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Acoustic tokamak with strongly coupled toroidal bubbles
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Gas bubbles stabilized in toroidal 3D-printed cages are good acoustic resonators with an unusual topology.
We arrange them in a circular array to obtain what we call an “acoustic tokamak” because of the torus shape
of the whole array. We demonstrate experimentally and theoretically that the system features several acoustic
modes resulting from the acoustic interaction between tori. The fundamental acoustic mode has a much lower
frequency than that of the individual bubbles. The acoustic field along the circle inside the acoustic tokamak is
remarkably homogeneous, as shown by our 3D simulations.
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I. INTRODUCTION

Bubbles in a liquid are a configuration of choice to create
acoustic metamaterials, since they display a strong acous-
tic resonance, while their size is much smaller than the
wavelength. It has been shown that the coupling between
subwavelength objects can result in very localized emission
patterns; see, for instance, the study of soda cans in air in [1].

Recently we showed that we could obtain long-lasting
bubbles of arbitrary shapes such as cubes [2], polyhedra [3],
and tori in 3D-fabricated cages [4]. Among these shapes,
the toroidal one is particularly useful to shape the acoustic
field. Under excitation a toroidal bubble emits an acoustic
field with a first particularity: there is a vanishing gradient
of the acoustic field at the center of the torus. Contrary
to usual oscillating sources it is then possible to obtain a
uniform acoustic field, for instance, in a tunnel of aligned
coaxial tori [4]. Note that toroidal resonators within meta-
materials have been addressed in electromagnetics [5,6]
showing unique properties such as the Hofstadter’s butterfly
spectrum [7] when the resonance frequency is periodically
detuned.

Another particularity of the acoustics of toroidal bubbles
lies in its interaction with other toroidal bubbles. Oscillating
bubbles are coupled through the pressure they emit, which
modifies their natural resonance frequency [8–13]. A cou-
ple of toroidal bubbles have stronger coupling, as compared
to a couple of spherical bubbles. Indeed, if we consider a
couple of spherical bubbles of radius R that have an individ-
ual resonance pulsation frequency ω0 [4,14], their common
resonance frequency drops to the value ω = ω0/

√
1 + R/d

(fundamental mode) with d their center-to-center distance
[15]. At contact d = 2R, the resonance drops to ω =
ω0

√
2/3 ≃ 0.82ω0. If we consider a couple of coaxial toroidal

bubbles of grand radius R and of small radius b their fun-
damental frequency obeys ω = ω0/

√
1 + ft (R/d )/ ln(8R/b),

with ft (ξ ) = 2ξK (4ξ 2/(4ξ 2 + 1))/
√

4ξ 2 + 1 an interaction
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factor involving K the complete elliptic integral of the first
kind [4]. At contact d = 2b, the resonance drops to ω ≃
0.74ω0 assuming R/b = 7.4, a value that weakly depends
on R/b.

The classical arrangement of coupled oscillators for theo-
retical study is an infinite linear arrangement. Experimentally
the arrangement is necessarily finite [16,17], posing the con-
cern of end effects.

Here we propose to investigate a circular array of toroidal
bubble resonators [Fig. 1(a)]. It is a configuration we achieved
experimentally due to our expertise with stabilized bubbles
in cages. The circular arrangement removes end effects and
facilitates analytical predictions. This is an original first step
for a periodically ordered bubble-based metamaterial, the first
study to the best of our knowledge focusing on matrix-like
arrangements [18–20] or disordered arrangements [11].

The goal of the article is to understand the response of an
array of toroidal bubbles in this circular configuration. We will
also investigate the acoustic field inside the toroidal region
of the system looping through the bubbles, whose geometry
resembles the toroidal chamber surrounded by magnetics coils
whose acronym is “tokamak,” used in research on nuclear
fusion.

II. METHODS

A. Fabrication

The bubbles are trapped in toroidal cages, designed and
fabricated as in [4] using a 3D DLP printer (Anycubic, model
Photon zero, z layer thickness = 0.1 mm, with a gray Mono-
cure 3D Rapid Resin). To ensure hydrophobicity, the tori were
coated with a water-repellent spray (Mirror Coat Zero, Glaco).
This coating effectively fills all the micropores of the pho-
topolymerized resin, creating a hydrophobic, smooth, even
surface. The cages consist of an hexagonal mesh of bars, with
openings small enough to prevent the entry of water. Note that
the cages are fabricated together on a large plate. An example
of a fabrication of 12 toroidal bubbles is shown in Fig. 1(b),
and all fabricated arrays are photographed in Fig. 2.
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FIG. 1. (a) Schematic layout of a circular array of N = 12
toroidal bubbles and a loudspeaker on the right. (b) Experimental
system of toroidal cages underwater. A hydrophone is placed above
the center. The loudspeaker is visible on the right. All tori have a
grand radius R = 11.35 mm and an aspect ratio R/b = 7.4, placed
along a circle or radius RT = 32.5 mm.

