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Abstract. We present a numerical study of the shape taken by a spherical elastic surface when the volume
it encloses is decreased. For the range of 2D parameters where such a surface may model a thin shell of
an isotropic elastic material, the mode of deformation that develops a single depression is investigated in
detail. It occurs via buckling from sphere toward an axisymmetric dimple, followed by a second buckling
where the depression loses its axisymmetry through folding along portions of meridians. For the thinnest
shells, a direct transition from the spherical conformation to the folded one can be observed. We could
exhibit unifying master curves for the relative volume variation at which first and second buckling occur,
and clarify the role of Poisson’s ratio. In the folded conformation, the number of folds and inner pressure
are investigated, allowing us to infer shell features from mere observation and/or knowledge of external
constraints.

1 Introduction

Let us consider a thin shell of an elastic isotropic material,
such as a beach ball, and deflate it. What would be its
shape?

This question is not restricted to garrulous famil-
ial shores: fundamental and applied physics nowadays
presents legions of easily deformable soft objects, and
knowing what governs their shapes gives the powerful pos-
sibility of inferring mechanical properties from simple ob-
servations, without contact. Among these deformable ob-
jects, an increasing number derives from spherical sym-
metry, that is omnipresent at scales where surface effects
overcome volume forces such as gravity. The numerical
study presented in this paper discusses the shapes taken
by spherical thin shells of isotropic materials when their
inner volume is decreased by a significant amount. Such
a systematic and quantitative study will help deciphering
conformations observed in, e.g., soft matter (lock-and-key
colloids [1], multiwall capsules [2], particles design through
evaporation [3, 4]), galenics (encapsulation [5]), microflu-
idics (microtanks [6]) or medicine (ultrasound contrast
agents [7]), under the action of an external pressure or
other possibly isotropic fields such as concentration in
evaporation/dissolution phenomena, which also shapes
objects in Nature [8].

When an elastic spherical shell has its inner volume
lowered, it first deforms through in-plane compression that
respects the spherical symmetry. Then it undergoes a sym-
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metry breaking in order to relax a high stretch energy into
much lower bending energy, by reversion of a spherical cap
(creation of an axisymmetric depression, or “dimple”).
The onset of this sudden transition, or buckling, under
external pressure was studied long ago by Pogorelov and
Landau [9,10]. They showed that the dimple should nucle-
ate over a critical outside/inside pressure difference scaling
like Y3D( d

R )2 (in what follows, we will refer to this latter

quantity by ΔPLandau), where d is the shell thickness, R
its radius and Y3D the Young modulus of the material
that makes it up. Its edge (or “rim”) has a transversal

extension
√

dR. One of the keys of their calculation be-
ing the assumption that buckling occurs for dimples such
that maximum deflection is of order d, spherical geome-
try imposes then that

√
dR is also the radius of the dim-

ples that form. Besides, classical buckling analysis pro-
vided dependence of the buckling pressure on Poisson’s
ratio [9–11].

Results focusing on deformations through further de-
flation are, mainly, more recent. A few months ago, stabil-
ity analysis allowed a detailed study of buckling toward ax-
isymmetric conformations [12]. Experimental [1, 3, 13–17]
and numerical [3, 17, 18] deflation studies showed shapes
holding several dimples, also called “multiple indenta-
tion”. These conformations compete with experimental
observations of shapes holding a single depression [14,16],
possibly losing axisymmetry [19] or exhibiting folding per-
pendicularly to the rim [15, 20]. Similar shapes are ob-
served in shells under a point load [21, 22] or pressed
against a wall [22, 23]. Secondary buckling by folding
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of the single depression, also called “polygonal inden-
tation”, under isotropic constraint was numerically re-
trieved with surface models [18, 20]. Thin shells with a
single depression, either axisymmetric or polygonal, ap-
pear to present a conformation of lower energy than the
metastable multiple indentation [17, 18, 20]. In the case
of an axisymmetric dimple, this can be easily understood
since elastic energy mainly concentrates in dimple edges
as bending energy, with an energy per edge length that
weakly varies with dimple size. Hence coalescence of dim-
ples lowers the total elastic energy1. Nevertheless, more
than one dimple may nucleate if the deflation is rapid
enough, leading to metastable [3, 17, 18] multi-indented
shapes. The term “rapid” is to be taken on a wide ac-
ception here. Experimentally, it may correspond to sit-
uations where dissipation (due to material viscosity or
to fluid flows accompanying the deformation) prevents
dimple growth, which favors secondary nucleation once
ΔPLandau is reached, and where subsequent kinetics pre-
vents thermally activated coalescence between adjacent
dimples. Numerically, minimization may reproduce such
metastable situations [3, 17, 18], since: i) large volume in-
crements favor the creation of extra dimples, by making
it difficult to find the cooperative displacement of ver-
tices that corresponds to rim rolling in dimple growth,
ii) depending on the way curvatures are calculated, en-
ergy barriers that prevent from dimple coalescence may
be overcome or not. For “slow” deflations, a single dimple
can appear and grow, or freshly nucleated dimples may
coalesce into a single one. Such “slow” deflation provides
an axisymmetric bowl-like shape, that may undergo under
further deflation a transition toward a non-axisymmetric
depression, i.e. polygonal indentation [18,20].

