. Without input noise
(#! 0), the fastest responders maximize the accuracy I,
as expected. When including input noise, there exists an
optimal response speed µti = (2�/#2 + �2)1/2, indepen-
dent of ⌧ , and approaching µti ! � for high noise [22].
The optimum arises from a trade-o↵ between rapid track-
ing of the input and noise averaging [5].

Fig. 1D shows I for exponential responders predicting
oscillatory (⌘ = 0.5) NM signals. As before, input noise
disfavors the fastest responders. Interestingly, however,
a finite response speed can be optimal even when there
is no input noise (# = 0): For prediction intervals above
about a quarter period, frequency-matched responders
with µ⇤ ' ! (obtained numerically [5]), perform best.

The optimal µ⇤ is not an e↵ect of simple time inte-
gration but rather results from exploiting the oscillatory
signal correlations. When the forecast interval ⌧ ⌧ T ,

Figure 2. Examples of traces of signals obtained from (116 ) by increasing the
damping coefficient. From ref.2.
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Figure 3. Correlation functions for the harmonic oscillator of Eq. (116). Top
curve η = 4 (Markov), bottom curve, η = 0.5 (non Markov).

probability. This conditional probability is generally calculated as a propagator (other names
are Green function or kernel).

The following situation illustrates this point. Consider the signal x(t) generated by the
harmonic oscillator

(116)
∂ωtx = p

∂ωtp = −x− ηp+
√

2ηψ

with unit white noise ψ(t). This equation is a kind of stochastic equation we shall study later.
The numerical solutions of this equations depend on the value of η are some of them are shown
in Fig. 2. We define the correlation function as follows

(117) < q(t′)q(t′ + t) >= σ2
qr(t)

Tell if you expect r(t) to be of the form

(118) r(t) = exp(−λt)
If it is the case, the signals are said to be Markovian. Such signals have no memory.

12. Correlation and the Power Spectrum

Let us establish the Wiener-Kinchin theorem. We consider the power spectrum of a sto-
chastic process X(t), which is defined as the Fourier transform of the autocorrelation function
of X(t)

(119) S(ω) =

∫ +∞

−∞
eiωτCX(τ)dτCX(τ) =< X(t)X(t+ τ) >
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We define the Fourier transforme X̃(ω) as

(120) X̃(ω) =

∫ +∞

−∞
X(t)eiωtdt

Since X(t) is a real function, X̃∗(ω) = X̃(−ω). Using the definition

(121) δ(ω) =
1

2π

∫ +∞

−∞
eiωtdt

Show:

(122) < X̃(ω)X̃∗(ω′) >= 2πS(ω)δ(ω − ω′)

13. Bayesian statistical Inference

In this section, we introduce the basics of Bayesian data analysis. The key ingredients to a
Bayesian analysis are the likelihood function, which reflects information about the parameters
contained in the data, and the prior distribution, which quantifies what is known about the
parameters before observing data. The prior distribution and likelihood can be easily combined
to from the posterior distribution, which represents total knowledge about the parameters after
the data have been observed. Simple summaries of this distribution can be used to isolate
quantities of interest and ultimately to draw substantive conclusions.

To introduce this point, consider two events, A and B. From the identity

(123) P (A)P (B|A) = P (A,B) = P (B)P (A|B)

we have

(124) P (B|A) = P (B)P (A|B)

P (A)

This formula can be interpreted as follows:
(1) We are interested in the event B, and begin with an initial, prior probability B for

its occurrence.
(2) We then observe the occurence of A.
(3) The proper description of how likely B is when A is known to have occurred is the

posterior probability P (B|A).
(4) Bayes’ theorem can be understood as a formula for updating from prior to posterior

probability, the updating consisting of multiplying by the ratio P (A|B)/P (A).
(5) It therefore describes how a probability changes as we learn new information.

Exercice 2.8. Let Bc the complement of B, i.e. P (Bc) = 1− P (B). Show:

(125) P (A|B)− P (A) = (P (A|B)− P (A|Bc))P (Bc)

As suspected, this means that using Baysesian inference increases the probability of B if
P (A|B) > P (A|Bc). The ratio P (A|B)/P (A|Bc) is defined as the likelihood ratio.

Exercice 2.9. We prove Novikov’s identity, see (89). Assume

(126) P (x) =

√
detA

(2π)n
exp

{[
−1

2
xtAx

]}

with

(127) E(x) =
1

2

∑
xiAi,jxj and Ai,j = Aj,i

(1) Compute the derivative ∂E/∂xm and show

(128) xi =
∑

m

(A−1)i,m
∂E

∂xm
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(2) Show

(129) < xif(x) >=
∑

m

(A−1)i,m <
∂f

∂xm
>

(3) Demonstrate

(130) < xixj >= (A−1)i,j

Conclude.





CHAPTER 3

BROWNIAN MOTION

1. Introduction

According to Caldeira and Legett1, there are many systems whose dynamics does not con-
serve energy. A well-known example is the Brownian motion. The theoretical approach of this
problem is through the Langevin equation which reads as

(131) Mq̈ + γq̇ + V ′(q) = f(t)

where f(t) is a fluctuating force such that < f(t) >= 0 and < f(t)f(t′) >= 2ηkBTδ(t − t′).
The δ distribution means that the forces are correlated on a characteristic time 1/λ

(132) < f(t)f(t′) >=< f 2 > e−λ|t−t′|

with 1/λ much smaller than any macroscopic time (for example the time it takes for the particle
to stop moving).

The exchange of energy between the particle and the bath appears through two terms:
(1) The random force f(t), where the particle takes energy from the bath;
(2) The dissipative term, γq̇, where the particle gives energy back to the bath.

In summary, this equation is a good description if
(1) The mass M of the particle is much larger that the mass m of the molecules composing

the bath.
(2) One is interested at times much larger than the average time between two collisions.

The Langevin equation is a stochastic equation where
(1) −V ′(q) is a force due to a potential;
(2) f(t) is a random Gaussian variable (this force is due to the collisions with the "light"

particles. The heavy particle experience many collisions and f(t) is Gaussian because
its is the sum of many random variables);

(3) −γq̇ + f(t) describes the interaction with a thermostat.
There many systems with equivalent equations. For example, the dynamics of a charge stored
in the capacitor of a RLC circuit obeys

(133) LQ̈+RQ̇+
Q

C
= Vf (t)

where Vf (t) is a fluctuation voltage.

1www.scholarpedia.org

31
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2. The Langevin equation8;15

The Caldeira-Leggett model answers to the following question: How the dissipation and the
fluctuating forces arise when we couple a dissipative system with a thermal bath ? As usual,
there are two approaches to this problem: classical and quantum. For superconducting devices,
the quantum approach is necessary. Here, we concentrate on the classical approach. We will
see that dissipation arises because the movement of massive particle perturbs the distribution
of the light particles which is no more Maxwellian.

Let us assume that the force F (t) is a Gaussian white noise2. This means that the values of
F (t) at two different times are independent stochastic variables. Their correlations takes the
Dirac form:

(134) < F (t)F (t′) >= Γδ(t− t′)
The Langevin’s equation

(135) M
dV

dt
= −γV + F (t)

is linear and can be easily integrated:

(136) V (t) = V (0)e−γt/M +
1

M

∫ t

0

dt′ e−γ(t−t′)/MF (t′)

In the permanent regime where the first term is negligibly small, this expression reduces to

(137) V (t) =
1

M

∫ t

0

dt′ e−γ(t−t′)/MF (t′)

Since V (t) is a linear function of Gaussian variables, V (t) is also a Gaussian variable. It mean
value (after averaging over f(t)):

(138) < V (t) >= V (0)e−γt/M

tends rapidly to zero and its variance is:

(139) < V (t)2 > − < V (t) >2=
Γ

2Mγ

(
1− e−2γt/M

)

In the long time limit, the Gaussian distribution for the speed must tend to the equilibrium
distribution at temperature T

(140)
1

2
M < V (t)2 >→ 1

2
kBT

Therefore, we have

(141) Γ = 2γkBT

This relationship connecting the strength of the F (t)’s, see Eq.(134), to the dissipative part is
general. To be at equilibrium, the heavy particle which gets some energy from the bath via the
force F (t) must give it back to the bath via the dissipative term. Otherwise, its energy will
explode! An other view of the FD theoreme is to state that it expresses the balance between the
friction which drives the system to a "dead" state, and noise, which tends to keep the system
"alive".

On can also obtain the correlation function:

(142) < V (t)V (t′) >=< V (0)2 > exp{−γ|t− t′|/M}

2All Fourier components have the same variance.
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Integrating Eq. (136), we get for the displacement:

(143)
< (x(t)− x(0))2 > =<

[∫ t

0

dt′V (t′)

]2
>

=
2kBT

γ
t− 2MkBT

γ2
(
1− e−γt/M

)

In the large t limit (1s !), diffusion gives the leading term:

(144) < (x(t)− x(0))2 >= 2kBT

γ
t

where the diffusion constant is given by the Einstein relation 3:

(145) D =
2kBT

γ

The same calculation can be done for arbitrary force correlations which depend on the difference
t− t′:
(146) < F (t)F (t′) >=< F (0)F (t− t′) >
Repeating the same calculation, one finds:

(147) D =
1

2γ2

∫ ∞

−∞
< F (0)F (t′) > dt′

and

(148) D =

∫ ∞

0

du < V (t)V (t+ u) >

One may ask about the validity of some hypothesis made int the Langevin’s approach. The very
simple form of the effective force is certainly an approximation. Hydrodynamic correlations do
not decay exponentially as it is generally assumed but as a power law (t−d/2). The viscous force
can, however, be calculated in the small Reynolds number limit. For a sphere of size r, one
gets the classical result γ = 6πrν. Using this relation, one finds

(149) D =
kBT

6πrν

and this gives that a particle of size 1 µm explores a region of size 1µm in 1 s4.

Exercice 3.1. Consider again the Langevin equation

(150) m
dv

dt
= −γv + η(t)

with < η(t) >= 0 and η(t)η(t′) = Γδ(t− t′), Γ = 2γkBT .
(1) Show that the stationary solution of the Langevin equation (for sufficiently large t)

(151) v(t) =
1

m

∫ t

−∞
e−

γ
m
(t−t′)η(t′)dt′

(2) Assume that η(t) is a Gaussian variable. What is the distribution of v(t) ? Compute the
mean and the variance from the Langevin equation et give this probability distribution.

3In arbritary dimension d, the factor 2 is 2d.
4For water at room temperature, ν = 10−3kg.m−1.s−1 and kB = 1.410−23JK−1 so that a particle of radius

r = 10−9m has a diffusion constant D ≈ 100µm2/s.
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(3) From the Langevin equation, we know the correlations obey

(152) < v(t)v(t′) >=< v2 > e−
γ
m
|t−t′|

Show:

(153) < (x(t)− x(t′))2 >=<
[∫ t

t′
v(t′′)dt′′

]2
>=

2kBT

γ

(∣∣t− t′
∣∣− m

γ
e−

γ
m

∣∣t−t′
∣∣)

+ cst.

Deduce the characteristic property of the Brownian motion.

3. Numerical integration of stochastic differential equations

Let us consider the Brownian oscillator with the equation of motion (the usual convention
is to take η = γ/m)

(154)
ṗ = −kq − γ

m
p+ f(t)

or ṗ = −kq − ηp+ f(t)

To begin with we will consider a strongly overdamped oscillator, γ ≫
√
k/m. In this case on

can drop the inertial term ṗ = 0. As before, we take f(t) to be delta-correlated:
(155) < f(t)f(t′) >= 2ηδ(t− t′)

In this regime, we obtain the stochastic differential equation for the coordinate
(156) q̇ = Ωq + r(t)

where Ω = k/η and

(157) < r(t)r(t′) >=
2

η
δ(t− t′)

In the literature of stochastic differential equations, this equation is written in incremental
form
(158) dqt = −Ωqtdt+

√
2DdWt

where D = T/η and the notation qt is used to denote the value of the stochastic process at
time t. The term dWt is an increment of a stochastic process that is most simply described as
a succession of random increments, Wt1 , Wt2 , Wt3 , . . . Each increment dWti = Wti+1

−Wti is
sampled from a normal distribution with zero mean and variance ti+1 − ti. Such a process is
generally called a Wiener process. The properties of a Wiener process can be summarized in
the following relations:

(159) W0 = 0, < Wt >= 0, < (Wt −Ws)
2 >= |t− s|

Exercice 3.2. Consider a typical additive noise problem where

(160) dWt =

∫ t+dt

0

dt′ η(t′)

where < η(t)η(t′) >= δ(t− t′). Show

(161) < (dWt)
2 >= dt

meaning tyhat, as far as averages are concerned, dWt ∝
√
dt.

Stochastic integrals with respect to Wt can be defined as limits of Riemann sums

(162)
∫ t

0

qtdWt = lim
n→∞

∑

i=1,n

qt
(
Wti −Wti−1

)

where we have ignored all mathematical considerations.
A simple approximate integration scheme follows immediately from (158)

(163) qt+∆t = qt − Ωqt∆t+
√
2D∆tϕt
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Figure 1. Numerical Langevin simulation of a Brownian particle in a 300K
bath (water), see Eq. (163). Time is measured in ps and distances in Nm. The
red curve is obtained for a 10nm particle and the green curve corresponds to a
100nm particle. Note how the fluctations decrease with the size of the particle.

where ∆t appears in the
√
2S∆t and where ϕt is a Gaussian random variable with zero mean

and unit variance. The reason for this is that
√
∆t is the typical value of

(164)
∫ t+∆t

t

dWt ≃
√

∆W 2
t =
√
∆t

The former property will be proved later on. Given an algorithm to generate random numbers
with a Gaussian distribution (GSL library), we can write a simple program to find qn at a
sequence of time intervals tn = n∆t, see Fig. 1.

Here is the Python code to generate the sequence for the positions and the momenta for
the simple oscillator

(165)

dx

dt
= p

dp

dt
= −q − ηp+

√
2ηξ(t)

where ξ(t) is a random variable with variance 1. Arrays x[n] and p[n] are defined as numpy
arrays and n is the number of time intervals covered by the whole sequence. This program can
be used to compute the correlation functions as in Fig. 3 of the previous chapter.

def verlet_1st_order(x,p, n, dt):
x[0] = 0
p[0] = 0
eta = 0.5
sigma = np.sqrt(2. * eta * dt)
np.random.seed(2022) # use same sequence
alea = np.random.randn(n)
for i in range(n - 1):

x[i+1] = x[i] + p[i]*dt
p[i + 1] = p[i] + (F(x[i]) - eta * p[i]) * dt + sigma * alea[i]

where F[q] = -q.

Exercice 3.3. A new version of the fluctuation-dissipation theorem: The
fluctuation-dissipation theorem is based on the assumption that the response of a system in
thermodynamic equilibrium to a small applied force is the same as its response to a fluctuation.
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Suppose that x(t) is the response and that f(t) is the force

(166) x(t) =

∫ +∞

−∞
χ(τ)f(t− τ)dτ, χ(τ) = 0 for τ < 0

Define

(167) Sx(ω) =

∫ +∞

−∞
eiωτCx(τ)dτ, Cx(τ) =< x(t)x(t+ τ) >

The FD theorem states that

(168) Sx(ω) =
2kBT

ω
Im [χ̃(ω)]

(1) Use the lecture notes to compute Sx(ω) for the process studied in the Brownian motion
section (Ornstein-Uhlenbeck process).

(2) An other proof of the FD theorem.
(3) Show that:

(169) < x(0)2 >=

∫ +∞

−∞
Sx(ω)

dω

2π

(4) Recall thet χ(τ) is causal, meaning that χ(τ) = 0 for τ < 0. Il follows that χ̃(ω) is
analytic in the upper half-plane. This also means that χ̃⋆(ω) = χ̃(−ω) is analytic in
the lower complex half-plane. Show:

(170)
∫ +∞

−∞

Im [χ(ω)]

ω

dω

2π
=

1

2i

∫

C+

χ(ω)

ω

dω

2π
− 1

2i

∫

C−

χ(ω)

ω

dω

2π

and give C±.
(5) Apply residue theorem to show:

(171)
∫ +∞

−∞

Im [χ(ω)]

ω

dω

2π

1

2
χ̃(0)

(6) Deduce

(172) < x(0)2 >= kBT χ̃(0)

(7) Show that for an Ornstein-Uhlenbeck process

(173)
1

2
κ < x(02 >=

1

2
kBT

4. Detailed balance and the Langevin equation

In the case of small particles (i.e. the low Reynolds number limit), one neglects the inertial
term in the Langevin equation. This means that we assume fast relaxation for the speed This
leads to

(174) γ
dx

dt
= F (x) + η(t)

where we assume that the force is the derivative of a potential. This limit corresponds to a
so-called Ornstein-Uhlenbeck process and F (x) = −dU/dx as usual. Here we show that the
dynamics obeys detailed balance, meaning (the symbol P (x′ ← x) is the probability to jump
to x′ starting from x)

(175)
P (x′ ← x)

P (x← x′)
= exp

{[
−(x− x′)

kBT

dU

dx

]}

where the the factor in the exponential is the work done by the force when the particle jump
for x to x′. If the ratio of probability obeys this equality, the dynamics is said to obey detailed
balance. Detailed balance is a trademark of equilibrium systems and dynamics which does not
obey detailed balance are characteristic of out-of-equilibrium systems.
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For a small time interval ∆t.

(176) x′ ≡ x(t+∆t) = x+
F (x)

γ
+B

where B is a Gaussian number

(177) B =
1

γ

∫ t+δt

t

η(t′)dt′ < B >= 0 < B2 >=
Γ

γ2
∆t

since

(178) < B2 >=
1

γ2

∫∫ t+∆t

t

dtdt′ < η(t)η(t′) >=
Γ

γ2
∆t

Note that (176) gives an Euler integration scheme to integrate a stochastic differential equation
and that B is proportional to

√
∆t and not to ∆t as one might have thought.

From (176), we deduce B as a function of x′−x and, since we know that B is Gaussian, we
deduce that the probability to go from x to s′ has the form

(179) P (x′ ← x) = C exp

{[
−((x′ − x)γ − F (x)∆t)2

2Γ∆t

]}

We have also

(180) P (x← x′) = C exp

{[
−((x− x′)γ − F (x)∆t)2

2Γ∆t

]}

which means

(181)
P (x′ ← x)

P (x← x′)
= exp

{[
−2(x′ − x)F (x)γ

Γ

]}

If Γ = 2kBTγ and if the force is the derivative of a potential

(182) (x′ − x)F (x) ≈
∫ x′

x

F (x)dx = U(x)− U(x′)

then the Langevin equation describes an equilibrium system, since the detailed balanced prin-
ciple is verified.

5. Diffusion equation and random walk: The Schmoluchowski equation

What is a random walk ? Random walks are paths that take successive steps in random
direction. They arise in physics as partial sums of fluctuating quantities, as trajectories of
particles undergoing repeated collisions, or as shape for long and linked polymers.

We start by deriving the diffusion equation by taking the continuum limit of an ensemble
of random walks. Consider a random walk where at each time step ∆t the particle position
changes by a step l (1d)

(183) x(t+∆t) = x(t) + l(t)

Let the probability distribution of each step be ρ(l). We will assume that the first few moments
of ρ(l) are:

∫
dl ρ(l) = 1

∫
dl lρ(l) = 0(184)

∫
dl l2ρ(l) = a2(185)
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What is the probability P (x, t+∆t) given the probability distribution P (x′, t)? To go from x
to x′ the step has to be x′−x′−. The probability to be at x′ at t is P (x′, t) and the probability
to have a given step is ρ(x− x′). We have:

P (x, t+∆t) =

∫
dx′ ρ(x− x′)P (x′, t)

=

∫
dz P (x− z, t)ρ(z)

(186)

If P (x, t) does not vary too much on the length scale of a typical step, we may Taylor expand

P (x− z, t) = P (x, t)− zdP/dx+ z2/2 d2P/dx2

in the integral. We have:

(187) P (x, t+∆t) = P (x, t) +
1

2

a2

∆t

∂2P

∂x2

So that we recover the diffusion equation:

(188)
∂P

∂t
= D

∂2P

∂x2
D =

1

2

a2

∆t
with d = 1

An interesting question is to know what happens when the particle is subjected to a drift.
This drift is due to an external force F which biases the random walk as

(189) x(t+∆t) = x(t) +
1

γ
F∆t+ l(t)

where γ is a mobility.
Repeating the previous steps, we get:

(190)
∂P

∂t
= D

∂2P

∂x2
− 1

γ
F
∂P

∂x

The second term proportional to the first derivative is the drift. We can rewrite this equation
in the most general form (this our first example of the Schmoluchowsky equation):

(191)
∂P

∂t
= −∂J

∂x

Where the total current is the sum of the diffusion and of the drift terms.

(192) J =
1

γ
F (x, t)P (x, t)−D∂P

∂x

An interesting consequence of this definition is that the distribution P (x, t) can can be derived
under very general conditions.

At equilibrium, the net current is zero. Assuming that the force is the derivative of a
potential U(x), the stationary condition J = 0 leads to

(193)
1

γ

dU

dx
P (x) +D

∂P

∂x
= 0

with solution

(194) P (x) = exp

{[
−D
γ
U(x)

]}

where the temperature T is defined through an equivalent relation of (145)

(195) kBT =
γ

D

Exercice 3.4. Sometimes it is more interesting to work with a discretized space, i.e. a
square lattice, with unit vector êµ, µ = 1, . . . , d. For a square lattice, each site has 2d nearest
neighbors.
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Figure 2. One realization of a random walk in d = 2. Note that the trajectory
does not appear to cover the plane uniformly for a finite number of steps. The
walker seems to make long excursions followed by short inspections in localized
neighborhoods around certain points.

(1) A r.w. can jump from one lattice site to a neighboring one with a rate γ per unit time.
What are the the events which can take place during a time interval dt and what are
the associated probabilities ?

(2) Show that the discretized version of diffusion equation is

(196)
∂P (x, t)

∂t
= γ

∑

µ=1,d

[P (x+ aêµ, t) + P (x− aêµ, t)− 2P (x, t)]

as it can be seen by Taylor expanding to second order in the lattice spacing a Eq.
(196). This equation being an equation for a probability is called a Master equation.

6. Return statistics : Transience and recurrence

In arbitrary dimensions, the solution of the diffusion equation is

(197) P (x, t) = (4πDt)−d/2 e−x2/4Dt

with initial conditions:

(198) P (x, 0) = δ(x = 0) = δ(x1 = 0)δ(x2 = 0) . . . δ(xd = 0)

The variance of x at time t is

(199) V ar [x(t)] =

∫
ddx x2 P (x, t) = −∇kP̃ (k, t)|k=0 = 2dDt

where d is the space dimension. Thus the root mean square distance covered by the particle
from the initial position is

√
2Ddt.

Suppose that a random walk begins at the origin of an infinite lattice at t = 0. Does the
random walker eventually return to its starting point? Remarkably, the answer depends only
the spatial dimension d.

If the random walker jumps every second, the number of sites visited over a time interval
t is simply t although a given site may be visited more than once. The density of visited sites
is then t/(2dDt)d/2 ∝ t1−d/2 and thus decreases with t when d > 2. Some sites may never be
visited (transience). For d = 1, this density increases, which means that the walker return to
any site with probability 1. The case d = 2 is marginal. The exact result is a logarithm and
the density is still infinite when t→∞. In d = 2, the probability to visit any given site is still
1 (after an infinite number of steps). This can be summarized as follows: In d = 2, the random
walk is said to be recurrent. For d = 3 and above, the random walk is transient.

Exercice 3.5. Knowing that the r.w. started at the origin at time t = 0, let P (r, t) be the
probability for the r.w. to be at point r at time t. Let F (r, t) be the probability to visit the
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site r for the first time at time t. Clearly, F (r, t) and P (r, t) are different, since the r.w. can
make loops and return to any point which has been visited in the past. Both probabilities are
related:

(200) P (r, t) =

∫ t

0

F (r, t′)P (0, t− t′)dt′ + δr,0δ(0)

where δr,0 = 1 if r = 0.
(1) Discuss this equation;
(2) Recall that the Laplace transform of any function g(t) is defined by

(201) g̃(s) =

∫ ∞

0

g(t)e−stdt

Determine F̃ (r, s) as a function of P̃ (r, s) (recall that the Laplace transform of a
convolution is the product of the Laplace transforms);

(3) What is the probability of an eventual return to the origin (meaning the probability
to return at some time) as a function of F̃ (s = 0, t) ?

(4) Recall this rule for the Laplace transform:

(202) t−µ with µ < 1↔ Γ(1− µ)sµ−1

and Γ(1/2) =
√
π. Compute F̃ (s = 0, t) for d = 1 and conclude.

(5) We are interested in the mean return time to the origin. What is the Laplace transform
of tF (r = 0, t) ? Conclude.

7. An example of first passage probability: The gambler ruin problem

Exercice 3.6. Consider a r.w. on a finite interval of length N . The two boundary sites are
absorbing, i.e. the random walker immediately disappears upon reaching these sites. Suppose
that the starting position of the r.w. is n, with 0 ≤ n ≤ N . What is Fn, the probability that
the r.w. first reaches the boundary at site N , i.e. without touching site number 0, first? We
will write a simple recursion relation for Fn.

(1) What is F0 and FN ?
(2) With probability 1/2, the walk steps to site n−1 at which the probability to escape at

site n− 1 is Fn−1. Similarly, the walk steps at site n+1 with probability 1/2. Explicit
the recurrence relation :

(203) Fn = F (Fn−1, Fn+1)

(3) Show Fn = n/N .

This exit probability also represents the solution of the gambler ruin problem. In a casino,
you continue to bet as long as you have money. Let n represent your wealth which that changes
by a small amount ±1 with equal probability by a single beat with the casino. You lose if your
wealth hits zero and you break the casino is your wealth hits N (the total sum of your wealth
and the one of the casino). This calculation shows that the probability to break the casino is
n/N . Conclusion: Owning the casino is a good idea, gambling in the casino is a bad idea.

Exercice 3.7. We derive a simple relation between the diffusion constant and the integral
of the equilibrium time-correlation function of the velocity of a Brownian particle. This is a
particular (and very illustrative) example of the Green-Kubo formulae relating transport coef-
ficients and equilibrium time-correlation functions, a main result of nonequilibrium statistical
mechanics.

Let us consider the net displacement of a Brownien particle position during the time interval
0 and t

(204) x(t) =

∫ t

0

v(s)ds
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(1) What does it mean to do an ensemble average ?
(2) Show

(205)
d

dt
< x2(t) >= 2

∫ t

0

ds < v(t) · v(s) >

(3) The velocity correlation function generally decays to zero in a short time. What is the
order of magnitude of the characteristic time scale of the decay ?

(4) Let us consider the number of n(x, t) of particules at distance x of the origin. This
density obeys the diffusion equation

(206)
∂n(x, t)

∂t
= D∇2n(x, t)

Solve this equation using the Fourier transform of the particle density

(207) ñ(k, t) =

∫

Rd

eik·xn(x, t)dx

together with the initial condition

(208) n(x, 0) = Nδ(x)

(5) To derived the simplest example of the Green-Kubo relation of a transport coefficient
to a time correlation function, show (d = 3)

(209) D =
1

3

∫ ∞

0

du < v(u) · v(0) >

8. Path integral approaches to Brownien motion

Let us rewrite the Langevin equation in the overdamped limit as

(210) ξ(t) = γ
dx

dt
+
dV

dx

where V (x) is the (non-random) potential. We know that the random forces ξ(t) come from a
Gaussian distribution

(211) P [ξ(t)] ∝ exp

{
− 1

4γkBT

∫ t1

t0

dt ξ2(t)

}

so that it is tempting to say that the probability of observing the trajectory x(t) is given by

(212) P [x(t)] ≃ exp

{
− 1

4γkBT

∫ t1

t0

dt

[
γ
dx

dt
+
dV

dx

]2}

As said by W. Bialek4, this is almost right, but we miss the Jacobian for the transformation
ξ(t) → x(t). This Jacobian is temperature independent so that Eq. (688 ) has the form
exp{−E/T} and and the exponential temperature dependent term will dominate in the low T
regime.

9. The Caldeira-Leggett model

Consider a brownian particle of mass M interacting with particles of mass m. We will
assume that M ≫ m. Because the heavy particle has a much larger mass than the light
particles, there are two very different time scales in the problem.

(1) The first effect is viscosity. The heaviest particle will be submitted to a friction because
of collisions. If the heaviest particle has a velocity v, the transfer of momentum with
the particles of the bath will not be the same if the light particle are located at the
front or at the back of M . It results a force. To first order the force is proportional to
v with a minus sign :

(213) F = −αv



42 CHAPTER 3. BROWNIAN MOTION

with α being a friction coefficient. The ratio γ = α/M = 1/τ defines the first time
scale. This time scale is the time that the particle takes to stop when initially animated
with a velocity v. This time scale is, therefore, macroscopic (1s for a typical bacteria).

(2) There is also a microscopic time scale entering into the problem. Due to the random
character of the collisions between the bath particles, there are strong fluctuations in
the force experienced by the M particle. These forces fluctuate on a typical time scale
of the order of τc = 10−12s.

Because τc ≪ τ , the slow modes correspond to the heaviest particle motion. The fast modes
are the dynamical variables of the bath m particles. This very difference in time scales leads
to the phenomenon of decoherence. We will study the 1d case.

A way to represent a thermostat is to imagine that it consists of a very large number of
N degrees of freedom and to assume that the total system (thermostat + system) possesses a
Hamiltonian dynamics. If N is finite, the Poincaré theorem tells us that the system must return
arbitrarily close to its initial state if we wait long enough. To obtain an irreversible behaviour
at long times, it is therefore necessary to take first the limit of an infinite system and then the
limit of long times (and these two limits do not necessarily commute):

(214) lim
t→∞

[
lim

N→∞
(. . .)

]

Taking into account both types of particles, the total Hamiltonian reads as:

(215) H =
P 2

2M
+
∑

i

p2i
2m

+
1

2

∑

i

miω
2
i (X − xi)2

where the first two terms are the kinetic energies (bath particles are indexed by 1 ≤ i ≤ N).
The last term couples the heavy particle of position X to all particles in the bath via an effective
spring constant. For clarity, let us define

(216) κ =
∑

i

mω2
i

We can rewrite the Hamiltonian as a sum of three terms:

H =

[
P 2

2M
+

1

2
κX2

]
+

[∑

i

p2i
2m

+
1

2
miω

2
i x

2
i

]
−
[
X

(∑

i

miω
2
i xi

)]
(217)

= H1 +HR + V(218)

The last term describes the interaction between the M particle and the bath. It will be useful
to define anew symbol:

(219) F0(t) =
∑

i

miω
2
i xi(t)

with the dimension of a force.
With these notations, the equation of motion for the heaviest particle takes the simple form:

(220) Ṗ = −κX + F0(t)

where F0(t) describe the influence of the bath on the particle.
We can also write the equation of motion of the bath particles. There are N such equations.