The crucial step is the immersion of the structure under-
water, during which the capillary Laplace pressure across
the interfaces acting at the bottom of the structure should
counteract the hydrostatic pressure. In practice we found that
the vertical immersion of toroidal cages (i.e., with the axis
of revolution horizontal), which turned out to be necessary to
correctly fill the cages with air, yielded a different interface
configuration compared to the horizontal immersion of cages
(i.e., when their axis of revolution is vertical) which we used
in [4]. Here we found the acoustic resonance frequency of the
single torus to be around 1150 Hz when immersed vertically,
as compared to about 850 Hz when immersed horizontally
(see Appendix A).

FIG. 2. Different fabrications of toroidal cages with different
number of tori from N = 3 to N = 24, placed along a circle of radius
RT = 32.5 mm.
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(b)
x

(c)

FIG. 3. Spatial measurements. (a) The microphone is displaced
between the centers of two consecutive tori. The position closest to
the loudspeaker is labeled 0. (b) Hydrophone on the exterior circle
near each torus. (c) Distribution of the background sound amplitude
measured at each position as in (a) but without the tori (averaged over
the spectrum, between 400 and 1800 Hz), showing an increase along
the x axis directed to the speaker. The curve is a fit by a quadratic
function P(x) = 1.6[1 + 0.9x/RT + 0.45(x/RT )2] in Pa.

B. Acoustic measurements

The experiments are performed in a water tank whose size
is 30 cm × 30 cm × 25 cm. A frequency sweep is emitted
by an underwater speaker placed nearby, and the acoustic
pressure is measured with a hydrophone and provides the local
acoustic pressure P(t ). Because of the steric hindrance due to
the size of the microphone, we tested two configurations:

(1) In the middle of two consecutive tori with a small
waterproof electret condenser microphone (4 mm in diameter,
2.9 mm in thickness, connected to a preamplifier built from
ADA1063, Gotronic) placed as in Fig. 3(a).

(2) Near the outside of each torus with a hydrophone
(9 mm in diameter, model no. 8103, Brüel & Kjær) at around
2 mm from each torus as in Fig. 3(b).

The incident pressure is not homogeneous: as seen in
Fig. 3(c), it increases near the loudspeaker.

III. ANALYTICAL MODEL

Before presenting the experimental results, we introduce
an analytical model which will prove useful in understanding
the complex response of our system under an inhomogeneous
excitation.
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A. Resonance frequency of the assembly of tori

We consider a tokamak with N identical tori on a large
circle of radius RT , numbered from 0 to N − 1; see Fig. 1(a).
The centers of the tori are evenly spaced on the large cir-
cle; hence, we may locate each torus at an angular position
θn = 2πn/N , θn being counted from the positive direction of
the x axis. With this convention, torus n = 0 is the closest to
the loudspeaker. Each torus of grand radius R vibrates with a
small radius which varies around the equilibrium value b as
bn(t ) = b [1 + ϵn(t )], with n ∈ {0, . . . , N − 1} the torus label.
We shall henceforth assume small amplitudes of vibration,
|ϵn| ≪ 1.

To describe the interaction between two arbitrary tori n
and m, we simplify the problem by assuming that the tori are
coaxial (thus neglecting the angle between their orientations).
The distance between their centers is dnm = 2RT sin(θnm/2),
with θnm their angular distance along the large circle. This
configuration resembles that of N coupled spherical oscil-
lators, but with a coupling factor specific to the toroidal
bubbles, depending only on the distance. Our motivation for
this approximation is the following: at large distance the field
emitted by a single torus is spherical and does not depend on
the angle, while at small distances the tori become closer to
the coaxial configuration.

