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Underwater bubbles display an acoustic resonance frequency close to spherical ones. In order to obtain a
resonance significantly deviating from the spherical case, we stabilize bubbles in toroidal frames, resulting
in bubbles which can be slender while still compact. For thin tori the resonance frequency increases greatly.
Between a pair of bubble rings, we can achieve a flat acoustic pressure field for a critical distance between
rings, a condition reminiscent of Helmholtz coils in magnetostatics. This opens the possibility to shape the
acoustic field using long tunnels of rings.

DOI: 10.1103/PhysRevLett.129.134501

Introduction.—Underwater bubbles are very good reso-
nators when excited by acoustic waves. Spherical bubbles
were the most studied, featuring a resonance frequency
known as the Minnaert frequency [1]. Deviations from the
spherical shape were investigated with ellipsoidal bubbles
[2] showing a small deviation in frequency, less than 10%
for an aspect ratio of 4, but hardly with other shapes.
Our motivation is to understand if bubbles can highly

depart in resonance frequency from the spherical case. The
originality of the present study is to investigate toroidal
bubbles that feature two characteristic lengths: a small one
(the small radius b of the torus) and a large one (the grand
radius R of the torus). Cylinders have the same property,
but tori are more compact.
Toroidal bubbles are found in nature and in applications.

Such bubbles are on purpose emitted by dolphins during
their aquatic evolutions [3] as part of play. They are
encountered in cavitation studies, where they constitute
the ultimate stage of collapsing bubbles close to rigid
boundaries [4]. Entrapped within a vortex ring, these
bubbles are always in motion [5,6], which makes them
difficult to study.
Recently, we demonstrated that we can trap and stabilize

bubbles within open frames. Not only are such stabilized
bubbles very good building blocks to build new acoustic
metamaterials with novel acoustic properties [7–13], but
they open the way to study arbitrary shapes. For frames
assuming the shape of regular Platonic solids, the reso-
nance frequency was found to be close to spherical bubbles
with the same volume within a few percent [14,15].
This Letter describes the capture of stable toroidal

bubbles and the measurement of their acoustic properties
as a function of their shape. Toroidal shapes are a good
candidate to show original resonance properties, owing to
their specific topology and the possibility to tune the aspect
ratio R=b between the grand radius R and the small radius
b; see Fig. 1(a).

Design, fabrication, and immersion.—Toroidal open
frames were designed from a mainly hexagonal mesh,
with hexagonal openings as monodisperse as possible (in
order to avoid a large opening that would be a point of entry
for water). The method was to build a triangular mesh using
SURFACE EVOLVER [16], and then to consider its dual,
which is obtained by taking the centers of the triangles and
linking neighbor centers [see Fig. 1(b) and further details in
Supplemental Material [17] ]. We obtain a computer model
of the frames by placing spheres at the centers and bars for

FIG. 1. (a) Torus dimensions and coordinates. (b) Design of
the toroidal frames: triangular mesh (left) and dual mesh (right).
(c)–(e) Bubble entrapped after immersion of frames with several
aspect ratios: (c) R=b ¼ 4.5, (d) 1.31, (e) 7.4. The grand radii of
these structures are (c) R ¼ 8, (d) 4.8, and (e) 11.3 mm.
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the links (script in FreeCAD). We manufactured frames by
3D stereolithography to obtain millimetric frames, made
hydrophobic by silanization. Note that the diameter d of the
inscribed circle of the openings is between 66% and 72% of
the diameter of the inscribed circle of the almost plane
hexagonal faces Then we immersed the toroidal ring with
its symmetry axis vertical, in order to reduce the hydrostatic
pressure difference between the bottom of the structure and
the water level during partial immersion. Capillary pressure
holding the interfaces at the bottom of the structure was
large enough to resist hydrostatic pressure (4σ=d > ρgH,
with σ the surface tension and H the height during
immersion). After complete immersion their axis can be
rotated to be horizontal as in Figs. 1(c)–1(e).
Resonance frequency.—The toroidal bubbles were