If we neglect the influence of the heaviest particle, the Hamiltonian for the bath is a sum of
harmonic oscillators. We can compute F (t) as a function of the initial conditions xi(0), pi(0):

(221) F0(t) =
∑

i

[
miω

2
i xi(0) cosωit+ ωipi(0) sinωit

]
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The next step is to take into account the back action of the heaviest particle and to calculate
how F0(t) is modified as F (t) = F0(t)+δF (t). Since F (t) is a dynamical quantity, we can apply
the Kubo theory of the preceding chapter (cf. 540) )

(222) χAB(t) = −β
d

dt
< B(0)δA(t) >

to get:

(223) δF (t) =

∫ t

0

χ(t− t′)X(t′)dt′ = −β
∫ t

0

Ċ(t− t′)X(t′)dt′

where:

(224) C(t) =< F0(0)F0(t) >

with F0(t) being the unperturbed force field of eq. (219)5.
Changing variable t′ → t′ − t and integrating by part, we finally obtain:

(226) Ṗ = −κX(t) + βC(0)X(t)− βC(t)X(0) + F (t)− β
∫ t

0

C(t′)Ẋ(t− t′)dt′

Although (226) looks intimidating, it can be simplified further since the first three terms vanish
! Instead of (226), we get:

(227) Ṗ = +F (t)− β
∫ t

0

C(t′)Ẋ(t− t′)dt′

where F (t) being a sum of random variables is distributed according to a normal distribution
(here, we assume that that we have an infinite set of small particles, so that we use the central
limite theorem).

It is easy to compute C(t). From Kubo formula (616), C(t) is given by the equilibrium
average (see Eq. (221)) :

(228) C(t) =<
∑

i,i′

(miω
2
i xi(0) cosωit+ ωipi(0) sinωit)mi′ω

2
i′xi′(0) >

But xi(0) and pi(0) are distributed according to the Maxwell distribution, since the i’s are un-
coupled particles (remember that averages in the Kubo formula correspond to the unperturbed
hamiltonian) :

(229) ρ(xi(0)) ∝ exp
{
[−miω

2
i x

2
i (0)/2kBT ]

}
ρ(pi(0)) ∝ exp

{
[−p2i (0)/2mikBT ]

}

We get:

(230) miω
2
i < xi(0)xi′(0) >= kBTδi,i′ < xi(0)pi′(0) >= 0

so that

(231) βC(0) = κ

and the first two terms in (226) cancel out ! Note that by passing from discrete sums to integrals
we assume an infinite set of degrees of freedom, N →∞.

When t≫ 2π/ωi, i.e. for time much larger than the characteristic times of the fast modes,
the cos and sin in eq. (228) average to zero. Here we approximate discrete sums by integrals
and this where we assume N → ∞. As foreseen, this means that the memory of the initial
conditions in eq. (226) is lost. For this reason, we call C(t) a memory kernel.

5For each particle i, miω
2
iX(t) plays the role of A(t). We look for

(225) δF (t) =
∑

i

mω2
i δxi(t)
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The short term memory of C(t) allows us to simplify further (226).

−β
∫ t

0

C(t′)Ẋ(t− t′)dt′ = −βẊ(t)

∫ ∞

0

dt′C(t′)dt′(232)

= −βẊ(t)

∫ +∞

0

dt′ < F (t)F (0) >(233)

Finally, we get a viscous force

(234) Fvisc = −MγẊ(t) γ =
β

M

∫ +∞

0

dt′ < F (t)F (0) >

with the Langevin equation of motion

(235) M
dV

dt
= −γV + F (t)

It is interesting to note that the viscous coefficient γ in eq. (234) is proportional to the
fluctuation of the random force. This is the fluctuation-dissipation theorem where the back
action of the heavy particle on the bath particles gives the dissipative, or viscous, term.

Eq.(234) is a single first order ordinary stochastic equation. Such a process is defined in
the literature as an Ornstein-Uhlenbeck process20 and is valid in the low Reynolds limit where
inertial terms can be neglected.



CHAPTER 4

THE FOKKER-PLANCK EQUATION

1. Basic derivation

Suppose x(t) a random variable distributed according to P (x, t). This means that at each
time t, the value of x is a random variable. By definition, x(t) is a stochastic process and
averaging <>means averaging over all realizations of the stochastic process x(t). What is the
probability of the whole sequence P (xn, tn;xn−1, tn−1; . . . ;x0, t0) ?

We define the quantity

(236) δx(t) = x(t+ δt)− x(t)
and we assume that the jumps δx(t) are distributed with a probability distribution such that:

(237) < δx(t) >= F1(x(t))δt < [δx(t)]2 >= F2(x(t))δt

with < [δx]n >= o(δt) for n > 21. Not all processes obey this scaling property, but a large class
does: this class is that of diffusive processes. When n = 1, the term is the drift. When n = 2,
we will refer as the diffusion term (For pure diffusion, F1(x) = 0, F2(x) = 2D in 1d).

Exercice 4.1. Use :

(238)
∫ +∞

−∞
dxxne−ax2

=
1

a(n+1)/2

(n− 1)!

2n/2
√
π if n is even, and 0 otherwise

to show that Brownian motion is a diffusive process (hence the definition !).

Now consider the conditional probability density

(239) P (x, t |x0, t0)
defined as the probability distribution for x(t) given that x(t0) = x0. The question we ask in
this chapter is how we can derive an equation for P .

The conditional probability distribution density satisfies the composition rule (see Fig. 1)

(240) P (x2, t2 |x0, t0) =
∫ +∞

−∞
dx1 P (x2, t2 |x1, t1)P (x1, t1 |x0, t0)

for any value of t1. This also known as the Chapman-Kolmogorov equation and has a simple
intuitive meaning. For the particle to be at x = x2, it has to be somewhere else at intermediate
time t = t1. We sum over all possibilities for x1 with t0 < t1 < t2. What is not trivial is that
the conditional probability from t1 to t2 is independent of t0 (no memory).

1(δt2) means much smaller than δt2. For example δt3.

45
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Figure 2.2: Interpretive sketch of the mathematics behind the Chapman-Kolmogorov equation.

and we assume
〈
δx(t)

〉
= F1

(
x(t)

)
δt (2.63)

〈[
δx(t)

]2〉
= F2

(
x(t)

)
δt (2.64)

but
〈[
δx(t)

]n〉
= O

(
(δt)2

)
for n > 2. The n = 1 term is due to drift and the n = 2 term is due to diffusion. Now

consider the conditional probability density, P (x, t | x0, t0), defined to be the probability distribution for x ≡ x(t)
given that x(t0) = x0. The conditional probability density satisfies the composition rule,

P (x2, t2 | x0, t0) =

∞∫

−∞

dx1 P (x2, t2 | x1, t1)P (x1, t1 | x0, t0) , (2.65)

for any value of t1. This is also known as the Chapman-Kolmogorov equation. In words, what it says is that the
probability density for a particle being at x2 at time t2, given that it was at x0 at time t0, is given by the product of
the probability density for being at x2 at time t2 given that it was at x1 at t1, multiplied by that for being at x1 at t1
given it was at x0 at t0, integrated over x1. This should be intuitively obvious, since if we pick any time t1 ∈ [t0, t2],
then the particle had to be somewhere at that time. What is perhaps not obvious is why the conditional probability
P (x2, t2 | x1, t1) does not also depend on (x0, t0). This is so if the system is described by a Markov process, about
we shall have more to say below in §2.6.1. At any rate, a picture is worth a thousand words: see Fig. 2.2.

Proceeding, we may write

P (x, t + δt | x0, t0) =

∞∫

−∞

dx′ P (x, t + δt | x′, t)P (x′, t | x0, t0) . (2.66)

Now

P (x, t + δt | x′, t) =
〈
δ
(
x − δx(t) − x′)〉

=

{
1 +

〈
δx(t)

〉 d

dx′ + 1
2

〈[
δx(t)

]2〉 d2

dx′2 + . . .

}
δ(x − x′) (2.67)

= δ(x − x′) + F1(x
′)

d δ(x − x′)
dx′ δt + 1

2F2(x
′)

d2δ(x − x′)

dx′2 δt + O
(
(δt)2

)
,

Figure 1. Figure illustrating the Chapman-Kolmogorov equation. We assume
that P (x2, t2|x1, t1) does not depend on x0. This is so if the process is a Markov
process (see later).

The Chapman-Kolmogorov equation is a non-linear functional equation governing all con-
ditional probability densities of a Markov process. A Markov process is defined by the fact that
all conditional probability densities enjoy the property

(241) f(xn, tn|x1, . . . , xn−1; t1, . . . , tn) = f(xn, tn|xn−1; tn−1)

That is, the conditional probability density at tn, given the value at xn−1 at tn−1, is not affected
by the values at "earlier" times. In this sense, the process is without memory. No general
solution of this equation is known. To make progress, we will start from this equation and,
under some "general" assumptions, we will derive the Fokker-Planck equation and the Master
equation.

Proceeding, we write

(242) P (x, t+ δt |x0, t0) =
∫ +∞

−∞
dx′ P (x, t+ δt |x′, t)P (x′, t |x0, t0)

But given a step size δx(t), the probability for x is simply a delta function. Formally, we
can expand the delta function as

P (x, t+ δt |x′, t) = < δ(x− δx(t)− x′) >(243)

=

[
1+ < δx(t) >

d

dx′
+

1

2
< [δx]2 >

d2

dx′2
+ . . .

]
δ(x− x′)(244)

since the probability to get at x at time t + δt starting from x′ at t is the probability to have
made a jump δx = x− x′ during δt. Averages are taken over the jump distribution. To check
this expansion, we can use any well-behaved function f(x). After integrating by parts, we get

(245)
∫
dxP (x, t+ δt |x′, t)f(x) = f(x′)− < δx(t) > f ′(x′) +

1

2
< δx(t)2 > f ′′(x′) + . . .

Such an expansion is known as a moment expansion or the Kramer-Moyal expansion.
Now we take equation (243), plug it into (242), integrate by parts and divide by δt. Finally,

we take the limit δt→ 0 and the result is the Fokker-Planck equation:

(246)
∂P

∂t
= − ∂

∂x
[F1P (x, t)] +

1

2

∂2

∂x2
[F2(x)P (x, t)]

where higher moments than 2 do not contribute because we have assumed δx(t)n = o(δt) for
n > 2.

Exercice 4.2. For random diffusion

(247) F1 =
⟨∆x⟩
∆t

= 0 F2 =
⟨(∆x)2⟩

∆t
= constant

Check that the Fokker-Planck equation is nothing that the diffusion equation.
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Exercice 4.3. We consider a particle in a force field F (x)

(248)
d

dt
v(t) =

1

m
F (t)− γv(t)

We assume that friction is so strong that we can neglect inertial terms. We also add a white
noise f(t), so the Langevin equation becomes

(249)
dx

dt
=
F (x(t)

mγ
+ f(t)

Compute the first moment

(250) < δx(t) >= F1(x(t))δt

and show that one recovers the Schmoluchovski equation

2. The Fokker-Planck equation and the Langevin equation

Since the Langevin equation describes a stochastic process, it is better to think in terms of
probability. As usual, we neglect the inertial term

(251) γ
dq

dt
= F (q) + η(t)

We use a discrete time interval ∆t and write

(252) q(t+∆t) = q +
F (q)

γ
∆t+B + o(∆t)

where

(253) < B >= 0 and < B2 >= Γ∆t/γ2

Then for any function H(q) (be careful, B =< B2 >= O(∆t), so we go to second order)
(254)

< H >t+∆t= < H(q(t+∆t)) >

= < H(q +
F (q)

γ
∆t+B) + o(∆t) >t

= < H(q) >t +
∆t

γ
< F (q)H ′(q) >t + < BH ′(q) >t +

1

2
< B2H ′′(q) >t +o(δt)

= < H(q) >t +
∆t

γ
< F (q)H ′(q) >t +

Γ∆t

2γ2
< H ′′(q) >t +o(δt)

It suffices now to integrate by parts

(255) < F (q)H ′(q) >t=

∫
dqPt(q)F (q)H

′(q) = −
∫
dq (Pt(q)F (q))

′H(q)

to get the Fokker-Panck equation

(256)
∂Pt(q)

∂t
= −1

γ

∂

∂q
[F (q)Pt(q)] +

Γ

2γ2
∂2

∂q2
Pt(q)

Here, We should derive the Fokker-Planck equation for the probability P (x, v) in phase
space (x, v) with a potential U(x) which reads as follows

(257)
∂P

∂t
= − ∂

∂x
[vP ] +

∂

∂v

[
γv +∇U

m
P

]
+

Γ

m2

∂2P

∂v2

which can be found in21? . In the limit of large friction, this equation reduces to the simpler
one.
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Exercice 4.4. We have considered so far a free Brownian particle. What happens if the
particle is subjected to an external force F ? If this force derives from a potential ϕ(x), the
current is the sum of the usual drift term and a mobility term

(258) J = −µP (x)∇ϕ−D∇P

where the mobility µ is yet undetermined.
(1) Conservation of probability requires

(259)
∂P

∂t
= −∇ · J

What is the equation for P ?
(2) Assume stationarity. What is the solution ?
(3) What happens if Einstein’s relation holds ?

3. The Fokker-Planck equation and the diffusion equation

Let us apply the Fokker-Planck equation to the diffusion problem. For the earlier results,
we have:

(260) F1(x) = F/γM F2(x) = 2D

where F is the external force (which derives from a potential). Then, the Fokker Planck
equation is

(261)
∂P

∂t
= −u∂P

∂x
+D

∂2P

∂x2

where u is the velocity. We can solve this equation by Galilean transformation (do it ! y = x−ut)
or by Fourier transforming :

(262) P (x, t) =

∫
dq̃eiqxP̃ (q, t) P̃ (q, t) =

∫
dxe−iqxP (x, t) q̃ = q/(2π)

We get:

(263)
∂

∂t
P̃ (q, t) = −(Dq2 + iqu)P̃ (q, t)

with solution

(264) P̃ (q, t) = e−Dq2te−iqutP̃ (q, 0)

Going back to the real space

(265) P (x, t) =

∫
dq̃e−Dq2te−iqut

∫
dx′e−iqx′

P (x′, 0) =

∫
dx′K(x− x′, t)P (x′, 0)

where

(266) K(x, t) =
1

[4πDt]d/2
e−(x−x′)2/4Dt

is the diffusion kernel (d = 1). The diffusion kernel solves the equation of motion for a delta
initial condition. Eq. (265) gives the solution for arbitrary initial conditions with the following
properties:

• The center of the distribution moves with velocity u due to the force. This is the drift.
• The distribution broadens with time due to diffusion.
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4. Boundary conditions for the Fokker-Planck equation

We consider the diffusion problem. The Fokker-Planck equation is an equation for the full
probability P (x, t). It is sometimes useful to interpret P (x, t) as the concentration c(x, t) itself
(since P is a normalized histogram, i.e. the number of molecules at position x divided by the
total number of molecules). So, we can often make the change of variable

(267) P (x, t)↔ c(x, t)

to get more physical insights, since c(x, t) has the meaning of a probability.
Eq. (261) is, however, a partial differential equation. For this kind of problem, it makes

no sense to find a solution without specifying the boundary conditions. Assume that we are
interested in solving (261) on a domain Ω = [0, L]d. Popular boundary conditions are as follows:

(1) One must specify the initial conditions at t = 0 over the domain of interest.
(2) One must specify "something" (the value of P or the current) at the boundary of this

domain.
Changing one of these conditions completely alters the solution and the physical consequences
! Here are some of the most popular boundary conditions for stationary solutions:

(1) We fix the values of P (x) on the boundaries of Ω (i.e. P (0) = P (L) are given). If
P (x ∈ δΩ) = 0, the boundaries are absorbing. All the walkers crossing the boundaries
disappear (think of a random walk on a roof: if you hit the border, you get out of the
system !).

(2) We fix the outward current dP/dn̂2. If dP/dn̂ = 0, there is no current. The boundaries
are perfectly reflecting walls.

(3) We can also use a mixed boundary condition where the current is proportional to the
probability (or the concentration):

(268) konP (x) = −DdP/dn̂ ,x ∈ δΩ

where kon is a constant. This type of boundary condition is called a radiative boundary
condition and is useful to define the rates of chemical reactions (an example is given
below for the trap problem and this boundary condition will be used later for diffusion
controlled chemical reactions).

Remark. It is common to work in different coordinate systems. In polar coordinates, we
have:

(269)

∆f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2

∂θ2
2D

∆f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)

+
1

r2
∂2

∂ϕ2
3D

Example 4.1. The physical process of a trapping reaction is simple. Whenever a diffusing
particle hits a trap, it is permanently trapped with some probability kon. We assume that there
is an infinite domain containing an initially uniform distribution of noninteracting diffusing
particles which may react with a fixed trap of size a. The evolution of the concentration c(x, t)
is given by the diffusion equation

(270)
∂c

∂t
= D∆c

2n̂ is the outward normal at the boundary of Ω and dP/dn̂ = n̂ · ∇P .
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Figure 2. An absorbing sphere for a solute diffusing in the bulk. The concen-
tration of solute decreases in the vicinity of the sphere. This depletion zone is
characteristic of problem controlled by diffusion.

subject to the initial condition c(x, 0) = c0 The boundary conditions are c(∞, t) = c0 and, at
the trap surface

(271) D
∂c

∂r

∣∣∣∣
r=a

= konc(r = a, t)

The latter condition is a radiative boundary condition. It says that the outgoing flux of particles
leaving the system (i.e. particles which are trapped and thus leave the system) is proportional
to the concentration of particles at the boundary of the trap. The chemical constant kon is
therefore the analog of a chemical rate. If kon = ∞ the trap is perfect, otherwise the trap is
imperfect.

Let us concentrate on 2D. A steady-state solution of this problem in cylindrical coordinate
(r, θ) must have the form,

(272) css(r, θ) = (A+B ln r) f(θ)

Since the boundary condition at in infinity demands that B = 0, it is impossible to obtain
a steady-state solution for any infinite trap (with kon > 0). As a consequence, all particles
are progressively trapped and limt→∞ c(x, t) = 0. In 3D a steady-state solution is possible.
The absence of steady-state solutions in 2 dimensions is due to the fact that random walks are
recurrent in 2D but transient in 3D.

Exercice 4.5. Consider a perfect adsorbing sphere of radius a3. A molecule is initially
located at a distance r0 of the center of the sphere. In this problem, we will ask this simple
question: What is the probability p(a, r0) for the molecule to be adsorbed ? It turns out that
the answer is quite simple. It is

(273) p(a, r0) =
a

r0

and not as a2/r2 as if the movement where ballistic (in that case, the result would be pro-
portional to the cross-section). To answer to this problem, consider a sphere of radius r0 > a
where the concentration is maintained at c = cm. Assume that there is a second sphere of
radius b > r0 where the concentration is maintained at c = 0 (adsorbing conditions).

(1) Solve the stationary diffusion equation in the two regions with the appropriate bound-
ary conditions. To solve this equation, pose u(r, t) = rc(r, t) in the diffusion equation
where r is the radial coordinate. What is the equation for u(r, t) ?

(2) Compute the current at r = a and r = b.
(3) Compute the total flux of particles through the spheres a and b.
(4) What is the probability that a random walk starting at r0 bumps into a ? Same

question for b.
(5) Let b→∞ and recover (273).
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Figure 3. diffusion-limited reaction rate. (a) Diffusing molecules B in a neigh-
borhood of a fixed target molecule A with reaction radius a. In (b) Quasi-static
approximation for calculating time-dependent reaction rate.

Exercice 4.6. Consider the situation schematized in Fig. 1. Assume that the concentration
at r →∞ is maintained at c03. The sphere of radius a is covered by sensors with surface density
σ. The rate of uptake of solute molecules per unit surface is given by

(274)
dn

dt
= σkonc(a)

This equation defines kon as the usual kinetic rate in chemical reaction.
(1) If M is the total number of receptors, give M as a function of σ.
(2) Show that solution of the 3-d diffusion equation with symmetry of revolution is given

by c(r) = β + α/r.
(3) Using mass conservation, show

(275) −4πr2J(r) =Mkonc(a)

(4) Use the last equation to compute the concentration as

(276) c(r)− c(a) = Mkonc(a)

4πD

(
1

a
− 1

r

)

(5) Show

(277) c(a) =
c0

1 +Mkon/(4πDa)

(6) Plot c(r).
(7) Deduce that the net adsorption rate is

(278) k =
4πDaMkon

4πDa+Mkon

(8) Investigate the two limits of a perfect adsorber, kon → infty, and of a bad adsorber,
kon → 0. Conclude that the net adsorption rate can be written as

(279)
1

k
=

1

kon
+

1

kD

where 1/kD is a diffusion time which depends on the diffusion constant. Thus, our
boundary condition together with the diffusion equations set two characteristic time
scales. This is in contrast with the usual condition of perfect adsorption with only one
time scale.

Exercice 4.7. We consider the bimolecular reaction

(280) A+ B −−→ AB

3The concentration is often expressed in Molars M with 1 Molars = 1000 moles /m3
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for which the concentrations usually evolve according to the law of mass action

(281)
d[AB]

dt
= k[A][B]

Usually, the on rate k is independent of t. This will not be the case here. We assume that an
A molecule and a B molecule react immediately to form a complex AB when they encounter
each other within a reaction radius, so that the speed of reaction is limited by their encounter
rate via diffusion. We consider the case of a spherical target A of radius a (d = 3). One way
to formulate the problem is an idealized first passage process, in which the A molecule is fixed
while the B molecule diffuse around. Let c(r, t) be the concentration of B molecules.

The initial conditions and the boundary conditions are as follows
(i) c(r, t = 0) = c0 for r > a.
(ii) c(r = a, t) = 0, since there is an uptake of B molecules at r = a.
(iii) c(r → ∞) = c0 for a continuous supply of B molecules at infinity to counterbalance the

rate of uptake of B at r = a.
(1) Define u(r, t) = ru(r, t). What is the equivalent-diffusion equation for u(r, t) ?
(2) To solve this equation with the appropriate boundary conditions for u(r, t), introduce

the Laplace transform of u(r, t)

(282) ũ(r, s) =

∫ ∞

0

dt u(r, t) exp{[−st]}

Show

(283) sũ(r, s)− rc0 = Dũ′′(r, s)

(3) Show

(284)
ũ(r, s) =

c0
s

[
r − a exp

{[
−(r − a)

√
s/D

]}]

(4) We assume that the inverse Laplace transform of

s−1
[
1− exp

{[
−r
√
s/D

]}]

is
erf(r

√
4Dt)

where

(285) erf(z) =
2√
π

∫ z

0

e−r2dr

where erf is the error function, see Fig. 4. Show:

(286) c(r, t) = c0

(
1− a

r

)
+
ac0
r
erf

[
r − a√
Dt

]

(5) Show that the time-dependent flux is

(287) ϕ = 4πa2Dc0

(
1 +

a√
πDt

)

(6) Make the t → ∞ limit. Show k = 4πa2D. Remark that the rate k depends on the
diffusion constant D. Conclude that the diffusion-limited rate is an upper bound of
the true rate.

Exercice 4.8. The time-dependent reaction rate can be calculated using the quasi-static
approximation. Because of it simplicity and general applicability, we detail the calculation in
arbitrary dimension d.

We divide the region exterior to the adsorbing sphere into two zones. The "near" and the
complementary "far" zone.
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Figure 4. Plot of the function erf(z).

(1) In the near zone, a < r ≤ a+
√
Dt, it is assumed that diffusing particles have sufficient

time to explore the domain before being adsorbed by the target. The concentration
is almost quasi static. What changes with time is the locus of the boundary which
increases as

√
Dt.

(2) In the complementary far zone, it is assumed that the probability of being adsorbed is
negligible, since the particles are unlikely to diffuse more than

√
Dt in a time t. Thus,

c(r) ≈ c0 in the far zone.
(1) Show that the static solution in 2d is c(r) = A+B ln r.
(2) Match the solution to the boundary condition c(a) = 0 and c(a+

√
Dt) = c0 and show

(288) c(r, t) ≈ c0 ln(r/a)

ln
(√

Dt/a
) t >> 1

(3) Compute the time-dependent flux

(289) J(t) = 4πa2D
∂c

∂r

∣∣∣∣
r=a

(4) How J depends on the size of the adsorbing sphere ? Conclude.

5. The Peclet number

The Peclet number is a dimensionless ratio. It is the ratio of two rates. The first rate is the
rate at which a particle moves some distance λ due to being carried along by the flow of the
liquid. The second rate is the rate at which it diffuses the same distance λ. Here λ is whatever
distance we are interested in. So, the Peclet number is defined to be

(290) Pe =
R1

R2

where
(1) R1 = Rate at which flow carries molecules a distance λ.
(2) Rate at which diffusion carries molecules a distance λ.

If the flow speed is u, the time taken to transport a molecule over a distance λ is λ/u. The rate
is therefore u/λ. In contrast, the time to diffuse a distance λ is λ2/D. As a result, the rate is
D/λ2. Thus,

(291) Pe =
uλ

D

which depends on the length scale λ. On small scales, diffusion is faster than flow. On macro-
scopic scale, flow is faster. For E. Coli looking for nutriments, D ≈ 10−5cm2/s (for phosphate
molecules), u = 30µm/s (speed of E. coli), λ = 2µm (size), Pe = 0.02.
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Exercice 4.9. We consider the bimolecular reaction

(292) A+ B −−→ AB

for which the concentrations usually evolve according to the law of mass action

(293)
d[AB]

dt
= k[A][B]

Usually, the on rate k is independent of t. This will not be case here. We assume that an
A molecule and a B molecule react immediately to form a complex AB when they encounter
each other within a reaction radius, so that the speed of reaction is limited by their encounter
rate via diffusion. We consider the case of spherical target A of radius a (d = 3). One way
to formulate the problem is an idealized first passage process, in which the A molecule is fixed
while the B molecule diffuse around. Let c(r, t) be the concentration of B molecules.

The initial conditions and the boundary conditions are as follows
(i) c(r, t = 0) = c0 for r > a.
(ii) c(r = a, t) = 0, since there is an uptake of B molecules at r = a.
(iii) c(r → ∞) = c0 for a continuous supply of B molecules at infinity to counterbalance the

rate of uptake of B at r = a.
(1) Define u(r, t) = ru(r, t). What is the equivalent-diffusion equation for u(r, t) ?
(2) To solve this equation with the appropriate boundary conditions for u(r, t), introduce

the Laplace transform of u(r, t)

(294) ũ(r, s) =

∫ ∞

0

dt u(r, t) exp{[−st]}

Show

(295) sũ(r, s)− rc0 = Dũ′′(r, s)

(3) Show

(296)
ũ(r, s) =

c0
s

[
r − a exp

{[
−(r − a)

√
s/D

]}]

(4) We assume that the inverse Laplace transform of

s−1
[
1− exp

{[
−r
√
s/D

]}]

is
erf(r

√
4Dt)

where

(297) erf(z) =
2√
π

∫ z

0

e−r2dr

where rmerf is the error function, see Fig. 4. Show:

(298) c(r, t) = c0

(
1− a

r

)
+
ac0
r
erf

[
r − a√
Dt

]

(5) Show that the time-dependent flux is

(299) ϕ = 4πa2Dc0

(
1 +

a√
πDt

)

(6) Make the t → ∞ limit. Show k = 4πa2D. Remark that the rate k depends on the
diffusion constant D.
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Figure 5. Three successive monomers of a flexible polymer chain. The angle θ
is fixed, but the upper monomer can rotate by an angle ϕ. The three segments
are coplanar when ϕ = 0 (trans-configuration) and this configuration corresponds
to the true minimum energy configuration (see Fig. 6). The two gauche configu-
rations are obtained when ϕ = ±120◦.

6. Diffusion in a force field

We have considered so far a free brownian particle. What happens if the particle is subjected
to an external force F ? If this force derives from a potential ϕ(x), the current is the sum of
the usual drift term and a mobility term

(300) J = −µP (x)∇ϕ−D∇P
where the mobility µ is yet undetermined.

Conservation of probability requires

(301)
∂P

∂t
= ∇ · J

and translates into

(302)
∂P

∂t
=

∂

∂x
[−µP (x)∇ϕ−D∇P ]

Assuming stationarity
−µP (x)∇ϕ−D∇P = 0

or
dP

dx
= − µ

D

dϕ

dx
P (x)

(303)

whose solution is given by

(304) P (x) =
1

Z
e−

µ
D
ϕ(x)

where Z is some normalization constant. Remark that we have made no statement concerning
equilibrium and we have only hypothetized that the process is stationary. If the process at
equilibrium, we recover the Bolzmann’s distribution if the Einstein relation holds

(305)
µ

D
=

1

kT
Although this derivation is general, it is interesting to state clearly the hypotheses tacitly made
to get (576). Since the probability P (x, t) does depend only on the position and not on the
speed, we have tacitly assumed that the speed relaxes very fast to some local equilibrium.
Actually, (576) is only valid in the strong friction limit.

Remark. In classical mechanics particles at rest occupy minimum energy states. Here, due
to thermal fluctuations, the particle has a finite probability p(Ui) to be in a state of energy Ui

above the minimum energy state. Assuming thermal equilibrium, the probability p(Ui) is

(306) p(Ui) =
1

Z
e[−Ui/kT ]

where Z =
∑

i exp{−Ui/kT} so that
∑

i pi = 1.
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Figure 6. Potential profile as a function of the angle ϕ defined in Figure 5.
The potential barriers are small with respect to the thermal energy kT , so that
the polymer adopts the three configuration with almost equal probability

Consider a molecule with two conformational states with reaction coordinate x. The prob-
ability to be in state 1 is p1 = 1/Z exp{{−U1/kT}} (1 −−→←−− 2). We have

(307)
p1
p2

= exp{[−(U1 − U2)/kT ]}

At very low temperature, p1/p2 ≫ 1 so that the only observable state is actually the
minimum energy state. At finite temperature, however, state 2 is observable with a finite
probability. This property is crucial for flexible polymer chains. The energy between successive
groups is a function of one angle ϕ. The potential barrier ∆ϵ between the two cis and the trans
configuration is small, so that the chain is a flexible coil.

Exercice 4.10. Application : The Debye-Hükel theory. Interactions that occur between
electrical charges fixed at surface and those which are free in solution play an important role
in colloidal systems.

We consider negatively charged wall that is infinite in the x and y direction. The distance
from the charged surface is z. The charge density on the wall is σ. Let Φ(z) be the electrical
potential. Because of Gauss’s law

(308)
dΦ

dz
= − σ

ϵ0ϵr

The adjacent solution contains positively charged and negatively charged ions in equal quantity
with homogeneous density c0 when ϕ(z) = 0. We assume that the ions bare a charge ±Ze.

(1) Calculate c±(z) as a function of Φ(z).
(2) Write Gauss’s theorem in the solution

(309) ∆Φ(z) = −ρ(x)
ϵ0ϵr

and show

(310) ∆Ψ(z) = −2eZc0
ϵ0ϵr

sinh

[
ZeΨ(z)

kT

]

(3) Without solving this equation, show that there exists a characteristic length scale lp
which enters into the problem.

(4) Assume

(311) sinh

[
ZeΨ(z)

kT

]
≈ ZeΨ(z)

kT

and solve the differential equation. What is the physical interpretation of lp ?
(5) Assume that the ions come from the dissociation of NaCl (0.1 M). What is the order

of magnitude of lp ?
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A

B

M

Figure 7. Potential profile for a brownian particle. The effect of a force applied
to the equivalent chemical bond is to lower the potential barrier.

7. A First-passage problem: The escape over a potential barrier

What is a first passage probability ? This is the probability that a diffusing particle first
reaches a specified site at a specified set of time.This problem has very large applicability.

We consider a brownian particle in a field of force. The force is the derivative of a potential
V (x) and to want the calculate the probability to escape from a metastable state. We will
assume that the barrier is sufficiently large with respect to kT so that the particule will neither
come back after having passed over the barrier. This problem is a first passage problem.

The x coordinate is a reaction coordinate. For a chemical reaction, x corresponds to the
relative distance between two molecules A and B. When the relative distance between the
two molecules is small, the two molecules form a chemical complex. The translocation of the
particle over the barrier is, therefore, equivalent to the dissociation of the complex A−B.