Adapting our previous work on coaxial tori [4] the oscilla-
tion of the torus labeled n obeys the equation

ρbb̈n ln
8R
b

+ µ′ḃn + 2γ p0
bn − b

b

= −ρb
∑

m ̸=n

b̈m

(
t − dnm

c

)
ft

(
R

dnm

)
− Pn(t ), (1)

with ft (ξ ) = 2ξ√
4ξ 2+1

K ( 4ξ 2

4ξ 2+1 ) an interaction factor involving

K the complete elliptic integral of the first kind, according to
[4]. The driving pressure of each torus is Pn(t ). Note that an
array of spherical pulsators of radius an(t ) vibrating around an
equilibrium value a obeys slightly different equation: ρaän +
3γ p0

an−a
a = −ρa

∑N−1
m=0,m ̸=n äm

R
dnm

− Pn(t ) [21]. We include
in (1) a phenomenological damping term with a damping coef-
ficient µ′, and we include the propagation time of the pressure
wave emitted by torus m. The other symbols appearing in
(1) are the density of water ρ = 103 kg/m3, the adiabatic
exponent γ = 1.4, the ambient pressure p0 = 105 Pa, and the
speed of sound in water c = 1.5 × 103 m/s.

Under a driving pressure field of angular frequency ω, we
have Pn(t ) = Pne−iωt . We neglect the time delays dnm/c. Since
Eq. (1) is a linear equation, we can write ϵn(t ) = ξne−iωt , and
we get

(
− ω2 − iµω + ω2

0

)
ξn − ω2

ln(8R/b)

∑

m ̸=n

ft

(
R

dnm

)
ξm

= − Pn

ρb2 ln(8R/b)
, (2)

valid for all n ∈ {0, . . . , N − 1}. In this equation, ω0 is
the eigenfrequency of an isolated torus, given by ω2

0 =
2γ p0/[ρb2 ln(8R/b)], and µ a damping coefficient, re-
lated to an attenuation parameter δ by µ = δω0. Equation

(2) constitutes a linear system of the form M) =
*, with ) = (ξ0, . . . , ξN−1)T the vector of the vibra-
tion amplitudes, where T designates the transpose, * =
−(P0, . . . , PN−1)T /[ρb2 ln(8R/b)] the vector of driving pres-
sures, and M is a matrix such that Mnn = −ω2 − iµω + ω2

0,
and if n ̸= m, Mnm = −ω2 ft (R/dnm)/ ln(8R/b). Hence, the
vibration amplitudes are given by ) = M−1* or

ξn = −
N−1∑

m=0

(M−1)nm
Pm

ρb2 ln(8R/b)
. (3)

To compute the coefficient (M−1)nm, we note that the ma-
trix M belongs to the class of circulant matrices, which
are the matrices such that there exist N complex num-
bers c0, . . . , cN−1 such that for all n, m ∈ {0, . . . , N −
1}, Mnm = cn−m if n ! m, and Mnm = cN−(m−n) if m >
n. Hence, as all circulant matrices, M possesses the
following N eigenvectors: for p ∈ {0, . . . , N − 1}, vp =
(1, e2iπ p/N , e4iπ p/N , . . . , e2iπ (N−1)/N )T /

√
N , associated with

the N eigenvalues:

λp =
N−1∑

m=0

M0me2iπ pm/N . (4)

Moreover, M can be diagonalized as M = U ∗,U , where
Unm = e−2iπnm/N , U ∗ is the complex conjugate of U , and ,
is the diagonal matrix such that ,nn = λn. Hence, M−1 =
U ∗,−1U , from which it is easy to compute (M−1)nm =∑N−1

p=0 e2iπ p(n−m)/N/(Nλp). Inserting this expression in (3), we
finally get the prediction of the vibration amplitudes:

ξn =
N−1∑

p=0

1
λp

N−1∑

m=0

1
N

e2iπ p(n−m)/N*m. (5)

This seemingly complicated double sum is actually easy to
interpret. The first sum is the superposition of the resonances
of each mode, weighted by the spatial projection of the forcing
represented by the second sum. Another interpretation is that
the discrete Fourier transform of Eq. (2) gives ξ̃p = *̃p/λp,
where ξ̃p =

∑N−1
m=0 e−2iπ pm/Nξm is the transform of ξn and *̃p

the transform of *n. Equation (5) follows from the inverse
Fourier transform ξn = 1

N

∑N−1
p=0 e2iπ pn/N ξ̃p.

The resonance of each mode can be deduced from the
expression of λp given by Eq. (4): λp = −ω2 − iµω + ω2

0 −
ω2 ∑N−1

m=1 e2iπ pm/N ft (R/d0m )
ln(8R/b) , and we have

λp =
(
−ω2 − iµpω + -2

p

) ω2
0

-2
p
,

with the natural frequency of mode p:

-2
p = ω2

0

1 +
∑N−1

m=1 e2iπ pm/N ft (R/d0m )
ln(8R/b)

, (6)

which is real since the terms in the sum are complex conjugate
when switching m to N − m. This is the central result of this
analytical part.