We present here a systematic numerical study of such
“slow” deflations leading to shapes with a single depres-
sion. In this purpose, we used a surface model taking
into account recent developments, presented in sect. 2. We
clearly expose the correspondence between 2D parameters
of the model surface, and 3D properties of the real object
of non-zero thickness, expliciting the role of the different
significative parameters. Particular emphasis is put on a
parameter often underconsidered: Poisson’s ratio.

The whole study allows to determine parameters of
importance for the transitions sphere → axisymetric bowl
(sect. 3) and axisymmetric bowl → polygonal indenta-
tion (sect. 4), both for the detailed shape in polygonal
indentation, and for inner pressure. Furthermore, we took
particular care in providing empirical dependence laws for
practical use.

1 Calculations of ref. [24] led to the inverse conclusion. With
current hindsight, it appears that the elastic energy of large
dimples (size approaching the shell’s one) was overestimated
in this paper. In the pure curvature model used in it, follow-
ing ref. [30] the rim’s curvature was estimated as

√
Rd/ tan α,

where α is the half-angle of the cone in which the dimples in-
scribes; this term caused a quick increase of the elastic energy
with α. More recent calculations showed that lateral exten-
sion of the rim is better described by

√
Rd/α before autocon-

tact [12]; this prevents multiple indentation from being of lower
energy than single indentation in the pure curvature model.

2 Surface model

Surface model, where out-of-plane and in-plane defor-
mations are formally uncoupled, has long been consid-
ered as valid to describe the deformation of thin sheets
(plates or shells) [10, 25]. For thin sheets without spon-
taneous curvature (i.e. an elementary surface portion of
the sheet, freed from constraints exerted by surrounding
material, remains flat at equilibrium), the energies per sur-
face unit that are to be considered in this surface model
are of two kinds: firstly, a curvature term that can express
1
2κc2 + κg [10, 26], where c = 1

R1
+ 1

R2
and g = 1

R1
× 1

R2

are, respectively, the mean and Gaussian curvatures (R1

and R2 being the local principal curvature radii), and κ
and κ are, respectively, the mean and Gaussian curvature
constants2. The other term may be written, in a Hookean
linear model: 1

2ǫijKijklǫkl, where ǫij and Kijkl, respec-

tively, represent the two-dimensional strain and elastic-
ity tensors for in-plane deformations. For a homogeneous
and isotropic surface, the non-zero terms of the two-
dimensional elasticity tensor are Kxxxx = Kyyyy = Y2D

1−ν2

2D

,

Kxxyy = Kyyxx = ν2D Y2D

1−ν2

2D

and Kxyxy = Kyxyx = Y2D

1+ν2D
,

with Y2D the two-dimensional Young modulus and ν2D

the two-dimensional Poisson ratio, which is comprised be-
tween −1 and 1 [10]. This in-plane elasticity term can be

rewritten as Y2D

2(1+ν2D)