If we assume first order kinetics, we describe the reaction as

(312)
d[A−B]

dt
=−koff [A−B]

where koff has the dimension of 1/time. This is the characteristic time one has to wait before the
chemical bond break spontaneously because of thermal fluctuations. In the Kramers problem,
this time is the first passage time over the barrier.

This problem arises in countless number of systems modeling escape from a metastable
equilibrium state driven by thermal fluctuations. The common theme underlying the description
of escape processes is based on Brownian motion. In adopting this scheme, the motion of the
principal degrees of freedom is treated explicitly while the interaction with other degrees of
freedom, including those of the heat bath(s) coupled to the system of interest, are represented
by frictional forces and noise; i.e., the deterministic equations governing the dynamics of the
escape process must be complemented by random forces. These random forces present the key
input allowing the system to get away from preferred states of local stability.

To describe this process, we will take the strongly overdamped limit where inertial terms
can be neglected. We write the Smoluchowski equation as

(313)
∂P

∂t
+
∂J

∂x
= 0

where (

(314) J = − 1

µ
P (x)

dV

dx
−DdP

dx

In what follows, we assume that the barrier is large with respect to kT

(315) VM − VA ≫ kT
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and we compute the off-rate from the current of particle escaping from A as

(316) koff =
J

nA

where nA is the number of particles in A. The current is small, so nA does not vary. koff has
the right dimension, since koff = 1/time.

In a stationary regime, the current is constant

(317) J = constant

independent of the reaction coordinate x, since all particles which can escape will neither come
back. Using (314) we obtain:

(318)
∂V

∂x
P (x) + kT

∂P

∂x
= −µJ

The general solution of this equation is

(319)
P (x) = a(x)e−V (x)/kT

a(x) =
Jµ

kT

∫ x0

x

dx′ e+V (x′)/kT

where x0 is a constant of integration to determined by the boundary conditions.
These are as follows:
(1) nA is known because the number of particle near A is given by the Bolzman’s distri-

bution (there is only a small number of particles which can escape). Note NA = a
neighborhood of A

nA =

∫

NA

dxP (x) =

∫

NA

dx a(x)e−V (x)/kT

≃ a(xA)e
−VA/kT

∫ +∞

−∞
e−

1
2
mω2

Ay2dy with ω2
A = V ′′(xA)/kT > 0

(320)

where V (x) = VA + . . . near the metastable minimum A (see Comment 7).
(2) We define an arbitrary point B at the right of the barrier. The exact locus of B will

not matter. We take P (x = xB) = 0 at B as the equivalent condition for the particle
neither to come back: B is a sink and the probability to find the particle at B is zero.
We have, therefore, x0 = xB, so that P (xB) = 0.

From (319) we get the current

(321) J =
kT

µ

a(x)∫ xB

x
eV (y)/kT dy

in particular for x = xA

(322) J =
kT

µ

a(xA)∫ xB

xA
eV (y)/kT dy

But

(323)
∫ xB

xA

eV (y)/kT dy = eVM/kT

∫ +∞

−∞
e−

1
2
ω2
My2dy ω2

M = |V ′′(xM)|/kT > 0

since VM ≫ VA and VM ≫ VB. Taking the ratio, we get the well-known Arrhenius factor
(Kramers, 1940)

(324) koff =
J

nA

≃ kT

µ

ωAωM

2π
e−(VM−VA)/kT

In this regime, the rate of escape is limited by collisions when the particle is near the top of
the barrier. The frictional forces imply that a typical reaction path does not go directly from
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one side of the well to the neighboring well but rather may cross the barrier region many times,
tottering back and forth before escaping.

Remark. We want to evaluate the integral

(325) I =

∫ +∞

−∞
dx g(x)eλf(x)

where λ≫ 1 and where the function f(x) has a maximum. A useful approximation is the saddle-
point method. Since f(x) possesses a maximum at some point x0, the dominant contribution
to the integral comes from a domain centered around x0. We Taylor expand f(x) to second
order

(326) f(x) = f(x0) +
1

2
(x− x0)2f ′′(x0) + . . .

and

I =g(x0)e
λf(x0)

∫ +∞

−∞
dx e

1
2
(x−x0)2f ′′(x0)

=

√
2π

|f ′′(x0)|
g(x0)e

λf(x0) λ≫ 1

(327)

If f(x) possesses a minimum, take λ < 0

(328) I ≈
√

2π

|f ′′(x0)|
g(x0)e

λf(x0) | λ |≫ 1

Exercice 4.11. Use this approximation for the integral representation of n!

(329) (n+ 1)! =

∫ ∞

0

dt tn−1e−t

Exercice 4.12. Path integral method. The Langevin equation can be written as

(330) f(t) = µ
dx

dt
+
dV

dx
We know that the random force f(t) is drawn from a Gaussian distribution

(331) P [f(t)] ∝ exp

{[
− 1

4µkT

∫
dt f(t)2

]}

(1) Why Eq. (330) is valid ?
(2) Explain formula (331).
(3) Show that the probability to observe a trajectory is

P [x(t)] =

J exp

{[
− 1

4µkT

∫
dt

(
µ
dx

dt
+
dV

dx

)]2}(332)

where J is independent of T (don’t try to calculate J). At low temperature, the
exponential will dominate and we will drily ignore thereafter J





CHAPTER 5

THE MASTER EQUATION

1. Introduction

To obtain from a microscopic description an entropy that increases with time, one must
adopt a "coarse grained" definition of the phase space: the phase space is assumed to be
partitioned into small cells i = (p, q) and we adopt a "myopic" point of view where the only
information we have is the probability Pi(t) of finding the system in cell i at time t. The Master
equation gives how Pi(t) evolves with time.

2. Coarse-graining the phase space and the problem of entropy

Let us consider system with an Hamiltonian H(p,q). We will study its dynamics in the
phase space (p, q). Under Hamiltonian dynamics, the system will inspect different configu-
rations. In the microcanonical ensemble, the probability density to observe the system at a
particular point (p, q) in phase is given by the density ρ(p,q, t) which can depend on t, since
the Hamiltonian can depend on t.

As a first guess, let us define the entropy as

(333) S = −
∫

Ω(E)

dΩ ρ ln ρ

where Ω(E) is the number of configurations compatible with an energy E.
This definition seems to be correct, since for ρ = 1/Ω(E) (all microstates with equal energy

E have equal probability), we get the Boltzmann’s result (within the multiplicative constant
kB):

(334) S = lnΩ(E)

However, our guess (334) cannot be correct. Liouville’s theorem states that the volume in
phase space is conserved. This means that the number of configurations in a small volume will
stay constant with time (although the shape of the volume can be widely deformed under the
dynamics). If ρ is constant, then the entropy will stay constant. This contradicts what we
know from thermodynamics and we have to do something else1.

To get out, we will coarse-grain the phase space to do probability. Each elementary cell i
has some volume. When the system is in cell i, we don’t know exactly what are the momentum
p and the position q. Two systems initially in the same cell i van therefore jump into two
different cells k and l at latter time, since their initial conditions differ. This is the case for
a chaotic systems, since a slight change in initial condition leads to very different trajectories.

1The increase of entropy is known as the Boltzmann’s H-theorem.

61
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We shall, therefore, assume that during a time interval dt the system jumps at random from
one cell to an other according to some kind of rate equation:

(335) Proba(dt)j−>i = dt×Wj→i × Proba(to be in cell j)

where Wj→i is the conditional probability to jump for j to i (since to jump from cell j to cell i,
one has to be first in cell j). We note that we always assume that the processes are of Markov
type

Wj→i is the equivalent of a kinetic rate coefficient in chemical physics. If we note

(336) Wj→i = Wi,j

the Wi,j’s define a matrix and are conditional probabilities.
We will see shortly that our basic assumption is to state that the system evolves according

to the Master equation

(337)
dPi

dt
=
∑

j

(WijPj −WjiPi)

where the entropy is defined as

(338) S = −
∑

i

Pi lnPi

This definition entails that the entropy can only increase dS/dt > 0.

Remark. In general, Bolzmann approach to phase space is based on three properties:
(1) Ergodicity: A system is ergodic when for almost all initial conditions, the trajectory

is dense in phase space and the time average over a trajectory is equal to an average
over phase space;

(2) Chaos: the dynamics is in general chaotic, i.e., very close initial conditions tend to
grow exponentially fast;

(3) A very high-dimensional space and almost everywhere constant functions (geometry
in high-dimensional space is weird).

3. Stochastic approach to chemical kinetics: The master equation

When dealing with macroscopic systems we can neglect fluctuations and work directly with
average quantities. For small systems fluctuations are important and it is crucial to determine
the time evolution of the whole probability distribution. This time evolution is given by an
equation is known as the master equation. We will study the master equation in the following
chapter, but it is useful to give first an example of a master equation for a simple system. We
consider a simple chemical reaction.

Let us consider the unimolecular reaction which occurs particularly in radioactive decay
processes

(339) A
k−−→ B

where k is usually defined as a rate constant. To proceed with the master equation, we rein-
terpret the coefficient k as the probability per unit time that a A molecule decays into a B
molecule. This means that the probability for a A molecule to decay into a B molecule during
the time interval ∆t is k∆t.

The random variable is the number nA(t) in the system at time t. The stochastic model is
then completely defined by the following assumptions:

(1) The probability of a transition nA → nA− 1 in the time interval [t, t+∆t] is knA∆t =
O(∆t).

(2) The probability of a transition nA → nA − j with j > 1 is at least O(∆t2), since the
time interval is considered to be small enough that one molecule undergoes a transition.

(3) The reverse reaction occurs with probability 0.
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STOCHASTIC REACTION-DIFFUSION PROCESSES 3
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Fig. 2.1. Stochastic simulation of chemical reaction (2.1) for k = 0.1 sec−1 and A(0) = 20. (a)
Number of molecules of A as a function of time for two realizations of the “naive” SSA (a1)–(b1)
for ∆t = 0.005 sec; (b) results of ten realizations of SSA (a2)–(c2)(solid lines; different colours show
different realizations) and stochastic mean (2.8) plotted by the dashed line.

be obtained from stochastic simulations? This question will be addressed later in this
section.

The probability that exactly one reaction (2.1) occurs during the infinitesimal time
interval [t, t+dt) is equal to A(t)k dt. To design the SSA (a1)–(b1), we replaced dt by
the finite time step ∆t. In order to get reasonably accurate results, we must ensure
that A(t)k ∆t ≪ 1 during the simulation. We used k = 0.1 sec−1 and ∆t = 0.005 sec.
Since A(t) ≤ A(0) = 20 for any t ≥ 0, we have that A(t)k ∆t ∈ [0, 0.01] for any
t ≥ 0. Consequently, the condition A(t)k ∆t ≪ 1 is reasonably satisfied during the
simulation. We might further increase the accuracy of the SSA (a1)–(b1) by decreasing
∆t. However, decreasing ∆t increases the computational intensity of the algorithm.
The probability that the reaction (2.1) occurs during the time interval [t, t + ∆t) is
less or equal to 1% for our parameter values. During most of the time steps, we
generate a random number r in step (a1) to find out that no reaction occurs in step
(b1). Hence, we need to generate a lot of random numbers before the reaction takes
place. Our next task will be to design a more efficient method for the simulation of
the chemical reaction (2.1). We will need only one random number to decide when
the next reaction occurs. Moreover, the method will be exact. There will be no
approximation in the derivation of the following SSA (a2)–(c2).

Suppose that there are A(t) molecules at time t in the system. Our goal is to com-
pute time t+τ when the next reaction (2.1) takes place. Let us denote by f(A(t), s) ds
the probability that, given A(t) molecules at time t in the system, the next reaction
occurs during the time interval [t+ s, t+ s+ds) where ds is an (infinitesimally) small
time step. Let g(A(t), s) be the probability that no reaction occurs in interval [t, t+s).
Then the probability f(A(t), s) ds can be computed as a product of g(A(t), s) and the
probability that a reaction occurs in the time interval [t+ s, t+ s+ds) which is given
according to the definition of (2.1) by A(t + s)k ds. Thus we have

f(A(t), s) ds = g(A(t), s)A(t + s)k ds.

Since no reaction occurs in [t, t + s), we have A(t + s) = A(t). This implies

f(A(t), s) ds = g(A(t), s)A(t)k ds. (2.2)

Figure 1. Stochastic simulation of the chemical reaction A → B with rate
constant ka = 0.1 sec−1. The left-hand figure shows 2 realizations. The right-
hand figure shows different realizations with the mean nA(t = 0)e−kat.

We calculate the probability to observe nA molecules at time t by comparing P (nA, t+ dt)
with PA(nA, t). A detailed balance gives :

(340) P (nA, t+∆t) = k(nA + 1)∆tP (nA + 1, t) + (1− knA∆t)P (nA, t)

since between t and t+∆t only two events can happen :
(1) One of the A molecules decays (first term).
(2) Nothing happens (second term).

The probability that nothing happens is therefore 1 − knA∆t since the total must sum up to
one. By the standard procedure of transposing from the right-handside, dividing by ∆t ,and
then taking the limit ∆t→ 0 , one gets the differential-difference equation:

(341)
∂P (nA, t)

∂t
= k(nA + 1)P (nA + 1, t)− knAP (nA, t)

Eq. (341) being an equation for the probability, it is a master equation.
We solve this equation by means of the generating function that we define as:

(342) G(s, t) =
∑

nA≥0

snAP (nA, t)

This is simply a kind of Laplace transform but for discrete variables, since replacing the discrete
sum by an integral in (342) is the definition of a Laplace transform.

From (341) we get using nA = n:

(343)
∂G

∂t
=
∑

n≥0

sn
dP (n, t)

dt
=
∑

n≥0

snk(n+ 1)P (n+ 1, t)− k
∑

n≥0

nsnP (n, t)

But

(344)

∑

n≥0

(n+ 1)snP (n+ 1, t) =
∂

∂s
g(s, t)

∑

n≥0

nsnP (n, t) = s
∑

n≥0

nsn−1P (n, t) = s
∂

∂s
g(s, t)

Therefore,

(345)
∂G

∂t
= k(1− s)∂G

∂s
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which is a partial linear differential equation. The solution of this equation can be found using
the general method of Characteristics. For any initial condition n = n0 at t = 0 the sum in
(342) is finite. The solution of this, subject to the initial condition G(s, 0) = sn0 , is

(346) G(s, t) =
[
1 + (s− 1)e−kt

]n0

Remark. The method of characteristics is a general method for solving linear partial dif-
ferential equations. Consider

(347) a(x, t)
∂u

∂t
+ b(x, t)

∂u

∂x
+ f [u(x, t), x, t)] = 0

with the initial condition u(x, t = 0) = u0(x). In the method of characteristics, on tries to find
a relationship between x and t so that along the curve x(t) the equation for u simplifies.

To go about this, we try to find general trajectories of both x(s) and y(s) as functions of a
new coordinate s

(348)
du(x(s), t(s))

ds
=
dx

ds

∂u

∂x
+
dt

ds

∂u

∂t

Therefore, along s, the rate of change du/ds is identical with (347) provided

(349)
dt

ds
= a(x(s), t(s)) and

dx

ds
= b(x(s), t(s))

often, a(x, t) = 1, and we can simply take t = s. The equation we want to solve becomes

(350)
dx

dt
= b(x(t), t)

Therefore, along x(t),

(351)
du(x(t), t)

dt
+ f [u(x(t), t), x(t), t] = 0

If this equation is integrable, then we have some hope for an analytical function.
To give a specific example, we consider (345) with the change of variable x→ s and u→ G.

Along the characteristic

(352)
ds

dt
= −k(1− s)

and dG/dt = 0, since f = 0. Therefore, G(s(t), t) is a constant equal to G(s(t = 0), 0) = s(t =
0)n0

From ds/dt = −k(1− s), we find

(353) 1− s(t) = ekt(1− s(t = 0)

or

(354) s(t = 0) = 1− (1− s(t))e−kt

which means

(355) G(s, t) = (1 + (s− 1)e−kt)n0

is solution.

By definition of the mean and the variance, we get :

< nA > (t) =
∂G

∂s

∣∣∣∣
s=1

= n0e
−kt(356)

< (nA− < nA >)
2 > (t) =

∂2G

∂s2

∣∣∣∣
s=1

+
∂G

∂s

∣∣∣∣
s=1

−
(
∂G

∂s

∣∣∣∣
s=1

)2

= n0e
−kt
(
1− e−kt

)
(357)

The mean value of the stochastic approach is therefore consistent with the mean value for
the deterministic equation.The stochastic approach gives however higher moments as statistical
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physics gives to thermodynamics. No only the moments, but the full probability distribution
can be calculated. From (342) and expending (342), we get:

(358) P (nA, t) = Cn0
nA
e−nAkt

(
1− e−kt

)n0−nA

4. The Master equation

Let Pi(t) be the probability that the system is a state i = (p, q) at time t (quantum or
classical). Consider a time interval dt. What is dPi/dt ?

During dt, three types of events can take place:
(1) one jump from some cell j to cell i (dt is so small that at most one such event can take

place)
(2) one jump from the cell i to an other cell j.
(3) Nothing happens. Since j ̸= i, the probability to stay in cell i is

1−
∑

j ̸=i

Wjidt

We have three events, since in the last case where the system was in cell i, we had to options
(leave or not leave).

Summing over all cells j we have for events of type 1 which increase the number of points
in cell i :

(359) dt
∑

j

Wi,jPj

Summing over all cells j we have for events of type 2 which leave the probability to be in cell i
unchanged during the time interval dt:

(360) dt(1−
∑

j ̸=i

Wj,i)Pi

since, knowing that the system was in cell i, the probability that nothing happens is : 1− the
probability that something happens. We have:

(361) Pi(t+ dt) = Pi(t) + dt
∑

j ̸=i

Wi,jPj(t)− dt
∑

j ̸=i

Wj,iPi(t)

which says that Pi(t) evolves as

(362)
dPi

dt
=
∑

j

(WijPj −WjiPi)

This is known as the Master equation. An other form of the master equation is

(363)
dPi

dt
= −Pi(t) +

∑

j ̸=i

Wi,jPj(t)

The fact that Wij ≥ 0 2 means that if each Pi(t = 0) ≥ 0 then Pi(t) ≥ 0 for t > 0. To see this,
assume that at some time t one of the probability Pi(t) is crossing zero and is about to become
negative. Then by (365)

(365)
dPi

dt
=
∑

j

(WijPj −WjiPi) =
∑

j

WijPj > 0

and Pi will increase again at latter time. So Pi(t) can never become negative.

2For example, Fermi’s Golden tule says that

(364) Wij =
2π

ℏ
|< i|V |j >|2 ρ(Ej)
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How de we choose the Markov matrix Wij ? This far from trivial and there is no microscopic
theory (at the present time). For an isolated system, what we want is :
a) Pi = 1/Ω(E) is a stationary solution
b) Some kind of reversibility.

Let us start with point b) and assume that the Wij obey to the micro-canonical detailed
balance principle:

(366) Wij = Wji

In other words, we assume that the Markov matrix is symmetric. If we define the entropy as

(367) S = −
∑

i

Pi lnPi

To have a correct entropy definition, S must increase

(368)

dS

dt
= −

∑

i

(1 + lnPi)
dPi

dt

= −
∑

i

(1 + lnPi)

[∑

j

(WijPj −WjiPi)

]

Or,

(369)
∑

i

dPi

dt
= 0

since the sum over all probabilities is conserved.

(370)
∑

i

∑

j

lnPiWjiPi =
∑

j

∑

i

lnPjWijPj

which gives

(371)

dS

dt
= −

∑

i,j

WijPj (lnPi − lnPj)

= −
∑

i,j

WijPj ln
Pi

Pj

We now use Wij = Wji and we make the above equation symmetric:
dS

dt
= −1

2

∑

i,j

Wij(Pj ln
Pi

Pj

+ Pi ln
Pj

Pi

)(372)

= −1

2

∑

i,j

Wij(Pj − Pi) ln
Pi

Pj

(373)

and we are done ! dS/dt > 0 ! Why ?
Consider f(x, y) = (x− y) ln(x/y). If x > y then ln(x/y) > 0 and f(x, y) > 0. If x < y, we

find also that f(x, y) > 0. So that,for all x, y > 0

(374) f(x, y) = (x− y) ln x
y
> 0

The increase of entropy is also known as the "H-theorem".

Remark. The master equation says that the probability to jump from state i to state j
during a time interval dt does depend only on states i, j but does not depend on the configura-
tions prior to t. One says that the system evolves according to a Markov process. The master
equation does not include the correlation between the thermostat and the system and thus
assume that the dynamics of the thermostat is sufficiently chaotic so that one can neglect the
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temporal correlations. The diffusion equation or the Langevin equation are typical examples
of Markov processes.

5. Thermostat and detailed balance

Everything above applies to an isolated system (micro-canonical ensemble). Here we want
to describe how a system can exchange heat with a thermostat (macro-canonical ensemble).
To make things simple, we change notations and instead of writing Wi,j, we write W (C′,C)
where C′, C are two configurations. The simplest way is to assume that the probability to jump
from configuration C to C′ depends on the energy difference E(C) − E(C′) between the two
configurations

(375)
W (C′,C)

W (C,C′)
= e[E(C′)−E(C)]/kBT

The energy given to the system by the thermostat is the heat (this is how we define the heat
in statistical physics)

(376) Q = E(C′)− E(C)
when the system jumps from C to C′. By definition, the change in entropy is the change of the
entropy of the thermostat

(377) ∆Sthermostat = −
Q

T

Condition (375) can be written in another way:

(378) W (C′,C)Peq(C) = W (C,C′)Peq(C
′)

where Peq(C) is the Bolzmann’s distribution. Thus condition (375) secures that the Bolzmann’s
distribution is solution of the master equation. This condition is called the detailed balance
condition. This condition is a principle, since this is a condition that the W ′s must obey a
priori. There is no general recipe to calculate the W (C,C′)’s and a lot of Markovian processes
will converge to the same Bolzmann’s equilibrium distribution.3

As a final remark, we show that detailed balance implies reversibility. A trajectory in phase
space is a series of configurations (from right to left):

(379) CN ← CN−1 . . .C1 ← C0

where we have decided to write from right to left with time t0, t1, . . . tN . The probability to
observe this trajectory is the join probability and this can written as

W (CN ,CN−1) . . .W (C2,C1)W (C1,C0)P (C0)(380)
W (CN ,CN−1) . . .W (C2,C1)P (C1)W (C0,C1)(381)
W (CN ,CN−1) . . . P (C2)W (C1,C2)W (C0,C1)(382)

. . .(383)

In the third line, we write W (C1,C2)W (C0,C1) = W (C0,C1)W (C1,C2) and so on. At the end,
we see that the probability to observe the time ordered trajectory:

(384) CN ← CN−1 . . .C1 ← C0

is the same as the one for observing:

(385) C0 ← C1 . . .CN−1 ← CN

with a reverse sequence of times.

3There are Ω(E)2 matrix elements W ’s and the detailed balance gives Ω(E)(Ω(E)−1)/2 equations. There-
fore, the detailed balance condition cannot give the W ’s. Calculating the W ’s is actually the whole problem of
statistical physics ! The actual convergence towards the Bolzmann’s distribution is given by a theorem under
general condition (Perron-Frobenius theorem)
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6. Monte-Carlo method

Dynamics satisfying the detailed balance are very often used in Monte Carlo simulations to
sample systems at equilibrium. Let’s take the example of an Ising system in its gas-on-lattice
version. One considers a regular (say a square) lattice. To each site i, we associate a binary
variable ni which can take the value 0 or 1 depending on whether the site is occupied or not
by a particle. A configuration of the system is then specified by the data of the variables ni for
each site i.

(386) C = n1, n2, . . .

To simulate an Ising model, we consider the following energy

(387) E(C) =
∑

i,j

Ui,jninj +
∑

i

Vini

where the potential Ui,j depends on the distance between sites i and site j and where Vi is an
external potential.

The dynamics of Monte Carlo in its Metropolis version consists in building a suite of config-
urations C1,C2, . . .Ct, . . . using the following algorithm: if the system is in a configuration Ct,
a pair of neighbouring sites is chosen at random and the occupancy numbers of the two sites
are exchanged.

(388) ni, nj → nj, ni

A new configuration is C∗ is thus created. Obviously, the two are identical, i.e. C∗ = Ct, if both
sites are empty or occupied. If only one is occupied, this amounts to exchanging the particle
between the two sites. A number z is then drawn at random according to a uniform probability
distribution between 0 and 1 and one iterates according to the rule:

(389) Ct+1 =

{
C∗ if z ≤ exp{(E(Ct)− E(C∗)) /kBT}
Ct if z > exp{(E(Ct)− E(C∗)) /kBT}

The series C1,C2, . . . allows to sample an ensemble of configurations distributed to Boltz-
mann’s law. For example, for any observable F (C)

(390) ⟨F ⟩ =
∑

C F (C)e
−E(C)/kBT

∑
C e

−E(C)/kBT

we have for a series of N configurations

(391) ⟨F ⟩ = 1

N

∑

Ct

F (Ct)

7. Heat And work

How do we define heat and work to recover thermodynamics ? Once given the matrix Wt,
the time evolution for the probability is given by the master equation

(392)
dP (C)

dt
=
∑

C′

Wt(C,C
′)Pt(C

′)−Wt(C
′,C)Pt(C)

The interaction with the thermostat is at the origin of each jump from one configuration to
another. The quantity of heat ∆Q supplied by the thermostat during an interval dt of time is
given by averaging all possible jumps

(393) ⟨δQ⟩ =
∑

C,C′

[EtC
′)− Et(C)]Wt(C

′,C)dtPt(C)



8. CONCLUSION 69

which makes explicit the fact that the thermostat supplies an energy Et(C
′)−EtC) during the

jump C→ C′ (note that the energy of the configurations is time dependent). This last equation
can be rewritten as

(394)

⟨δQ⟩ =
∑

C,C′

Et(C) [Wt(C,C
′)P (C′)−Wt(C

′,C)P (C)] dt

=
∑

C′

Et(C)
dPt(C)

dt
dt

In addition, on knows that the avrage energy of the system is

(395) ⟨Et⟩ =
∑

C

Et(C)Pt(C)

We deduce that the average amount of work provided to the system is

(396) ⟨δWsupplied⟩ = ⟨δEt⟩ − ⟨δQ⟩ =
∑

C

dEt(C)

dt
Pt(C)dt

We conclude: In Markov dynamics, the time dependence of Et(C) energies over time contributes
to work while energy changes during jumps contribute to heat.

8. Conclusion

It is now useful to summarize all Markov processes studied in this chapter.
The starting point is the Chapman-Kolmgorov equation

(397) f(x3, t3|x1, t1) =
∫ +∞

−∞
f(x3, t3|x2, t2)f(x2, t2|x1, t1) dx2 ∀t2 ∈ [t1, t3]

If we assume a stationary process, we use a special notation

(398) f(x2, t2|x1, t1) = p(x2|x1, τ) τ = t2 − t1
and the Chapman-Kolmogorov equation reads as

(399) p(x3|x1, τ + τ ′) =

∫ +∞

−∞
p(x3|x2, τ ′)p(x2|x1, τ) dx2

This equation is useful in the following sense: From the knowledge of the transition probability
at small times we can build up the transition probability at all times iteratively.

For a large class of processes, the transition probability has the following asymptotic form

(400) p(x|z, τ ′) = (1− a0τ ′)δ(x− z) + τ ′w(x|z) + o(τ ′)

The meaning of this equation is rather simple: The time interval τ ′ is so small that we have
only two options:

(1) One " jump" event took place during τ ′: second term.
(2) Nothing happened during τ ′ : first term which nothing but 1− something where

(401) a0(x) =

∫ +∞

−∞
w(x|z) dz

We substitute (400) and get the Master equation:

(402)
∂

∂τ
p(x3|x1, τ) =

∫ +∞

−∞
[w(x3|x2)p(x2|x1, τ)− w(x2|, x3)p(x3|, x1, τ)] dx2

To derive the master equation, we have made one key assumption: The limit ∆t→ 0 has not
to be understood in a mathematical sense. At every time steps ∆t, we have tacitly assumed
that the microscopic variables - we need them to have an equilibrium - relaxes so fast that
we are in equilibrium at time t and at time t + ∆t. Thus they relax rapidly. This hypothesis
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is called the "Stoβzahlansatz" (repeated randomness). Be careful, this evolution equation is
conditioned by the initial conditions x1 at time 0. If we make two assumptions, namely:

(1) Small jumps x2 − x1 → 0,
(2) Small variations of p(x3 − x1, τ) with x3 − x1,

we get from the Master equation the Fokker-Planck equation:

(403)
∂

∂τ
p(y, τ) =

∂

∂y
[a1(y)p(y, τ)] +

1

2

∂2

∂y2
[a1(y)p(y, τ)]

with the an’s being the moments

(404) an =

∫ +∞

−∞
∆ynw(y,∆y) d∆y

This expansion is known as the Kramers-Moyal expansion.
The proof goes as follows: We note that w(x3|x2) and w(x2|x1) in eq. (402) are jump

probabilities. They depend on the starting point and on the jump size, the latter being x3−x2
for the first term and x2− x3 for the second one . For the first term, the size is x3− x2 and the
starting point is x3 − r. We write
(405) w(x3|x2) = ω(x3 − r, r)
where ω(x, y) is a function of two independent variables, x being the starting pint and y the
jump size. Since x1 and τ do not play any role, we drop them for clarity and rewrite (402) as

(406)
∫
dr ω(x3 − r, r)p(x3 − r)− p(x3)

∫
dr ω(x3,−r)

We can now Taylor expand the shift x3 − r as

(407) ω(x3 − r, r)p(x3 − r) = ω(x3, r)p(x3) +
∑

m≥1

(−1)m
m!

rm
∂m

∂xm3
[ω(x3, r)p(x3)]

Using this expansion with (??), we see that the first order term cancels out with the third term
in (??). We are left with

(408)
∑

m≥1

(−1)m
m!

∂m

∂xm3

[∫
dr rmω(x3, r)p(x3)

]

which is the moment expansion we were looking for.



CHAPTER 6

STOCHASTIC THERMODYNAMICS :
CROOKS AND JARSYNSKI EQUALITIES

1. Heat and work

The second law of thermodynamics states that the total entropy of an isolated system always
increases over time, or remains constant in ideal cases where the system is in a steady-state
or undergoes a reversible process. The increase in entropy accounts for the irreversibility of
natural processes, and the asymmetry between future and past. We shall see that this can only
be true in the macroscopic world. In the nano-world, fluctuations play a significant role and
this principle is only valid in a statistical sense, i.e. after averaging over many experimental
events.

Before doing this, we have to define again what we call heat and work. The mean energy
of a system at time t is defined as an averaged quantity over all possible configurations C

(409) < Et >=
∑

C

Et(C)Pt(C)

where all quantities depend on t and where the interaction of the system with the outside world
may also depend on t. For example, we can move a piston, and the effect of moving the piston
will change the interaction of the molecules with the walls. In turn, this will change the energy
configurations of the system.

Taking the time derivative, we have 2 terms

(410) <
dEt

dt
>=

δQ

dt
+
δW

dt

Figure 1.
A piston with one molecule inside the box.
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with
δQ =

∑

C

Et(C)Ṗt(C)(411)

δW =
∑

C

Ėt(C)Pt(C)(412)

and this defines what we call heat and work in equilibrium and non-equilibrium systems. The
energy transferred to the system corresponds to changing the energy of the configurations. This
is what we do when we apply a force, since this force is the derivative of a potential. The heat
is the change per unit time in the probability to be in a configuration C. Since we must sum
over all configurations, heat and work are only defined in a statistical sense.