excited by an underwater speaker as in Refs. [14,15] with
frequency sweeps. We recorded the bubble acoustic emis-
sion with a hydrophone located around 1 cm away from it.
We extracted the relative contribution of the bubble to the
signal by computing A ¼ ðP̂ − P̂0Þ=P̂0, where P̂ and P̂0 are
the Fourier transforms of the hydrophone measurements
with and without the bubble. The resonance frequency was
measured as the frequency for which the phase of the
contribution is shifted by π=2, corresponding to a peak in
the amplitude of the contribution. We measured the
resonance frequency for different torus volumes V and
aspect ratios R=b. Instead of the gas volume, we used
the equivalent radius Req¼½V=ð4π=3Þ%1=3 to compare to the
vibration of spheres of the same volume. We found that the
frequency of toroidal bubbles is always higher than spheres
[Fig. 2(a)]. The ratio of the resonance frequency to that of
spheres of the same volume is an increasing function of the
aspect ratio [Fig. 2(b)]. High-aspect-ratio tori with R=b ¼
12 feature a resonance that is nearly 60% higher, which is a
large relative deviation from the Minnaert frequency, as
compared to the deviation observed for Platonic shapes
investigated so far, of the order of a few percent only
[14,15].
Analytical model for a thin torus.—This original behav-

ior can be modeled analytically considering a toroidal gas-
liquid interface, neglecting the influence of the structure.
Previous results on cubic structures showed no noticeable
influence of the frames, provided the inscribed circle
diameter of the holes was greater than 60% of the face
inscribed diameter [15], which is the case here.
We describe the volume pulsation by considering an

oscillation of the small radius with time bðtÞ for a grand
radius R fixed. We consider the limit of a thin torus,
R=b ≫ 1. Any point in space has cylindrical coordinates r,
z. We note r0 the distance to the grand circle in the middle
of the torus [Fig. 1(a)].
Close to the bubble surface, at a distance r0 such that

r0 ≪ R, the flow field is the one around a pulsating
cylinder, with a radial velocity u ¼ b _b=r0 (dots denoting
time derivatives). The velocity potential Φ (giving the flow

field u ¼ ∇Φ) writes in this region Φclose ¼ b _b lnðr0=r0Þ,
with r0 a yet unknown variable linked to the system size.
Away from the surface, in the region r0 ≫ b, we can

assimilate the torus to an infinitely thin circular ring. When
the bubble pulsates with a bubble wall velocity _b, each
portion of length Rdθ located at position rcðθÞ acts as a
source of flow rate dQ ¼ 2πb _bRdθ, with a velocity
potential, evaluated at observation position r, equal to
dΦðrÞ ¼ −dQ=ð4πjr − rcjÞ. Hence, the velocity potential

(b)

(a)

(c)

FIG. 2. (a) Resonance frequency of tori as a function of the
equivalent radius Req (the radius of the gas volume packed in a
sphere) with different aspect ratio R=b. The blue dotted line
shows the frequency of a sphere. (b) Resonance frequency
compared to that of sphere of same volume, as a function of
aspect ration R=b. Line: analytical model for a thin torus
[Eq. (2)]; crosses: 3D finite-difference time-domain (FDTD)
simulations; dotted line: frequency of the sphere. (c) Simulations
of the emitted field of a torus (R=b ¼ 4): cross section z ¼ 0 (left)
and θ ¼ const (right). White lines: isopressure contours, chosen
to be equidistant for a field decaying as 1=r.
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of a pulsating ring writes ΦawayðrÞ ¼ − 1
2Rb _b

R
2π
0 dθ=

jr − rcj. Evaluating this integral yields Φaway ¼ −ð2Rb _b=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ RÞ2 þ z2

p
ÞKð4Rr=ððrþ RÞ2 þ z2ÞÞ, with K the

complete elliptical integral of the first kind.
We can match the two expressions of the potential in the

intermediate region b ≪ r0 ≪ R. In this region the outer
potential approximates Φaway ≃ b _b lnðr0=8RÞ, using the
known series expansion Kð1 −mÞ ¼ − 1