[

Tr(ǫ2) + ν2D(Tr ǫ)2

1−ν2D

]

for the sake of

concision.
In a linear approximation, the relation between the

2D parameters and the 3D features of the plate (Young
modulus Y3D, Poisson’s ratio ν3D, thickness d) with zero
boundary tangential constraints [10] is expressed as (de-
tailed, e.g., in [23] or [7]):

ν2D = ν3D = ν, (1)

Y2D = Y3Dd, (2)

κ =
Y3D

12 (1 − ν2)
d3, (3)

κ = (ν − 1) κ = −
Y3D

12 (1 + ν)
d3. (4)

Since for bulk materials the maximum value of ν3D

is 1
2 for thermodynamic reasons [10], one can notice that

the range of 2D Poisson’s ratio that effectively describes
a thin plate of an isotropic material is limited to a max-
imum value of 1

2 . In other terms, even a thin plate of an

incompressible isotropic material cannot behave as an in-
compressible surface (where ν2D = 1), thanks to the pos-
sibility of having its thickness varied. On the other limit,

2 There may be discrepancies between different communities
about the definitions of both κ and c. Here we used definitions
that rule in the Soft Matter community, and more particularly
in physics of lipids vesicles: c = 1

R1
+ 1

R2
, where R1 and R2

are the main algebraic curvature radii (mathematicians usually
consider half of this quantity). And we take κ such that the
bending energy of a sphere is 8πκ.
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Poisson’s ratio can reach −1 as a lower value, but negative
values correspond to less common “auxetic” materials.

Conversely the thickness of the plate, as a function of
2D parameters, writes

d =

√

12 (1 − ν2)
κ

Y2D
. (5)

For describing surfaces with asymmetric properties,
the notion of “spontaneous curvature” was introduced by
W. Helfrich [26]. It was recently shown that to describe
the deformations of an initially stress-free thin shell of ra-
dius R, the three contributions (in-plane, mean curvature
and Gaussian energy, that may have a non-vanishing part
even for closed surfaces, depending on the definition of a
non-zero spontaneous curvature) can be rewritten in an
easily computable way as [27]

Eelastic =

const+

∫

shell surface

[

1

2
κ (c − c∗0)

2
+

1

2
ǫijKijklǫkl + γeff

]

dS,

(6)

with c∗0 = 1+ν
R being the effective spontaneous curvature,

and γeff = − (1+ν)κ
2R2 an effective surface tension.

This expression is slightly different from the one used
in [20], hence we will quantitatively discuss, in the results,
modifications induced by the use of this more complete
expression.

More generally, we will consider the influence of sphere
size through the use of the adimensionalized Föppl-von

Kármán number [28] γ = Y2DR2

κ , that gives the order of

magnitude of the ratio between in-plane and out-of plane
deformation energies [23]. An elastic surface with the en-
ergy given in eq. (6) can effectively describe a thin shell
of an isotropic material if 12(1 − ν2)/γ ≪ 1, in addition
to the condition ν2D ≤ 1

2 . In this range, γ roughly scales

like (R
d )2. Out of this range, such a surface model does

not correspond to any thin shell of an isotropic material;
it can nevertheless describe different types of objects, e.g.

gel-phase vesicles [17] that can hence be considered as thin
shells of non-isotropic materials.

Numerical experiments are performed by minimizing
the elastic energy as expressed in eq. (6) for different in-
ner volumes, with the free software Surface Evolver [29]. A
whole in-silico deflation experiment (from Vinit = 4

3πR3 to
≈ 0.2 × Vinit) is realized through a succession of different
equilibrium states, these latter found according the pro-
cess described in [20], and calculated successively for inner
volumes decreased by steps of at maximum 2% of the ini-
tial volume (steps amplitude is reduced in some situations
in order to avoid the nucleation of secondary dimples).

3 First-order transition toward axisymmetric

depression

Deflation of a spherical elastic surface, at imposed either
volume or external pressure, causes an abrupt buckling

from the spherical conformation in order to release in-
plane compressive stress. The purpose here is to compare
the numerical approach described in the previous para-
graph to known features of this buckling, for the range
of parameters that scans the generality of thin shells of
isotropic material.