Note. Recall from chapter 1 that the Hamiltonian can be formally written as

(413) H(p, q) =
∑

i

p2i
2m

+
∑

i<j

U(qi − qj) +
∑

i

V (qi, t)

The first term is the kinetic energy, the second is the interaction between the particles and the
third is the potential energy. It may depend on the time t. V (qi, t) takes into account the walls
and it plays an analogous role to a piston in thermodynamics.

1.1. Statement of the Jarzynski equality. Consider once again the piston of Fig. 1.
We assume equilibrium at time t = 0. We now move the piston between time t and t′ . This
transformation can be fast or slow. We don’t care.

Let W be the work given to the system. For a small system, W will fluctuate from one
experiment to an other one, since the position of the molecule inside the cylinder is a random
variable. W is, therefore, a random variable. For a deterministic system, fluctuations are
due to changes in initial conditions for the molecule inside the piston when we apply the
transformation. The Jarsynski equality states that1

(414) < e−βW >Experiments= e−β(Ffinal−Finitial)

where <> means that the mean is taken over many experiments. The symbols F ’s appearing
are free energies and this equation tells us that Ffinal is the free energy of the system in the
final state after waiting enough for equilibration. When we stop moving the piston,
the system is not at equilibrium and takes some time to equilibrate. The final and the initial
states have the same temperature, but they differ in a variable entering into the Hamiltonian
(otherwise their free energy would be the same). In a fluid system like ours, this variable is
the volume V . In short, the Jarzynski’s relationship is a symmetry under time reversal of the
distribution of work done on the system

This equality is true in thermodynamics: If the system is driven from an initial state to
a final state by a reversible process, the work done on the system is exactly W = ∆F ,
so that equality (414) is true. If, in marked contrast, the process connecting the initial and
the final state is irreversible, the work may be different. Taking the average over many
processes, equality (414 ) shows that the inequality < W >> ∆F holds. Usually, in standard
thermodynamics, this inequality is written without taking the average. This can’t be true,
since the second law of thermodynamics is statistical per nature. Note that (414 ) is a rigorous
equality and not an inequality.

2. Consequences

Eq. (414) gives the second law of thermodynamics. If we move the piston in such way that
the initial and final states are the same, we have:
(415) Ffinal − Finitial = 0 so that < e−βW >Experiments= 1

1This equality has been obtained by C. Jarzynski in 1997. Other equalities similar to this one have been
previously obtained 20 years before by Bochkov and Kuzovlev.
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2. Dans le cas particulier où on suppose que {l’état initial=l’état final}, s’il y a des évènements
tels que Wfourni > 0 (c’est à dire des évènements où de l’énergie est dissipée sous forme de
chaleur), il doit forcément y avoir aussi des évènements pour lesquels W < 0 de façon à
assurer que D

e��W
E

=

Z
P (W ) e��W dW = 1 .

Ces évènements où le travail fourni est négatif et qui violent donc le second principe peuvent
être observés expérimentalement sur des sysèmes su�samment petits comme des brins d’ARN
[17].

6.2 L’exemple de la machine de Szilard

La machine de Szilard fournit un exemple simple pour lequel la distribution du travail W peut
être déterminée explicitement : le système est constitué d’une seule particule dans un volume v en
contact avec un thermostat à la température T .

A l’instant initial, on introduit un séparation (un piston) qui sépare le volume v en deux régions
de volume v0 et v� v0 comme sur la figure. Puis on déplace ce piston très lentement de façon à ce
que dans l’état final le volume v0 soit devenu v1. Une fois en v1 on supprime la séparation. Pendant
tout ce processus, que l’on suppose très lent, la particule reste en équilibre avec le thermostat et a
donc sa vitesse distribuée selon une maxwellienne à cette température T .

T

v

v0

1 v

v0

1

Si le volume de la région occupée par la particule passe d’un volume vinitial à un volume vfinal

le travail W fourni est donné par

W = �
Z vfinal

vinitial

p dv = �kT log
vfinal

vinitial

où la pression exercée par la particule sur le piston est donnée par p = kT/v. (Cette expression
peut se justifier en disant que comme on déplace le piston très lentement, le mur subit un grand
nombre de collisions avec la particule. On peut ainsi utiliser l’expression de la pression d’un gaz
parfait. On pourrait aussi l’obtenir par le calcul en utilisant le fait qu’à chaque collision la particule
a une vitesse distribuée selon une maxwellienne à la température T ).

24

Figure 2. The Szilard’s machine and the Jarzynki’s equality. The two cases
correspond to the configuration where the particle is initially in the compartment
of volume v0 or not. We don’t know a priori in which compartment the particle
is, so that one must average over the initial distribution to get mean values.

For any random variable, the Jensen inequality gives 2

(418) < e−x >≥ e−<x>

so that

(419) e−β<W>Experiments ≤ 1

or

(420) < W >Experiments≥ 0

which is the statement we were looking for.
The statement

(421) < e−βW >Experiments= 1

goes however one step farther. For the mean value of the exponential to be exactly one,
some experiments must give W < 0. Otherwise, the mean value of the exponential would
be strictly larger than 1. We conclude that some experiments must violate the second law of
thermodynamics.

3. The Szilard’s Machine

The Szilard’s machine is an example where the distribution of work can be exactly calcu-
lated. The system is a one particle system in a box. At t = 0, a wall (i.e. a piston) is introduced
and divides the system into two compartments of respective volume v0 and v− v0. This piston
is then smoothly moved in a such a way that the volume initially at v0 becomes v1. When the
volume is at v1, the wall is suppressed. We assume that the particle inside the box is always
at equilibrium and thus possesses a Maxwellian distribution at temperature T whatever the
position of the piston. This assumption is valid if the piston is gently displaced so that the
molecule experiences many bumps against the walls during the experiment. In the case where

2The Jensen equality states that that for any convex function f(x)

(416) < f(x) >≥ f(< x >)

Or: ϕ(x) is convex and g(x) continuous

(417) ϕ

(
1

b− a

∫ b

a

g(x)dx

)
≤ 1

b− a

∫ b

a

ϕ(g(x))dx
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the particle is inside the compartment of initial volume v0, the work done on the system is

(422) W = −
∫ vfinal

vinitial

p dv = −kT ln
vfinal
vinitial

since, for one molecule, pv = kT !
We then average over the initial position of the particule. The molecule has the probability

v0/v to be in the left compartment v0 at t = 0 and the probability (v − v0)/v to be on the
right-hand side. So we have

(423) W =

{
−kT ln v1

v
with probability v1

v0

−kT ln v−v1
v

with probability v−v1
v−v0

and we can check

(424) < e−W/kT >= 1

4. Proof of a Jarzynski equality in a trivial case

This demonstration is due to B. Derrida. Imagine that the energy change of all configura-
tions is almost instantaneous. For example, we move the piston so fast that the positions and
the speeds of all particles cannot change during the move.

A state C with initial energy Ei(C) has an energy Ef (C) after the change in the position of
the piston. If the initial state was C, the work done on the system is

(425) W = Ef (C)− Ei(C)

We can now average over the initial states. One obtains:

(426)

〈
e−W

〉
=
∑

C

e−β(Ef (C)−Ei(C))P (i)
eq (C)

=
∑

C

e−β(Ef (C)−Ei(C)) e
−βEi(C)

Zi

=
Zf

Zi

= e−β(Ff−Fi)

which is the Jarzynski’s equality.
The way we have moved the piston is, however, very sudden. The system is not in equilib-

rium after the change in the position of the piston. Here, the probability to find the system in
state C is given by P (i)

eq (C) but this probability is going to relax to P (f)
eq (C)

(427) P
(f)
i (C) ̸= P (f)

eq (C)

The system relaxes by interacting with its environment and releases heat (if you stretch a
rubber band, its temperature increases and then cools down).

5. Proof of the Jarzynski equality

Consider a thermally isolated system at t = 0. We work in the microcanonical ensemble
where the system can only exchange work and not heat.

The Hamiltonian depends on dynamical variables x (shorthand notation for x, p) and on a
control parameter λ(t) which varies with time. The dynamical variables obey a deterministic
law between their initial states xi and their final states xf :

(428) λ(t) : xi → xf

During evolution, the system receives work from the outside (remember there is no exchange
of heat) and

(429) Hf (xf )−Hi(xi) = W
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The work W is a random variable: We sample over the initial states xi by taking average within
an energy shell δE for the initial state. Among the xi’s we keep only those which obey (429),
so the probability PE(W ) of observing W is

(430) Pe(W ) =

∫
dxiδ(Hi(xi)− E)δ(W −Hf (xf ) +Hi(xi))

Ωi(E)

where Ωi(E) is the initial phase space volume

(431) Ωi(E) =

∫
dxiδ(Hi(xi)− E)

so that P (W ) is properly normalized

(432)
∫
dW Pe(W ) = 1

Consider now the time reversed process. All velocities take a minus sign and we use the symbol
x̄ for the dynamical variables. An initial point x̄f evolves into a final state x̄i and we take the
average over the energy shell

(433) Hf (x̄f ) = E +W

The probability distribution PE+W (−W ) to observe −W is

(434) P̄e(−W ) =

∫
dx̄fδ(Hf (x̄f )− E −W )δ(Hf (x̄f −Hi(x̄i)−W )

Ωf (E +W )

Liouville theorem states that dx̄f = dxi so that

(435)
PE(W )

P̄E+W (−W )
=

Ωf (E +W )

Ωi(E)
= e(Sf (E+W )−Si(E))/kB

In an appropriate thermodynamic limit, entailing E → ∞, the work distributions converge to
functions P (W ) and P̄ (−W ) independent of the energy of the system, while the temperature
T , ∂S/∂E = T , is a well defined constant (the same for the initial and final distributions).
Since ∆F = ∆E − T∆S and ∆E = W the internal energy difference, one recovers the Crooks
relation

(436)
P (W )

P̄ (−W )
= exp

{[
∆S

kB

]}
= eβ(W−∆F )

Or

(437)
∫
dW P (W )e−βW = e−β∆F

∫
dW P (W ) = e−β∆F

by normalisation of the probability distribution. To obtain this result, we have assumed that
∆F is independent of W . This is true in the thermodynamic limit E → ∞, W/E → 0,
∆F = W − T (Sf (E +W )− Si(E) = −T (Sf (E)− Si(E)).

Note: For a new 2018 experimental proof of the Jarzynski equality, see9.

6. Experiments in the nano-world, see16

The Jarzynki equality can be used to recover the equilibrium free energy differences between
molecular states of complexe molecules: See Fig. 3 for a pulling experiment on RNA molecules.
For example, let us consider the case of a molecule (e.g. a DNA or RNA hairpin or a protein)
initially in thermal equilibrium in the folded (F ) or native state. By applying mechanical force
(e.g. using AFM) the molecule can be mechanically unfolded and the conformation of the
molecule changed from the native to the unfolded (U) state. The unfolding event iss observed
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Figure 12. Recovery of folding free energies in a three-helix junction RNA molecule [193].
(A) Secondary structure of the junction containing one stem and two helices. (B) Typical force–
extension curves during the unfolding process. The grey area corresponds to the work exerted on
the molecule for one of the unfolding curves. (C) Work distributions for the unfolding or forward
paths (F → U ) and the refolding or reverse (U → F) paths obtained from 1200 pulls. According
to the FT by Crooks (2) both distributions cross at W = !G . After subtracting the free energy
contribution coming from stretching the handles and the ssRNA these measurements provide a
direct measure of the free energy of the native structure.

or the bead in the trap exerts a mechanical work on the molecule that is given by

W =
∫ x f

x0

F dx (4)

where x0, x f are the initial and final extension of the molecule. In (4) we are assuming that
the molecular extension x is the externally controlled parameter (i.e. λ ≡ x), which is not
necessarily the case. However the corrections introduced by using (4) are shown to be often
small. The work (4) done upon the molecule along a given path corresponds to the area below
the FEC that is limited by the initial and final extensions, x0 and x f (grey shaded area in
figure 12(B)). Because the unfolding of the molecule is a stochastic (i.e. random) process, the
value of the force at which the molecule unfolds changes from experiment to experiment and
so does the value of the mechanical work required to unfold the molecule. Upon repetition of
the experiment many times a distribution of unfolding work values for the molecule to go from
the folded (F) to the unfolded (U ) state is obtained, PF→U (W ). A related work distribution
can be obtained if we reverse the pulling process by releasing the molecular extension at the
same speed at which the molecule was previously pulled, to allow the molecule to go from
the unfolded (U ) to the folded (F) state. In that case the molecule refolds by performing
mechanical work on the cantilever or the optical trap. Upon repetition of the folding process
many times the work distribution, PU→F (W ) can be also measured. The unfolding and
refolding work distributions can then be measured in stretching/releasing cycles; an example is
shown in figure 12(C).

Figure 3.

by a rip in force-extension curve and the work done by the cantilever between the initial xi and
the final elongation state xf .

(438) W =

∫ xf

xi

Fdx

The work done upon the molecule along a given path corresponds to the area below the force-
extension curve that is limited by the initial and final extensions, xi and xf (grey shaded area
in figure 3 ). Because the unfolding of the molecule is a stochastic (i.e. random) process, the
value of the force at which the molecule unfolds changes from experiment to experiment and
so does the value of the mechanical work required to unfold the molecule. Upon repetition of
the experiment many times a distribution of unfolding work values for the molecule to go from
the folded (F ) to the unfolded (U) state is obtained, PF→U(W ). A related work distribution
can be obtained if we reverse the pulling process by releasing the molecular extension at the
same speed at which the molecule was previously pulled, to allow the molecule to go from
the unfolded (U ) to the folded ( F ) state. In that case the molecule refolds by performing
mechanical work on the cantilever or the optical trap. Upon repetition of he folding process
many times the work distribution, PU→F (W ) can be also measured.

From the Jarzynki equality, we observe that
(439) PF→U(∆G) = PU→F (∆G)

where ∆G is the free energy difference between the two conformations, so the forward and
reverse work probability distributions cross each other at W = G. By repeatedly measuring
the irreversible mechanical work exerted upon the molecule during the unfolding process and
the mechanical work delivered by the molecule to the instrument during the refolding process,
it has been possible to reconstruct the unfolding and refolding work probability distributions
and extract the value of the work W = G at which both distributions cross each other.



CHAPTER 7

THE DAMPED HARMONIC OSCILLATOR

We introduce in this chapter two useful concepts: The response function (what is the
response of a system driven out equilibrium by an exterior field) and what is a a hydrodynamic
description (it suffices to say that there are fast and slow variables and that their relaxations
to equilibrium are different).

1. Dynamical susceptibility

A simple example of an irreversible process is the damped harmonic oscillator. If we assume
that the oscillator is forced, the equation of motion is

(440) ẍ+ γẋ+ ω2
0x =

F (t)

m
= f(t)

In the absence of external force, f(t) = 0, the equation of motion reads as

(441) ẍ+ γẋ+ ω2
0x = 0

and it is not invariant under time reversal because of the first derivative γẋ. If we define
x̄(t) = x(−t) - and this is equivalent to run the movie backward, - the equation of motion for
x̄ is

(442) ¨̄x− γ ˙̄x+ ω2
0x̄ = 0

so that the viscosity accelerates the pendulum ! The reason for this is that the viscous force
is a phenomenological term which takes into account the complicated interactions between
the mass and the reservoir. If we were able to solve the total Hamiltonian mass + fluid, the
equations of motion would have been invariant under time reversal. We get a non-invariant
equation because we restrict our-selves to the pendulum. As we shall see in a next chapter,
the full description for the coupound system particle + Bath is time reversal invariant. This
description is actually valid because of the presence of two widely differing time scales (see later),
where the characteristic time scale for the pendulum is much larger that the characteristic time
scale of the bath particles (time between collisions).

The solution of (440) is given by the dynamical susceptibility χ(t, t′)

(443) x(t) =

∫ +∞

−∞
χ(t, t′)f(t′) dt′ =

∫ t

−∞
χ(t, t′)f(t′) dt′

This relationship is the most general one we can get assuming i) linearity and ii) causality. If
we assume time translational symmetry (which is not true for aging phenomena), χ(t, t′) is a
function of t− t′. An other way of writing (443) is use the notation for functional derivative

(444)
δx(t)

δf(t′)
= χ(t− t′)

77
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Figure 1: Contour C for Eq. (12 – Kramers-Kronig relation

where C could be any contour confined to a region where χ(ω) is analytic, and not containing
the point z = ω. Let C denote the contour shown in fig.1. Because χ vanishes as |z| goes to
infinity, the large arc of C contributes nothing as it recedes to infinity. The remaining part
of the contour can be separated into the straight part along the real axis, which becomes a
principle-value integral as the small arc shrinks, and an integral over the small arc which is
parameterized by z = ω + ϵeiφ. Thus Eq. (12) becomes

0 = P
∫ ∞

−∞
dω′ χ(ω′)

ω′ − ω
+ lim

ϵ→0

∫ 0

π

iϵeiφdφ

ϵeiφ
χ(ω + ϵeiφ). (13)

This becomes the general relation

χ(ω) =
P

iπ

∫ ∞

−∞
dω′ χ(ω′)

ω′ − ω
. (14)

Finally, separating into real and imaginary parts and using the results from Eqs. (8,9) that
χ1 is even in ω and χ2 is odd, this becomes

χ1(ω) =
2P

π

∫ ∞

0
dω′ω

′χ2(ω
′)

ω′2 − ω2
(15)

χ2(ω) = −2ωP

π

∫ ∞

0
dω′ χ1(ω

′)

ω′2 − ω2
. (16)

3 Damped Harmonic Oscillator

The Harmonic oscillator is the canonical example. The quantum results are essentially the
same as the classical results, so consider the Newtonian equation

mẍ + mẋ/τ + mω2
0x = F (t) (17)

where 1/τ is a phenomenological damping rate, and mω2
0 is the spring constant K. If F (t)

has only a single Fourier component F0 exp(−iωt), then δx(t) is χ(ω)F0 exp(−iωt), and one
gets

χ(ω) =
−1/m

ω2 + iω/τ − ω2
0

=
−1/m

(ω − ω1)(ω − ω2)
(18)

3

Figure 1. Integration path in the complex plane for α > 0.

From now on, we assume time translational symmetry.

2. A mathematical interlude: Principal value of an integral

When g(a) ̸= 0 the integral

(445)
∫ x2

x1

g(x)

x− adx

makes no sense. For some problems, il may be useful to study the limit

(446) lim
ϵ→0+

(∫ a−ϵ

x1

+

∫ x2

a+ϵ

)
g(x)

x− adx

When this limit exist, we call it the principal value (or the Cauchy value). Note that the
criterion for the principal value to exists is "weaker" than the criterion for the integral to exist.
For the integral to make sense, the following limit must exist:

(447) lim
ϵ1→0+, ϵ2→0+

(∫ a−ϵ1

x1

+

∫ x2

a+ϵ2

)
g(x)

x− adx

Example 2.1. Show:

(448) P.

∫ +∞

−∞

dx

x3
= 0

Example 2.2. Show

(449) P.

∫ +∞

−∞

eiαx

x
dx = iπsign(α)

with the contour given in Fig. 1.

Theorem 3. Assume now that f(x) is some function that tends to 0 when |x| goes to
infinity. We have

(450) lim
ϵ→0+

∫ +∞

−∞

f(x)

x+ iϵ
dx = P.

∫ +∞

−∞

f(x)

x
dx− iπf(0)

Why ? We have for all a

(451)
(∫ −a

−∞
+

∫ a

−a

+

∫ +∞

a

)
f(x)

x+ iϵ
dx

so that we can reorder

(452)
(∫ −a

−∞
+

∫ +∞

a

+

∫ a

−a

)
f(x)

x+ iϵ
dx
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and take the limit ϵ→ 0 first and then a→ 0. The first two integrals gives the principal value

(453) lim
a→0

lim
ϵ→0+

(∫ −a

−∞
+

∫ +∞

a

)
f(x)

x+ iϵ
dx = P

∫ +∞

−∞

f(x)

x
dx

The last one can evaluated if we replace f(x) by f(0), since a goes to zero

(454)

lim
a→0

lim
ϵ→0+

∫ +a

−a

f(x)

x+ iϵ
= lim

a→0
lim
ϵ→0+

∫ +a

−a

f(0)

x+ iϵ

= lim
a→0

f(0) lim
ϵ→0

ln

[
a+ iϵ

−a+ iϵ

]

= −iπf(0)
with
(455) ln(z) = ln |z|+ i(arg(z) + 2kπ) k ∈ Z
so we take the value −π for the logarithm, since the value inside the logarithm is −1− 2iϵ/a,
so that the branch cut of the log is approached from below.

3. Analytical properties

Causality is a fundamental property of the dynamic susceptibility. This means χ(t) = 0, t <
0. As a consequence, we can define the Fourier-Laplace transform χ̃(z) as

(456) χ̃(z) =

∫ +∞

0

dt e+iztχ(t) Im z > 0

Note that the + sign in the exponential is crucial. The usual Fourier transform is obtained by
taking the limit where z approaches the real axis from above
(457) χ̃(ω) = lim

ϵ→0+
χ̃(ω + iϵ)

Since χ(t) is a real function, the real part and the imaginary parts of χ̃(ω) are even and odd
functions, respectively. This is demonstrated from the definition

χ′(ω) = Re χ̃(ω) = lim
ϵ→0+

∫ +∞

0

dt χ(t)e−ϵt cos(ωt) χ̃′(ω) = χ̃′(−ω)(458)

χ′′(ω) = Im χ̃(ω) = lim
ϵ→0+

∫ +∞

0

dt χ(t)e−ϵt sin(ωt) χ̃′′(−ω) = −χ̃′′(ω)(459)

because cos(−ωt) = cos(ωt) and sin(−ωt) = − sin(ωt).
We can now rewrite (456) using the step function

(460) θ(t) =

{
1 if t > 0

0 if t < 0

with the result

(461) χ̃(ω) =

∫ +∞

−∞
dt θ(t)χ(t)eiωt

In general, an arbitrary function f(t) can be decomposed into an even and an odd function
as

(462) f(t) = fe(t) + fo(t) =
1

2
(f(t) + f(−t)) + 1

2
(f(t)− f(−t))

which means here

(463) χo(t) =
1

2
(χ(t)− χ(−t)) χe(t) =

1

2
(χ(t) + χ(−t))

so that
(464) χ(t) = 2χo(t) for t > 0
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The Fourier transform of the odd part can easily evaluated

(465)

∫ +∞

−∞

1

2
[χ(t)− χ(−t)] eiωtdt = i

∫ +∞

0

χ(t) sin(ωt)dt

= iχ̃′′(ω)

so that the odd part χo(t) can be obtained using the inverse Fourier transform of iχ′′(ω) as (we
make use of (464))

(466) χ̃(z) = 2i

∫ +∞

0

dt eizt
∫ +∞

−∞
dω

1

2π
χ̃′′(ω)e−iωt

Performing the integration over the time t1 we get the dispersion relation for χ̃(z)

(467) χ̃(z) =
1

π

∫ +∞

−∞
du

χ̃′′(u)

u− z
where we made the change in notation ω → u. Posing z = ω + iϵ gives a relationship between
the real and imaginary part

(468) χ̃′(ω) =
1

π
P
∫ ∞

−∞
du

χ̃′′(u)

(u− ω)
where we have made use of the integral identity (see theorem 3)

(469)
∫ +∞

−∞

du

ω − u− iϵ = iπ

∫ +∞

−∞
du δ(ω − u) + P

∫ +∞

−∞

du

ω − u
This dispersion relation is a consequence of causality. The real and the imaginary
parts of a causal function are not independent. These relationships are the so-
called Kramers-Kronig relationships. One remarks that, because of causality, the knowledge of
χ̃”(ω) suffices to know χ̃′(ω) and vice et versa.

Exercice 7.1. Show:

(470) χ̃′′(ω) = − 1

π
P
∫ ∞

−∞
du

χ̃′(u)

(u− ω)
Example 3.1. For the damped harmonic oscillator, one finds:

(471) χ̃(ω) =
−1

ω2 + iγω − ω2
0

Taking the imaginary part

(472) χ̃′′(ω) =
ωγ

(ω2 − ω2
0)

2 + ω2γ2
≥ 0 with χ̃′′(−ω) = −χ̃′′(ω)

As we shall see, χ′′ is related to dissipation. What tells us this equation is general: dissipation
goes through maximum at resonance.

Exercice 7.2. Consider the contour integral Fig. 1. Since there is no pole in the upper
half-plane, the contour integral gives 0.

(473)
∮

c

χ(z)

z − ω = 0

Show :

(474) χ(ω) =
1

iπ
P
∫ −∞

−∞

χ(ω′)

ω′ − ωdω
′

1Don’t forget the ϵ to make sure that all integrals converge.
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Show (separate into real and imaginary parts and use that χ′(ω) is even)

χ′(ω) =
1

π
P
∫ +∞

−∞
dω′ ω

′χ′′(ω′)

ω′2 − ω2
(475)

χ′′(ω) = −ω
π

P
∫ +∞

−∞
dω′ χ′(ω′)

ω′2 − ω2
(476)

4. Dissipation

If the damped harmonic oscillator is in a state of stationary motion, we must provide with
energy. Otherwise, the motion would stop because of the viscosity which dissipates energy.
Assume that the force is harmonic

(477) f(t) = f0 cosωt = Re
[
f0e

iωt
]

We find that x(t) is given by

x(t) = Re

[
f0e

iωt

∫ ∞

0

χ(t′)eiωt
′
]

(478)

= f0Re
[
f0e

iωtχ̃(−ω)
]

(479)
= f0 [χ

′(−ω) cosωt− χ′′(−ω) sinωt](480)
= f0 [χ

′(ω) cosωt+ χ′′(ω) sinωt](481)

Exercice 7.3. Show that that one obtains the same result if one chooses

(482) f(t) = f0 cosωt = Re
[
f0e

−iωt
]

As a consequence, the real part χ̃′(ω) governs the response which is in phase with the
excitation. On the other hand, the imaginary part χ̃′′(ω) controls the out of phase response.

The power dissipated per unit time is equal to the work done by the external force per unit
time. We have:

(483)
dW

dt
= f0ẋ(t) cosωt

Using (540) and averaging over time gives

(484) ⟨dW
dt
⟩ = 1

2
ωf 2

0 χ̃
′′(ω)

Because ⟨dW/dt⟩ > 0, we have ωχ̃′′(ω) > 0. for a passive system. For an active non-equilibrium
system producing energy, χ̃′′(ω) can be negative. This proof is general and applies to a wide
class of systems. Anyway, we have shown that the imaginary part χ̃′′(ω) is related to dissipation.

5. The fluctuation dissipation theorem: A preview

What we have said for the harmonic oscillator can be stated in a very general way. If we
pertub a system out of equilibrium by applying an external or force, we can always define
a response function with the same properties as above. It took Onsager to realize that the
way a system responses to a perturbation - which creates a fluctuation - is connected to the
way that the same fluctuation decays when the system is at equilibrium (spontaneous thermal
fluctuation without force). Consider a system at equilibrium with Hamiltonian H0. We are
going to perturb this system by applying a force f(t) which depends on time. Thus the system
is driven out of equilibrium by the force. The total Hamiltonian becomes therefore

(485) H = H0 − f(t)A
where A is the conjugate variable to the force. Let us give two examples. For a gaz, the force is
nothing that a change in pressure and the conjugate variable (within a minus sign) is the change
in volume. For a polymer, f(t) is a real force, and A is the end-to-end distance. Note that the
conjugate variable to the force is not necessarily the one which is measured (i.e. the variable
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measured as the response to the applied force). Consider, for example, a particle immersed
in a viscous fluid. The conjugate variable to the force is the position, since the work is the
displacement times the force and one measures the speed of the particle which is proportional
to the force.

Le us consider first the case where there is no force. We can calculate and and measure
⟨A⟩0 at equilibrium. Since A fluctuates in time, we take the average. Fluctuations in A are
correlated and we can measure their correlations by considering the first cumulant:

(486) C(t) = ⟨A(t)A(0)⟩0 − ⟨A(0)2⟩0
It should be noted that correlation are directly accessible in scattering experiments.

Let us now change the stage and add a force. The system is driven out of equilibrium and
the most general linear relationship we can write is

(487) ⟨A(t)⟩ = ⟨A(t)⟩0 +
∫ t

−∞
dt′ χ(t, t′)f(t′)

This relationship respects causality, so that the upper limit in the integral cannot exceed t.
Otherwise, the response of the system at time t would depend on the force at time later than t.

We know remark that because of time translational invariance:

(488)
C(t) = C(−t)

χ(t, t′) = χ(t− t′, 0)
We claim the following. The results of the two different experiments (measuring the fluctuations
and measuring the response function) are related

(489) kBTχ(t) = −
dC

dt

This will be proved in the next chapter. This is the so-called fluctuation dissipation theorem.
The reason why it is called this way is that the Fourier transform

(490) χ̃(ω) =

∫ +∞

0

dt eiωtχ(t) C̃(ω) =

∫ +∞

−∞
dt eiωtC(t)

are related to each other by

(491) C̃(ω) =
kBT

ω
χ̃′′(ω)

where χ̃(ω) = χ̃′(ω)+iχ̃′′(ω). Since χ̃′′(ω) is related to the dissipation, the previous relationship
connects the fluctuations to the dissipation.

6. Hydrodynamic Description

How a macroscopic variable (which is conserved) can relax ? Let us consider a magnetic
system with spin variable σ(x). The total magnetization is

(492) M =
∑

i

σ(x− xi(t))

where the spin on the particle i moves with the particle i. The question we want to address
is know how a fluctuation relaxes. The spin variable is general and can thought as a density
ρ(x, t). Typically, we have the equation of conservation (particle are not created nor destroyed)

(493) ∂tM(x, t) = −∇ · j(x, t)
where j(x, t) is the magnetic current. j is simply the magnetic moment times the velocity:

(494) j =
∑

i

σivi
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The equation of conservation (493) is equivalent to the condition:

(495)
d

dt

∫
dxM(x, t) = 0

Eq. (493) does not give a complete description. We must know the relations between the
current and the magnetization. The traditional way to solve the problem is to postulate a
constitutive equation

(496) j = −D∇M(x, t)

where, in general, D is a phenomenological transport coefficient. Here, it is a simple diffusion
coefficient as for the classical diffusion problem for particles. Using the equation of conservation,
we must solve:

(497) ∂tM−D∇2M = 0

To solve this equation, we assume some initial magnetization modulation and Fourier transform
the initial condition:

(498) M(k, 0) =

∫
dxe−ik·xM(x, 0)

Without loss of generality, we take:

(499) M(k = 0, 0) = 0

since, if M(x, t) solve (497), M(x, t)− Cste. is also a solution.
Fourier transform in space the last equation

(500) M(k, t) =

∫
dxe−ik·xM(x, t)

where we use the same symbol for the function and its spatial Fourier transform. We also
Laplace transform the last equation in time.

(501) M̃(k, z) =

∫ ∞

0

dtM(k, t)eizt

where z is a C number in the half plane Im z ≥ 0.
Because

(502)
∫
dzeizt∂tM(k, t) =

[
eiztM(k, t)

]+∞
t=0
−
∫
dt∂t

[
eizt
]
M(k, t)

We get

(503) M̃(k, z) =
i

z + iDk2
M(k, 0)

Since M(k, 0) is given by the initial conditions, the last equation tell us how the initial condition
spreads with time through the system.

From (503), the solution M̃(k, z) is an analytic function in the C-plane but at the the point
z = −iDk2. The pole for z = −iDk2 is characteristic of a hydrodynamic mode. Taking the
inverse Laplace transform, we get:

(504) M(k, t) = e−Dk2tM(k, t)

This equation is characteristic of a hydrodynamic mode. It is exponentially damped with a
time scale 1/Dk2 tending to infinity in the long wavelength limit k→ 0.