2 lnð1 −mÞþ
2 ln 2þO½ð1 −mÞ lnð1 −mÞ%. This yields r0 ¼ 8R, and
solves the value of the potential in the vicinity of the
bubble.
Now we consider an applied acoustic pressure paðtÞ in

addition to the ambient pressure p0. At distances large
compared to R but small compared to the acoustic wave-
length λ, the velocity potential tends to zero, and the
pressure tends to p0 þ paðtÞ (note that λ ≫ R holds, since λ
is of order 1 m in the kilohertz range of frequencies enco-
untered in this study). The flow being irrotational and inco-
mpressible, Bernoulli’s theorem ensures that ρð∂Φ=∂tÞþ
1
2 ρu

2 þ p is uniform in the liquid. Considering small-
amplitude vibrations (jb − b0j ≪ b0), hence neglecting
nonlinear terms, and looking in the region near the surface
whereΦ ¼ b _b lnðr0=8RÞ, we thus obtain the pressure at the
bubble surface: psurf ≃ p0 þ paðtÞ þ ρb0b̈ lnð8R=b0Þ.
Now, the continuity of normal stress at the bubble surface
yields psurf ¼ pb, with pb the inner pressure of the bubble,
neglecting surface tension. Assuming an adiabatic be-
havior of the gas [18], we get pb ¼ p0ðb0=bÞ2γ ≃ p0½1−
2γðb − b0Þ=b0%, where γ ¼ 1.4 is the specific heat ratio. We
therefore have ρb0b̈lnð8R=b0Þþ2γp0ðb−b0Þ=b0¼paðtÞ,
whence the resonance frequency:

ω2
t ¼

2γp0

ρb20 lnð8R=b0Þ
: ð1Þ

The effect of the aspect ratio of the torus appears through
the logarithmic term lnð8R=b0Þ. This relates to other fields
of physics governed by Laplace equation, notably the
dynamics of vortex rings in hydrodynamics [5,19] or the
capacitance of charged rings in electrostatics [20].
We can compare the resonance frequency of the torus

and that of the sphere of the same volume V, which verifies
ω2
s ¼ 3γp0=ρR2

eq, with Req the sphere radius [21]. Since
V ¼ 2π2Rb20 ¼ 4πR3

eq=3, we readily obtain

ω2
t

ω2
s
¼

"
2π2

3

#
1=3 R2=3

b2=30 lnð8R=b0Þ
; ð2Þ

which is an increasing function of the aspect ratio. Hence, it
is possibly to design “high-pitched” bubble of a given
volume by using thin tori. This asymptotic prediction com-
pares very well to both experimental data [Fig. 2(b)] and
predictions from finite-difference time-domain (FDTD)

simulations [Fig. 2(c)], even down to R=b ¼ 2; here,
simulations were performed with the freeware SimSonic

[22], following the approach detailed in Ref. [14]. The
scatter in experimental data is likely due to the uncertainty
on the exact location of the air-liquid interfaces.
For smaller values of R=b, the analytical prediction

based on the thin-torus approximation breaks down as
expected. FDTD simulations are, however, valid for any
R=b values, including both fat tori (R=b≳ 1) and self-
intersecting tori (0 < R=b < 1). As illustrated in Fig. 2(b),
the frequency ratio smoothly tends to 1 when R=b
decreases to 0, corresponding to the spherical case.
Two rings.—Having obtained the response of one ring,

we explored the interaction of a couple of coaxial rings
[Fig. 3(a)]. A first noticeable effect is that the resonance
frequency (lowest mode) quickly decreases when the rings
are approaching each other [Fig. 3(b)], as is the case for two
spheres approaching each other [23].
Remarkably, when recording the pressure generated by

the bubble pair along the axis for different pair distances,

(a) (b)

(c)