3.1 Buckling pressure

First, buckling relaxes in-plane constraints, and causes
a drastic drop of the inside/outside pressure difference
ΔP = Pext − Pint. Figure 1 displays typical evolutions
for the pressure difference: first a linear increase followed
by a drop at first buckling, after which pressure difference
varies in a much lesser extent. Linear behaviour is ex-
pected before the first buckling due to the relation between
pressure and elastic energy Pext −Pint = ∂Eelastic/∂(ΔV )
(detailed in [7]), and quadratic dependence of Eelastic with
ΔV = Vinit − V (see, e.g., [20]).

In the simulations presented here, designed not to be
stuck in multi-indentation conformations of higher energy,
or other less stable, the first buckling leads to a single
axisymmetric dimple. It is expected to happen when the
external overpressure ΔP = Pext−Pint reaches the critical
value [11,12]

ΔPc = 2
[

3
(

1 − ν2
)]

−1/2 × Y3D

(

d

R

)2

. (7)

As expected, the first buckling in our simulations effec-
tively occurs at a pressure difference of order ΔPLandau =
Y3D( d

R )2 (sect. 1). For a given Poisson’s ratio, the uncer-
tainty due to discrete volume increments does not allow to
conclude that ΔPbuckling1/ΔPLandau is affected by γ (see,
e.g., fig. 1 displaying several cases at ν = −0.5). The ef-
fect of Poisson’s ratio is displayed in fig. 2: it shows that
the pressure which induces buckling in our simulations
quantitatively follows the theoretical equation (7), which
reinforces the validity of our approach.

3.2 Buckling volume

The mechanism of buckling in axisymmetric conforma-
tions was quite recently investigated in detail by Knoche et
al. [12], with the study of various metastability branches.
At first significative order, their calculations show that
for the trivial isotropic (“spherical”) deformation, the rel-
ative volume variation due to an external overpressure
ΔP = Pext − Pint is expressed as

ΔV

V
=

3 (1 − ν)

2
×

R

d
×

ΔP

Y3D
.

Hence the deflation at buckling pressure writes [11,12]

(

ΔV

V

)

buck 1

=

√

3

(

1 − ν

1 + ν

)

×
d

R
. (8)
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Fig. 1. (Colour on-line) Pressure difference ΔP = Pext − Pint adimensionalized by ΔPLandau = Y3D( d
R

)2 (or [12 Y2Dκ(1 −
ν2)]1/2/R2 in 2D parameters), as a function of the relative volume variation, for surfaces of similar Poisson’s ratio ν = −0.5.
Dotted green: γ = 1.17 × 105 ( d

R
= 8.8 × 10−3); blue: γ = 6.07 × 104 ( d

R
= 1.22 × 10−2), long-dashed orange: γ = 3.22 × 104

( d
R

= 1.67×10−2), magenta: γ = 1.17×104 ( d
R

= 2.31×10−2), light blue: γ = 9.33×103 ( d
R

= 3.11×10−2), violet: γ = 4.67×103

( d
R

= 4.39 × 10−2). Notice the scale switch at ∆V
V

= 0.2. Points (corresponding each to a minimization) emphasize two curves

with typical behaviour after buckling: increasing (green curve), and plateauing (orange).

Fig. 2. Pressure (ΔP )buck 1 =(Pext−Pint)buck 1 at first sphere→
bowl buckling, adimensionized by ΔPLandau. Error bars repre-
sent the range of this quantity for γ between 4.67 × 103 and
2.33×105. Line: theoretical value 2[3(1−ν2)]−1/2, from eq. (7).

Figure 3 presents values of (ΔV
V )buck 1 from numeri-

cal simulations, as a function of a combination of γ and
ν translated in 3D parameters: here also the theoretical
equation (8) is quantitatively retrieved. One may notice
(since by essence (ΔV

V )buck 1 ≤ 1) that the sphere → bowl

transition vanishes for d
R ≥

√

(1 + ν)/3(1 − ν), which in-

dicates a destabilization of the axisymmetric bowl for the
most auxetic materials. This was qualitatively expected
from the κ divergence in this limit, which makes curva-
ture deformations prohibitive compared to in-plane com-
pressions3.

