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Electrical-field–induced curvature increase
on a drop of conducting liquid

M. Bienia
1
, M. Vallade

1
, C. Quilliet

1 and F. Mugele
2

1 Laboratoire de Spectrométrie Physique UMR CNRS-UJF
140 avenue de la Physique, 38400 Saint-Martin-d’Hères, France
2 University of Twente, Physics of Complex Fluids
P.O. Box 217, 7500 AE Enschede, The Netherlands

received 29 July 2005; accepted in final form 9 February 2006
published online 1 March 2006
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PACS. 83.60.Np – Effects of electric and magnetic fields.

Abstract. – We present an analytical approach using conformal mapping to the free-boundary
problem of the shape of a liquid drop submitted to a strong electrical field, as encountered in
electrowetting systems. In agreement with recent numerical calculations, we show that both
the curvature of the surface profile and the electric field diverge algebraically close to the three-
phase line. The algebraic exponents agree with the numerical results. We show analytically
that the local contact angle remains equal to Young’s angle, independent of the applied voltage.
Furthermore, we present experimental evidence of a curvature increase close to the contact line.

Introduction. – The contact angle change of a drop of conducting liquid on an insulating
solid under the influence of an external electrical field, called electrowetting, has become a field
of strong interest in the area of wetting in the last twenty years [1,2]. The applications of this
phenomenon range from the variable focus lens [3–5] to microfluidics (controlled displacement,
rupture and coalescence of droplets [6–9]), via pixel units for electronic paper [10,11]. Recent
fundamental work is largely related to the study of limiting phenomena such as contact angle
saturation [12–15] and triple-line instability leading to droplet expulsion [16, 17]. While the
origin of contact angle saturation has yet to be determined in detail, most of the suggested
explanations attribute it to the divergence of electric fields close to the contact line [1,2]. The
classical electrowetting theory neglects these effects: by balancing the gain in electrostatic
energy and the additional surface energy one obtains the following relation between the change
of the macroscopic apparent contact angle, the so-called Lippmann angle θL, and the applied
voltage V [2, 18–21]:

cos θL(V ) = cos θY +
1
2
CV 2

γ
= cos θY + η. (1)

Here θY is Young’s contact angle, C = ε0εr/d is the capacitance per unit area between
the droplet and the counter-electrode underneath the insulating layer (thickness d, dielectric
c© EDP Sciences

Article published by EDP Sciences and available at http://www.edpsciences.org/epl or http://dx.doi.org/10.1209/epl/i2006-10003-3

http://www.edpsciences.org/epl
http://dx.doi.org/10.1209/epl/i2006-10003-3


104 EUROPHYSICS LETTERS

constant εr). γ is the surface tension of the liquid and η is a dimensionless electrowetting
number which measures the relative importance of electrostatic energy (per unit area) and
surface tension(1). Since the total electrostatic energy gain is proportional to the solid-liquid
interfacial area, eq. (1) can also be viewed as the result of an effective reduction of the solid-
liquid interfacial energy γeff

sl (V ) = γsl,0 − CV 2/2.
Close to the three-phase line, however, the description given above fails: field enhancement

due to electrostatic edge effects gives rise to a strong Maxwell stress deforming the droplet
surface. In a recent study, Buehrle et al. [21] used numerical calculations to determine the
equilibrium shape of the droplet. In this paper, we present an analytical approximation
using conformal mapping that allows to reproduce the main results much more elegantly.
Furthermore, we present experimental evidence of a curvature increase close to the contact
line in agreement with the theoretical predictions.

Theory. – Let us consider a drop of a perfectly conducting liquid on top of a dielectric
solid of thickness d. An electrical potential V is applied between the drop and a counter-
electrode underneath the solid. In the vicinity of the contact line, the surface profile at zero
voltage can be approximated by a wedge with an opening angle α = θY . For this fixed
geometry, the electrostatic field distribution was calculated exactly using conformal mapping
by Vallet et al. [16]. The electric field was found to diverge close to the contact line. In
mechanical equilibrium, this gives rise to a diverging Maxwell stress acting on the droplet
surface. As a result, the surface profile is distorted which, in turn, affects the field distribution.
The challenge is thus to calculate the electrical field and the drop shape simultaneously for
a general free-boundary problem. Buehrle et al. [21] used an iterative numerical method to
solve this problem for a two-dimensional droplet. Their calculations show that an electric-
field–induced curvature appears close to the triple line over a length scale of the order of the
thickness of the insulating film and that the contact angle goes asymptotically to the (zero
field) Young angle when approaching this line.
In the following we show that these results can also be derived (at least in the low-field