FIG. 3. (a) Two coaxial rings as in Fig. 1(d) with centers
separated by a distance a ¼ 11.25 mm. (b) Resonance frequency
fres versus the distance a between two tori of aspect ratio 11.9 and
radii R ¼ 15.8 mm. Circles: experimental data. Plain curve: fit by
f0 ¼ ω−=2π, with ω− given by Eq. (4), where ωt ¼ 1.18 kHz is
obtained as a free fitting parameter. (c) Pressure field versus the
coordinate z0 along the axis (z0 ¼ 0 at the mass center of the tori
system), for two tori of aspect ratio 7.4 (and R ¼ 11.35 mm)
separated by distances a ¼ 3 (⊲), 7 (⊳), 12 (▿), 16 (△, fulfilling
a ¼ R

ffiffiffi
2

p
), 19 (◊), 23 (□), and 28 mm (∘). The experimental

pressure field is fitted by Πðz0Þ given by Eq. (5) with a
multiplicative prefactor as fitting parameter, then rescaled by
Πðz0 ¼ 0Þ (continuous lines). In order to display how the gap
changes the dependence in z with optimal clarity, the curves have
been shifted by arbitrary offsets, equal to 0, 0.15, 0.3, 0.45, 0.6,
0.75, and 0.9, respectively, for a ¼ 3, 7, 12, 16, 19, 23, and
28 mm. 3D simulations (dashed lines) are also featured.
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we found that at large distance a (between the centers of the
rings) the pressure profile has two separate peaks separated
by a minimum, and this minimum transforms in a flat
plateau for closer distances, before yielding a unique peak
[Fig. 3(c)]. Therefore, there is a separation for which the
pressure is almost constant in a wide area. This phenome-
non is reminiscent of Helmholtz coils used to produce
quasiuniform magnetic fields [24].
The two identical coaxial tori constitute a system of

coupled oscillators. To predict the eigenfrequencies of this
system, we extend the previous theory for thin tori.
By linear superposition, the velocity potential equals Φ0 ¼
−ð2Rb0 _b1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ RÞ2 þ ðz0 þ a=2Þ2

p
ÞKð4Rr=ððrþ RÞ2þ

ðz0 þ a=2Þ2ÞÞ − ð2Rb0 _b2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr þ RÞ2 þ ðz0 − a=2Þ2

p
Þ

Kð4Rr=ððrþ RÞ2 þ ðz0 − a=2Þ2ÞÞ , where ðr; z0Þ are the
cylindrical coordinates with respect to the center of sym-
metry of the system.Here, torus i (i ¼ 1, 2), of instantaneous
radius biðtÞ, is centered at r ¼ 0, z0 ¼ ð−1Þia=2. Assuming
a ≫ b0, the evaluation of Φ0 at the surface of torus 2
of equation ðr − RÞ2 þ ðz0 − a=2Þ2 ¼ b20 yields Φ0≃
−b0½ _b1ftðR=aÞ þ _b2 lnð8R=b0Þ%, with a coupling factor
ftðξÞ ¼ ð2ξ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ξ2 þ 1

p
ÞKð4ξ2=4ξ2 þ 1Þ. We then evaluate

the pressure at the surface of torus 2, and from the continuity
of normal stress, we get

ρb0

$
b̈1ft

"
R
a

#
þ b̈2 ln

8R
b0

%
þ2γp0

b2−b0
b0

¼−paðtÞ; ð3Þ

and a similar equation is found by swapping indices 1 and 2.
Hence, the eigenfrequencies are the roots of the equation:

&&&&&&

ω2 − ω2
t ω2 ftðR=aÞ

lnð8R=b0Þ

ω2 ftðR=aÞ
lnð8R=b0Þ

ω2 − ω2
t

&&&&&&
¼ 0;

using the expression of the single-torus eigenfrequency
[Eq. (2)], whence

ω2
' ¼ ω2

t

$
1 ∓ ftðR=aÞ

lnð8R=b0Þ

%−1
: ð4Þ

The lowest eigenfrequency ω− corresponds to the two
bubbles oscillating in phase, while ωþ corresponds to the
two bubbles oscillating in antiphase. Since the pressure
emitted by the bubbles comes mostly from volume oscil-
lations [21],wemeasure onlyω−. Equation (4) shows thatω−
is lower than the eigenfrequency of a single torus, and is an
increasing function of the distance a, since ftðξÞ is an
increasing function of ξ. This prediction is in qualitative
agreement with the acoustic interactions of two spherical
bubbles [25].
From Bernoulli’s theorem, the pressure emitted by