The vibration associated with this mode has a spatial de-
pendance ξ

mode p
n = 1

N e2iπ pn/N*̃p/λp, meaning an oscillation
in time with e2iπ pn/N−ωt , which is a traveling wave rotating
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FIG. 4. Illustration of the stationary modes of circular assembly
of N = 12 bubbles. The circle size represents the amplitude of the
small radius oscillation bn(t ) = b[1 + ϵn(t )] at a given time t . A
stationary mode is obtained by an equal mixture of propagating
eigenmodes p and N − p.

around the circle. In practice the frequency -p is degenerated
in two modes p and N − p, the second rotating in opposite
direction e−2iπ pn/N−ωt . If the forcing is symmetric, we observe
a stationary wave which is the superposition of these modes
with the same amplitude. This provides a vibration writing
ξn ∼ cos(2π pn/N ). We plot in Fig. 4 those stationary modes.

B. Excitation of the modes by a nonuniform excitation pressure

We now study the spatial projection of the forcing,
quantified using the Fourier transform *̃p of the pressure
distribution, for three cases: a spatially uniform forcing, a
forcing varying linearly with x, and a forcing with a quadratic
dependence on x.

In the case of a uniform forcing, *m = * independent of
m, we have simply

*̃p = *

N−1∑

m=0

e−2iπ pm = N*δp0

from the known expressions of geometric sums. Hence, only
the fundamental mode is forced and (5) reduces simply to

ξn = *

λ0

for every n. Therefore, the fact that experiments show more
than one mode is crucially related to the spatial nonuniformity
of the pressure field.

Let us now consider the case of a forcing of the form of
polynomial of order 2 in x:

* = *a

[

1 + α
x − xm

RT
+ β

(
x − xm

RT

)2
]

,

with *a the amplitude felt at the center x = xm of the large
circle. Then each torus perceives the following amplitude:

*m = *a(1 + α cos θm + β cos2 θm)

= *a

[
1 + 1

2
α
(
e2iπ m

N + e−2iπ m
N

)

+1
4
β
(
e2iπ m

N + e−2iπ m
N
)2

]
,

FIG. 5. Fundamental resonance of a tokamak of N = 24 tori,
placing the microphone at the center as in Fig. 2(a). Top: Amplitude
of the signal as a function of frequency. The continuous curve is the
measurement with the tori, while the dashed curve is that without the
tori (background signal). Bottom: Cosine of the phase of the signal
with respect to incoming signal showing a sharp change at resonance.
The resonance at occurs at f exp

0 = 764 Hz with a quality factor of
Q = 7.9 measured using the slope of the phase curve at resonance.

whence, using Eq. (5),

ξn = *a

[(
1 + 1

2
β

)
1
λ0

+ α
λ1

cos
2πn
N

+ β

2λ2
cos

4πn
N

]
.

A linear forcing along x (α ̸= 0, β = 0) forces both the
fundamental mode and the mode p = 1, but no higher mode.
A quadratic forcing (β ̸= 0) will trigger the mode p = 2. Sim-
ilarly it can be shown that spatial forcing with a polynomial
of order p in x will trigger up to mode p.

The pressure received at a given observation point is
the sum of the incident pressure and of the scattered pres-
sure emitted by the tori. The latter is computed using [4]:
Pscat = ρ

∑N−1
n=0

Rbb̈n (t−dn/c)√
(rn+R)2+z2

n

K ( 4rnR
(rn+R)2+z2

n
) with dn the distance

between the observation point and the center of torus n, and
where rn and zn are the coordinates of the observation point
(in the local cylindrical coordinates aligned with the axis of
each torus).

IV. EXPERIMENTAL RESULTS

A. Fundamental mode of the tokamak assembly

We recorded pressure signals P(t ) and a reference signal
without bubbles P0(t ) after the removal of the assembly. We
plot in Fig. 5(a) an example of the Fourier transforms P̂ and
P̂0 of the pressure signals. The background emission P̂0 is
relatively homogeneous. We also compute the relative con-
tribution of the bubbles to the signal using A = (P̂ − P̂0)/P̂0,
and in particular its phase φ. To avoid unwrapping the phase
we prefer to plot cos(φ).

