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Simulations of viscous shape relaxation in shuffled foam clusters
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Abstract

We simulate the shape relaxation of foam clusters and compare them with the time exponential expected for Newtonian fluid. Using
two-dimensional Potts Model simulations, we artificially create holes in a foam cluster and shuffle it by applying shear strain cycles. We
reproduce the experimentally observed time exponential relaxation of cavity shapes in the foam as a function of the number of strain steps
The cavity rounding up results from local rearrangement of bubbles, due to the conjunction of both a large applied strain and local bubble
wall fluctuations.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction relaxations for rounding up of aggregates. Corresponding
simulations[7] have investigated the relaxation of biologi-
Liquid foams, and especially two-dimensional ones, are cal cell aggregates of elliptical shapes.
easy to image and manipulate, and hence can be a quite effi- Whatis common between the relaxation of biological cell
cient model for other complex systeffig and, in particular, aggregates and foams, and how does it differ from that of an
for biological cell aggregatg2—4]. usual Newtonian fluid? To address this question, the compan-
Biological cell aggregates and foams share a commonion paper[8] studies the relaxation of a foam cluster, and in
point: they are “cellular fluids”; they can flow while their con-  the present paper we perform the corresponding simulations
stituent cells rearrange and change neighbors through relativausing Cellular Potts ModgR,9].
local movementfl]. When out of equilibrium, their mechan- Concerning the mechanism of relaxation afoam has anim-
ical behavior displays elastic, plastic or viscous responses. portant difference with biological cell aggregates. Cell mem-
Interestingly, the rounding up of cell aggregates observed branes fluctuate actively, with a r.m.s. movement equivalent
in biology is similar to the coalescence or rounding up of to that produced by a very high effective temperature (much
liquid droplets. Gordon et gl5] made a formal analogy with  higher than room temperature); so that cells explore their
the rheology of viscous liquids, showing that tissue surface neighborhood and can move. The macroscopic configuration
tensions drive these processes, while tissue viscosity resist®f a foam, on the other hand, arises from the local equilibrium
them. Recently, Rieu and Sawaj@ showed that hydrody-  of the bubbles’ surface tensions and pressures. A foam never
namic laws also apply to the rounding up of two-dimensional reaches its global energy minimum since the energy barriers
(2D) aggregates of mixed ectodermal and endodehydia between local equilibrium states, attainable by moving pas-
cells in various proportions. They obtained time-exponential sive bubbles around, are much higher than the atg@&rof
thermal energy fluctuations at room temperature. At bubble
* Corresponding author. Tel.: +55 51 33166465; fax: +55 51 33167286. ScCales, we can consider a foam to be at zero temperature, so
E-mail addressglt@if.ufrgs.br (G.L. Thomas). that the foam configuration falls and is trapped in an energy
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Fig. 1. One shear cycle, here with initially rectangular cavity. Top: experimental Ejtuphe foam is sheared back and forth, to the maximal angle, in both
directions. Bottom: corresponding simulation (bubble siz63 lattice sites).

minimum; we do not expect to observe rounding up of foams constraint keeps the bubble areas constant. The actual bubble
at room temperature. areaisA(o) and the target bubble areadg the same for each