the vibrating tori equals ptðr ¼ 0; z0Þ ¼ −ρ∂Φ0=∂t ¼
πρb0b̈Πðz0Þ, with

Πðz0Þ ¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðz0 − a=2Þ2

p þ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðz0 þ a=2Þ2

p ; ð5Þ

where Π is the dimensionless function which encompasses
the spatial dependence of the pressure field. It decays as 1=z0

far from the tori, but its behavior between the tori depends
on a; it is easy to show that Π presents a single maximum at
the middle of the two tori for a < R

ffiffiffi
2

p
, but two symmetric

maxima and a local minimum at the middle of the two tori
for a > R

ffiffiffi
2

p
. The critical condition a ¼ R

ffiffiffi
2

p
corresponds

to a very flat profile at the middle of the two tori, This
critical distance for a “flattest” pressure profile is reminis-
cent of Helmholtz coils. However, the Helmholtz condition
is a ¼ R because of the difference ranges of magnetostatics
(∼1=z02) versus pressure (∼1=z0) fields produced by circular
sources. This prediction is in very good agreement with the
experiments and 3D simulations [Fig. 3(c)].
Multiple rings.—In order to enhance the extent of the

domain with a uniform pressure field we manufactured a
series of equally spaced coaxial rings [Fig. 4(a)]. Increasing
the number of rings has two effects. First, the collective
resonance frequency drops noticeably when the number of
rings increases [Fig. 4(b)]. Second, the width (and the
magnitude) of the pressure peak increases with the number

(a) (b)

(c)

FIG. 4. (a) Tunnel of toroidal bubbles equally spaced by a ¼
6.25 mm (R ¼ 11.35 mm and R=b ¼ 7.4). (b) Ratio of the
resonance frequency for N tori to the single-torus resonance
versus the number of tori: experimental data (□) and predictions
(∘). (c) Pressure field, fitted and rescaled as in Fig. 3(c), versus the
coordinate z0 along the axis, for two (⊳), seven (▪), and ten (•)
tori with almost the same distance between adjacent tori: a ¼
7 mm for the two tori, a ¼ 6.25 mm for the other cases.
Continuous lines: theory. Dashed lines: simulations. Vertical
lines indicate the position of the ends of the seven and ten tori
tunnels.
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of rings, as shown of Fig. 4(c). We obtain a tunnel with a
strong pressure, of amplitude around 8 times the excitation
pressure.
The previous theoretical analysis can be easily general-

ized to an arbitrary numberN of coaxial tori with a distance
a between two consecutive tori: for i between 1 and N, we
denote z ¼ ði − ðN þ 1=2ÞÞa the position of torus i along
the symmetry axis of the tori. For this torus, accounting for
the coupling to all other tori, Eq. (3) can be genera-
lized to ρb0½

PN
j¼1;j≠i b̈jftðR=aji − jjÞ þ b̈i lnð8R=b0Þ%þ

2γp0ðbi=b0Þ ¼ −paðtÞ. This results in a linear system of
N equations for the eigenfrequencies, which must be solved
numerically. Like for the two-torus case, the lowest
eigenfrequency corresponds to oscillations in phase of
all tori, and it is the one which is measured experimentally
[see comparison Fig. 4(b)]. The pressure field is a super-
position of the ones emitted by each torus, and reproduce
the measurements quite well [Fig. 4(c)].
Perspectives.—Toroidal bubbles are convenient elements

to shape the acoustic field, and to obtain extended regions
of long and uniform pressure, which provides a new tool for
acoustic applications such as acoustic trapping of particles
[26,27]. They can be packed in numbers, to obtain original
acoustic metamaterials. At the ocean level, we hypothesize
that dolphins should already be aware of the acoustic
properties of rings since they often emit pulsed sounds
when making rings. In particular, they should be able to
detect a “glissando” toward higher resonance frequencies
when a ring enlarges, increasing the aspect ratio R=b at
constant gas volume.
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