This was foreseen. The system has a priori many channels to relax a perturbation. We
have, however, a conservation law. This conservation law tells us that for a fluctuation to relax,
matter or spin must be transported in space via diffusion and transport takes times to relax
long wavelength fluctuations.
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We are now in position to see how an initial perturbation relaxes. Assuming the initial
condition M(x, 0) = M0δ(x), we get the classical result (in 3 dimensions)

(505) <M(x, t) >=
M0

(4πDt)3/2
exp
{[
−x2/6Dt

]}

Remark. To conclude, M is what one calls a slow variable. The relaxation time of M(k, 0)
diverges in the k → 0 limit, i.e. when the size of the system goes to infinity. Slow variables are
macroscopic variables where we can write a phenomenological equation. Fast variables relaxes
on very short time scales and will give noise in the equation for the slow variables. Including
noise, we will see that the most general equation takes the form
(506) ∂tM = D∇2M+ ATη(x, t)

where T is the temperture, A some constant to be evaluated and η(x, t) a white noise term.
There are 3 types of slow variables:
(1) Quantities which are conserved (i. e. concentration);
(2) Quantities with a soft mode due to a global symmetry (also called Nambu-Goldstone

mode);
(3) Critical variables in the vicinity of a critical point with the critical slowing down

phenomenon.



CHAPTER 8

LINEAR RESPONSE THEORY

1. The micro-canonical ensemble

The microcanonical ensemble is an equilibrium description as an ensemble of all possible
initial conditions with energy E. We calculate the properties of this ensemble by averaging
over states with energies in a shell (E, E + δE) taking the limit δE → 0. δE is introduced
by hand in order to do statistics. In the quantum case, δE is larger than the level spacing. It
should be noted that δE has nothing to do with the incertitude principle due to Heisenberg.
It is introduced by hand, because we want to do statistics. We define the phase-space volume
Ω(E) of the thin shell as:

(507) Ω(E)δE =

∫

E<H(x,p)<E+δE

dx dp

More formally, we can write the energy shell E < H(x, p) < E + δE in terms of the Heaviside
step function Θ(x) = 1, if x > 0 and 0 otherwise. We see that

(508) Θ(E + δE −H)−Θ(E −H)

takes the value 1 in the energy shell and 0 other where. In the limit δE → 0, we can write ΩE

as a derivative:

Ω(E)δE =

∫

E<H(x,p)<E+δE

dx dp =

∫
[Θ(E + δE −H)−Θ(E −H)] dx dp

= δE
∂

∂E

∫
dp dx θ(E −H)

(509)

Since all the states with the shell have equal probability, the expectation of a general operator
O is:

< O > =
1

Ω(E)

∫
dp dx [Θ(E + δE −H)−Θ(E −H)]O(x, p) dx dp

=
1

Ω(E)

∂

∂E

∫
dp dxΘ(E −H)O(x, p) dx dp

(510)

Since the derivative of the Heaviside function is the Dirac’s function, we have:
(511)

Ω(E) =

∫
δ(E −H(x, p))dx dp < O >=

1

Ω(E)

∫
dp dx δ(E −H(x, p))O(x, p) dx dp

which means that the probability, or the probability measure, is δ(E −H(x, p)).
This equation can be written in an other way. Recall that we consider an isolated system

of energy E. Let B be an observable and Ω(E,B) be the number of configurations of energy

85
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E for which the observable takes the value B. The probability P (B) to get B is:

(512) P (B) =
Ω(E,B)∑
B′ Ω(E,B′)

The Bolzmann’s entropy is defined as:

(513) S(E,B) = kB lnΩ(E,B)

and the microcanonical temperature as:

(514)
1

T
=
∂S

∂E

∣∣∣∣
Bi

where all other extensive variables, i.e. densities Bi, are kept fixed.

2. Macroscopic Einstein fluctuation theory

Let B be an extensive quantity, i.e. proportional of the number of molecules or of the
volume, different from the energy. We work in the micro-canonical ensemble. At equilibrium
the probability of observing a value B different from the equilibrium value is given by the
number of configurations Ω(E,B + δB). Using (513)

(515) P (δB) ∝ eS(Eeq ,Beq+δB)

where S is the entropy and Eeq the energy of the equilibrium configuration. Using stationarity of
the entropy with respect to variations ofB (recall that the value ofB we observe at equibilibrium
maximises the entropy, so that the first order term in the Taylor expansion cancels out)

(516) S(Eeq, B) = S(Eeq, Beq) +
(δB)2

2

∂S2

∂B2

∣∣∣∣
Eeq ,Aeq

+ . . .

since Beq is a maximum. It follows that the second derivative is negative (otherwise, fluctuations
will growth). From the definition of entropy, the first derivative of the entropy with respect to
the extensive variable is the conjugate intensive variable . The second derivative is, therefore,
inversely proportional to a susceptibility1

(517)
∂2S

∂B2

∣∣∣∣
Eeq

= − 1

TχB

< 0

and the probability to observe a fluctuation is therefore given by:

(518) P (δB) =
1√

2πTχB

e
− (δB)2

2TχB

Because P (δB) is Gaussian, we have:

(519) TχB =< B2 > − < B >2

We shall latter on that χB is a susceptibility. From (517), χB is an extensive quantity. (519)
shows that the fluctuations of B are sub-extensive, i.e. ∝

√
V . This result is not trivial. As we

shall see, (519) is an example of the fluctuation-dissipation theorem.
A consequence of (517) is a follows. If the susceptibility χB is large, the fluctuations of the

quantity B are also large. This is precisely what happens at a critical point (see lectures on
critical phenomena and renormalization group). At a critical point, T = Tc (critical tempera-
ture) where the the system experiences a continuous transition, the susceptibility diverges. If
B corresponds to the magnetization M , this means that the magnetic fluctuations are large.

1We use
∂x

∂y
=

[
∂y

∂x

]−1

.
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This approach is initially due to Einstein who proposed formula (515) for the probability of
a fluctuation. The point of view we have developed in this section is the thermodynamics
point of view where entropy is defined as the fundamental quantity. For a fluctuation, the
thermodynamic entropy change is:

(520) ∆S = −CV (δT )
2

2T 2
− 1

2TκT

(δV )2

V
− ∂

∂N

(µ
T

) (δN)2

2

In what follows, we will start from the microscopic point of view and derive directly the fluc-
tuation dissipation theorem.

3. The fluctuation-dissipation theorem

Assume first that the system is in equilibrium at temperature T . The time-independent
distribution is

(521) ρ(p, q) =
1

Z
e−βH(p,q)

where p, q are N momenta and positions. An equilibrium average of a dynamical variable
A(p, q) is taken as

(522) < A >=

∫
dpdq A(p, q)ρ(p, q)

Let us perturb the system with a time-independent potential V .
(523) H → H + V with V = −fA
where f is a numerical factor controlling the strength of the perturbation. Thus, we can take
the limit f → 0 and apply this way a small perturbation. We limit ourselves to linear order in
f . To order f , the new partition function is (by Taylor expanding the Bolzmann’s factor)

(524) Z(H + V ) =
Z

Z

∫
dpdq e−βH(1− βV ) = Z(1− β < V >)

where < . . . > means average with respet to the unperturbed Hamiltonian (f = 0).
Let us introduce a second dynamical variable B(p, q). B is arbitrary. The true average B̄

to first order in f is

B̄ =
1

Z(1− β < V >)

∫
dpdq e−βH(1− βV )B(p, q)(525)

= (1 + β < V >)(< B > −β < V B >)(526)
= < B > +β (< B >< V > − < V B >) =< B > −β < V B >c(527)

where we have identified the connected part
(528) < V B >c=< V B > − < V >< B >

The variation of B is therefore
(529) B̄− < B >= −β < V B >c= βf < BA >c

The static susceptibility χBA is the derivative of the response B̄− < B > with respect to
f . We find

(530) χBA =
∂B̄

∂f
= β < BA >c

This is the fluctuation-dissipation theorem2. The response of the system to a perturbation
is given by the connected part of the correlation function β < BA >c with respect to the
unperturbed Hamiltonian. Expression (530) is very useful. We do not need to calculate
the full partition function with a magnetic field which is generally not possible. It suffices to
calculate the cumulant at zero field which is generally much more simpler.

2Or the fluctuation-response theorem
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1.3. CLASSICAL LINEAR RESPONSE THEORY 13

where we have defined the connected part ⟨V B⟩c of ⟨V B⟩ as ⟨V B⟩ − ⟨V ⟩⟨B⟩, so that the variation of B,
δB is

δB = B − ⟨B⟩ = −β⟨V B⟩c = βf⟨BA⟩c (1.32)

The static susceptibility χBA is the derivative of the response δB (or of B) with respect to the force f

χBA =
∂B

∂f
= β⟨BA⟩c (1.33)

This is the fluctuation-response theorem: the response of the system to a small perturbation, described
by χBA, is governed by the equilibrium fluctuation ⟨BA⟩c.

1.3.2 Dynamical susceptibility and the fluctuation-dissipation theorem

Let us now assume the following situation: the perturbation V is applied from t = −∞ to t = 0 and
switched off at t = 0

H1(p, q) = H(p, q) − fA(p, q) t < 0

= H(p, q) t > 0
(1.34)

δB

−fA

H

t

Figure 1.4: Schematic picture of the time evolution.

Now, the average value of B, B, is no longer time-independent for t > 0, because the distribution function
ρ(p, q) is determined by H1, while A evolves with H . In order to evaluate B, we work in the analogue
of the Heisenberg picture: the probability distribution is given by its value at t = 0, exp(−βH1)/Z(H1).
Then we get from (1.32) (see figure 1.4 for a schematic picture)

δB(t) = B(t) − ⟨B⟩ = βf⟨B(t)A(0)⟩c (1.35)

where, as usual, A(0) = A(p, q). Note that the correct boundary condition (1.32) is ensured at t = 0

δB(t = 0) = βf⟨B(0)A(0)⟩c

The function ⟨B(t)A(0)⟩c is the (connected) equilibrium time correlation function of B and A, also called
the Kubo function CBA(t)

CBA(t) = ⟨B(t)A(0)⟩c (1.36)

The dynamical susceptibility is nothing other than the time-derivative of the Kubo function. To see, it
let us write from linear response in the form (1.8)

δB(t) =

∫ t

−∞
dt′ χBA(t − t′)f(t′)

Figure 1. The magnetic field is switched off at t = 0 and the magnetization
relaxes to zero.

Exercice 8.1. Suppose we wish to compute the electric susceptibility χ of an ideal gas
of nonpolarizable dipolar molecules with dipole moment µ. Using an equivalent expression as
(530), show that the polarization Px along the field E = Exûx is (density = N/V )

(531) Px =
N

V

µ2

3kBT
Ex

4. The dynamical susceptibility and the fluctuation dissipation theorem

Let us now assume that the perturbation is applied at t = −∞ but is switched off at t = 0,
see Fig. 1. The question we are asking is as follows: How does the system relax back to
equilibrium ? The total Hamiltonian is therefore time-dependent

(532) H1(p, q) =

{
H0p, q)− fA(p, q) if t < 0

H0(p, q) if t > 0

Again, the notation are standard. It may be useful to think of f as a magnetic field H and of
B = A as the magnetization M .

For convenience, we may assume that the average of B in the unperturbed system vanishes.
To understand how < B(t) > relaxes to equilibrium on average, we must average over all
initial conditions at t = 0 in phase space. An initial condition occur with probability ∝
exp{−β [−β(H0 − fA(t = 0))]} and we average over all possible initial conditions at t = 0. If
the system started at some point Γ in phase space at t = 0

(533) < B(t) >=

∫
dΓ exp{[−β(H0 − fA(t = 0))]}B(t)∫
dΓ exp{[−β(H0 − fA(t = 0))]}

where B(t) depends on the initial conditions (the time evolution of B(t) will be given by the
Langevin equation in the next chapter). In the limit of a small perturbation, we can write

(534) < B(t) >= βf

∫
dΓ exp{[−βH0]}A(0)B(t)∫

dΓ exp{[−βH0]}
or (if < B(t) >0 in the unperturbed system does not vanish)

(535) < B(t) > − < B(t) >0= βf < B(t)A(0) >c

The key point is that this correlation describes the decay of a spontaneous fluctuation in B at
equilibrium, since the average is done with respect to the unperturbed Hamiltonian.

The function < B(t)A(0) >c is known as a Kubo function. In the limit where t goes to
infinity, B(t) is not correlated with A(0) and the correlation function must tend to 0:

(536) CBA(t) =< B(t)A(0) >c→ 0 as t→∞
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Example 4.1. Consider one again the example of a dipolar molecule in an electrical field
E. The perturbation is −ExPx. When the field is switched off, this dipole moment decays as

(537) < Px(t) >= βEx < Px(0)Px(t) >

In other words, the systems returns to equilibrium in a way that the derivative of the
observable δB̄ with respect to f is proportional to the unperturbed correlation function. This
the essence of the Onsager regression hypothesis. The system can be brought out of equilibrium
either by adding a small magnetic field or because of a small random fluctuations. The system
goes back to equilibrium in the same way for both processes.

To connect this correlation function with the dynamical susceptibility, we recall the general
definition of the susceptibility

(538) < δB >=< B(t) > − < B(t) >0=

∫ t

−∞
dt′χBA(t− t′)f(t′)

In the a situation similar as before, where the field is switched off at t = 0, this expression
becomes

(539) < δB(t) >= f

∫ 0

−∞
dt′χBA(t− t′) = f

∫ ∞

t

dt′χBA(t
′)

Taking the time-derivative, we get using (535)

(540)
dδB̄

dt
= βfĊBA(t) =

{
−fχBA(t) for t > 0

= 0 otherwise

where the last equality comes from the fact that < B > is constant for t < 0.
This equation can be rewritten as

(541) χBA(t) = −βθ(t)ĊBA(t) = −βθ(t) < A(0)Ḃ(t) >c

This is the most general form we can get. The dynamical response function is connected to the
time derivative of a correlation function.

To make things simpler, let us take B = A. From time translational invariance : <
A(t)A(0) >=< A(0)A(−t) >=< A(−t)A(0) >. Therefore, C(t) =< A(0)A(t) >c is an even
function of t and its derivative is an odd function of t. This is precisely the definition of χo(t).
Recall

(542) χo(t) =
1

2
(χ(t)− χ(−t))

which means

(543) χ(t) = 2θ(t)χo(t)

the Fourier transform of χo(t) is iχ′′(ω) After Fourier transforming (616), we arrive at

(544) χ̃′′(ω) =
1

2
βωC̃(ω)

Since the odd part of χ(t) is related to energy dissipation, energy dissipation is also related
to Kubo correlation function (i.e. a fluctuation). The usefulness of (616) is that we have a
microscopic equation to calculate the susceptibility (it is enough to calculate the correlation
function to get the imaginary part of the susceptibility. Then, we apply the Kramer-Kronig
relationship to get the real part).

Exercice 8.2. To give a specific example, consider the mobility of a molecule in an external
field Fx. The steady-state velocity is vx = µFx.

(1) What is the perturbed Hamiltonian ?
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(2) Using our the preceding discussion, show

(545) < vx(t) >= Fx

∫ ∞

0

dτχvx,x(τ)

Use stationarity for the correlation function to show

(546)
d

dt
< A(t)B(t+ t′) >= 0

and find

(547) µ = β

∫ ∞

0

dt < vx(0)vx(t) >

Exercice 8.3. Consider an isolated system consisting of two parts. A left part and a right
part (these parts communicate arbitrarily). Let NR(t) be the number of particles in the right
part of the system and we consider the following total energy

(548) E = E0 − V (t)Nr(t)

if the potential V (t) varies over time, this leads to a variation in the number of particles NR(t)
in the right part of the system. Recall the fluctuation dissipation theorem

(549) CAB(t) = kT

∫ +∞

t

χAB(t
′)dt′

Assume that the system is in equilibrium for t < 0 with V (t = 0) and that V (t) is suddenly
increased at t = 0 to a constant value V

(550) V (t) =

{
0 for t < 0

V for t > 0

(1) Apply linear response theory and give a general expression for ⟨NR(t)⟩V − ⟨NR(t)⟩0.
(2) By computing the difference

(551)
∫ ∞

0

χ(t′)dt′ −
∫ ∞

t

χ(t′)dt′

show

(552) ⟨NR(t)⟩V − ⟨NR(0)⟩V =
βV

2
⟨(NR(t)−NR(0))

2⟩0

5. The electrical conductivity

The question is how do we calculate the electrical conductivity. But there is a problem. If
we switch on an electrical field, we put the system in a non-equilibrium stationary state and
the preceding analysis does not apply (recall that if we switch on a magnetic field, we assume
that the system reaches equilibriumso that we can calculate the magnetization using a partition
function. If the system is out of equilibrium, this approach makes no sense, since there is no
partition function for non equilibrium systems). The trick is to switch on/off a weak uniform
vector potential A. The Hamiltonian becomes

(553) H =
∑

i=1,N

1

2m

(
pi −

e

c
A
)2

The system will be in equilibrium. If we abruptly switch off the vector potential A, we generate
an electrical field recall, that there is no electrical potential)

(554) E = −1

c
Ȧ

so that E will be an "infinitesimal" delta function in time.
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To first order in A, the Hamiltonian reads as

(555)
H = H0 −

A

c

∫
ddr

∑

i=1,N

e

m
piδ(ri − r)

= H0 −
A

c

∫
ddrj(r)

This is the same kind of formula as before (see (532)), except that we have now an integral
over the volume V

From this, it follows that the average current density at time t due to perturbation theory
is given by

(556) < j(t) >=
A

cV kBT

∫∫
ddrddr′ < j(r, 0)j(r′, t) >

where we have divided by the volume to get an extensive quantity. To calculate the electrical
conductivity σ(t− t′), we notice that

(557)
< j(t) > =

∫ t

−∞
σ(t− t′)E(t′)

= σ(t)
A

c
since

(558) E =
A

c
δ(t)

when the potential vector is switched off (we take the derivative of −θ(t)). From this it imme-
diatly follows that

(559) σ(t) =
1

V kBT

∫∫
ddrddr′ < j(r, 0)j(r′, t >

6. The Liouville equation

It will be useful for the following (linear response theory in the general case) to recall some
definitions . The dynamics of a classical systems is governed by Hamilton’s equations (or
equivalent)

(560) ṗ = −∂H
∂q

q̇ =
∂H

∂p

We are often interested in how functions of coordinates and momentum change in time. This
the case for the probability density in phase space which is a function of p and q. If the quantity
of interest is A, then

(561)
dA

dt
=
∂A

∂t
+ ṗ

∂A

∂p
+ q̇

∂A

∂q
or

(562)
dA

dt
=
∂A

∂t
+ {A,H}

where we have defined the Poisson bracket

(563) {A,B} = ∂B

∂p

∂A

∂q
− ∂A

∂p

∂B

∂q

Eq. (562) strongly ressembles the Heisenberg form for the time dependence of a quantum
mechanical operator, the main change being the replacement of the Poisson bracket by a com-
mutator. Specifically,

(564) { , } → [ , ]

iℏ
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So we define the Liouville operator

(565) iL(t)A =

{
{A,H(t)} , classical
[A,H(t)]

iℏ , quantum.

If A does not explicitly depend on time, the general (formal) solution of the equation of motion
is

(566) A(t) = A(t = 0)eiLt

where

(567) eiLt =
∑

n

inLn

n!
tn

As a last point, recall the Liouville theorem: One starts with a phase space in which values
of momentum p and position q specify a phase point. The number density of systems at the
location (p, q) at time t is f(p, q, t). For example, f(p, q, t)d3pd3q gives the number of particles
with positions within d3q of q and momenta within d3p of p. From the distribution f , on can
compute things like the particle current J , and the energy current Je :

(568)
J(q, t) =

∫
ddpf(q, p, t)

p

m

Je(q, t) =

∫
ddpf(q, p, t)ϵ(p)

p

m

Systems, particules or molecules cannot be neither created or destroyed, so the probability
density f satisfies a conservation law, in which ∂f/∂t is minus the divergence of a flux vector:

(569)
∂f

∂t
= −∇.J = −∂Jp

∂p
− ∂Jq

∂q

The six-dimensional flux vector J = (Jp, Jq) is the product fu̇ of the number density f and a
velocity u in a six dimensional space:

(570) u = (ẋ, ẏ, ż, ṗx, ṗy, ṗz)

and ∇ is also a six-dimensional phase space vector

(571) ∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z
,
∂

∂px
,
∂

∂py
,
∂

∂pz

)

From this continuity equation and from the Hamilton equations, it is easy to show that f is
constant, i.e.

(572)
df

dt
= 0 or

∂f

∂t
= −iL(t)f(t)

7. Divertimento : The Schmoluchowsky equation

It is interesting to use the continuity equation (569) to recover Bolzmann’s law in two lines.
We consider the case where we apply an external potential ϕ(x), so that the force on a brownian
particule is −∇ϕ. To go further, we also assume that we are not interested in the momenta of
the particules, so that we work with the distribution f(x) alone. In other words, we work with

(573) f(x) =

∫
dp f(x, p)

where, for simplicity, the system is one-dimensional.
If this force derive from a potential ϕ(x), the current is the sum of the usual drift term and

a mobility term

(574) J = −µf(x)∇ϕ−D∇f
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where the mobility µ is yet undetermined. Eq. (574) is a constitutive equation in the sense
that it is an approximation valid in the linear regime. It says that the current is the sum of two
terms: one to remove all density fluctuations in space (by diffusion) and an other one which
tells us that things move if we apply a field.

As before, conservation of probability requires

(575)
∂f

∂t
= ∇ · J

and translates into

(576)
∂f

∂t
=

∂

∂x
[−µf(x)∇ϕ−D∇f ]

Assuming stationarity
−µf(x)∇ϕ−D∇f = 0

or
df

dx
= − µ

D

dϕ

dx
f(x)

(577)

whose solution is given by

(578) f(x) =
1

Z
e−

µ
D
ϕ(x)

where Z is some normalization constant. Remark that we have made no statement concerning
equilibrium and we have only hypothetized that the process is stationary. If the process at
equilibrium, we recover the Bolzmann’s distribution if the Einstein relation holds

(579)
µ

D
=

1

kT
Although this derivation is general, it is interesting to state clearly the hypotheses tacitly made
to get (576). Since the probability f(x, t) does depend only on the position and not on the
speed, we have tacitly assumed that the speed relaxes very fast to some local equilibrium.
Actually, (576) is only valid in the strong friction limit.

8. Time-dependent perturbation

We focus on the distribution function f(p, q) (or the density matrix). For what follows, we
write the Hamiltonian as

(580) H(t) = H0 +H1(t)

and the Liouville operator becomes:

(581) L(t) = L0 + L1(t)

where H0 is the time independent part of the Hamiltonian which governs the equilibrium part
and where H1(t) is responsible for taking the system out of equilibrium, and as such, is time-
dependent. In addition, we make two assumptions:

(1) We start from equilibrium in the distant past:

(582) As t→ −∞, H1(t)→ 0 f(t)→∝ e−βH0

(2) H1(t) is always small enough such that perturbation is valid.
The perturbation is switched on adiabatically (meaning in a very smooth way), so that the
system is stationary df/dt = 0. This means:

(583)
∂f

∂t
= −iL(t)f(t)

with solution:

(584) f(t) = feq −
∫ t

−∞
ds e−iL0(t−s)iL1(s)f(s)
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This can checked by direct substitution. Eq. (584) is an integral equation for f(t), since f(t)
appears on both sides. To find the solution as a series, we iterate this equation

(585) f(t) = feq −
∫ t

−∞
ds e−iL0(t−s)iL1(s)

[
feq −

∫ s

−∞
ds1 e

−iL0(t−s1)iL1(s1)

]

and so on. Iterating one more time, we see that we get a power series in L1(t). In particular,
stopping at the linear order

(586) f(t) = feq −
∫ t

−∞
ds e−iL0(t−s)iL1(s)feq(s)

9. Kubo relationship

To compute the conductivity as a correlation function, we shall use the quantum mechanical
approach. In quantum mechanics, the average of an operator is computed by taking the trace

(587) < B(t) >= Tr (Bf(t))

Hence,

(588) < B(t) > − < B >eq= −
∫ t

−∞

ds

iℏ
Tr
(
Be−iH0(t−s)/ℏ [feq, H1(s)] e

iH0(t−s)/ℏ)

where we have expressed the quantum mechanical Liouville operator, e−iL0t, in terms of the
quantum mechanical operators, e−iH0t/ℏ.

The trace is invariant to cyclic permutations

(589) Tr(ABC) = Tr(BCA) = Tr(CAB)

and we use the Heisenberg representation

(590) B(t) = eiL0tB = eiH0t/ℏBe−iH0t/ℏ

It follows that

< B(t) > − < B >eq= = −
∫ t

−∞
ds
iℏ (B(s− t) [feq, H1(s)])(591)

=
∫ t

−∞ ds<[B(s−t),H1(s)]>eq

iℏ(592)

In order to proceed, we have to specify the form of the perturbation. A general form is

(593) H1(t) = −
∫
ddrA(r)F (r, t)

where A represents things like particle densities, charge densities etc. F (t) represents fields like
electrical, gravitational or magnetic fields. To simplify our notations, we write

(594) H1(t) = −A ⋆ F

to get rid of the volume integral.
We have

(595) < B(t) > − < B >eq=

∫ t

−∞
ds
i

ℏ
< [B(s− t), A] >eq ⋆F (s)

Again, we can make the standard correspondence

(596)
1

iℏ
[. . . , . . .]→ {. . . , . . .}



11. QUANTUM LINEAR RESPONSE THEORY 95

< B(t) > − < B >eq = −
∫ t

−∞
ds < {B(s− t), A} >eq ⋆F (s)(597)

= −β
∫ t

−∞
ds < {B(s− t), H0}A >eq ⋆F (s)(598)

= −β
∫ t

−∞
ds < Ḃ(s− t)A >eq ⋆F (s)(599)

which means that the dynamical susceptibility is a correlation function .

10. Time-inversion symmetry

Under time-inversion symmetry:

(600) I(p, q) = (−p, q)
and observable have symmetries:

(601) A(I(x)) = ϵAA(x) ϵA = ±1
If the Hamitonian is time-reversal symmetric, then

(602) CBA(t) =< δB(t)δA(0) >eq= ϵBϵA < δB(−t)δA(0) >eq= ϵBϵACBA(−t)

11. Quantum linear response theory

The quantum case is more technical. Operators, however, do not commute. For this reason,
correlation functions are defined through a commutator

(603) χ′′
BA(t) =

1

2
< [B(t), A(0)] >

and the dynamical susceptibility is

(604) χBA(t) = −iθ(t) < B(t), A(0) >

where A(t) is written on the Heisenberg picture

(605) A(t) = eiHt/ℏA(0)e−iHt/ℏ

Averages are taken with respect the Hamiltonian by taking the trace.
The relationship between the dissipation and the correlation function is different from the

classical case

(606) χ̃′′
BA(ω) =

1

2ℏ
(
1− e−ℏω/(kBT )

)
< B(t)A(0) >c

Exercice 8.4. A Green-Kubo formula is a relationship between a transport coefficient and
a correlation function at equilibrium. Time correlation functions play the same role as the
equilibrium partition function, meaning that we can calculate the transport coefficients if we
know how to calculate the auto-correlation functions. This may me difficult, but we know how
to start. Correlation functions are measurable in experiments and in numerical simulations, see
Fig. 2.

(1) Consider Fig. 2. Draw on the same figure the velocity auto-correlation function for a
perfect gaz.

(2) Consider a Brownian particle. We define the diffusion coefficient from the second
moment of the displacement as

(607) D = lim
∆t→0

1

6

⟨∆R2⟩
∆t
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Figure 2. Velocity auto-correlation functions for a gaz, a liquid and solid.

Replace the displacement by a time integral of the velocity

(608) ∆R =

∫ ∆t

0

dsv(s)

(3) Change the variable τ = s − s′. Do one of the integral and show that the diffusion
coefficient is

(609) D =
1

3

∫ ∆t

0

ds ⟨v(0).v(s)⟩

Exercice 8.5. Diffusion noise refers to the resistance fluctuations caused by a diffusion
process and is measured through voltage fluctuations in the presence of a constant applied
current (or Vice versa), i.e., in the configuration where 1/f noise is usually observed. The
measured quantity is proportional is proportional to

(610) S(ω) =

∫ ∞

0

dt cos(ωt)
⟨∆N(t)∆N(0)⟩

N2

where N2 is the square of the number of carriers enclosed within the electrodes, while ∆N(t)
is the fluctuation of diffusing quantities averaged over sites enclosed by the electrodes. Assume
that the region of interest has size L and define densities as

(611) N(t) =

∫
ddxn(x, t)

For the fluctuations δn(x, t), we define the Fourier transforms in the usual way

(612) δñ(k, ω) =

∫
ddxdt e−ik.xδn(x, t)

(1) Assuming that the field n(x, t) is a diffusing field field with diffusion constant D, show
that

(613) δñ(k, ω) = − 1

iω +Dk2

(2) Assume that the auto correlation function obeys 3

(614) ⟨δn(x, t)δn(x′, t′)⟩ = kBTχδ
(d)(x− x′)

What is ⟨δñ(k, t)δñ(k′, t)⟩?
(3) Assume stationarity. What is ⟨δñ(k, ω)δñ(k′, ω′)⟩?

3Remember δ(d)(x−x′) = δ(x−x′)δ(y−y′)δ(z−z′). Since δ-functions do not exist nature, δ(x−x′) means
a peaked function with a width much smaller than other length scale in the problem.
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(4) Show that

(615) S(ω) =

∫
ddk

(2π)d

∣∣∣∣g(k)
∣∣∣∣
2

k2D

ω2 +Dk2

and determine g(k).

Exercice 8.6. Following our discussion, we have found tat the response function χAB(t)
in terms of the fluctuating quantities δA and B is

(616) χAB(t) = −β
d

dt
⟨B(0)δA(t)⟩0

where ⟨⟩0 refer to thermodynamic average to the unperturbed equilibrium system. Here we
prove this relation in a simple case.

Consider the motion of a particle in a viscous fluid. Here, the perturbing field can be taken
to be an external force applied to the particle. The response of the system is to develop a drift
velocity v. Assume that the the system one-dimensional in the direction of the force (say x).

(1) What is the perturbed hamiltonian ?
(2) What is the most general expression for the ensemble average drift velocity v(t) in

terms of susceptibility χvx(t) ?
(3) From time translation symmetry, we know that

(617) ⟨x(0)v(t)⟩0 = ⟨x(t′)v(t+ t′)⟩0
which canot depend on t′. Use this to show that

(618)
d

dt
⟨x(t′)v(t+ t′)⟩0 = − < v(t′)v(t+ t′)⟩0

(4) We will see in the next chapter that D = µkT , where µ is the mobility. Use a Green-
Kubo formula and prove (616).





CHAPTER 9

NON-EQUILIBRIUM THERMODYNAMICS

1. The Onsager regression principle

The Lars Onsager’s regression hypothesis states the regression of microscopic thermal fluc-
tuations at equilibrium follows the macroscopic law of relaxation of small non-equilibrium
disturbances1.