The acoustic response is first recorded by placing the
microphone above the center of the assembly, at an equal
distance to all the toroidal bubbles, as in Fig. 2. The spectrum
of the measured signal shows a clear resonance when looking
at the amplitude of pressure (see Fig. 5), reminiscent of a
harmonic oscillator. We assume that the response A is given
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FIG. 6. Resonance frequency for different number of tori (cir-
cles), microphone in the center. Analytical model (crosses) from
Sec. III.

by a driven harmonic oscillator equation writing (−ω2 −
iωω0/Q + ω2

0 )A = F in harmonic notation, with ω0 the res-
onance pulsation, Q the quality factor, and F a forcing term.
The response A of the harmonic oscillator has a phase φ with
respect to driving, whose cosine writes cos(φ) = (−ω2 +
ω2

0 )/
√

(−ω2 + ω2
0 )2 + ω2ω2

0/Q2 . The cosine vanishes at the
the frequency such that ω = ω0 and the slope of the cosine
versus frequency is d cos(φ)/dω = −2Q/ω0 at resonance.
We thus define the resonance frequency f exp

0 as the frequency
at which cos(φ) crosses the value 0, and the quality factor is
obtained from the slope of the phase curve at resonance, using
Q = −d cos(φ)/df × f0/2.

The fundamental resonance frequency decays sharply with
the number of tori N in the assembly (see Fig. 6), reflecting
the increased proximity of tori at higher N . It is well fitted
by the model, using the fundamental mode p = 0 in Eq. (6),
adjusting the inner radius b to 1 mm (resulting in 1250 Hz for
one toroidal bubble, slightly higher than the measured value).

B. Detection of all modes

Above the frequency ω0, the vibrations of all the tori are
not in phase, which is the signature of higher-order modes. In
order to detect such modes, where the phase of the vibrations
can be spatially inhomogeneous, we performed measurements
by placing the microphone as close as possible to each indi-
vidual torus.

The first method with a small condenser microphone be-
tween tori gives a stronger signal but equally measures the
emissions from the two neighboring tori. In order to discrim-
inate emission from individual tori, especially for a low N
number, we preferred the second method with a larger hy-
drophone on the outer circle [see Fig. 3(b)].

Measurements for N = 12 clearly feature a common fun-
damental resonance peak [Fig. 7(a)]. Notice that the acoustic
field is enhanced up to 20 times in locations that are away from
the loudspeaker (position 6). Each torus features higher reso-
nances modes whose frequency depends on the torus number.
The tori are not in phase with each other above the funda-
mental resonance [Fig. 7(b)]. We also plot in Fig. 7(c) the
dispersion of the phases, using the standard deviation among

the N tori [see Fig. 7(c)]; we shall show now that this measure
is useful to detect the eigenfrequencies of higher-order modes.

C. Frequency of the modes

The model predictions, plotted in the right column of Fig. 7
also feature several peaks at the resonance of the modes. We
observe the following feature on the phase of the modes: at
the resonance of modes 1 and 2 the phases tend to approach
or cross the value π/2 [cos(φ) = 0]; see Fig. 7(e) showing
the predicted phase. We thus identify relative minima in the
standard deviation of the phases as the frequency f exp

1 and
f exp
2 of modes p = 1 and p = 2; this turned out to be the most

reliable way to measure experimentally these frequencies.
We plot in Fig. 8 the frequency of the modes detected

with this method for different numbers of tori. The agreement
between the model and the data is also good for these two
modes, although slightly less good than for the fundamental
mode. The model reproduces the fact that these frequencies
decrease at increasing number of tori, but slightly overesti-
mate the eigenfrequencies of modes 1 and 2. The modes 2
detected are excited only with a nonuniform quadratic ex-
citation along x. We could check this point by performing
another experiment (data not shown) with a tokamak facing
the loudspeaker, with a much more homogeneous pressure
field, and no quadratic excitation along x.

D. Spatial distribution of the response

The spatial distribution of the amplitudes along the toka-
mak is shown in Fig. 9 (left column). The amplitude of mode
0 is remarkably uniform all around the tokamak, in spite of
the nonhomogeneous excitation shown in Fig. 3(c). This is
confirmed with many experiments, monitoring the response
for different tokamak.

The spatial distribution of the phases (as a function of the
angle) is plotted in Fig. 9 (right column). All tori are in phase
at mode 0. For mode 1, all phases near the loudspeaker, around
angle 0◦, have a value of cos(φ) = −1, except in a wide region
opposite to the loudspeaker, around angle 180◦, were the
phase is nearly opposite, which is consistent with a stationary
wave with two nodes. For mode 2, the angular pattern is not
as clear, but we distinguish two peaks, suggesting two regions
or diverging phase around 90◦ and 270◦, while the regions
around 0◦ and 180◦ have a value of cos(φ) = −1.

