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Simulations of viscous shape relaxation in shuffled foam clusters
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Abstract

We simulate the shape relaxation of foam clusters and compare them with the time exponential expected for Newtonian fluid. Using
two-dimensional Potts Model simulations, we artificially create holes in a foam cluster and shuffle it by applying shear strain cycles. We
reproduce the experimentally observed time exponential relaxation of cavity shapes in the foam as a function of the number of strain steps.
The cavity rounding up results from local rearrangement of bubbles, due to the conjunction of both a large applied strain and local bubble
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. Introduction

Liquid foams, and especially two-dimensional ones, are
asy to image and manipulate, and hence can be a quite effi-
ient model for other complex systems[1] and, in particular,
or biological cell aggregates[2–4].

Biological cell aggregates and foams share a common
oint: they are “cellular fluids”; they can flow while their con-
tituent cells rearrange and change neighbors through relative
ocal movements[1]. When out of equilibrium, their mechan-
cal behavior displays elastic, plastic or viscous responses.

Interestingly, the rounding up of cell aggregates observed
n biology is similar to the coalescence or rounding up of
iquid droplets. Gordon et al.[5] made a formal analogy with
he rheology of viscous liquids, showing that tissue surface
ensions drive these processes, while tissue viscosity resists
hem. Recently, Rieu and Sawada[6] showed that hydrody-
amic laws also apply to the rounding up of two-dimensional
2D) aggregates of mixed ectodermal and endodermalhydra
ells in various proportions. They obtained time-exponential
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relaxations for rounding up of aggregates. Correspon
simulations[7] have investigated the relaxation of biolo
cal cell aggregates of elliptical shapes.

What is common between the relaxation of biological
aggregates and foams, and how does it differ from that
usual Newtonian fluid? To address this question, the com
ion paper[8] studies the relaxation of a foam cluster, an
the present paper we perform the corresponding simula
using Cellular Potts Model[2,9].

Concerning the mechanism of relaxation a foam has a
portant difference with biological cell aggregates. Cell m
branes fluctuate actively, with a r.m.s. movement equiv
to that produced by a very high effective temperature (m
higher than room temperature); so that cells explore
neighborhood and can move. The macroscopic configur
of a foam, on the other hand, arises from the local equilib
of the bubbles’ surface tensions and pressures. A foam
reaches its global energy minimum since the energy ba
between local equilibrium states, attainable by moving
sive bubbles around, are much higher than the orderkBT of
thermal energy fluctuations at room temperature. At bu
scales, we can consider a foam to be at zero temperatu
that the foam configuration falls and is trapped in an en
927-7757/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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Fig. 1. One shear cycle, here with initially rectangular cavity. Top: experimental setup[8]. The foam is sheared back and forth, to the maximal angle, in both
directions. Bottom: corresponding simulation (bubble size= 63 lattice sites).

minimum; we do not expect to observe rounding up of foams
at room temperature.

In order to circumvent that we introduce energy in the
foam through successive shear cycles[8,10]. The external
force shears the foam, rearranging bubbles, and exploring
new energy configurations, and relaxing into more stable con-
figurations. Our goal is to determine if the relaxation laws we
obtain by this method are the same as those for aggregates
of biological cells, i.e., if mechanical stimulation is equiv-
alent to an effective temperature. However, experimentally,
applying external mechanical strain turned much easier for
foam cluster with a hole in it (Fig. 1) than for a cluster which
does not touches the box walls. Thus, we address here the
cavity relaxation, as if it was the “negative” of the aggregate
relaxation[6,7]. We also study the center of mass movement
of cavities of different sizes in the foam to compare with the
experimental observations in[8].