Using the 2D parameters of the surface model, rela-
tion (8) also writes:

(

ΔV

V

)

buck 1

= 6 (1 − ν) γ−
1

2 . (9)

Extending our purpose out of the range of 2D param-
eters that effectively can describe a thin shell of isotropic
material, we may remark that extrapolation to ν = 1 in-
duces vanishing of (ΔV

V )buck 1, and hence destabilization
of the spherical conformation: this limit corresponds to
incompressible surfaces, that will necessarily undergo a
deformation implying curvature even for the smallest vol-
ume decreases, since area variation is prohibited. For the
thickest shells, i.e. γ � 80, shape transition occurs not any
more through sudden inversion of a spherical cap, but by
slowly deforming into an ovoid, that flattens at the loca-
tion of future depression under further deflation. We did
not, here, specifically study this extreme behaviour.

For practical purposes, we may notice that the large
range of parameters explored shows that in terms of vol-
ume, the onset of buckling mainly depends on the relative

3 A possible expression of the 2D compressibility modulus is
χ2D = Y2D

2(1−ν)
= Y3D×d

2(1−ν)
.
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Fig. 3. Relative volume variation ( ∆V
V

)buck 1 at the sphere →
bowl buckling (lower and upper limit of the error bars are
indicated, respectively, by upward and downmard triangles).
White: ν = 0.5; light gray: ν = 0; dark grey: ν = −0.5; black:

ν = −0.8. Grey line: (∆V
V

)buck 1 = 6(1 − ν)γ−
1

2 (this is eq. (8)

expressed in 2D parameters). Dotted line: relation established
in [20] for ν = 1/3: taking into account the Gaussian curva-
ture, the elastic energy increases the volume threshold by at
maximum 20% for the thinnest shells of the shells previously
studied. Illustrative inserts display deflated spherical surfaces
at γ = 4666 and ν = −0.8 (hence d

R
= 0.0304), with relative

volume variations, respectively, ∆V
V

= 0.161 (spherical) and
0.167 (buckled, section view, same scale).

thickness d
R , with only a weak influence of Poisson’s ra-

tio. Since this latter ranges between 0 and 1
2 for common

materials (i.e. non auxetic, with ν ≥ 0), the prefactor of
d
R varies between

√
3 and 1, which is much narrower than

the range in d
R that can be explored.

4 Second-order transition toward polygonal

depression

4.1 Location of the transition

In the axisymmetric bowl shape, global bending of the
rim on the equator costs in-plane deformation: extension
on the outer side of the rim, and compression on the inner
one. For the thinnest shells, compressive stress parallel to
the equator leads to a secondary buckling, where the in-
ner side of the rim undulates to adapt to axial compression
(fig. 4, left), forming folds, or “wrinkles”, that deform the
axisymmetric depression into a roughly polygonal shape
(fig. 4, right). Such a conformation mainly involves curva-
ture deformations, much less energetic [23] than compres-
sion energy that quadratically increases with ΔV

V . Figure 5

Fig. 4. (Colour on-line) Left: schematisation of a spherical sur-
face near complete deflation. The inner part of the rim endures
a compressive stress in the direction indicated by the red dou-
ble arrow. Relaxation of in-plane deformation occurs, for the
thinnest shells, via undulation deformation, generating wrin-
kles (folds) all along the rim (examples schematized with blue
dashed lines). Length ℓ stands for lateral extension of the wrin-
kles. Right: simulation with γ = 9.33×103, ν = 0.5 ( d

R
= 0.031)

and ∆V
V

= 0.562. Maxima of undulation are stressed with blue

dashed lines; the circle locates the zone of high curvature that
forms the apex of the s-cone.

shows how elastic energy dispatches between in-plane and
out-of-plane deformation energies in a typical numerical
deflation. Wrinkles match with the rim through a zone of
high curvature that has a folding role similar to what re-
alizes the apex of d-cones [30–32], except that the surface
is not developable but is spherical, hence the concept of
“s-cones” proposed by Reis and Lazarus [33].