E. Comparison of experiments with the analytical model

The model correctly captures the location of the peaks in
pressure (first row of Fig. 7), although not with the same
amplitude. The pressure at very high frequency tends to be
much less than the reference pressure. This phenomenon
is typical of metamaterials, where all subwavelength res-
onators emit out of phase and thus tend to cancel the incident
wave [20].

In the model we have adjusted the resonance frequency of
a single torus to f0 = 1250 Hz, by tuning the small radius
to the value b = 1 mm to fit the assembly of tori immersed
vertically, instead of b = 1.53 mm as observed for tori im-
mersed horizontally as in [4]. Such a difference in the fitting
of the effective radius r originates from the fact that the
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(c)

(b)

(a)

(f)

(e)

(d)

Measurements Model

FIG. 7. Measurements (a)–(c) and model (d)–(f) for the pressure near each torus. (a), (d) Spectrum obtained with the tokamak N = 12
(lines) and reference measured without (dashes) at different positions between tori (labeled 1 to 12). (b), (e) Cosine of the phase of the
signal with respect to the excitation. (c), (f) Standard deviation of the cosine of the phase. Measurements are made with a tiny condenser
microphone. Model according to Sec. III, with the following parameters: RT = 32.5 mm, R = 11.35 mm, b = 1 mm (fitted value to obtain the
same resonance frequency as in experiment; design was 1.5 mm), and attenuation δ = 1/Q = 1/8. Nonuniform excitation profile using the
experimental fit (Fig. 3). The incident plus scattered pressure is calculated between the centers of the tori n and n + 1, at the same location as
the experiments [a small offset of +0.2 Pa is introduced on curves 6 to 11 in panel (d) to disentangle overlapping curves].

angle of immersion impacts the location of the interface (see
Appendix A).

We now have to check that the approximation in our model,
tori interacting as if they were coaxial, is justified.

V. FINITE-DIFFERENCE TIME-DOMAIN SIMULATIONS

In this section we use 3D finite-difference time-domain
(FDTD) numerical simulations to complement the analytical
model introduced in Sec. III. Results from 3D FDTD simu-
lations are first confronted to predictions from the analytical
model, and are then further analyzed to exploit information
not available from the analytical model.

A. Methods

We followed the same simulation approach introduced in
our earlier work [2–4], whereby we investigated the vibrations
of air bubbles of various shapes in water. Briefly, air bubbles
in water are described in our FDTD simulations through bi-
nary maps discretized over a Cartesian mesh with a given
spatial resolution. Both water and air are considered ideal
lossless fluids. The shapes of the bubbles are limited only
by the resolution of the mesh. All the simulations involve
toroidal structures with the same dimensions already used
for the theoretical predictions (small radius b = 1 mm, grand
radius R = 11.35 mm, and RT = 32.5 mm). The resolution of
the mesh (grid step h) was chosen small enough to obtain
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FIG. 8. Detection of the modes 1 and 2 from the minima of the
standard deviation (circles). Analytical model: crosses; see Sec. III.

converged results, i.e., results with no significant differences
when compared to smaller grid steps, while maintaining prac-
tical computation times. In practice, simulations with a step
size from h = 0.5 mm down to h = 0.25 mm led to a relative
difference in mode frequencies of less than 0.5%, which was
thus considered as an upper bound on the relative accuracy for
our FDTD-predicted mode frequencies. In the kHz frequency
range relevant here, h was always much smaller than the
typical wavelength (about 1 m in water and a few tens of cm in
air), and also much smaller than the smallest torus dimension
(b = 1 mm).

For all simulations, a Gaussian pulse excitation waveform
with center frequency f0 (ranging from 800 to 1800 Hz) and
a fixed relative bandwidth (50%) was emitted by a selected
set of point sources, specific to each bubble geometry: to
preferentially excite a given stationary mode (N,p), N point
sources were placed at the centers of the N tori, with ampli-
tudes An(N, p) for the nth torus corresponding to the spatial
profile of the targeted mode:

An(N, p) = A0 cos
(

2π
np
N

)
. (7)

The center frequency f0 was chosen based on the desired
mode to excite, with typically f0 = 800 Hz used to excited
modes with frequencies in the range [600–1200 Hz], and
f0 = 1800 Hz used to excited modes with frequencies in the
range [1600–2000 Hz].