2. The model

The 2D model reflects the quasi-2D experimental foam
of Ref. [8] (seeFig. 1). We use the extended large-Q Potts
model, which allows large numbers of bubbles, fixed bubble
areas, and large foam distortions[11]. This model represents
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constraint keeps the bubble areas constant. The actual bubble
area isA(σ) and the target bubble area isAt, the same for each
bubble. The prefactorλ is the compressibility of the bubble.
The Hamiltonian thus writes:

H =
∑

(i,j),(i′,j′)
J(τ(σ(i, j)), τ′(σ′(i′, j′)))(1 − δσ(i,j),σ′(i′,j′))

+
∑
σ

λ(τ)(A(σ) − At)
2. (1)

Here the second sum is over all bubbles, while the first
sum is over all pairs of neighboring sites of coordinates
(i, j) and (i′, j′). We use the fifth nearest neighbors to de-
crease the effect of the anisotropy of a discrete lattice[12].
J(τ(σ(i, j)), τ′(σ′(i′, j′))) denotes the interaction energy be-
tween the neighboring sites (i, j) and (i′, j′). We treat the
cavity as a large single bubble; we thus introduce the index
τ which is the bubble type: the cavity hasτ = 0, while all
the bubbles are of typeτ = 1. Since all bubbles have a fixed
area, and the total area is fixed too, a constraint on the cavity
would be redundant (leading to numerical instabilities), so
we do not enforce it (we setλ(0) to 0).

Energy minimization through Metropolis dynamics[2,9]
minimizes the total wall energy (sum of bubble perimeters).
In the Monte Carlo dynamics, at each step, we select a ran-
dom grid site (i, j). An attempt to change its index fromσ to
σ ite
a the
p

P

w such
m
l ing
he spatial structure of the foam as follows. We consid
D square grid. The model treats a foam on a 2D lattic
ssigning an integer index to each lattice site. The value
rid site (i, j) is σ if the site lies inside bubbleσ. Each bubbl
f the foam is thus the connected set of grid sites with
ame indexσ. Each bubble is thus labelled by this indeσ
nd occupies many grid sites.

Each pair of neighbors having unmatched indices d
ines a bubble wall and contributes to the bubble wall su
nergy. The prefactorJ is the surface tension (which we c
ere take equal to 1 without loss of generality). Bubble
as are the number of lattice sites for each index; an
′ is tried (whereσ′ is the index of an arbitrary lattice s
mong one of its first neighbors) and is performed with
robability:

(σ(i, j) → σ′(i, j)) =
{

exp(−�H/kT ) if �H > 0, or

1 if �H ≤ 0,

(2)

here�H is the energy gain the change produces. Each
ove corresponds to bubbleσ′ displacing bubbleσ by one

attice site.T > 0 is a fluctuation temperature correspond
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Fig. 2. Time relaxation of cavity shape: log(e) vs. time (MCS) for different
maximal angles. After a transient, both rectangular and ellipsoidal cavities
round similarly. Shear is labelled by the maximal deformation angle: 9◦, 18◦
or 27◦.

to the amplitude of bubble wall fluctuations. The time unit,
a Monte Carlo step (MCS), corresponds by definition to as
many attempts as the number of lattice sites.

3. Cavity relaxation

Simulations run on square grid containing about 20× 20
bubbles of the same size (either 63 or 99 lattice sites), with a
centered cavity whose size we measure in number of bubbles
(ratio of cavity area to bubble area).

To shear the foam, we proceed in the following way; which
closely mimics the experimental set-up (Fig. 1). From the
initial state, we periodically displace the lower part of the
grid horizontally up to the desired maximum angle, and in the
opposite direction as well. We slide each row by interpolating
between the lower (moving) and upper (fixed) sides. This
procedure distorts each bubble, which can change its shape
and its neighbors. Then we allow the foam to relax.

F if-
f closed
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Fig. 4. Cavity relaxation: log(e) vs. time (MCS) for very different cavity
area/bubble area ratios: 1 (inverted triangle), 6 (circle), 24 (star) and 35
(triangle). Bubble size= 63, elliptical initial cavity, deformation angle 9◦.