Secondary buckling from axisymmetric bowl shape to
polygonal indentation, quite smooth, is harder to detect
than the first one (fig. 5). The corresponding relative vol-
ume variation (ΔV

V )buck 2 is determined on the one hand
by the maximum deflation before loss of axisymmetry, and
on the other hand by the ΔV

V at which the rim presents
convex zones under axial observation (as shown on the
lower part of fig. 5, subfigure c). Figure 6 presents a
typical shape phase diagram for ν = −0.5, with three
distinct zones: spherical coformation, axisymmetric bowl
and wrinkled depression. One may notice that for the
thinnest shells, the incremented deflation we numerically
performed shows a direct transition from the sphere to the
wrinkled bowl. Relative volume variation at first buckling
nevertheless obeys a single power law on the whole range
of relative thicknesses. We focus in this section on the
second buckling, hence considering only deflations where
wrinkles appear on an already existing axisymmetric con-
formation. Figure 7 displays how (ΔV

V )buck 2 varies with
the Föppl-von Karmán number γ for different Poisson’s
ratios. Data indicate a dependence on γ, but scattering
prevents from concluding on an influence by ν; linear re-
gression on logarithms4 provides a correlation coefficient
of −0.99:

(

ΔV

V

)

buck 2

= 8470 × γ−1.085. (10)

4 Plotting ln{(∆V
V

)buck 2} versus ln( d
R

), as for the first buck-
ling, excessively particularizes points at ν = −0.8, which re-
sults in a correlation coefficient of only −0.90.
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Fig. 5. Deformation energies at different relative volume vari-
ations (volume step ≈ 0.6% of the initial volume), adimension-
alized by the curvature constant κ, for γ = 9.33 × 103 and
ν = 0.5 ( d

R
= 0.031). Dashed line: Hookean in-plane deforma-

tion energy, linked to the second significative term of eq. (6),
i.e. 1

2
ǫijKijklǫkl. Grey continuous line: elastic energy linked to

the first significative term: 1
2
κ(c − c∗0)

2. This term does not

vanish at ∆V
V

= 0 because c∗0 �= 1/R; in the total elastic en-

ergy, it is counterbalanced by the const and the effective sur-
face term expressed by γeff in eq. (6). Effective surface energy
(not represented here) varies at maximum by −0.33 κ, and on
an amplitude 0.03 κ in the non-spherical conformations. Grey
zone indicates the second transition from axisymmetric bowl
shape to depression with inner wrinkles (“polygonal indenta-
tion” [18]), determined as explained in the text. First transi-
tion from sphere to axisymmetric bowl occurs through abrupt
decrease of the in-plane deformation energy, at ∆V

V
= 0.03.

This expression is compatible with previous results
obtained for ν = 1/3 with slightly different numerical
models: the shell without Gaussian curvature evoked in
sect. 2, [20], and the spring model without spontaneous
mean curvature of ref. [18] (both are represented in fig. 7
for their range of validity).

Extrapolating eq. (10) up to ΔV
V = 1 suggests that

this secondary buckling does not happen, i.e. single in-
dentation keeps its axisymmetry, below a threshold value
γc,buck 2 = 4170. In tridimensional parameters, rela-

tion (10) expresses as

(

ΔV

V

)

buck 2

= 571 ×
(

d/R√
1 − ν2

)2.17

. (11)

The dependence in ν for non-auxetic materials is even
weaker than for the axisymmetric buckling since it plays

at maximum by a factor 4/3. Besides, for the range
of Poisson’s ratio studied here, there is no axisymmet-
ric conformation to be expected for d/R < 0.003. Re-
lation (11) also implies that wrinkles are not expected

when d/R � 0.054×
√

1 − ν2: a particular consequence is

that in wrinkles prevention, a very auxetic material (with
ν → −1) may help.