limit) from analytical considerations and conformal mapping techniques.
In order to allow a direct comparison with the numerical simulations in [21] and for the sake

of simplicity, we restrict ourselves to a 2D system, and all relative permittivities εr are taken
to be equal to 1. The liquid is considered a perfect conductor (i.e. the electric field vanishes
inside the liquid). A priori, the shape of the interface is not known. However, there exists a
conformal mapping function w(z) of the complex plane (z = x+ iy) onto itself (w = u+ iv)
which transforms the two electrodes at potential 0 and V into two electrodes of an infinite
parallel-plate capacitor (see fig. 1) [23].
The reciprocal mapping z(w) has a derivative of the general form:

dz
dw

= F (w)eiψ(w), (2)

where F (w) and ψ(w) denote, respectively, the modulus and argument of dz
dw . In the following,

we shall use dimensionless quantities: the lengths will be expressed in units of d/π and the
voltages in units of V/π.
The functions x(u), y(u) at constant v provide a parametrical representation of the equipo-

tential curves, whereas the electrical-field components are given by [23]

Ex(u)− iEy(u) =
i(

dz
dw

) = i

ẋ(u) + iẏ(u)
, (3)

(1)Instead of minimizing the total energy of the droplet, the same result can also be obtained using the
Maxwell stress tensor formalism, as introduced in the context of electrowetting by Jones et al. [22].
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Fig. 1 – Conformal mapping that transforms the edge of liquid into a planar electrode. The analytical
function w(z) maps the x-axis onto the v = 0 line, and the boundaries of the drop onto the v = π line.

where
ẋ(u) = ∂x

∂u

∣∣
v
, ẏ(u) = ∂y

∂u

∣∣∣
v
. (4)

According to eq. (2), for constant v we also have

F (u) =
√
ẋ2(u) + ẏ2(u), (5)

tanψ(u) =
ẏ(u)
ẋ(u)

=
dy
dx

. (6)

In real space ψ(u) corresponds to the angle of the equipotential (i.e. interface profile) with the
x-axis. In mechanical equilibrium, this angle is a function of the height above the substrate.
Its value is coupled to the local electric field by the equilibrium condition between the Maxwell
stress and the Laplace pressure [21]:

γκ(r) +
ε0
2
E2(r) = 0, (7)

where κ(r) is the mean curvature at point r.
In order to transform the capillary equation into the transformed space, we first express

both the curvature and the electric field in terms of F (u) and ψ(u):

κ(u) =
ẍẏ − ÿẋ

(ẋ2 + ẏ2)3/2
= −∂ψ

∂u

1
F (u)

, (8)

|E(u)|2 = 1
(ẋ2 + ẏ2)

=
1

F (u)2
. (9)

Hence the capillary equation (7) can be simply written as

∂ψ

∂u
=

η

πF (u)
, (10)

where η is the dimensionless electrowetting number defined above. Formally, we can integrate
eq. (10) to obtain

ψ(u) = ψ∞ − η

π

∫ ∞

u

du′

F (u′)
, (11)

where ψ∞ corresponds to the slope of the surface far away from the triple line, i.e. ψ∞ = π−θL.
In the following, we will seek a solution that holds for small values of η. To do so, we start

with the well-known solution for η = 0. In this case, we know that the ψ(u) is constant along
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Fig. 2 – (A) Liquid/air profiles calculated with the analytical model, for θL = 60◦, in reduced units.
Far from the contact line, all the profiles have the same slope, corresponding to Lippmann’s angle.
(B) curvature as a function of height, with, respectively, η = 0.2 to 1 by steps of 0.2 and θL = 60◦;
θY = 72.5, 84.3, 99.7, 107.5 and 120◦. The dashed lines are the power law behavior expected
from [16, 21], calculated with Young’s angle, and equal to, respectively, −0.75, −0.69, −0.64, −0.57
and −0.5. For the sake of clarity, (B) curves are shifted on the vertical axis by +2. Far from the
contact line, all the curves have the same slope of −2 (see text).

the liquid/air interface (ψ ≡ ψ0 = π−θY ). The droplet profile is thus given by a perfect wedge
with zero curvature. For this geometry the conformal transformation z0(w) is known [16]:
dz0/dw = F0(w)eiψ0(w) = (ew + 1)α, where α = ψ0/π. The first-order perturbation to ψ can
be obtained by using the zeroth-order mapping function F0 = (eu − 1)α in eq. (11):