In order to understand this hypothesis, consider an observable A for a system in thermal
equilibrium. The instantaneous value of A fluctuate in time with spontaneous microscopic
fluctuations:

(619) δA(t) = A(t)− < A >

The average correlation between δA(t) and the instantaneous fluctuation at time zero δA(0) is
described by the correlation function

(620) C(t) =< δA(t)δA(0) >=< A(t)A(0) > − < A >2

where < . . . > represents the equilibrium average. For large t, C(t) vanishes

(621) lim
t→∞

C(t) = 0

since δA(t) becomes uncorrelated to δA(0).
To formulate the Onsager hypothesis, we apply an external force f wich acts during the

time interval t < 0 but becomes identically zero for t > 0.
For t ≤ 0, the ensemble average (assume < A >= 0 for f = 0) of ∆A

(622) ∆A =
< Ae−β(H−fA) >

< e−β(H−fA) >
≃ βf

[
< A(0)A(0) > − < A(0) >2

]
= βfC(0)

where <> means doing all the appropriate integrals in phase space.
For t > 0 , the system evolves according to H instead of H − fA, so δA acquires a time

dependence

(623) ∆A(t) =
< Ae−β(H−fA) >

< e−β(H−fA) >
≃ βf

[
< A(t)A(0) > − < A(0) >2

]
= βfC(t)

This decays of correlations is the regression of microscopic thermal fluctuations referred to
as the Onsager’s hypothesis. Therefore, Onsager’s regression hypothesis can be formulated as
follows

(624)
∆A(t)

∆A(0)
=
C(t)

C(0)

1There is no such hypothesis in the quantum case. This section applies only to the classical case

99
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xi E V N M
Xi −1 −p µ B

Table 1. Examples of extensive variables - generalized force pairs, i.e. conjugate variables.

This property which derives from linear response theory was conjectured some twenty years
(1931) before it was proven to be true is referred as the Onsager regression principle.

To show this property in more details, we will need two things:
(1) An equation for the regression of the fluctuations. This equation is equivalent to the

Langevin equation we will see in the next chapter. A short summary is as follows.
Given a set of extensive variables {ai}i=1,2,..., the return to equilibrium of theses
extensive variables is given by phenomenological laws:

(625)
dai
dt

+
∑

j

Gijaj = 0

where Gi,j is the regression matrix. Then we reinterpret (625) as regression equations
for the average behaviour

(626)
d⟨ai⟩
dt

+
∑

j

Gij⟨aj⟩ = 0

The microscopic fluctuations of the ai’s are described by the stochastic equations

(627)
dai
dt

+
∑

j

Gijaj = Fi(t)

where the random Gaussian forces are determined from the condition of equilibrium.
(2) The assumption of time reversal symmetry, see next paragraph.

2. Entropy production and generalized current and force

In non-equilibrium systems, entropy is produced. The question is to relate this entropy
production to gradients in thermodynamic parameters (temperature, chemical potential). As
before, we will limit ourselves to non-equilibrium systems that are sufficiently close to equilib-
rium and that the macroscopic intensive variables (pressure, temperature, chemical potential,
scalar and vector potentials) are well defined quantities locally. In equilibrium these variables
are constant throughout the system. We will a consider a situation where a spatial gradient in
these quantities is maintained resulting in currents of the appropriate density variables.

Intensive variables are conjugate to extensive variables (densities) through the differential
form of the entropy:

(628) ds =
1

T
de− 1

T

∑

i

Xidξi −
1

T

∑

j

µjdnj =
∑

k

ϕkdρk

where e is the energy density, Xi a generalized force and µj the chemical potential of species
j (see table 1. For example, if l is a specific deformation vector, elasticity gives a term of the
form f · dl in (628) to represent the rate of doing reversible work.

A key assumption in irreversible thermodynamics is to assume that the relationship between
the entropy s and the extensive variables ρk is locally the same as for an equilibrium system, see
(628). To derive a model for this, we divide the system into elementary cells of size λ. In a gas,
λ is of the order of the mean free path. Each elementary cell interacts with its environment,
but we can define within each cell a uniform temperature or a uniform density, so that a local
entropy can be defined in the usual way, see (628). This assumption is generally valid if changes
in extensive quantities due to gradients in conjugates forces are less than changes due a typical
fluctuation.
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What happens if we vary spatially the ϕk’s? We assume that there is a conservation law for
each density ρk so that:

(629)
∂ρk
∂t

= −∇ · jk

For what follows, it will be useful to define an entropy current density as:

(630) js =
∑

k

ϕkjk

where the ϕk’s are the same as in (628) and where the sum runs over all extensive variables.
The rate of change in entropy density is the sum of the changes due to the currents and due

the time varying variables:

(631)
ds

dt
=
∂s

∂t
+∇ · Js

where

(632)
∂s

∂t
=
∑

k

ϕk
∂ρk
∂t

is the key concept of rate of entropy production.
Therefore, using (629), the total rate of change in entropy is

(633)
ds

dt
=
∑

k

jk · ∇ϕk

which allows to identify the current densities and the force fields ∇ϕk. Note that the rate of
entropy production is proportional to the gradient in the ϕk’s. This can be understood if we
interpret the gradient in ϕk as the discrete difference in ϕk. To get a current through a cell, we
must apply a a voltage drop, i.e. a difference in voltage between the two sides. If we define the
affinities Fk, this relation can be rewritten as

(634)
ds

dt
=
∑

k

jk · Fk

where the affinities are gradients of local intensive variables (affinity is a term one finds in the
literature, this is why we define it here).

To go further, we must assume a relationship between the current and the generalized force.
As for Ohm’s law (electrical conductivity) and Fick’s law (diffusion), we assume as in linear
response theory that this relationship is linear

(635) ji(r, t) =
∑

k

Lik∇ϕk(r, t) +O(ϕ2
k)

These equations are said to be constitutive equations and the set of Lik are kinetic coefficients.
Note that this is the same linear relation as in the linear response theory and that this is
the most general relation: We retain direct effects ϕi(r, t) → ji(r, t) as well as indirect effects
ϕk(r, t)→ ji(r, t), k ̸= i.

The assumption of microscopic reversibility proposed by Onsager leads to Onsager reci-
procity relations

(636) Lik(B,Ω) = Lki(−B,−Ω)

with B being the magnetic field (odd under time reversal) and Ω being the angular velocity.
The proof of these relations rest on the principle of microscopic reversibility we detail in the
following.
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3. Symmetries and Onsager Relations

The Onsager symmetry relationships are remarquable. If we apply temperature gradients
to a three-dimensional sample (∂T/∂x1, ∂T/∂x2, ∂T/∂x3), then we will observe an electrical
current with components

(637) Ji = −
∑

k=1,3

Li,k
∂T

∂xk

There are a priori 9 independent coefficients Li,k. One may think as usual that the crystallo-
graphic symmetries may reduce the number of independent components to a smaller number.
The symmetries relations Li,k = Lk,i have however nothing to do with these symmetries. There
are due to time reversal symmetry.

4. Phenomenological equations

It is useful to consider simple cases. In the absence of matter flow, temperature diffuses
according to Fourier’s law

(638) Ju = −κ∇T
where κ is the thermal conductivity. This relation applies to insulating materials where heat
conduction corresponds to the movement of phonons. In this case the number of phonons is
not conserved and µ = 0. This may be written as

(639) Ju = κT 2∇(1/T )
so that

(640) κ =
1

T 2
Lu,u

In the absence of heat flow, Fick’s law for diffusion is usually written as

(641) Jn = D∇n
where n is the density. This relation can just be written as

(642) Jn = Ln,n∇µ/T
where D′ is a function of state parameter, but not of their gradient. To see this, assume a
uniform system at uniform temperature. To linear order

(643) ∇µ =
∂µ

∂n

∣∣
T
∇n

so that

(644) D =
1

T

∂µ

∂n

∣∣
T
Ln,n

In the general case where we have both a temperature gradient and an electrical current, we
write for the energy current and for the electrical current

(645)
Ju = Lu,u∇(1/T ) + Lu,n∇(−µ/T )
Jn = Ln,u∇(1/T ) + Ln,n∇(−µ/T )

with the symmetry relation

(646) Lu,n = Ln,u

as experimentally demonstrated by Thomson in 1854. In (645), the chemical potential includes
the electrostatic potential ϕ(r) (charge q)

(647) µ = µ(ϕ = 0) + qϕ(r)

so that at constant temperature for a uniform distribution of particles

(648) Jn = Ln,n∇(−
µ

T
)
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We conclude that the electrical conductivity σ is related to the kinetic coefficient

(649) σ =
q2

T
Ln,n

where we have used the fact that the current density j is related to particle current jn by
j = qjn with j = σE.

Using now the continuity equations, the rate of entropy production may now be written:

(650)
∂s

∂t
= Ju · ∇(1/T ) + Jρ · ∇(−µ/T ) =

∑

α

Jα∇ϕα

or equivalently

(651)
∂s

∂t
=
∑

α,β

Lα,β(∇ϕα) · (∇ϕβ) > 0

5. Microscopic reversibility

Let us consider the fluctuations in two extensive variables, i.e. densities, we will note α1 and
α2. The principle of microscopic reversibility states that the condition probability distribution
obeys the following rule:

(652) P (α1, t+∆t|α2, t) = P (α2, t+∆t|α1, t)

Since conditional probabilities are equivalent to correlation functions, an equivalent assumption
is

(653) < α1(t+∆t)α2(t) >=< α2(t+∆t)α1(t) >

To see that this is very plausible, assume with Onsager2 an abstract process where the α1,2’s
are related to the moments of the energy density which fluctuate in time (d is the dimension
of space)

(654) αi =

∫
ddr riϵ(r) i = 1, . . . d

and the αi’s measure the spatial asymmetry of a given distribution of energy density. For an
homogeneous crystal, the αi’s will fluctuate in time, but their mean is zero. For symmetry
reasons their variance are equal:

(655) < α2
1 >=< α2

2 > < α1α2 >= 0

The principle of microscopic reversibility demands that a displacement α1 in the r1 direction
at time t followed τ seconds later by a displacement α2 in the r2 direction occurs with the
same probability that a displacement α2 at time t followed by α1, τ second later. Energy being
quadratic in the velocity, we see that this principle makes sense if we think that going from one
process to the other amounts reversing the velocities, i.e. making the change t→ −t.

6. Onsager’s relations follows from the principle microscopic reversibility

As before, we suppose that the state of the system is given by a complete set of extensive
variables α1(t), α2(t), . . . , αn(t). We follow the original paper of Onsager and Machlup14, so
that we are forced to change notations (the αi’s where denoted ρi’s before to emphasize the
fact that one can define densities for extensive variables). As before, close to equilibrium, the
entropy is given by the first two terms in the Taylor expansion of S:

(656) S(. . . , αi, . . .) = S(. . . , αi = 0, . . .) +
1

2

∑

l,m

∂2S

∂αlαm

∣∣∣∣∣
∀αj=0

αlαm

2Phys. Rev 15, 405, 1931.
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where we assume αi = 0, ∀i at equilibrium with

(657) ∂S/∂αi

∣∣
αi=0

= 0

According to Einstein fluctuation theory (see previous chapter), the probability for the
system to be in a state with specific values of these variables is

(658) P (α1, α2, . . . , αn) = A exp{[S(α1, α2, . . . , αn)] /kBT}
where A is a normalization factor. We may expand S(α1, α2, . . . , αn) to second order to get the
probability to observe a set of fluctuations α1, α2, . . . , αn:

(659) P (α1, α2, . . . , αn) = C exp






+1

2

∑

l,m

1

kBT

∂2S

∂αlαm

∣∣∣∣∣
∀αj=0

αlαm







where the first equality follows from the Taylor expansion of S.
As before, the conjugated forces are defined as the derivatives with respect to the extensive

variables

(660) Xi =
∂S

∂αi

=
∑

j

∂2S

∂αi∂αj

∣∣∣∣∣
αi=0

αj with
∂2S

∂α2
i

∣∣∣∣∣
αi=0

< 0

Averaging the gaussian probability distribution leads to

(661) < αiXj >= −kBTδi,j
Assume now that the principle of microscopic reversibility holds, i.e.

(662) < αi(t)αj(t+ τ) >=< αj(t)αi(i+ τ) >

We define as before the coefficients Li,j (i.e. we assume that the changes in density are
linearly related to the forces). For our simple theory, there is no spatial gradients and the
"fluxes" of matter, heat, electricity are measured here by the time derivatives of the αi’s:
Ji = α̇i, so that

(663)
dαi

dt
=
∑

j

Li,jXj(t)

The philosophy is the same as before and the rate of changes in quantities is linearly propor-
tional to the forces which cause them. In this simple theory, there is no spatial gradient, since
the system is supposed to be spatially homogeneous, and the equation for the conservation of
the current should be replaced by (663). We will assume that the Lij’s define this way agree
with the previous definition.

Expanding to first order, we have

(664) αj(t+ τ) = αj(t) + τ
d

dt
αj(t) = αj(t) + τ

∑

k

Lj,kXk(t)

where τ is an hydrodynamic time scale (larger than all microscopic time scales, but smaller
than the characteristic time scale of macroscopic averages). We get:

(665) < αi(t)αj(t+ τ) >=< αi(t)αj(t) > −τkBTLj,i

Similarly, < αi(t)αj(t+ τ) > is given by

(666) < αi(t)αj(t+ τ) >=< αj(t)αi(t) > −τkBTLi,j

Comparing the two time correlation functions, we obtain the reciprocal relations

(667) Li,j = Lj,i

from microscopic reversibility.
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Conclusion: For small deviations from equilibrium, where the system is in the linear response
regime, the sate variables αi’s evolve according to the equation

(668) α̇i =
∑

j

Li,jXj

Or, equivalently

(669) Xi =
∑

j

Ri,jα̇j

where (with a magnetic field B)
(670) Li,j(B) = Lj,i(−B) Ri,j(B) = Rj,i(−B)

Entropy production and symmetry properties are the key concepts in the theory of irreversible
processes.

7. The principle of least production of energy

This principle is essentially equivalent to the principle of least production of entropy. As
seen before, de rate of production of entropy (for a clodes system) is

(671) σ =
dS

dt
=
∑

i

∂S

∂αi

α̇i

Thus
(672) σ =

∑

i

α̇iXi(α) =
∑

i,j

LijXiXj

Next, for the purpose of the demonstration, define the function P

(673) P = 2
∑

i

α̇iXi −
∑

ij

LijXiXj

The extremum of this function for given fluxes α̇i, and with respect to variations of the ther-
modynamic forces is determined by the conditions

(674) α̇i −
1

2

∑

j

(Lij + Lji)Xj = 0

We conclude : From an extremum principle, we recover the macroscopic laws α̇i =
∑

j LijXj

if Lij = Lji. It should, however, be remarked that this statement breaks down when a mag-
netic field is present. For this this reason, the principle of microscopic reversibility is more
fundamental.

8. Experimental verification

9. The Bolzmann equation
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Seebeck effect Peltier effect

n =Jq/I

Figure 16.1 The thermoelectric effect is a "cross
effect" between thermodynamic forces and flows.
(a) In the Seebeck effect, two dissimilar metal wires
are joined and the junctions are maintained at
different temperatures. As a result an EMF is
generated. The EMF generated is generally of the
order of 10-5 V per Kelvin of temperature difference
and it may vary from sample to sample. (b) In the
Peltier effect, the two junctions are maintained at
the same temperature and a current is passed through
the system. The current flow drives a heat flow Jq
from one junction to the other. The Peltier· heat
current is generally of the order of 10-5 J S-1 per
amp. [1]

effects were observed and studied in the nineteenth century. Neglecting the cross
effects, some of the well-established phenomenological laws are as follows:

Fourier's law of heat conduction:
Fick's law of diffusion:

Ohm's law of electrical conduction:

Alternative form of Ohms' law:

Jq = -K\7T(x)
Jk = -Dk\7nk(x)

1= V
R

I=E
P

(16.1.3)
(16.1.4)

(16.1.5a)

(16.1.5b)

In these equations, K is the heat conductivity, D k is the diffusion coefficient of
compound kand nk is the concentration of compound k. Ohm's law is usually
stated as (16.1.5a) in which I is the electrical current, R is the resistance and V is
the voltage. It can also. be stated in terms of the electric current density I, the
electric field E and the resistivity p (resistance per unit length per unit area
of cross section). Other quantities in the above equations are as defined in
Table 15.1
As a specific example of the general relation (16.1.2), let us consider the

thermoelectric phenomenon mentioned above (Fig. 16.1). The equations that

Figure 1. After11: The thermoelectric effect is a "cross effect" between thermo-
dynamic forces and flows. (a) In the Seebeck effect, two dissimilar metal wires
are joined and the junctions are maintained at different temperatures. As a result
an EMF is generated. The EMF generated is generally of the order of 10−5V per
Kelvin of temperature difference. (b) In the Peltier effect, the two junctions are
maintained at the same temperature and a current is passed through the system.
The current flow drives a heat flow Jq from one junction to the other.



CHAPTER 10

PATH INTEGRALS AND QUANTUM
DISSIPATION

1. Introduction

In classical mechanics dissipation can often be adequately described by including a velocity
dependent damping term into the equation of motion. Such a phenomenological approach
is no longer possible in quantum mechanics where the Hamilton formalism implies energy
conservation for time-independent Hamiltonians. How do we deal with dissipation in quantum
mechanics ? We will follow Refs.5;10 with the help of Refs.7;23

Such a question arises in macroscopic quantum phenomena where dissipation is connected
to the problem of quantum decoherence. Consider, for example, the canonical problem of decay
from a metastable sate, see Fig. 1. In the high temperature regime, decay will process by the
classical thermal activated process we have studied so far. If the temperature is low enough,
however, decay will process through quantum tunneling. What is the cross-over temperature ?
Do quantum dissipation help or suppress tunneling ?

A suitable model for dissipative quantum systems should both incorporate the idea of a
coupling between the system and its environment. The total Halmiltonian is

(675) H = HS +HB +HSB

Figure 1. Potential used for the decay from a metastable state. If the tem-
perature is low enough, the decays will process through tunneling and not from
thermal activation.

107
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and its consists of three contributions. First, the Hamiltonian of the system degree of freedom

(676) HS =
p2

2m
+ V (q)

models a particle of mass m moving in a potential V (q). Here, we denote the coordinate by q
to facilitate the distinction from the environmental coordinates xn.

The Hamiltonian of the environmental degrees of freedom

(677) HB =
∑

n=1,N

(
p2n
2mn

+
mn

2
ω2
nx

2
n

)

describes a collection of harmonic oscillators.
The coupling defined by the Hamiltonian

(678) HSB = −q
∑

n=1,N

cnxn + q2
∑

n=1,N

c2n
2mnω2

n

is bilinear in the position operators of system and environment (the cn’s are positive coefficients).
As was first pointed out by Caldeira and Leggett, an infinite number of degrees of freedom still
allows for strong damping even if each environmental oscillator couples only weakly to the
system.

For such a system, Ref.13 has shown (see exercice 10.1) that the equation of motion for the
system can be cast into the form:

(679) mq̈ +m

∫ t

0

dsγ(t− s)q̇(s) + ∂V

∂q
= ξ(t)

where the quantities characterizing the environment may be exressed in terms of the spectral
density

(680) J(ω) = π
∑

n=1,N

c2n
mnωn

δ(ω − ωn)

This derivation is valid in all cases: The variables can be either operators (quantum case) or
fields (classical case). Eliminating the environmental degrees of freedom leads to an effective
dissipation for the equation of motion of the system.

(681) γ(t) =
1

m

∑

n=1,N

c2n
mnω2

n

cos(ωnt) =
2

m

∫ ∞

0

dω

π

J(ω)

ω
cos(ωt)

Exercice 10.1.
(1) Write down the equations of motion for the environmental degrees of freedom xn, pn.
(2) The trick for solving the environmental equations of motion consists in treating the

system coordinate q(t) as if it were a given function of time. Using the result above,
show

(682) xn(t) = xn(0) cos(ωnt) +
pn(0)

mnωn

sin(ωnt) +
cn

mnωn

∫ t

0

ds sin(ωn(t− s))q(s)

(3) Insert this result into the equation of motion for the system variable q(t) and show:

(683) γ(t) =
1

m

∑

n=1,N

c2n
mnω2

n

cos(ωnt)

with

(684) ξ(t) =
∑

n=1,N

cn

[(
xn(0)−

cn
mnω2

n

q(0)

)
cos(ωnt)

pn(0)

mnωn

+ sin(ωnt)

]
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2. The picture

From ref.5. We regard the system and its environment as together forming a closed system
(the universe, as we shall denote it for present purposes) which can be described by a Lagrangian
or Hamiltonian, to solve (in principle!) for the motion of the whole and to derive from this
solution a description of the properties of the system (which, of course, would now more properly
be called a subsystem). In this picture the phenomenon of dissipation is simply the transfer
of energy from the single degree of freedom characterising the system to the very complex set
of degrees of freedom describing the environment; it is implicitly assumed that the energy,
once transferred, effectively disappears into the environment and is not recovered within any
time of physical interest (i.e., one treats the mathematical existence of Poincare recurrences
as physically irrelevant). Formally, one assumes that the number of degrees of freedom of the
environment tends to infinity; this assumption is implicit in the replacement of sums by integrals
which we shall carry out without further comment at appropriate stages in the calculation.

3. Path integral and Brownian motion

Let us rewrite the Langevin equation as

(685) ξ(t) = γ
dx

dt
+
dV

dx

The probability that we observe a trajectory x(t) can be calculated by finding the random force
ξ(t) which was needed to generate this trajectory, and then calculating the probability of this
force. We know that the random forces come from a Gaussian distribution,

(686) P [ξ(t)] ∝ exp

{
− 1

4γkBT

∫
dtξ2(t)

}

where the integral sum is a shorthand notation for discrete sums. The prefactor in the expo-
nential allows the retrieve the equal correlation for the noise:

(687) ⟨ξ(t)ξ(t′)⟩ = 2γkBTδ(t− t′)

This can be seen as the joint probability to get P (ξ1, ξ2, . . . , ξn) at times t1, t2, . . . , tn. So its
tempting to say that the probability of observing the trajectory x(t) is

(688) P [x(t)] ∝ exp

{
− 1

4γkBT

∫
dt

(
γ
dx

dt
+
dV

dx

)2
}

and this is almost correct. What is missing the the Jacobian J. Remember that for any two
variables connected by the transformation y = f(x)

(689) Px(x) = Py(y)
dy

dx

and, here, the time t plays the role of the function f(x) with J = dy/dx.
So if J is the Jacobian between x(t) and the random force ξ(t), we have

(690) P [x(t)] ∝ exp

{
− 1

4γkBT

∫
dt

(
γ
dx

dt
+
dV

dx

)2
}
J

The calculation of the Jacobian is a rather difficult task. But we don’t need to do it. We work
in the limit of low temperature. We remark that J is temperature independent, so that the
dominant contribution comes from the integral ∼ exp{−1/T}. We shall, therefore, ignore the
Jacobian and write (688) as the probability the observe a trajectory in the limit T → 0.
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4. Principe variationnel

Nous désirons "démontrer" l’équation de Schrödinger à partir d’un principe plus général qui
est une propriété des équations aux dérivées partielles. Cette démonstration nous permettra de
faire un parallèle entre un problème spécifiquement quantique et une situation classique.

Nous supposons deux choses :
(1) La fonction d’onde obéit à une propriété de propagation. SoitK(x2, t2|x1, t1) l’amplitude

pour que la particule initialement localisée en x1 à t1 soit observée en x2 à t2. Nous
avons la définition de cette amplitude de probabilité.

(691) ψ(x2, t2, x1, t1) = K(x2, t2|x1, t1)ψ(x1, t1)
Fixons l’origine des temps à t1. Pour que la particule soit observée en t2 quelque soit
x1

(692) ψ(x2, t2 − t1) =
∫
K(x2, t2|x1, t1)ψ(x1, t1)dx1

Où K(. . .) est un propagateur. L’Éq. (692) est linéaire, ce qui permet les interférences.
Pour avoir une probabilité d’amplitude d’observer la particule en x2 à t2, il faut bien
qu’elle se trouvait quelque part en t1!

Une fois connu le propagateur K, l’équation (692) est une équation intégrale pour
la fonction d’onde. Nous verrons que c’est l’équation de Schrödinger.

(2) Le propagateur est la somme sur toutes les trajectoires x(t) possibles de l’action fois
i/ℏ

(693) K(x2, t2|x1, t1) =
∫ x(t2)=x2

x(t1)=x1

e
i
ℏ
∫ t2
t1

L(x,ẋ,t)dtD[x(t)]

Cette définition met sur le même pieds tous les chemins, car K(. . .) est une amplitude
de probabilité. En prenant le module au carré de l’intégrant, on démontre que tous les
chemins ont même poids. La constante ℏ intervient, car l’argument de l’exponentielle
doit être un nombre sans dimension.

L’intégrale porte sur tous les chemins possibles. On n’essaiera pas de donner une
définition rigoureuse ni de savoir si une telle somme existe. Elle peut-être a priori
définie comme suit : tous les chemins x(t) sont décomposables en série de Fourier.
Intégrer sur les chemins revient donc à intégrer sur les coefficients de Fourier, ce que
l’on sait faire. Bien sûr, cette définition de démontre pas que l’intégrale existe.

Pourquoi ? Reprenons l’image classique d’une particule classique dont la position est x(t)
à l’instant t. Cette trajectoire correspond à une courbe dans le plan (x, t). Pour aller du
point A(x1, t1) au point B(x2, t2) , nous savons que la particule a choisi une trajectoire très
particulière. Cette trajectoire rend l’action extrémale. Pour chaque trajectoire Γ, nous pouvons
associer une action

(694) S(Γ) =

∫ t2

t1

L(x,
dx

dτ
)dτ

L’amplitude pour aller de A à B par le chemin Γ est noté ϕΓ(B|A). Le propagateur est la
somme de toutes ces amplitudes

(695) K(B|A) =
∫
ϕΓ(B|A)D[Γ]

Dans la pratique, rien ne permet de distinguer un chemin plutôt qu’un autre. Nous postulons
que tous les chemins pour aller de A à B sont égaux pour les probabilités. Autrement dit, les
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ϕΓ(B|A) diffèrent d’un chemin à un autre par un facteur de phase. Nous exigeons que ce facteur
de phase dépende de l’action et nous renormalisons par ℏ pour avoir un nombre sans dimension

(696) ϕΓ(B|A) = e
i
ℏS(Γ)

Dans (695), le signe
∫

est synonyme du signe
∑

. Deux trajectoires Γ1 et Γ2 ne contribuent
pas au propagateur si leur action diffèrent d’un facteur de phase iπℏ car

(697) e
i
ℏS(Γ1) + e

i
ℏS(Γ2) = 0

La somme sur tous les chemins fait donc que les chemins vont presque tous se télescoper
par interférences destructrices. Seuls vont subsister les chemins pour lesquels il est difficile que
faire varier l’action d’un facteur de ℏπ. Mais en perturbant un chemin par une petite variation
x(t)→ x(t)+δx(t), nous faisons varier l’action. Autrement dit, le chemin qui va principalement
contribuer au propagateur est le chemin pour lequel l’action ne varie pas quand la trajectoire
est perturbée et tous les chemins situés dans un voisinage de cette trajectoire classique donnent
des processus d’interférences constructives.

Deux cas se présentent suivant la largeur de la région des processus d’interférences construc-
tives.

(1) Seuls les chemins proches du chemin classique conduisent à des interférences construc-
tives. La situation est dite classique.

(2) Des chemins très différents du chemin classique conduisent à des interférences con-
structives. La situation est alors quantique.

Figure 2. Seuls les chemins dans un voisinage du chemin rendant l’action
extrémale contribuent au propagateur. Le tout est de savoir si ce voisinage est
étroit ou large ...

Calculus

Rappelons ici un théorème utile pour évaluer le comportement asymptotique des intégrales.
Il s’agit d’évaluer:

(698) I =

∫

Ω

dx e−λf(x) avec λ→∞

Lorsque f(x) possède un minimum en x = xmin, le développement limité de f(x) est suffisant:

(699) I ≈ e−λf(xmin)

∫ +∞

−∞
dxe−

λ
2
(x−xmin)

2f
′′
(xmin) avec λ→∞
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Cette approximation est souvent appelée l’approximation du point de selle.
Lorsque l’intégrant est complexe :

(700) I =

∫

Ω

dx e−iλf(x) avec λ→∞

nous avons aussi à l’ordre le plus bas :

(701) I ≈ e−iλf(xmin)

∫ +∞

−∞
dxe−iλ

2
(x−xmin)

2f
′′
(xmin) avec λ→∞

car les parties oscillantes donnent une contribution négligeable sauf au voisinage du minimum
où les oscillations sont les plus faibles. Dans cas, l’approximation est appelée approximation
de la phase stationnaire.

Conséquence. La valeur de la constante ℏ est faible devant 1 et elle va servir d’étalon
pour savoir si une situation est classique ou quantique. Nous faisons λ = 1/ℏ. Si l’intégrale
(693) est bien approximée par le développement limité autour du chemin qui rend l’action

(702)
∫ t2

t1

L(x, ẋ, t)dt

extrémale, on dira que la situation est classique. La seule trajectoire qui importe est celle qui
rend l’action extrémale et nous retrouvons les équations de Newton. Dans le cas contraire, la
situation est quantique.

Figure 3. Différence entre une situation classique et quantique.

Équation de Schrödinger

Nous posons t2 = t1+∆t et nous travaillerons dans la limite ∆t→ 0. Nous supposons donc:

(703) ψ(x, t+∆t) =

∫
K(x, t+∆t, y, t)ψ(y, t)dy

où:

(704) K(x, t+∆t, y, t) =

∫ η(t+∆t)=x

η(t)=y

Dη e
i
ℏ
∫ t+δt
t [m2 η̇2−V (η)]

Lorsque ∆t→ 0, cette équation intégrale pour ψ (K est connue) devient une équation différen-
tielle. Seuls les chemins réguliers donnent une contribution physique. Aussi, lorsque ∆t → 0,
y diffère peu de x dans (704) et:

(705) η̇ =
x− y
∆t
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D’où:

(706)
i

ℏ

∫ t+∆t

t

[m
2
η̇2 − V (η)

]
≈ i

ℏ
m

2

(x− y)2
∆t

− i

ℏ
V (x)∆t

Soit

(707) K(x, t+∆t|y, t) = e
i
ℏ

[
m
2

(x−y)2

∆t
−V (x)∆t

] ∫ η(t+∆t)=x

η(t)=y

D[η]

Comme nous ne savons pas calculer la dernière intégrale, nous posons :

(708) A[∆t] =

∫ η(t+∆t)=x

η(t)=y

D[η]

ce qui ne permet pas de résoudre la difficulté, mais permet de la cacher sous une notation.
Au risque de tuer le suspens, nous montrerons néanmoins que la limite ∆t→ 0 donne :

(709) lim
∆t→0

(∆t)1/2A[∆t] =
( m

2πiℏ

)1/2

Pour la fonction d’onde

(710) ψ(x, t+∆t) =

∫
dy A[∆t]e

i
ℏ

[
m
2

(x−y)2

∆t
−V (x)∆t

]
ψ(y, t)

Comme ∆t → 0 et que les trajectoires sont régulières, la contribution principale de cette
intégrale vient des y voisins de x (la particule n’a pas eu le temps de bouger beaucoup). Posons
y = x+ ϵ:

(711) ψ(x, t+∆t) =

∫
dϵA[∆t]e

i
ℏ

[
m
2

ϵ2

∆t
−V (x)∆t

]
ψ(x+ ϵ, t)

avec le développement de Taylor :

(712) ψ(x+ ϵ, t) = ψ(x, t) + ϵ
dψ

dx
+

1

2
ϵ2
d2ψ

dx2
+O(ϵ3)

Les intégrales sur ϵ sont maintenant des intégrales gaussiennes ! On a :

(713)
∫ +∞

−∞
dx e−ax2

=
(π
a

)1/2
et
∫ +∞

−∞
dx x2e−ax2

=
1

2a

(π
a

)1/2

D’où, utilisant (711)

(714) ψ(x, t+∆t) = A[∆t]e−
i
ℏV (x)∆t

(
2πiℏ∆t
m

)1/2 [
ψ(x) +

1

4

(
2iℏ∆t
m

)
∂2ψ

∂x2

]

Cette équation permet de calculer A[∆t]. En effet, A[∆t] est indépendant de V (x). Donc, on
peut prendre V (x) = 0 et ∆t = 0 dans (714). D’où :

(715) lim
∆t→0

(∆t)1/2A[∆t] =
( m

2πiℏ

)1/2

Soit

(716) ψ(x, t+∆t) = e−
i
ℏV (x)∆t

[
ψ(x) +

iℏ∆t
2m

∂2ψ

∂x2

]

En se limitant au premier ordre en ∆t, nous avons donc :

(717)
∂ψ

∂t
= lim

t→0

ψ(x, t+∆t)− ψ(x, t)
∆t

=
iℏ
2m

∂2ψ

∂x2
− i

ℏ
V (x)ψ(x)

qui n’est autre que l’équation de Schrödinger.
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États stationnaires. Pour un système isolé dans un potentiel indépendant du temps, les
états propres sont de la forme

(718) ψ(r, t) = ψα(r)e
−iEtℏ

avec

(719) Hψα(r) = Eαψα(r)

ψα est donc un fonction propre du de l’opérateur H associé à la valeur propre Eα. Si ψn, n ∈ N ,
désigne une base orthonormée, la théorie des équations différentielles au dérivées partielles
permet d’obtenir le propagateur comme:

(720) K(x2, t2|x1, t1) =
∑

n

ψ∗
n(x1)ψn(x2)e

−i/ℏEn(t2−t1)

K(x2, t2|x1, t1) est la solution unique de l’équation élémentaire

(721) iℏ
∂

∂t2
K() = [− ℏ2

2m

∂2

∂x22
+ V (x2)]K()

avec la condition initiale

(722) K(x2, t1|x1, t1) = δ(x2 − x1)
En d’autres mots, K est une fonction de Green.