In order to circumvent that we introduce energy in the bubble. The prefactox is the compressibility of the bubble.
foam through successive shear cyd@d0]. The external The Hamiltonian thus writes:
force shears the foam, rearranging bubbles, and exploring
new energy configurations, and relaxinginto more stablecon-H = Y J(x(e(i, /). 70", /ML = bo(i.jy.0(w". 1))
figurations. Our goal is to determine if the relaxation laws we @000
obtain by this method are the same as those for aggregates 2
of biological cells, i.e., if mechanical stimulation is equiv- + ZA(T)(A(U) - A% (1)
alent to an effective temperature. However, experimentally, 7
applying external mechanical strain turned much easier for Here the second sum is over all bubbles, while the first
foam cluster with a hole in itfig. 1) than for a cluster which ~ sum is over all pairs of neighboring sites of coordinates
does not touches the box walls. Thus, we address here thdi, j) and ¢, j'). We use the fifth nearest neighbors to de-
cavity relaxation, as if it was the “negative” of the aggregate crease the effect of the anisotropy of a discrete lafti@g.
relaxation[6,7]. We also study the center of mass movement J(z(o(i, j)), 7'(¢'(i’, j'))) denotes the interaction energy be-
of cavities of different sizes in the foam to compare with the tween the neighboring sites, {) and ¢, j'). We treat the
experimental observations [8]. cavity as a large single bubble; we thus introduce the index
T which is the bubble type: the cavity has= 0, while all
the bubbles are of type= 1. Since all bubbles have a fixed
area, and the total area is fixed too, a constraint on the cavity
would be redundant (leading to numerical instabilities), so
we do not enforce it (we sef0) to 0).

Energy minimization through Metropolis dynami&s9]
minimizes the total wall energy (sum of bubble perimeters).
In the Monte Carlo dynamics, at each step, we select a ran-
dom grid site {, j). An attempt to change its index fromto

2. The model

The 2D model reflects the quasi-2D experimental foam
of Ref. [8] (seeFig. 1). We use the extended larggPotts
model, which allows large numbers of bubbles, fixed bubble
areas, and large foam distortigd4]. This model represents
the spatial structure of the foam as follows. We consider a ~,". >, . : . : .

. : o’ is tried (whereo’ is the index of an arbitrary lattice site

2D square grid. The model treats a foam on a 2D lattice by g : . .

o . . . . among one of its first neighbors) and is performed with the
assigning an integer index to each lattice site. The value at a robability:
grid site (, j) is o if the site lies inside bubble. Each bubble P Y:
of the _foam is thus the con_nected set of grid sit_es_ with the o o expAH/KT) if AH > 0, or
same index. Each bubble is thus labelled by this index P(o(i, j) = o'(i, j)) = ,
and occupies many grid sites. 1 if AH <0,

Each pair of neighbors having unmatched indices deter- 2)
mines a bubble wall and contributes to the bubble wall surface
energy. The prefactaris the surface tension (which we can whereA H is the energy gain the change produces. Each such
here take equal to 1 without loss of generality). Bubble ar- move corresponds to bubbie displacing bubbler by one
eas are the number of lattice sites for each index; an arealattice site.T > 0 is a fluctuation temperature corresponding
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Fig. 2. Time relaxation of cavity shape: leg{/s. time (MCS) for different  rig 4. Cavity relaxation: log{ vs. time (MCS) for very different cavity
maxmgl Qngles. After_atransuent, both rect_angular and e_IllpsmdaI cavities grea/bubble area ratios: 1 (inverted triangle), 6 (circle), 24 (star) and 35
round similarly. Shear is labelled by the maximal deformation anglet® (triangle). Bubble size= 63, elliptical initial cavity, deformation angle’9

or27.

We observed that, at all angles we tried (up t6)3@t zero
temperature this procedure alone does not cause rounding.
Therefore, at each position shownkig. 1we relax at finite
temperature for 100 MCS, then anneal’at O for the same
amount of time. We choose a temperature small enough so
that the thermal treatment by itself does not cause rounding.
Since one shear cycle is performed in four such sub-steps, it

Simulations run on square grid containing about220 takesfSQO MCSH i .
bubbles of the same size (either 63 or 99 lattice sites), witha _DEfining  the cavity eccentricity  as e=1-

centered cavity whose size we measure in number of bubbleé(?_f'_rnor aXIs/maj_oralxiz F'Ig' 2 shows tlhe relaxat|hon for
(ratio of cavity area to bubble area). ifferent maximal displacement angles. We chose two