Perfectly matched layers were set around the simulation
domain to simulate the vibration of the structure in free space,
consistent with the theoretical model. It was also verified
that when a vibration structure is located at the center of
a reverberant cavity of linear size typically a few tens of
centimeters, representative of the experimental situation, the
eigenmodes had the same pattern and resonant frequency than
for the free-space situation within the accuracy of the FDTD
simulations.

For each simulation, pressure waveforms were recorded
at various receiver positions, including receivers placed at
the center of each torus. The resonant frequency was derived

(a)

(b)

(c)

FIG. 9. Angular distribution of the amplitude (mV, with 800 mV
in the electrical signal corresponding to a sound pressure of 30 Pa)
and phase (divided by π ) showing similar patterns among different
N for (a) mode 0 at frequency f exp

0 , (b) mode 1 at frequency f exp
1 , and

(c) mode 2 at frequency f exp
2 .

from the frequency spectrum of the received signals, after the
impulse excitation was time-gated out of the signal. The center
frequency of the excitation pulse was adjusted such that only
one mode of interest was preferentially excited, in addition to
optimizing the phase and amplitude of the set of N sources.
In this case, the measured signals were quasimonochromatic,
with only one peak in the frequency spectrum.

B. Results

1. Eigenmodes for N = 12

As a first qualitative illustration of FDTD simulations re-
sults, Fig. 10 shows the seven stationary eigenmodes (p =
0, . . . , 6) obtained for the structure with N = 12 tori. These
patterns correspond to the pressure fields associated with the
schematic representation provided in Fig. 4.

2. Comparison of frequency predictions from FDTD simulations
and the analytical model

FDTD simulations were computed for a range of values N
from 1 to 24. The resonance frequency of all the simulated
modes is shown in Fig. 11 (circles), together with the values
predicted from the analytical model (crosses). The predic-
tions from the FDTD simulations and the analytical model
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FIG. 10. The seven stationary eigenmodes for N = 12 tori, computed with FDTD simulations. Each pattern corresponds to a cross-sectional
pressure snapshot taken at a time when the pressure is maximum on torus 1 located on right. The binary image shows a cross section in the
same plane of the discretized stucture, with a mesh size of 0.25 mm. White pixels show the position of the air in this cross section, and the
liquid is in black.

are in excellent agreement for the smallest modes (less than
typically 0.1% relative difference), and a small but signifi-
cant difference is observed typically for values of p ! 4 and
N ! 15. For instance, for p = 4 and N = 24, the resonance
frequency predicted by the analytical model (1421 Hz) is
2.2% lower than that predicted from the FDTD simulations
(1453 Hz). As discussed in the Methods section, it was care-
fully checked that FDTD simulations results were converged
in terms of frequency measurements with a relative accu-
racy better than 0.5%, provided results that we considered
as our reference, within the frame of our lossless model in

FIG. 11. Resonance frequencies of the eigenmodes predicted
from the analytical model (black crosses) and from the FDTD simu-
lations (red circles). For modes p ! 4, the analytical model slightly
underestimates the resonance frequency, as compared to that pre-
dicted from FDTD simulations.

a infinite medium. It can thus be concluded that the analytic
model slightly underestimates the resonance frequency for
large values of p and N , although this relative underestimation
remains below 3%: the largest relative difference (−2.5%)
was observed for N = 24 and p = 5.

The excellent general agreement illustrated by Fig. 11 in-
dicates that the coaxial approximation that was used to assess
the coupling between two different tori is a very good one in
most cases. The slight discrepancy observed for large values
of p may be interpreted by the fact that for modes with
large values of p, the pressure field has stronger gradients
from one torus to its immediate neighbors (see, for instance,
Fig. 10), and the coupling between neighboring tori may be
less important than coaxial tori. It also seems rather intuitive
that considering only the distance from torus to torus without
taking account their relative orientation should break down for
tori closer to each other than their own radius. As illustrated
in Fig. 12 for N = 1, the field scattered by a single torus
is close to monopolar spherical field outside the torus: as a
consequence, the relative orientation between tori is expected
to play a role only for tori very close to each other, for a
distance of the order of their own radius. Interestingly, the
analytical model remains relatively accurate even at its limits,
probably because the coupling terms are well estimated for
most pairs of tori, and biased only for immediate neighbors.