This representation of the Green function allows to calculate the K in a few cases.

Example 4.1. Free particle: The corresponding Hamiltonian

(723) H =
p2

2m
has momentum eigenstates

(724) ψp(x) =
1√
2πℏ

exp

{(
i

ℏ
px

)}

Inserting these eigenstates into the representation of the propagator, one finds by virtue of

(725)
∫ +∞

−∞
dx exp

{(
−iax2

)}
=

√
π

ia
=

√
π

a
exp
{(
−iπ

4

)}

the result

(726)
K(x2, t2|x1, t1) =

1

2πℏ

∫
dp exp

{(
− i
ℏ
p2

2m
t

)}
exp

{(
i

ℏ
p(x2 − x1)

)}

=

√
m

2πiℏt
exp

{(
i

ℏ
m(x2 − x1)2

2t

)}

Example 4.2. Driven Harmonic oscillator: As an example, we will consider the
driven harmonic oscillator which is simple enough to allow for an exact solution. In addition,
the propagator will be of use in the discussion of damped quantum systems in later sections.

Our starting point is the Lagrangian

(727) L =
m

2
ẋ2 − m

2
ω2x2 + xf

of a harmonic oscillator with mass m and frequency ω. The force f(t) may be due to an external
field, e.g. an electric field coupling via dipole interaction to a charged particle. In the context
of dissipative quantum mechanics, the harmonic oscillator could represent a degree of freedom
of the environment under the influence of a force exerted by the system.

We will admit that the propagator is

(728) K(x2, t2|x1, t1) =
√

mω

2πℏ| sin(ωt)|e
i
ℏScl−i(π

4
+nπ

2 )
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where n is th integer part of ωt/π. The classical path is solution of the equation of motion

(729) mẍcl +mω2xcl = f(s)

and Scl is the classical action

(730) Scl =

∫ t

0

ds
(m
2
ẋ2cl −

m

2
ω2x2cl + xclf(s)

)

5. Density matrices

The equilibrium density matrix is defined as

(731) ρ =
1

Z

∑

n

e−βEn |n⟩ ⟨n|

where |n⟩ are eigenstates of H. The normalization is provided by the partition function

(732) Z = tr
{
e−βH

}

We can write this density matrix in the coordinate representation

(733) ρ(q, q′) =
1

Z
⟨q| e−βH |q′⟩

which looks like a propagator. In order to write this density matrix as a path integral, recall
that the action is given by

(734) S[q, t] =

∫ t

0

ds

[
m

2

(
dq

ds

)2

− V (q)

]

where we have specified the final time t for clarity. Replacing t by −iℏβ and substituting s by
iτ , one obtains

(735) S[q,−iℏβ] = iSE[q, ℏβ]
where we have introduced the euclidean action

(736) SE[q, ℏβ] =
∫ ℏβ

0

ds

[
m

2

(
dq

dτ

)2

+ V (q)

]

which describes the movement of a particle in an inverted potential −V (q). From this, one
obtains the path-integral representation of the density matrix

(737) ρ(q, q′) =
1

Z

∫
Dq exp

(
−1

ℏ
SE(q)

)

Since we are taking the tr{}, all paths start and end at the same point and we integrate over
this point to get thermal averages.

Exercice 10.2. We want to calculate23

(738) Z(β, f) =

∫
Dq exp

(
−1

ℏ
SG(q, f)

)

where the Gaussian action is defined as

(739) SG(q, f) =

∫ τ/2

−τ/2

dt

[
1

2
mq̇(t)2 +

1

2
mω2q(t)2 − f(t)q(t)

]

with periodic boundary conditions : q(τ/2) = q(−τ/2) (taking periodic boundary conditions is
a pure convenience).

(1) Make the change of variable q(t) = qc(t) + r(t), where qc(t) is determined below.
(2) Integrate by parts if necessary and show that the linear term in r(t) cancels out if qc(t)

is solution of

(740) −q̈c(t) + ω2qc = f(t)/m
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(3) Show that the solution of this equation can be written as

(741) qc(t) =
1

m

∫ τ/2

−τ/2

du∆(t− u)f(u)

where ∆(t) is solution of the equation

(742) −∆̈ + ω2∆ = δ(t)

(4) By Fourier transforming (use residue theorem), show that

(743) ∆(t) =
1

2ω sinh(ωτ/2)
cosh(ω(τ/2− |t|))

which is the Fourier transform of 1/(s2+ω2) with appropriate boundary conditions at
infinity.

(5) Show

(744) ∆(t) =
1

2ω
e−ω|t|, as t→∞

(6) By integrating by parts, show

(745)
SG(q, f) = −

1

2

∫ τ/2

−τ/2

dtqc(t)f(t)

= − 1

2m

∫∫ τ/2

−τ/2

dtdu f(t)∆(t− u)f(u)

(7) Conclude

(746) Z(β, f) = Z(β, f = 0) exp

(
1

2mℏ

∫∫ τ/2

−τ/2

dtdu f(t)∆(t− u)f(u)
)

which is nothing but the continuous analog of (912). The net result of introducing a
driving force is, therefore, to introduce correlations through the kernel ∆(t− u).

The partition function for a single quantum oscillator is easily obtained as

(747) Z(β, f = 0) =
∑

n

eβℏω(n+
1
2
) =

1

2 sinh (ℏβω/2)

This property will be useful when we will analyze the tunneling under the influence
of dissipation, since this equation connects the calculation of the partition function in
the presence of dissipation to the same partition function but for an isolated system.

6. Effective equilibrium density matrix

Recall that the coupling Hamiltonian for the particle with the bath is given by

(748) HSB = −q
∑

n=1,N

cnxn + q2
∑

n=1,N

c2n
2mnω2

n

where the ωn’s are the eigenfrequencies for the path oscillators of position coordinates xn and
coupling strength cn. To compare with the driven oscillator studied in the preceeding section,
we define the effective force f(t) by

(749) f(t) =
∑

n=1,N

cnxn

as in (727). The second term in (748) ...
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Fig. 4.2: Cubic potential as defined by (4.160).

We are now interested in the decay of a metastable state initially prepared in the
potential well at q = 0. As we will see below, the decay rate may be calculated from the
partition function. Unfortunately, for a cubic potential the partition function may not
be obtained exactly. We therefore have to resort to the semiclassical approximation.
In principle, we could proceed as in Section 4.6 and first evaluate the action of all
paths starting and ending at a certain point and then integrate over all these points.
However, for our nonlinear problem this would imply that we include contributions
beyond the semiclassical approximation. Rather it is sufficient to look for extrema
of the action among arbitrary paths and take into account fluctuations around these
extremal paths semiclassically. Then the fluctuations do not have to vanish at the
initial and final time.

4.7.1 Crossover temperature

The classical equation of motion for a cubic potential in the presence of dissipation is
given by

Mq̈cl − Mω2
0qcl +

3

2
Mω2

0

q2
cl

q0
−
∫ h̄β

0
dσk(τ − σ)qcl(σ) = 0 (4.161)

where the dissipative kernel k(τ) was defined in (4.156). Since the integral over k(τ)
vanishes, it is clear that constant solutions at the extrema of the potential, i.e. q = 0
and q = qb, are solutions of (4.161). For high temperatures (corresponding to short
imaginary times) these two paths are the stationary points of the action. Let us first
consider the path which remains in the potential minimum, i.e. at q = 0. Fluctuations
around this path may be described by a Fourier series

ξ(τ) =
+∞∑

n=−∞
ξneiνnτ (4.162)

Figure 4. Sketch of a cubic potential.

To obtain the effective density matrix for the system, we trace out the bath degrees of
freedom. In representation coordinates, the matrix elements are

(750)

ρ(qi, qf ) = trB ρ(q, xi, q
′, x′f )

=
1

Z(β, f)

∫
Dq̄

∫ ∏

i

dxi

∮
Dx̄ exp

(
−1

ℏ
SE(q̄, x̄)

)

where
(1)

∫
Dq̄ means that we integrate over all paths q̄ with qi,f as start and end points;

(2)
∮
Dx̄ means that all path for the bath variables have the same start and end points

(we take the trace, so xi = x′f );
(3) We integrate overall possible start (or end) points for the bath variables →

∫ ∏
i dxi.

As a rule, tracing out internal degrees freedom introduce correlation between the variable
caracterizing the system. The process is strictly the same as for the driven oscillator in Problem
10.2 and we need only to quote the result:

(751) ρ(qi, qf ) =
1

Z(β)

∫
Dq exp

(
−1

ℏ
SS(q, f)

)
F [q̄]

where

(752) F [q̄] =
∏

i

Zi(β) exp

(
1

2mℏ

∫∫ ℏβ/2

−ℏβ/2
dtdu q̄(t)∆i(t− u)q̄(u)

)

since, from the point of view of the bath variables xi’s, the system variable q plays the role of
the force.

7. Decay of a metastable state

Consider the cubic potential shown in Fig. 4. A convenient formula for V (q) is written as

(753) V (q) =
M

2
ω2
0q

2

(
1− q

q0

)

We look for extrema of the action among arbitrary paths and take into account fluctuations
around these extremal paths in a "semiclassical way".
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The classical equation of motion for a cubic potential in the presence of dissipation is given
by

(754) Mq̈ −Mω2
0q +

3

2
Mω2

0

q2

q0
−
∫ ℏβ

0

du∆(t− u)q(u) = 0

where
(755) ∆(s) =

∑

i

∆i(s)

This equation gives the extremal paths for the action and we may in the semiclassical ap-
proximation evaluate the partition function within the saddle point approximation. Quantum
fluctuations may be evaluated by expanding around these solutions to quadratic order.

In the absence of dissipation, i.e. for ∆ = 0, the evolution of x(τ) in imaginary time t = −iτ
corresponds to the real-time τ motion in the inveted potential −U(x). As a solace, there are
two constants solutions. The one for q = 0 corresponds to the metastable state. The other one,
at intermediate q = qb corresponds to the bottom of the well.

To study the fluctuations around these constant solutions, we may use a convenient basis.
Since everything is periodic with period ℏβ (when we take the trace which sum over paths
with equal start and end points, i.e. periodic paths), fluctuations around these paths may be
described as a Fourier series

(756) ξ(τ) =
∑

n

ξne
iνnτ , νn = 2π

n

ℏβ
, n ∈ Z⋆

Near the constant path q = qb, calculus gives

(757) SE = ℏβVb +
Mℏβ
2

∑

n

(
ν2n + |νn|γ̃(|νn|)− ω2

b

)
|ξn|2

where γ̃(s) is the Laplace transform of the friction kernel defined in Eq. (681)

(758) γ̃(s) =

∫ ∞

0

e−stγ(t)

For practical purpose, taking γ(t) → 2γ0δ(t) is enough, so that γ̃(s) = γ0. For the cubic
potential we have choosen, the barrier frequency ωb is equal to ω0.

For the saddle point approximation to be valid, quantum fluctuations must increase SE

(otherwise, the integral diverges). Since n = 0 corresponds to time translationnal invariance,
the first n = 1 dangerous mode is unstable when
(759) ν21 + |ν1|γ0 − ω2

b + ω2
b = 0

This corresponds to the croos-over temperature

(760) 2π
kTc
ℏ

= −γ0 +
√
γ20 + ω2

b

below which an other solution exists. This solution corresponds to pure quantum tunneling
dissipating energy.



CHAPTER 11

PROBLEMS

Problem 1
Define

(761) Z(t) =

∫ t

0

Y (t′)dt′ t ≥ 0

Where Y (t) is an Ornstein-Uhlenbeck process with,

(762) < Y (t) >= 0 and < Y (t)Y (t− τ) >= Γ
e−β|τ |

2β

(1) Find: < Z(t1)Z(t2) >
(2) Calculate < cos [Z(t1)− Z(t2)] >. It will be useful to consider the cumulant expansion

of the exponential1.
Deduce that Z(t) is Gaussian, but neither stationary or Markovian.

Problem 2
Consider the following chemical reaction

(764) A −−→←−− B

with first order kinetics
dn̂A

dt
= k−n̂B − k+n̂A(765)

dn̂B

dt
= k+n̂A − k−n̂B(766)

where nA + nb = n0 is constant (the symbol n̂ is for the most probable value and nA is for the
instantaneous value). This process is governed by a probability distribution P (nA), so that nA

fluctuates in time.
(1) Use Onsager’s regression principle to compute the correlation function < nA(t)nA(t+

τ) >.
(2) We want to compute the stationary distribution P (nA). Write down the master equa-

tion for this process and show directly that the distribution is binomial with weights
k±/(k− + k+).

1Recall

(763) < e−iξt >= exp






∑

m≥1
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m!

cm







119



120 CHAPTER 11. PROBLEMS

Problem 3
Let ξ(t) be a stochastic signal, 0 ≤ t ≤ T , and define

(767) ξ̃(ω) =

∫ T

0

ξ(t)eiωtdt

The spectral density of ξ(t) is defined as

(768) S(ω) = lim
T→∞

1

2πT
|ξ̃(ω)|2

(1) Show that the spectral density is related to the correlation functions as (Wiener-
Khinchin theorem)

(769) S(ω) =
1

π

∫ ∞

0

eiωτ < ξ(t)ξ(t+ τ > dτ

(2) Consider

(770) S(ω) =
1

2π

∫ ∞

−∞
eiωτ < ξ(t)ξ(t+ τ > dτ

Using the δ-representation

(771) δ(ω) =
1

2π

∫ +∞

−∞
eiωtdt

show another version of the theorem
(772) < ξ̃(ω)ξ̃∗(ω′) >= 2πδ(ω + ω′)S(ω′)

Problem 4
We derive the Green-Kubo relationship.

(1) Show that the cumulants obey

(773) < Ḃ(t)A(0) >c= − < B(t)Ȧ(0) >c

(2) Let Ω be the volume of the system. We assume that the particles (position xi) carry
a charge q. We consider

(774) A = q
∑

i

xi B = Ȧ = q
∑

i

ẋi = Ωj

where j is the current density. We assume j = 0 at equilibrium and add a perturbation
V (t) = −E(t)A to the Hamiltonian (E is the electrical field). Show that the electrical
conductivity σ(ω) can be calculated as follows

(775) σ̃(ω) = βΩ

∫ ∞

0

dt < j(0)j(t) >|E=0

(3) Assume

(776) < ẋi(t)ẋk(0) >= δik
kT

m
e−|t|/τc

Show that the conductivity is given by the well-known formula

(777) σ̃(ω) =
nq2τc

m(1− iωτc)

Problem 5
Consider a RC electrical circuit where the resistance is in equilibrium with a bath at temperature
T . We observe that the net current through the circuit is a fast fluctuation variable.

(1) Show that the the charge Q in the capacitor obeys a Langevin type equation with a
damping coefficient 1/RC.
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(2) From < Q2 > /(2C) = kT/2 (why ?) deduce that the variance of the fluctuations a
proportionnal to the temperature.

Problem 6
We consider the forced harmonic oscillator:

(778) ẍ+ γẋ+ ω2
0x =

F (t)

m

with < F (t+ τ)F (t) >= 2Aδ(t).
(1) Use the Wiener-Kinchin’s theorem to compute the Fourier transform of Cxx(τ) =<

x(t+ τ)x(t) >
(2) Show that:

(779) Cxx(ω) =
1

m2

2A

(ω2 − ω2
0)

2 + γ2ω2

(3) The strong friction limit corresponds to γ ≫ ω0. Draw (qualitatively) Cxx(ω) in the
string friction limit. Show that the width is ω2

0/γ and estimate a characteristic time
τx.

(4) Compute the momentum correlation function < p(t+ τ)p(t) >. Show that τp ≪ τx.
(5) Show that making the strong friction limit amounts neglecting the inertial term in the

equation of motion In this way, one recovers the Ornstein-Uhlenbeck equation seen
during the lectures.

Problem 7
Consider a RC circuit where the voltage drop obeys the following equation:

(780) RI(t) +
Q(t)

C
= η(t) with ⟨η(t)η(t′)⟩ = Γδ(t− t′)

(1) Show

(781) Q(t) =
1

R

∫ t

−∞
dτ e−(t−τ)/RC

(2) Show

(782) ⟨Q(t)⟩ = 0 and < Q2(t) >=
ΓC

2R

(3) From Problem 1, we know that P (Q) is gaussian, P (Q) ∼ exp{[−Q2/2kTC]}. Give Γ
as a function of the temperature.

(4) Show

(783) ⟨Q(t)Q(t′)⟩ = CkTe−|t−t′|/RC

(5) Deduce

(784) ⟨V (t)V (t′)⟩ = kT

C
e−|t−t′|/RC

(6) The product RC is characteristic time scale. Show using
∫
dtδ(t) = 1 that if RC is

small compared to the scale were the observations are made

(785) ⟨V (t)V (t′)⟩ = 2kTRδ(t− t′)
(7) Deduce

(786)
∫ ω2

ω1

⟨|Ṽ (ω)|2⟩ = 4kTR

∫ ω2

ω1

dω
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Problem 8
We have seen that Kubo’s theorem gives a relationship between a correlation function and a
response function:

(787) CA,B(t) = kBT

∫ ∞

t

χA,B(t
′) dt′

We want to give a straightforward demonstration in the case of a Langevin particle
(1) Write the Langevin equation with an external force F (t).
(2) What is the quantity conjugate to the force ? What do you take for B and A in (787)

?
(3) Assume F (t) = 0. Show

(788) ⟨v(t)v(t′)⟩ = kT

m
e−

γ
m
|t−t′|

(4) Deduce (t > t′)

(789) CA,B(t− t′) =
kT

γ
e−

γ
m
|t−t′|

(5) What is ⟨v(t)⟩ for small F (t) ?
(6) Conclude

(790) χA,B(t) =
1

m
e−

γ
m
|t|

(7) Check (787)

Problem 9

We know that there exists a relationship between the response function to an external force
and the correlation function at zero force (i.e. at equilibrium). This relation is stated as:

(791) CAB(t) = kBT

∫ ∞

t

χA,B(t
′)dt′

The purpose of this problem is to provide a direct proof of this relation using the Langevin’s
equation

(792) m
dv

dt
= −γv + η(t) + F (t)

where, as usual, η(t) is the noise and F (t) the external force. Recall ⟨η(t)η(t′)⟩ = Γδ(t − t′)
with Γ = 2γkBT and ⟨η(t)⟩ = 0.

(1) For the Langevin’s equation, the response function connects the velocity to the force.
Therefore, A is the velocity. What is the equivalent of B in our case, i.e. for the
Langevin’s equation ? Why ?

(2) Show (in the stationary regime)

(793) ⟨v(t)v(t′)⟩ = kBT

m
e−

γ
m
|t−t′|

and specify if this correlation is calculated at zero force or not.
(3) If q(t) is the position, show for t > t′:

(794) ⟨v(t)q(t′)⟩ = kBT

γ
e−

γ
m
|t−t′|

(4) Assume now a non-zero force. Show

(795) ⟨v(t)⟩ = 1

m

∫ t

−∞
e−

γ
m
(t−t′)F (t′) dt′
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(5) Deduce χA,B(t) and check relationship (844).

Problem 10

The general form of a master equation is

(796) ṗn =
∑

n′

[wnn′pn′ − wn′npn]

We consider a process for which the transition matrices are given by

(797) wn+1,n = g and wn−1,n = rn

(1) Show that the master equation reads

(798) ∂tpn = −(gn + rn)pn + gn−1pn−1 + rn+1pn+1

and give gn and rn as a function of n.
(2) Discuss qualitatively what represent the four terms in Eq. (851).
(3) In what follows, we will be interested in the large number of molecules limit, n ≫ 1,

where a change of 1 molecule can be treated as a small change. Then gnpn becomes
a function g(n)p(n) (and rnpn becomes r(n)p(n)). Under this approximation, the
function f(n) = g(n)p(n), or f(n) = r(n)p(n), can be expanded to second order as

(799) f(n± 1) = f(n)± ∂nf(n) +
1

2
∂2nf(n)

Show that this approximation turns the master equation into something that looks
more like a Fokker-Plank equation. What is the effective potential in which the ’coor-
dinate’ n is diffusing ?

(4) Introduce the current of probability

(800) j(n) = v(n)p(n)− 1

2
∂n[D(n)p(n)]

and give v(n) and D(n) as a function of n. Can you guess the value of current in
equilibrium ?

(5) Compute the steady state distribution within a constant normalization factor.
(6) Show:

(801) p(n) =
A

g

(
1 +

n

g

)4g−1

e−2n

where A is a normalization factor.
(7) Show that the mean value ⟨n⟩ =∑n npn obeys the kinetic equation

(802)
d⟨n⟩
dt

= g − r⟨n⟩

Problem 11

Consider the situation schematized in Fig. 1. Assume that the concentration at r → ∞ is
maintained at c02. The sphere of radius a is covered by sensors with surface density σ. The
rate of uptake of solute molecules per unit surface is given by

(803)
dn

dt
= σkonc(a)

This equation defines kon as the usual kinetic rate in chemical reaction.
2The concentration is often expressed in Molars M with 1 Molars = 1000 moles /m3
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Figure 1. An absorbing sphere for a solute diffusing in the bulk. The concen-
tration of solute decreases in the vicinity of the sphere. This depletion zone is
characteristic of problem controlled by diffusion.

(1) Show that solution of the 3-d Fokker-Planck equation with symmetry of revolution is
given by c(r) = β + α/r.

(2) Using mass conservation, show

(804) −4πr2J(r) =Mkonc(a)

(3) Use the last equation to compute the concentration as

(805) c(r)− c(a) = Mkonc(a)

4πD

(
1

a
− 1

r

)

(4) Show

(806) c(a) =
c0

1 +Mkon/(4πDa)

(5) Plot c(r).
(6) Deduce that the net adsorption rate is

(807) k =
4πDaMkon

4πDa+Mkon
(7) Investigate the two limits of a perfect adsorber, kon → infty, and of a bad adsorber,

kon → 0. Conclude that the net adsorption rate can be written as

(808)
1

k
=

1

Mkon
+

1

kD
where 1/kD is a diffusion time which depends on the diffusion constant. Thus, our
boundary condition together with the diffusion equations set two characteristic time
scales. This is in contrast with the usual condition of perfect adsorption with only one
time scale.
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Non-equilibrium statistical physics exam
February, 8 2016

Problem 1

We consider the problem of ligand molecules binding to a single site of a sensor molecule.
Ignoring fluctuations, the fractional occupancy of the site, n(t), evolves according to the first-
order kinetic equation

(809)
dn

dt
= k+c [1− n(t)]− k−n(t)

where c is the background concentration of the ligand (considered as constant in this problem)
and k± are rate constants.

(1) Give the equilibrium concentration n̄. Let F be the free energy associated with binding.
Use detailed balance to give the ratio k+c/k− as a function of F .

(2) Suppose that thermal noise induces small fluctuations in the binding energy δF . Show

(810)
δk+
k+
− δk−

k−
=

δF

kBT

(3) Linearize (809) about the equilibrium solution, n = n̄+ δn, and show that the fluctu-
ations δn obey the linear equation

(811) γ
dδn

dt
= −κδn+ δF

where γ and κ are effective damping and spring constants. Give γ and κ.
(4) Eq. (811) is analogous to a known equation. Which one ?
(5) Solve Eq. (811) and give the Fourier transform of the dynamical susceptibility χ̃(ω).
(6) Using the lecture notes, show that the power spectrum

(812) Sn(ω) =

∫ +∞

−∞
dt < δn(0)δn(t) > eiωt

is given by

(813) Sn(ω) =
2kBT

ω
Im [χ̃(ω)]

(7) Conclude that the power spectrum has a Lorentzian form

(814) Sn(ω) =
2k+c(1− n̄)

ω2 + (k+c+ k−)2

(8) Conclude

(815) < δn(t)δn(0) >=< δn2 > e−|t|/τc

and give the characteristic time τc.
(9) Obtain the same result using a principle that we have studied during the lectures.

Problem 2 : Bownian motion in a gravitational field

We know that the Langevin equation for a particle

(816)
dy

dt
= A(y) + cη(t),

with < η(t)η(t′) >= Γδ(t− t′), is equivalent to the Fokker-Planck equation for the probability

(817)
∂P

∂t
= −∂ [A(y)P ]

∂y
+
c2Γ

2

∂2P

∂y2

irrespective of the function A(y).
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Let x be the variable for the height variable for a Brownian particle with a mass m in a
gravitational field g with friction coefficient γ.

(1) What is the Langevin equation for this particle ?
(2) Work in the large friction limit and neglect inertial effects. What is the equivalent

Fokker-Planck equation ?
(3) Assume stationarity. Solve this equation in the general case.
(4) As usual, solutions of differential equations depend on the boundary conditions. Give

the solution when the probability current is 0 at x = 0 and when x ≥ 0.

Problem 3

We consider again the situation of Problem 1. From now on, the concentration of ligands is
not considered as homogenous and we consider small deviations with respect to the background
value
(818) c = c̄+ δc

Taking the sensor molecule at position x0 = 0 and setting c(x, t), we assume that
dn

dt
= k+c(x, t) [1− n(t)]− k−n(t)(819)

∂c(x, t)

∂t
= D∆c(x, t)− δ(x− x0)

dn

dt
(820)

where the last term accounts for the transfer of a molecule when a ligand binds the receptor.
(1) By linearizing these equations of motions about the uniform steady state (n̄, c̄) and

using detailed balance show that

(821) γ
dδn

dt
= −κδn+ k+ [1− n̄] γδc(x = 0, t) + δF

with
γ = kT/ [k+c̄(1− n̄)] and κ = (k+c̄+ k−)γ

and

(822)
∂δc(x, t)

∂t
= D∆c(x, t)− δ(x− x0)

dδn(t)

dt
(2) Define the Fourier transforms as

(823) δc̃(k, ω) =

∫ +∞

−∞
dt

∫
d3xeiωteik·xδc(x, t) δñ(ω) =

∫ ∞

−∞
dteiωtδn(t)

Show that

(824) δc(x, ω) = iωΣ0(ω)δñ(ω), Σ0(ω) =

∫
d3k

(2π)3
1

Dk2 − iω
(3) The last integral diverges. We impose a cut-off |k| < π/a. What does a correspond to

?
(4) Hence derive the result for the generalized susceptibility

(825)
δñ(ω)

δF̃ (ω)
=

1

γ

1

−iω [1 + Σ(ω)] + k+c̄+ k−

(5) We make the approximation Σ(ω) = Σ(0) in (824). Conclude

(826) Sn(ω) = n̄(1− n̄) 2τc
1 + (ωτc)2

and give τc.
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Write this exam in your native language

1. Problem 1

In chemical kinetics, a chemical reaction occurring between species Ai, 1 ≤ i ≤ N , is
represented as

(827)
∑

i

αiAi
−−→←−−

∑

j

βjAj

with the rate equation for the concentration ci

(828)
dci
dt

= γi
(
ω+
r − ω−

r

)
γi = βi − αi

where the subscript r stands for reaction.The reaction rates are defined as :

(829)

ω+
r = ωeq exp

{[∑

i

αi(µi − µeq
i )/kT

]}

ω−
r = ωeq exp

{[∑

i

βi(µi − µeq
i )/kT

]}

where the µ′
is are the chemical potentials (per unit volume). For ideal solutions:

(830) µi(ci, T ) = kT ln ci + µθ
i (T )

where µθ
i (T ) is the chemical potential in a reference state for species i (here µθ

i (T ) is a param-
eter).

(1) As a special case, consider

(831) A1
−−→←−− A2

Follow recipe (828) and give dc1/dt and dc2/dt as a system of two ordinary differential
equations. What the first principle seen in the lectures that Eqs. (829) obey ?

(2) From now on, 1 ≤ i ≤ N . Remember that the free energy for an ideal solution of
concentration c is

(832) F (c) = kT c
(
ln c− 1 + µθ(T )/kT

)

Calculate the rate dFtotal/dt of the total free energy change per unit time as a function
of ω+

r and ωr−.
(3) Conclude. To answer to this question, we will use the properties of function (lnx −

ln y)(x− y) as studied during the lectures.
(4) If we consider R reactions of type (827) instead of 1, meaning 1 ≤ r ≤ R, the same

type of calculation leads to

(833)
dci
dt

= −
∑

j

[∑

r

weq
r γr,jγr,i

]
µj − µeq

j

kT

where we have assumed small deviation from equilibrium. In these equations, γr,j =
βr,j − αr,j. What kind of reciprocity relations does these equations correspond to ?
What kind of symmetry do they possess ?
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Problem 2

We consider a particle moving along a one-dimensional periodic track. This particle is
subjected to:

(1) A periodic potential V (x) with V (x+ l) = V (x), where l is the periodicity.
(2) A force, i.e. a load F .

Figure 2.

We want to compute the velocity of the particle under the load F .
(1) Show that there exists an effective potential Ve(x) depending on the force F such that

the Fokker-Planck equation can be written as

(834)
∂p

∂t
= D0

[
1

kT

∂ [Ve(x)p(x)]

∂x
+
∂2p

∂x2

]

(2) To study the averages motion of the particle under the force F , we define the average
quantities:

(835)

P̂ (x, t) =
∑

n

p(x+ nl, t)

Ĵ(x, t) =
∑

n

j(x+ nl, t)

where n runs on a sufficiently large number of sites. Show that

(836) Ĵ(x, t) = −D0

[
1

kT
V ′
e (x)P̂ (x) +

∂P̂

∂x

]

(3) What are the boundary conditions for P̂ (x, t), Ĵ(x, t) at x = 0, l?
(4) Assume a stationary state with current Ĵ0 and show that p0(x) is solution of

(837)
d

dx

[
eVe(x)/kT p̂0(x)

]
= − Ĵ0

D0

eVe(x)/kT

(5) Integrate this equation and show

(838) p̂0(x) =
J0

1− e−Fl/kT
N(x)

where

(839) N(x) =
1

D0

e−Ve(x)/kT

∫ x+l

x

eVe(y)/kTdy

(6) Assume that the mean velocity of the particle is equal to the ensemble averaged current

(840) v =

∫ +∞

−∞
j(x, t)dx =

∫ L

0

Ĵ(x, t)dx

and give v as a function of F
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(7) Using the periodic boundary conditions, show that the average velocity is zero when
F = 0.