We observed that, at all angles we tried (up to 30◦), at zero
temperature this procedure alone does not cause rounding.
Therefore, at each position shown inFig. 1we relax at finite
temperature for 100 MCS, then anneal atT = 0 for the same
amount of time. We choose a temperature small enough so
that the thermal treatment by itself does not cause rounding.
Since one shear cycle is performed in four such sub-steps, it
takes 800 MCS.

Defining the cavity eccentricity as e = 1 −
minor axis/major axis, Fig. 2 shows the relaxation for
different maximal displacement angles. We chose two
different initial cavity shapes: both shapes (rectangular and
ellipsoidal) have the same behavior. Higher shear result in
quicker relaxation. In all cases, the semi-log plot is close to
a straight line: the relaxation is close to exponential in time,
enabling us to define a characteristic time (τc).

Fig. 3 showsτc for rounding of foams with two differ-
ent bubble sizes (63 and 99 lattice sites), but with the same
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ig. 3. Characteristic relaxation timeτc vs. maximal shear angle for two d
erent bubble sizes: 63 lattice sites (open circles) and 99 lattice sites (
ircles).
ig. 5. Characteristic relaxation timeτc vs. cavity size. Bubble area is fix
o 63; elliptical initial shape; deformation angle 9◦. Note that if we conside
ll data taken at half cycles (closed circles) we obtain the same resul
e perform measurements only at integer cycles (open circles).
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Fig. 6. Cavity center of mass position for different cavity area/bubble area
ratios: 1 (inverted triangle), 6 (circle), 24 (star) and 35 (triangle). Bubble
size= 63, elliptical initial cavity, deformation angle 9◦. Note the difference
in horizontal and vertical scales.

cavity/bubble size ratio, and for different maximal angles.
Rounding is faster for larger bubbles and for larger maximal
angles.

We have also investigated the behavior of cavities of dif-
ferent sizes.Fig. 4 shows a large variation in cavity sizes.
Initially the rounding is exponential, but it later slows down,
especially for small cavities for which it saturates, in agree-
ment with Ref.[8]. Fig. 5shows the rounding characteristic
time for this situation. We can see that smaller cavities round
faster.

4. Cavity diffusion

Motivated by the experimental observations[8], we per-
formed a set of measurements to investigate the diffusion
of the cavity as a result of both shearing and increasing the
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Fig. 8. Center of mass displacement (RCM − Ro)2 vs. time (MCS) for dif-
ferent maximal sheared angle: 9◦ (square), 18◦ (circle) and 27◦ (triangle).
Cavity area/bubble area ratio= 35, bubble size= 63, elliptical initial cavity.

temperature.Fig. 6shows the cavity center of mass position
during shear cycles for different cavity sizes. As expected,
the smaller the cavity, the more it moves.

To test whether this movement corresponds to a diffusion,
Fig. 7displays the quadratic center of mass displacement for
the same cavity sizes. The answer is no: we do not observe
any significant diffusion. The same holds if we increase the
deformation angle (Fig. 8).

5. Summary

Cavities of different shapes round similarly. The combi-
nation of deformation and finite temperature annealing in our
simulations reproduces the exponential relaxation behavior
of rounding up of biological cell aggregates. Our results have
also shown that rounding is faster for larger maximal sheared
angles, for cavities in foams with larger bubbles and for cav-
ities with smaller sizes. Neither temperature, in the range we
choose, nor shearing alone causes rounding. The finite tem-
perature annealing in the simulation might represent some
other form of energy transfer, present in the experiment, for
example vibration of the foam during mechanical shearing.
No evidence suggests that shearing the system induces dif-
fusion.
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ig. 7. Center of mass displacement (RCM − Ro)2 vs. time (MCS) for dif-
erent cavity area/bubble area ratios: 1 (inverted triangle), 6 (circle), 24
nd 35 (triangle). Bubble size= 63, elliptical initial cavity, deformation an
le 9◦.
The next step in our investigation is to study, by exp
ents and simulations, single bubble movement during s

ng. If periodic shearing represents an input of energy eq
ent to a thermal bath of finite temperature, individual bub
ould diffuse, even if the cavity does not.
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