4.2 Characterization of buckled shapes with the
number of wrinkles

For the thinnest shells that undergo polygonal indenta-
tion, the most conspicuous feature is the number W of
wrinkles, or s-cones. Figure 8 shows the evolution of W
for a typical deflation: first does W decrease while the
freshly nucleated and still very flat depression hollows
and enlarges, then it increases again. Data are quite scat-
tered: there is a typical noise of order ±1 on W , that
has no observable correspondence in smooth energy curves
(fig. 5). In order to decrease data scattering, we calculated
Wdeflated as the average value of W between ΔV

V = 0.53

and ΔV
V = 0.76 (these values have been choosen in or-

der to cover, for all the simulations, a significant range of
relative volume variation before autocontact, this latter
happening around ΔV

V ≈ 0.9). Values of Wdeflated are com-
parable with results from the previous model, which did
not take Gaussian curvature into account, and indicated
a scaling law in γ−1/4 [7,20]. The dependence of Wdeflated

with γ and ν is shown in fig. 9, expressed in 3D parame-
ters. It shows a scaling in ( d

R )−1/2, which provides clues
on the typical transversal size l of the s-cones (presented
in fig. 4, left). Since s-cones stand alongside one another
on a length which is of the order of an equator, we can
estimate l as 2πR

Wdeflated
. Hence the best fit of Wdeflated as

linear with ( d
R )−1/2 (fig. 9) can be expressed as

l ≈ 6.7
√

dR. (12)

This result is fully comparable to the wrinkles wavelength
4.7

√
dR that can be calculated from recent results by Vella

et al. [34] on the indentation of strongly pressurized shells.

As shown in ref. [10],
√

dR arises naturally from balancing
the bending and in-plane deformation energy of a small
deformation on a spherical shell. Recent results by [12]

showed that
√

dR scales also for the rim width even in
large axisymmetric depressions; we confirm here that it
governs also other types of large deformations such as s-
cones transversal size in polygonal depressions.

5 Other postbuckling features

First buckling and its consequences were presented in
sect. 3. For application purpose, we may focus on the in-
side/outside pressure difference after its drop at first buck-
ling. Careful examination of the numerical data revealed
supplementary features, uncorrelated with the occurrence
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Fig. 6. Shapes in the relative thickness/relative volume variation phase diagram, for: ν = −0.5. Illustrations: shells with
d/R = 0.031 and ν = −0.5 (∆V

V
= 0, 0.20 and 0.55).

Fig. 7. Points: relative volume variation at which the axisym-
metric depression becomes “polygonal”, versus

p

12/γ (which
is to be identified with d/R when ν = 0). White: ν = 0.5;
light grey: ν = 0; dark grey: ν = −0.5; black: ν = −0.8. Thick
grey line: eq. (11). Continuous lines indicate the location of the
first-order buckling for different Poisson’s ratio (from eq. (8)),
under which only the spherical conformation is to be found.
Non-continuous lines: in their domain of validity, equations de-
scribing the axisymmetric/wrinkled bowl transition published
in previous works for ν = 1/3 (see text): dotted black refers
to [20], dashed grey to [18].

of the secondary buckling previously exposed: two types
of behaviour clearly appear in the evolution of the reduced
pressure ΔP

ΔPLandau
during deflation.

Fig. 8. Number of wrinkles (s-cones) held by the single de-
pression after the secondary buckling of fig. 5. Poisson’s ra-
tio ν = 0.5; Föppl-von Karman number γ = 6.06 × 104

( d
R

= 0.0122). Lower part: conformations at points indicated
in the main figure.

For d
R � 0.014, the pressure difference ΔP presents the

type of evolution calculated by [12], i.e. quasi-plateauing
after buckling (variation of about 15% during the whole
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Fig. 9. Number Wdeflated of wrinkles (s-cones) at the end of a
numerical deflation (averaged between ∆V

V
= 0.53 and ∆V

V
=

0.76). Error bars are taken as the standard deviation on this
range, with a minimum value of ±0.5. White: ν = 0.5; light
grey: ν = 0; dark grey: ν = −0.5; black: ν = −0.8. Continuous

line: Wdeflated = 0.940 × ( d
R

)−
1

2 .

deflation, plus some occasional dispersion due to numer-
ical procedure), up to autocontact. Furthermore, an or-
der relation is respected: at every volume step, the ratio

ΔP
ΔPLandau

weakly increases when γ decreases. This is to be

observed in fig. 1, for the 4 curves corresponding to the
highest relative thicknesses.

For the thinnest shells ( d
R � 0.012 in the simulations

performed), ΔP
ΔPLandau

regularly re-increases with deflation

after the pressure drop, crossing successively the curves at
smaller γ’s (as shown on the 2 “thinnest” curves of fig. 1).