To shear the foam, we proceed in the following way; which different initial cavity shapes: both shapes (rectangular and
closely mimics the experimental set-uig. 1). From the ellipsoidal) have the same behavior. Higher shear result in

initial state, we periodically displace the lower part of the quickgr rel'axa-ltion. In all cases, the semi-log plot 'is ?'Os.e to
grid horizontally up to the desired maximum angle, and in the & stra_lght line: the_ relaxation is cI_os_e to exponential in time,
opposite direction as well. We slide each row by interpolating €"20ling u; to deflpe a chadr_acter]is]:uc tirmg) ( h two dif
between the lower (moving) and upper (fixed) sides. This Fig. 3 showst for rounding of foams with two differ-

procedure distorts each bubble, which can change its shapé:"m bubble sizes (63 and 99 lattice sites), but with the same
and its neighbors. Then we allow the foam to relax.

to the amplitude of bubble wall fluctuations. The time unit,
a Monte Carlo step (MCS), corresponds by definition to as
many attempts as the number of lattice sites.

3. Cavity relaxation
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Fig. 5. Characteristic relaxation timgvs. cavity size. Bubble area is fixed
Fig. 3. Characteristic relaxation timgvs. maximal shear angle for two dif- to 63; elliptical initial shape; deformation angle. Note that if we consider
ferent bubble sizes: 63 lattice sites (open circles) and 99 lattice sites (closedall data taken at half cycles (closed circles) we obtain the same results as if
circles). we perform measurements only at integer cycles (open circles).
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Cavity CM position

99 4

Fig. 6. Cavity center of mass position for different cavity area/bubble area
ratios: 1 (inverted triangle), 6 (circle), 24 (star) and 35 (triangle). Bubble
size= 63, elliptical initial cavity, deformation angle€ 9Note the difference

in horizontal and vertical scales.

cavity/bubble size ratio, and for different maximal angles.
Rounding is faster for larger bubbles and for larger maximal
angles.

We have also investigated the behavior of cavities of dif-
ferent sizesFig. 4 shows a large variation in cavity sizes.
Initially the rounding is exponential, but it later slows down,
especially for small cavities for which it saturates, in agree-
ment with Ref[8]. Fig. 5shows the rounding characteristic

time for this situation. We can see that smaller cavities round

faster.

4. Cavity diffusion

Motivated by the experimental observatidB$, we per-
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Fig. 8. Center of mass displacemeRi{s — Ro)? vs. time (MCS) for dif-
ferent maximal sheared angle’ @quare), 18 (circle) and 27 (triangle).
Cavity area/bubble arearatie 35, bubble size= 63, elliptical initial cavity.

temperaturefig. 6 shows the cavity center of mass position
during shear cycles for different cavity sizes. As expected,
the smaller the cavity, the more it moves.

To test whether this movement corresponds to a diffusion,
Fig. 7displays the quadratic center of mass displacement for
the same cavity sizes. The answer is no: we do not observe
any significant diffusion. The same holds if we increase the
deformation angleKig. 8).

5. Summary

Cavities of different shapes round similarly. The combi-
nation of deformation and finite temperature annealing in our
simulations reproduces the exponential relaxation behavior
of rounding up of biological cell aggregates. Our results have

formed a set of measurements to investigate the diffusion also shown that rounding is faster for larger maximal sheared
of the cavity as a result of both shearing and increasing the angles, for cavities in foams with larger bubbles and for cav-
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Fig. 7. Center of mass displacemeRi{ys — Ro)? vs. time (MCS) for dif-
ferent cavity area/bubble area ratios: 1 (inverted triangle), 6 (circle), 24 (star)
and 35 (triangle). Bubble size 63, elliptical initial cavity, deformation an-

gle 9.

ities with smaller sizes. Neither temperature, in the range we
choose, nor shearing alone causes rounding. The finite tem-
perature annealing in the simulation might represent some
other form of energy transfer, present in the experiment, for
example vibration of the foam during mechanical shearing.
No evidence suggests that shearing the system induces dif-
fusion.

The next step in our investigation is to study, by experi-
ments and simulations, single bubble movement during shear-
ing. If periodic shearing represents an input of energy equiva-
lent to athermal bath of finite temperature, individual bubbles
could diffuse, even if the cavity does not.
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