(8) Does this result hold for a non-symmetric potential such as in Fig. 3 ?

Figure 3.

(9) Now consider the same problem as before but for a motor protein with two internal
states i = 1, 2. How can we generalize (834) in this case ? Hint. Introduce two
parameters ω1 and ω2.

Figure 4.

(10) What is the relation between these two parameters if you assume detailed balance ?

Problem 3

Consider a master equation. the Master equation. We consider the process for which

(841) Wm,n =

{
λ if m = n+ 1

0 if m ̸= n+ 1

(1) Write the master equation for Pn

(2) Introduce the generating function P (z, t) =
∑

n≥0 z
nPn(t) with the initial condition

Pn(0) = δn,0. Show:
(842) P (z, t) = exp{[(z − 1)λt]}P (z, 0)

(3) Deduce

(843) Pn(t) =
((λt)n

n!
e−λt

(4) Do you know this distribution ?
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Non-equilibrium statistical physics exam
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Problem 1
We know that there exists a relationship between the response function to an external force
and the correlation function at zero force (i.e. at equilibrium). This relation is stated as:

(844) CAB(t) = kBT

∫ ∞

t

χA,B(t
′)dt′

The purpose of this problem is to provide a direct proof of this relation using the Langevin’s
equation

(845) m
dv

dt
= −γv + η(t) + F (t)

where, as usual, η(t) is the noise and F (t) the external force. Recall ⟨η(t)η(t′)⟩ = Γδ(t − t′)
with Γ = 2γkBT and ⟨η(t)⟩ = 0.

(1) For the Langevin’s equation, the response function connects the velocity to the force.
Therefore, A is the velocity. What is the equivalent of B in our case, i.e. for the
Langevin’s equation ? Why ?

(2) Show (in the stationary regime)

(846) ⟨v(t)v(t′)⟩ = kBT

m
e−

γ
m
|t−t′|

and specify if this correlation is calculated at zero force or not.
(3) If q(t) is the position, show:

(847) ⟨v(t)q(t′)⟩ = kBT

γ
e−

γ
m
|t−t′|

(4) Assume now a non-zero force. Show

(848) ⟨v(t)⟩ = 1

m

∫ t

−∞
e−

γ
m
(t−t′)F (t′) dt′

(5) Deduce χA,B(t) and check relationship (844).

Problem 2
The general form of a master equation is

(849) ṗn =
∑

n′

[wnn′pn′ − wn′npn]

We consider a process for which the transition matrices are given by

(850) wn+1,n = g and wn−1,n = rn

(1) Show that the master equation reads

(851) ∂tpn = −(gn + rn)pn + gn−1pn−1 + rn+1pn+1

and give gn and rn as a function of n.
(2) Discuss qualitatively what represent the four terms in Eq. (851).
(3) In what follows, we will be interested in the large number of molecules limit, n ≫ 1,

where a change of 1 molecule can be treated as a small change. Then gnpn becomes
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Jarzynski’s equality illustrated by simple examples 1099

2l0+L

N

xn 2l0+L-xn

Figure 1. Schematic representation of the system under consideration in section 2. There are
N particles of mass m connected by harmonic springs to two bounding walls. All springs are
identical, with the constant k and equilibrium length l0.

grounds. The objections raised appear to be rebutted in our opinion [13]. We will comment
more on these issues of thermodynamic work and heat at the end of the paper, but a complete
understanding of nonequilibriumwork theorems may still require somemore scientific debate.

Wenow stop commenting on Jarzynski’s and related results because our purpose here is not
a systematic review. The goal of this paper is to illustrate the Jarzynski and Crooks fluctuation
theorems by detailed calculations using simple representatives examples. Of course, the
Jarzynski and Crooks theorems are exact and hold for any system. The interest of performing
a detailed calculation is purely pedagogical. In the example that we examine in detail here,
the (irreversible) work probability distribution can be readily calculated analytically. Most
importantly, in our example the central physical insight behind these results is clearly shown,
namely that in an isothermal process starting at an equilibrium state the work performed
depends on the initial phase space position of the system within the corresponding canonical
distribution. Furthermore, our example here is based on one of the typical model systems often
used to teach the introductory courses of statistical physics, being sufficiently transparent to
incorporate in one of these elementary courses, effortlessly exposing the students to cutting-
edge research.

2. Two plates joined by springs

Let us consider a system of N identical particles of mass m which are joined to two parallel
plates by a set of 2N springs. The setup under consideration is shown schematically in figure 1.
All the springs are equal, with the constant k and equilibrium length l0, and the corresponding
potentials are assumed to be harmonic.

The Hamiltonian of the mechanical system depicted in figure 1 is readily expressed as

H(pn, qn) =
N∑

n=1

p2n
2m

+
mω2

2
[(xn − l0)

2 + (xn − L − l0)
2], (4)

Figure 5. System under consideration with N particles of mass m connected
by harmonic springs to two walls.

a function g(n)p(n) (and rnpn becomes r(n)p(n)). Under this approximation, the
function f(n) = g(n)p(n), or f(n) = r(n)p(n), can be expanded to second order as

(852) f(n± 1) = f(n)± ∂nf(n) +
1

2
∂2nf(n)

Show that this approximation turns the master equation into something that looks
more like a Fokker-Plank equation. What is the effective potential in which the ’coor-
dinate’ n is diffusing ?

(4) Introduce the current of probability

(853) j(n) = v(n)p(n)− 1

2
∂n[D(n)p(n)]

and give v(n) and D(n) as a function of n. Can you guess the value of current in
equilibrium ?

(5) Compute the steady state distribution within a constant normalization factor.
(6) Show:

(854) p(n) =
A

g

(
1 +

n

g

)4g−1

e−2n

where A is a normalization factor.
(7) Show that the mean value ⟨n⟩ =∑n npn obeys the kinetic equation

(855)
d⟨n⟩
dt

= g − r⟨n⟩

Problem 3
Consider the system of Fig. 5. The particles are in equilibrium with a reservoir at temperature
T . We imagine that that at t = 0 the right wall is moved with uniform velocity V , so that
L(t) = (L0 + V t)θ(t), where θ(t) is the Heaviside function. Let ∆F the free energy difference
between the final state L1 and the initial state L0.

What is your prediction for the total work done on all individual particles (2 lignes) ?
Discuss the large particle number limit (2 lignes).
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(1) Problem 1
Consider an electrical RC-circuit with capacity C and a resistance R. The charge
on the capacitor is denoted Q(t). From the formulae U = RI and Q = CU the
macroscopic equation can be found to be

(856) ˙Q(t) = − Q

RC
= −γQ with γ = 1/(RC)

The electrostatic energy of a capacitor is Q2/(2C).
(a) Assuming that the electrical current I fluctuates as Γη(t) (η(t) is the normal

Gaussian white noise), what is the Langevin equation for this macroscopic problem
?

(b) Given that Q(t = 0) = Q0, find Q(t) 3

(c) Give < Q2(t) >. What is the mean energy stored in the capacitor in the stationary
regime ? How do you adjust Γ to recover known results from equilibrium statistical
mechanics ?

(d) Correction: The equivalent Langevin equation is

(857) R
dQ

dt
= −Q

C
+ η(t)

where η(t) is a white noise due to thermal effects

(858) ⟨η(t)η(t′)⟩ = Γδ(t− t′)
As in the lecture, one can calculate

(859) Q(t) =
1

R

∫ t

−∞
dτ exp

{
−t− τ
RC

}
η(τ)

This gives

(860) ⟨Q⟩ = 0 ⟨Q2⟩ = ΓC

2R

The energy stored in the capacitor is given by the Bolzmann law

(861) P (Q) ∝ exp

{[
− Q2

2CkT

]}

which gives

(862)
⟨Q2⟩
2C

=
kT

2

(2) Problem 2
Consider an isolated system consisting of two parts. A left part and a right part (these
parts communicate arbitrarily). Let NR(t) be the number of particles in the right part
of the system and we consider the following total energy

(863) E = E0 − V (t)Nr(t)

3Recall that the solution to ẏ(t)− γy(t) = a(t) can be found by posing y(t) = f(t)e−γt.
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if the potential V (t) varies over time, this leads to a variation in the number of particles
NR(t) in the right part of the system. Recall the fluctuation dissipation theorem

(864) CAB(t) = kT

∫ +∞

t

χAB(t
′)dt′

Assume that the system is in equilibrium for t < 0 with V (t = 0) and that V (t) is
suddenly increased at t = 0 to a constant value V

(865) V (t) =

{
0 for t < 0

V for t > 0

(a) Apply linear response theory and give a general expression for ⟨NR(t)⟩V−⟨NR(t)⟩0.
(b) By computing the difference

(866)
∫ ∞

0

χ(t′)dt′ −
∫ ∞

t

χ(t′)dt′

show

(867) ⟨NR(t)⟩V − ⟨NR(0)⟩V =
βV

2
⟨(NR(t)−NR(0))

2⟩0

(3) Correction: the response of the particle number to a change in potential is

(868) ⟨NR(t)⟩V = ⟨NR(t)⟩0 + V

∫ t

0

χ(t′)dt′

The fluctuation dissipation theorem gives

(869)
∫ ∞

t

χ(t′)dt′ = β [⟨NR(t)NR(0)⟩0 − ⟨NR(t)⟩0⟨NR(0)⟩0]

In particular

(870)
∫ ∞

0

χ(t′)dt′ = β
[
⟨NR(0)

2⟩0 − ⟨NR(0)⟩0⟨NR(0)⟩0
]

Taking the difference between these two expressions gives

(871) ⟨NR(t)⟩V − ⟨NR(0)⟩0 = βV
[
⟨NR(0)

2⟩0 − ⟨NR(t)NR(0)⟩0
]

We have :

(872) ⟨NR(0)⟩V = ⟨NR(0)⟩V
since at t = 0, NR cannot not depend on V . We also have

(873) ⟨NR(t)
2⟩0 = ⟨NR(0)

2⟩0
because of time translational invariance of equilibrium systems.

(4) Problem 3
Consider a molecule walking along a one-dimensional filament (without leaving it).
The trajectory is described as X(t) = dN(t) where d is the step length defined by the
length of the binding sites. The rules are as follows: The stepper can only makes step
to right or stay at the same place. He cannot go the left. The probability to make a
step to right during ∆t is α∆t. For ∆t small, the stepper can only stay or make one
step (i.e. he cannot make two or more steps).
(a) Show that the master equations can be written as

(874)

d

dt
pn(t) = wn,n−1pn−1(t)− wn+1,npn(t)

d

dt
p0(t) = −wp0(t)
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and give the w... as a function of α.
(b) Define

(875) G(z, t) =
∑

n

pn(t)z
n

By using Eqs. (874) show

(876)
∂

∂t
G(z, t) = α(z − 1)G(z, t)

(c) The initial condition is pn(0) = δn,0 What is G(z, t) ?
(d) Taylor expanding this result, give pn(t).
(e) Correction. All w’s are equal to α. From

(877)
∂G

∂t
=
∑

n

zn (αpn−1 − αpn) = αz
∑

zn−1pn−1 − α
∑

znpn

we find
(878) G(z, t) = G(z, t = 0) exp{[α(z − 1)t)]}

Using pn(t = 0) we find G(z, t = 0) = 1. Taylor expanding:

(879) pn(t) = (z − 1)n
αn

n!

(5) Problem 4
Le x be the variable of the height of a brownian particle (mass m, gravity constant g,
friction parameter γ, diffusion constant D). In the stationary state, the Fokker-Planck
equation is

(880)
mg

γ
P (x) +D∂xP (x) = 0

(a) Using the boundary condition that the surface of the earth reflects the particle
(zero current) give P (x).

(b) What is the relationship between D and γ you can infer from statistical mechanics
?

(c) Correction : Using the boundary condition that the surface reflects the particle,
meaning j(x = 0, t) = 0, one obtains

(881) PS(x) =
C

2D
exp

{[
−mg
Dγ

x

]}

and comparing this with statistical mechanics, we find Dγ = kBT , which is the
Einstein relation.
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(1) Problem 1
We consider a molecule diffusing on a one-dimensional track with position coordinate
x. Let D be the diffusion coefficient of this molecule. If T is the temperature, the
thermal energy is denoted by kT .
(a) Assuming that this molecule is subjected to thermal noise, what is the Fokker-

Planck equation for the probability P (x, t) to find the molecule at position x at
time t ?

(b) We assume from now on that the molecule experiences along the track a position-
dependent potential V0(x). What is the Fokker-Planck equation in this case ?

(c) Using a laser, we can also apply an external load F (independent of the position)
on the particle. What is the Fokker-Planck equation when V0(x) ̸= 0 ? It will be
useful to define an effective potential Veff (x) as a function of the force.

(d) We assume that V0(x) is periodic with periodicity l, i.e. :

(882) V0(x+ l) = V0(x)

To study the average motion of this molecule, we introduce the quantity

(883) Pa(x, t) =
∑

n

P (x+ nl, t)

where P (x, t) is the probability of question (c). Define an average current Ja(x, t)
in the same way and show:

(884) Ja(x, t) = −D
[

1

kT
V ′
eff (x)Pa(x, t) +

∂Pa

∂x

]

(e) What is the equivalent Fokker-Planck equation for Pa(x, t) ?
(f) We consider from now on the stationary regime where Pa(x) is time independent.

Show that there is a constant C such that:

(885)
d

dx

[
eVeff (x)/kTPa(x)

]
= −C

D
eVeff/kT

(2) Problem 2
We consider again a molecule moving on a one-dimensional track with position coor-
dinate x. This molecule has two conformational states ↑ and ↓. The rate per unit
time for the molecule to pass from the state ↓ to the state ↑ is k↑,↓ (k↓,↑ for the reverse
process, respectively). Let P↑(x) the probability to find the molecule in ↑ at position
x (with P↓(x), respectively). Assuming that the particle can only diffuse in the ↑ state
with diffusion coefficient D (and not in the ↓ state where D = 0), write two coupled
Fokker-Planck equations for P↑(x) and P↓(x).

(3) Problem 3
Fisher showed that the fertility of a population increases on average as the variance of
fertility increases. This theorem shows that the fertility of a population increases even
in the absence of mutations. To prove this assertion, the starting point is to consider a
model where the number of individuals ni with fertility σi obeys the following equation:

(886)
dni

dt
= σini
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We are interested in the average fertility

(887) ⟨σ⟩ =
∑

i niσi∑
i σi

Show:

(888)
d⟨σ⟩
dt

= ⟨σ2⟩ − ⟨σ⟩2

Conclude.
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Note : It may be helpful to read the entire problem set. You can use either English, French or
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(1) Problem 1
Suppose the system being investigated is a single rigid spherical bead. We will consider
rotational diffusion constrained in the x−y plane and it will be convenient to represent
the orientational vector n̂(t) by the polar angle θ(t).
(a) By analogies with the translational movement of a bead with velocity v and mass

m, the rotational movement of the bead is described by an angular velocity Ω,
a drag force −ζΩ and an inertial moment I. Give the Langevin equation corre-
sponding to the rotational movement of the bead.

(b) Give ⟨θ(t)2⟩eq. as a function of time.
(c) The orientational time correlation function is

(889) C(t) = ⟨e−iθ(t=0)eiθ(t)⟩eq.

What is the probability density you expect for ∆θ(t) ? Why ?
(d) Give C(t) for large t.
(e) Instead of considering the Brownian motion of a sphere, we consider from now on

the Brownian motion of an ellipsoid (translational and rotational). A uniaxial
anisotropic particle is characterized by two translational hydrodynamic friction
coefficients, γa and γb, respectively, for motion in directions parallel and perpen-
dicular to its long axis. Consider a particle with a given initial angle. Will it
diffuse more rapidly along its long axis than along its short axis ?

(f) Using a camera, the experiment gives access to the position (x(t), y(t)) of the
ellipsoid, so that one can compute the averages

(890) ⟨∆x(t)2⟩θ0/(2t) and ⟨∆y(t)2⟩θ0/(2t)
at fixed starting angle θ0(t = 0). Consider Fig. 6 where the instantaneous diffusion
coefficient is plotted as a function of time. Can you comment this figure in 3 lines?

dom noise sources with zero mean and respec-
tive variances, 〈xq(t)xq(t′)〉 = 2kBTGqd(t − t′) =
2Dqd(t− t′) and 〈xi(t)xj(t′)〉q(t) =2kBTGij[q(t)]d(t− t′),
dictated by the Einstein relation or equivalently
by the requirement that thermal equilibrium be
reached at long times. We retainH in Eq. 1 even
though the external forces are zero in our
experiments to emphasize that the mobilities Gij

and Gq relating velocity and angular velocity to
force and torque, respectively, determine the
variances of the random noise sources. xq(t)
obeys Gaussian statistics at all times, as does xi(t)
for a fixed angle q(t). The average 〈A〉q0 of any
measurable quantity is equivalent to the average
of A over both xi(t) and xq(t) at fixed q0.

Because there are no external forces in our
experiments, we can set ∂H/∂x = 0 and ∂H/∂q = 0.
Equation 1b for q(t) is simply the Langevin equa-
tion for 1D diffusion. It yields a time-independent
diffusion coefficient Dq = 〈[Dq(t)]2〉/(2t), a
Gaussian PDF for Dq(t) with variance 2Dqt,
and consequently 〈cosnDq(t)〉 = Re〈einDq(t)〉 =
cosnq0e−n

2Dqt . From this we can calculate (8) the
time-dependent displacement diffusion tensor
for fixed q0:

Dijðt,q0Þ ¼ h½DxiðtÞ%½DxjðtÞ%iq0=ð2tÞ

¼ Ddij þ
DD
2

t4ðtÞ
t

Mijðq0Þ ð2Þ

where DD ≡ Da − Db and tn(t) ≡ ∫0tdt′e−nDqt′ =
(1 − e−nDqt)/(nDq). Dxx(t,0) and Dyy(t,0)
quantitatively match experimental results for
q0 = 0 as shown in Fig. 2B, with Da, Db, and Dq

equal to their values obtained from Fig. 2A. The
average of Dij(t, q0) in Eq. 2 over initial angles q0
yields D' xx = D' yy = D' , in agreement with the
MSDs of x and y in Fig. 2A. The 3D counterpart,
D' xx = D' yy = D' zz = (Da + Db + Dc)/3, is widely
used in dynamic light scattering (12).

Unlike spheres, anisotropic particles have
anisotropic friction coefficients that are respon-
sible for the coupling of translation and rotation.

This coupling leads to nontrivial mixed correla-
tion functions such as

〈DxiDxjeinq〉=t ¼
½2D' þ DDAðnÞ

ij ðtÞ=2%einq0 − n2Dqt ð3Þ

where A(n)ij(t) = ei2qt(4+4n)
1 −i
−i −1

! "
+ e−i2qt(4−4n)

1 i
i −1

! "
. Equation 3 is obtained from our

Langevin formalism (8). Experimental results
agree well with these theoretical predictions and
deviate from the theoretical dashed curves
obtained assuming translational and rotational
motion are decoupled (Fig. 2C).

Transforming Eq. 1a into the body frame
at ∂H/∂x = 0, we obtain

∂t x̃i ¼ x̃ iðtÞ ¼ Rij½qðtÞ%xjðtÞ ð4Þ

The probability distribution of x̃i(t), which can
be calculated directly from its definition and the
properties of xi(t), is a Gaussian with zero mean
and variance 〈x̃ i x̃ j〉= 2kBTG̃ i jd(t− t′), where G̃ i j is
a q(t)-independent diagonal matrix with com-
ponents G̃xx = Ga and G̃yy = Gb. Thus, 〈(D x̃i)

2〉
equals 2Dit, where Di = (Da, Db), in agreement
with the experimental data in Fig. 2A. Because x̃ i
is Gaussian, the PDF for body-frame displace-
ments D x̃i (t) is Gaussian at all times:

fDx̃i
ðx,tÞ ¼ 1ffiffiffiffiffi

2p
p

siðtÞ
e
−

x2

2s i
2ðtÞ ð5Þ

where si
2(t) = 2Dit. Our measurements confirm

this behavior in fig. S1. For our quasi-2D
sample, the ellipsoid's friction and diffusion
tensors are different at different heights within
the cell (13). Therefore, the PDF of D x̃i should
be an average of Gaussian PDFs with
different variances. However, the interfer-
ence color from the ellipsoid changed very
little throughout the course of our experiment;

from this result we estimate that the ellipsoid
remains within 50 nm of the midplane of the
cell and that the non-Gaussian effects are too
small to be observable as is confirmed by our
measurements.

Although the statistics of displacements in the
body frame are Gaussian, those in the lab frame
are not because of coupling between translation
and rotation (14). Prager (15) calculated the
non-Gaussian concentration for averaged initial
angles in a particular geometry in three dimen-
sions. The lab-frame noise, xi(t) = Rij

−1[q(t)] x̃ i(t), is
a nonlinear function of the independent noises
xq(t) and x̃ i(t). Thus, although its probability
distribution is Gaussian for fixed q(t) and thus
fixed xq(t), its distribution averaged over xq(t) is
non-Gaussian, as is that for Dxi(t). At short
times, the lab- and body-frame displacements
are equal, and the PDF for Dxi(t) is Gaussian
because that for D x̃i(t) is. Directional infor-
mation is lost at times greater than tq. Therefore,
at long times, Dx(t) is a sum of displacements
from ~t/tq statistically independent steps, and
the central limit theorem implies that its PDF is
Gaussian. Thus at fixed q0, we expect deviation
from Gaussian behavior to vanish at t = 0 and
t = ∞ and to reach a maximum at times of
order tq.

The simplest manifestations of non-Gaussian
behavior are the nonzero values of the fourth- or
higher-order cumulants of lab-frame displace-
ments, which can be calculated (8) from our
Langevin theory. For example, the fourth
cumulant of Dx(t) for fixed initial orientation is

Cð4Þ
q0 ðtÞ ¼ h½DxðtÞ%4iq0−3h½DxðtÞ%

2i2q0

¼ 1
2
ðDDÞ2 3½tqt − tqt4ðtÞ− t4ðtÞ2% þ

n

½tqt4ðtÞ− tqt16ðtÞ− 3t4ðtÞ2%cos4q0
o

ð6Þ

Fig. 2. (A) MSDs along a, b, x, and y axes. (Inset) Angular MSD. All curves
have diffusive behavior (º t), and corresponding diffusion coefficients D =
MSD/(2t) shown in the figure are from best fits. (B) Diffusion coefficients D in
the lab frame. The initial orientation of each trajectory was chosen to be along
the x axis (q0 = 0), so that Dxx and Dyy change from Da and Db to D' ,

respectively, over time interval tq. Symbols, experiment; error barsº
ffiffi
t

p
. Solid

curves, Eq. 2 when q0 = 0. (C) Mixed correlations of translational displacements
and orientation. Symbols, experiment. Error bars º

ffiffi
t

p
. Solid curves, theo-

retical results from Eq. 3 for n = 2. Dashed curves, reference uncorrelated
averages 〈Dx2〉〈cos2q〉/t, 〈Dy2〉〈cos2q〉/t, and 2〈DxDy〉〈sin2q〉/t = 0.

27 OCTOBER 2006 VOL 314 SCIENCE www.sciencemag.org628

REPORTS

 o
n 

Ju
ne

 1
0,

 2
00

8 
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fro
m

 

Figure 6. Diffusion coefficients D. The initial orientation of each trajectory
was chosen to be along the x-axis or along the y-axis. See Y. Han et al., Brownian
motion of an Ellipsoid, Science, 314, 626, 2006.

(2) Problem 2
We consider an isolated system composed of two parts, a left part and a right part.
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This system contains two types of particles free to move. We call N1 and N2 the
number of particles of type 1 or 2 in the right part. We consider the following energy

(891) E − V1(t)N1 − V2(t)N2

and we recall the F.D. (fluctuation-dissipation) theorem (β = 1/kT )

(892) CAB(t) = 1/β

∫ t

−∞
χAB(t− t′)F (t′)

(a) We choose V1(t) = 0 for all t and

(893) V2(t) =

{
0 for t < 0

V2 for t > 0

Therefore, we have :

(894) ⟨N1(t)⟩V2 − ⟨N1⟩0 = V2

∫ t

0

χN1,N2(t
′)dt′

Using the F.D. theorem, calculate
∫ t

0
χN1,N2(t)dt as :

(895)
∫ t

0

χN1,N2(t)dt =

∫ ∞

0

χN1,N2(t)dt−
∫ ∞

t

χN1,N2(t)dt

(b) Deduce

(896) ⟨N1(t)⟩V2 − ⟨N1(0)⟩V2 = βV2 [⟨N1(0)N2(0)⟩0 − ⟨N1(t)N2(0)⟩0]
(c) Give a similar equation for

(897) ⟨N2(t)⟩V2 − ⟨N2(0)⟩V2 =?

(d) From now on, we choose the more general perturbation

(898) (V1(t), V2(t)) =

{
(0, 0) for t < 0

(V1, V2) for t > 0

and we write

(899)
⟨N1(t)−N1(0)⟩V1,V2 = L11V1 + L12V2

⟨N2(t)−N2(0)⟩V1,V2 = L21V1 + L22V2

Generalize the previous calculation and give the coefficients Lij.
(e) What is the symmetry you expect for the Lij’s and why is this symmetry valid ?

(3) Problem 3
Consider the process schematized in Fig. 7.
(a) What is then the work Wg provided to the system ?
(b) What is the work We extracted from the system ?
(c) With the chosen protocol, can the work fluctuate ? Compute ⟨e−βW ⟩ where you

have to choose for W either 1) or 2).
(d) Do your result seem to contradict a basic thermodynamic principle and-or does it

contradict an inequality we have derived during the lectures ?
(e) This exercice shows that one can extract work from a system at thermal equilib-

rium if some information is available. What information is available to you in this
case ?

(4) Hints:
We recall that for Brownian particle (1-D)

(900) m
dv

dt
= −ζv + δF (t) with ⟨δF (t)δF (t′)⟩ = 2Bδ(t− t′)
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Comme le système est initialement à l’équilibre, la particule a, au début du processus, une
probabilité v0/v de se trouver à gauche du mur et une probabilité (v�v0)/v de se trouver à droite.
On en déduit que

W =

8
<
:

�kT log v1
v0

avec probabilité v0
v

�kT log v�v1
v�v0

avec probabilité v�v0
v

Il est alors facile de vérifier que
he�W/kT i = 1

comme le prévoit la relation de Jarzynski.

6.3 La vraie machine de Szilard et le second principe

La machine de Szilard (1929) fut introduite pour montrer qu’on peut extraire du travail d’un
système à l’équilibre (en contact avec un seul thermostat) à condition d’avoir de l’information.

Au départ il y a une seule particule dans un volume v. On introduit un piston au milieu. Si la
particule est à gauche on pousse le piston (très lentement) vers la droite, si la particule est à droite
on pousse le piston vers la gauche.

11v v

On s’arrête quand le volume occupé par la particule est v1. Clairement que la particule soit initia-
lement à gauche ou à droite on fournit ainsi un travail W = �kT log(2v1/v) puisque vinitial = v/2
et vfinal = v1. On voit donc que si on choisit v1 = v, on peut extraire ainsi un travail

Wextrait = �Wfourni = kT log 2 .

Ce résultat semble paradoxal puisqu’on réussit à extraire du travail d’un système à l’équilibre.
A priori l’opération peut se répéter un grand nombre de fois et donc on pourrait extraire ainsi
un travail arbitrairement grand. Avec le protocole ainsi choisi le travail fourni W = �kT log 2 ne
fluctue pas et on a donc

he��W i = 2

en contradiction apparente avec la relation de Jarzynski.

25

Figure 7. Initially, there is only one particle in a volume v. A piston is inserted
in the middle. If the particle is on the left, the piston is pushed to the right.
If the particle is on the right, the piston is pushed to the left. In both cases
vfinal = v1 = v.

we have

(901) ⟨∆x(t)2⟩ >eq.= 2
kT

ζ

[
t− m

ζ
+
m

ζ
e−ζt/m

]

We also have for a well-known distribution
(902) ⟨eiax⟩ = eiax̄−

1
2
a2⟨(x−x̄)2⟩
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Université Grenoble-Alpes
Year 2021-2022
No lecture notes allowed, only 1 handwritten page.

Non equilibrium Statistical Mechanics

Note : It may be helpful to read the entire problem set. You can use either English, French or
German.

(1) Problem 1
Answering this problem takes 2 lines. Let I, θ, Ω be the moment of inertia, the angular
variable and the angular velocity of a single rigid dipolar molecule which rotates in a
plane. Following classical mechanics, the equations of motion are

(903)
dθ

dt
= Ω I

dΩ

dt
= −ζΩ

(a) Give the Langevin equation for this problem.
(b) Show that this problem is equivalent to a simple problem we have seen during the

lectures. Using this analogy, what is (without calculation)

(904) < δθ(t)2 >

(2) Problem 2
Consider the following Fokker-Planck equation in one space dimension

(905)
∂P

∂t
=
α

γ

∂

∂x
xP +D

∂2

∂x2
P

(a) What does this equation describe ? (1 line)
(b) We define the moments < xn(t) > as

(906) < xn(t) >=

∫ +∞

−∞
dx xnP (x, t)

and assume that the first two moments exist. If x(t = 0) = x0, show by integrating
by parts:

(907)
d < x(t) >

dt
= −α

γ
< x(t) >

and deduce < x(t) >.
(c) Specializing to x(t = 0) = 0 for all processes, show in the same way

(908) < x2(t) >=
Dγ

α

[
1− exp

{(
−2αt

γ

)}]

and comment your result (2-3 lines).
(3) Problem 3

Master equations are sometimes used to model chemical reaction. Consider the follow-
ing reaction:

(909) A+ B
k1−−→←−−
k2

A+A

where the number of A molecule is nA and the number of B molecules is nB. Let N
be the total number of molecules.
(a) What is the relation between N , nA and nB ?
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(b) A state of the system is specified by the pair (nA, nB). Transitions are made only to
neighboring states, for example, (nA, nb) to (nA+1, nB−1) and the transition rate
for this process is the forward rate constant times the number nA of A molecules
times the concentration of B molecules

(910) w(nA, nB → nA + 1, nB − 1) = k1nA
nB

V
For the other reaction in (909), complete the formula

(911) (nA, nB)→ (?, ?)

(c) Give w(nA, nB →?, ?) for the reaction (909) as a function of k2.
(d) Let PnA

(t) be the probability to find the system with nA molecule (because of
question 1, we don’t need to specify the number of B molecules). What are the
three types of events which can take place during a small time interval ∆t ?

(e) What is the probability for each event to occur ?
(f) By writing PnA

(t + ∆t) as a function of PnA±1(t) and PnA
(t), give the Master

equation for PnA
(t).
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APPENDIX

1. Gaussian integrals

(912)

Z(A,b) =

∫
dnx exp

(
−1

2

∑

i,j

xiAi,jxj +
∑

i

bixi

)
= (2π)n/2 (detA)−1 exp

(
−1

2

∑

i,j

bi∆i,jbj

)

where
(913) ∆ = A−1
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