In order to extract a general behaviour from these dif-
ferents observations, we focused on ΔPmin

ΔPLandau
, the minimum

value of ΔP
ΔPLandau

after buckling. Figure 10 shows that the

cross-over between the two regimes around d
R ≈ 0.014 also

corresponds, for each ν, to the minimum of relative pres-
sure drop after the first buckling. In the plateauing regime,

ΔPmin

ΔPLandau
stands for the plateauing value for d

R � 0.014; it

shows a power law of the type ΔPmin

ΔPLandau
= a(ν) × ( d

R )0.5.

Similarly to what was done in sect. 3, and since a(ν) ap-
pears to be even (curves at ν = 0.5 and ν = −0.5 almost
mix up in fig. 10), we looked for a prefactor of the form
(1−ν2)x, minimizing x for the best fits at d

R > 0.014. This
led us to propose the master curve presented in fig. 11, of

formula ΔPmin

Y3D
× (1 − ν2)0.773 = 0.75 × ( d

R )2.5. We do not

have for the moment theoretical clues to justify these two
successive fitting operations, but i) it allows to describe
numerical results in a very condensed way for d

R ≥ 0.014,
and ii) for all the shells these reduced values impressively
gather on a single curve, for γ ranging from 8 × 102 to
4.7×105, and for ν between −0.8 and 0.5. This result, ex-
posed in fig. 11 using 3D parameters, is expected to be of
practical use for all experiments involving deflation con-

Fig. 10. Minimum inside/outside pressure difference after
buckling (cf. fig. 1), adimensionalized by Landau pressure, log-
arithmic representation. Black: ν = 0.5; dark grey: ν = 0;
light grey: ν = −0.5; white: ν = −0.8. Dashed line separates
the two types of evolution of the pressure after the first buck-
ling: increasing or plateauing (see fig. 1). Black line indicates
slope 0.5.

Fig. 11. Pressure master curve after first buckling: ∆Pmin

Y3D
×

(1−ν2)0.773 versus d
R

. Black squares: ν = 0.5; black diamonds:
ν = 0; light grey diamonds: ν = −0.5; white diamonds: ν =

−0.8. Continuous line: ∆Pmin

Y3D
× (1 − ν2)0.773 = 0.75 × ( d

R
)2.5.

trolled by the volume. On a more conceptual point of view,
plot clearly confirms two different scalings of the pressure
during deflation, around a threshold in relative thickness
( d

R )c ≈ 0.013. This may be an indication of the existence
of different ways to accommodate s-cones on a sphere, and
requires further investigations.

6 Conclusion

Systematic numerical study of the buckling of a spher-
ical shell, in the conformation with a single depression,
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allows to sketch the influence of the different geometrical
or elastic parameters through quite simple theoretical or
phenomenological laws. The surface model can be trans-
lated in 3D parameters, that are the shell’s thickness, and
the two elastic parameters of the material that compose
it: Young modulus and Poisson’s ratio.

At imposed volume, the Young modulus does not play
on the shape. Results showed that the first transition (to-
ward axysimmetrically buckled shape), and the second
one, with appearance of wrinkles, or “s-cones”, is mainly
driven by d

R for non-auxetic (i.e. with positive Poisson’s
ratio) materials. For auxetic materials, Poisson’s ratio may
have a determining importance, by strongly displacing
transitions toward higher values of the relative volume
variation, up to possible vanishing. Decreasing Poisson’s
ratio down to very negative values stabilizes spherical de-
flation at the expense of dimples creation, and axisym-
metric dimples against appearance of wrinkles.

The number of wrinkles indicates a dependence on
( d

R )−1/2, that confirms
√

dR as the accurate scaling for

elastic deformations of elastic spherical surfaces.
The Young modulus scales pressure features: critical

inside/outside pressure difference that triggers first buck-
ling, and plateauing pressure after buckling. Detailed be-
haviour, that is shown to reduce to a master curve, opens
the possibility for two different wrinkling regimes.

The author thanks K. Brakke for developing and maintaining
the Surface Evolver software, including invaluable interactions
during this work, and P. Marmottant and F. Quéméneur for
fruitful discussions.
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