Our excellent agreement between the analytical model
and the FDTD simulations also indicates that the difference
between the theoretical frequencies and the experimentally
measured ones is caused by other phenomena not taken into
account in our lossless models with only radiative damping.
It is likely that significant dissipative phenomena related to
the presence of the 3D-printed frames holding the toric bub-
bles have a significant influence on the resonance frequency
and quality factor of resonances observed experimentally. In
our FDTD simulations, we observed that exciting high-order
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FIG. 12. Fundamental mode (p = 0) for different number of tori. For each N , the polar plot represents the normalized pressure amplitude
measured in the main plane at receivers distributed along the big radius of the structure, i.e., the central radius of the tokamak (white dashed
line).

modes is possible only by setting multiple sources matching
the mode patterns. With a single source as used in our exper-
iments, only modes p = 0, 1, or 2 may be efficiently excited,
explaining why mode orders above 2 have not been observed
here, to our best knowledge.

3. FDTD simulations of the fundamental mode (p = 0)

As compared to our analytical approach, which models
each individual torus as a pointlike resonator, our FDTD simu-
lations provide access to the spatial distribution of the pressure
field at a scale down to that of each individual torus. In
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particular, it is straightforward by recording snapshots to in-
vestigate the pressure distribution inside the tokamak, whereas
such a pressure field is difficult to measure experimentally
because of the finite size of the hydrophone.

Figure 12 shows the pressure patterns of the fundamental
vibration mode (p = 0) for N ranging from 1 to 24. Note that
because the pressure varies in phase everywhere for the fun-
damental mode, the colorscale now represents only positive
amplitude values, as opposed to that in Fig. 10, which de-
scribes in-phase and opposite-phase regions. The polar plots
represent the normalized pressure amplitude measured with
receivers distributed along the tokamak central line (white
dashed line). Figure 12 illustrates that the pressure field inside
the tokamak tends to become more and more homogenous
when the tori get more and more densely packed for large N .
In particular, the polar plots shows that the pressure amplitude
assessed along the central radius varies less than 5% starting
from N = 9.

Looking at the details of the field around the tori in Fig. 12,
we can see that there are two cases where the approximation
neglecting angles between tori could hold: first, when N is
very large (N greater than 9), since the bubbles are nearly
coaxial, and then when N is very small (N until 3), since the
tori are far from each other, and the field emitted far away
is mainly spherical and does not depend on the angle of the
emitting torus.

VI. CONCLUSIONS

We explored the resonance of this original circular meta-
material and found a model to account for the frequency of the
modes as well as for the spatial patterns. The approximation
of coaxial tori was sufficient to provide a very good prediction
of the first modes.

Perspectives include the experimental characterization of
the acoustic field in the center of the tokamak, where
the emitted pressure becomes quasihomogeneous in an ex-
tended region of space. Having a homogeneous field could

FIG. 13. Fundamental resonance frequency of a single torus
when dipping it with different orientation (experiments on two dif-
ferent tori). The angle is the angle of the revolution axis with respect
to the gravity vector; see drawing.

FIG. 14. Vertical immersion of a torus: top part of the torus (top
image) and bottom part (bottom image).

prove useful in the study of objects moving in the center,
while experiencing the same amount of sound during their
motion.

Auxiliary information regarding the resources used in this
work is supplied in the Supplemental Material [22].
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FIG. 15. Resonance frequency of tori in 24 as a function of its
number along the circular arrangement, from 1 to 24. The mean is
1150 Hz and standard deviation 27 Hz.
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APPENDIX A: RESONANCE OF A SINGLE TORUS,
INFLUENCE

OF THE DIPPING ANGLE

The tori are immersed in a vertical position, as illustrated in
Fig. 2. When dipping individual tori with varying angles, we
found that the resonance frequency increases when the torus
is closer to vertical (Fig. 13). This explains why the tori used
in this study featured a frequency around 1150 Hz, compared
to previous measurements when dipping the same tori flat
(around 850 Hz [4]). Actually, we observed that when dipped
vertically, the tori presented air-water interfaces bulging more
inwards in the open windows between the cages, as compared
to a horizontal dipping, especially at the bottom part of the

torus (Fig. 14). This could explain the dependence of the
resonance frequency on the angle of immersion, and also why
we need to take smaller values of the small radius to fit our
experimental results (see Sec. IV A).

APPENDIX B: VARIABILITY OF THE RESONANCE OF
TORI IN A TOKAMAK

In order to assess the uniformity of the tori, we have cut out
each torus of the assembly with N = 24, and measured it sep-
arately. We show in Fig. 15 limited variations of frequencies
of ±2%.
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