ψ(u) = ψ∞ − η

π

∫ ∞

u

du′

(eu′ − 1)α , (12)

assuming that F (u) is a non-singular function at η = 0. The integral in this equation is the
Eulerian Beta function Ba(x, y). Using a parametric representation, we find

θ(u) = θL +
η

π
Be−u(α, 1− α), (13)

s(u) = (eu − 1)1+αF (1, 1 + α, 2 + α, 1− eu)/(1 + α), (14)

where F (a, b, c, x) is the hypergeometric function and s(u) =
∫ u

0
F0(u′)du′ represents the

curvilinear abscissa along the liquid/air interface.
Figure 2(A) represents liquid/air profiles obtained for θL = 60◦, with η ranging from 0.2

to 1. Young’s angle ranges from 72.5 to 120◦. We also plotted the calculated 2D curvature
according to eq. (8) for these profiles in fig. 2(B). Far away from the triple line (y � 1), the
curvature displays an algebraic behavior with an exponent of 2 corresponding to E ∝ 1/y,
as expected from basic electrostatics. Upon approaching the triple line (around y ≈ 1) the
curvature crosses over to another algebraic region with a smaller exponent, indicating a diver-
gence of the curvature, and hence of the electric field. The power law exponents are consistent
with the result obtained in [16, 21] (cf. dashed lines), and are equal to −0.75, −0.69, −0.64,
−0.57 and −0.5. It is remarkable that this agreement holds even for a value of η = 1 despite
the approximation in eq. (12). A qualitative explanation for this agreement can be found by
considering the local slope angle at the triple line. Another important result of [21] was that
the local slope at the contact line is equal to θY , i.e. ψ(u = 0) = π − θY . Differentiating
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eq. (1) with respect to η one gets for η = 0: ∂ψ∞/∂η|η=0 = 1/ sin θY , and

ψ(0) ≈ ψ0 + η
∂ψ(0)
∂η

∣∣∣∣
η=0

= ψ0 + η

(
∂ψ∞
∂η

∣∣∣∣
η=0

− 1
π

∫ ∞

0

du′

(eu′ − 1)α
)

= ψ0 + η

(
1

sin θY
− 1
sin (πα)

)
. (15)

Since πα = ψ0 = π − θY , the term in brackets vanishes, and we obtain

ψ(0) = ψ0, (16)

i.e. the local contact angle at the triple line remains unaffected by the applied voltage. To the
first order in η, we thus recover the result of [21] that the electrostatic force acting on the triple
line vanishes. The forces inducing the contact angle reduction in electrowetting are distributed
over a range on the order of d rather than acting directly on the triple line, as suggested by the
simplest derivation of eq. (1). They cannot be described by a simple voltage-dependent effec-
tive surface tension. This is related to the long-range character of electrostatic interactions.
In real systems, the divergence of the curvature and the electric field will be cut off at short

length scales. Molecular interactions will distort the actual surface profile within the range of
the disjoining pressure. Furthermore, the perfect conduction assumption of the liquid breaks
down on the scale of the Debye length, which is on the order of a few Angströms for typical
salt concentration in electrowetting. Finally, the actual dielectric permittivities of the system
have to be considered [24] .

Experiments. – In order to verify the theoretical predictions, we measured the curvature
of liquid droplets close to the triple line using high resolution video microscopy. To facilitate
the optical observation, we used insulators consisting of 150, 300 and 450µm thick glass layers
(εr = 3.8). The top plate is covered by a layer of several hundreds of Angströms of spin-coated
Teflon AF (Dupont) to ensure hydrophobicity. The counter-electrode, which is grounded, is
a thick ITO-covered glass plate. A drop of the conducting liquid guarantees a homogeneous
electrical contact between the glass and the electrode.
The conducting liquid is BMIMBF4 (Sigma), an ionic liquid of interfacial energy 62mNm−1

and density ρ = 1.22 kg L−1, which results in droplets sizes inferior to the capillary length
(κ−1 = 2.3mm). The droplet volumes V are 3 to 6µL giving rise to a range of Bond numbers
Bo = gρV2/3/γ = 0.4 to 0.6. A thin platinum electrode brings the drop to high alternative
electrical potential at 10 kHz frequency.
The drop is illuminated using an optical fiber and an opaque screen. Pictures of 1024 ×

1280 pixels resolution are acquired by a 16 bits video-camera mounted on the binocular. Side
view images of the drop are obtained by a mirror tilted by 45◦. Voltage ramps ranging in
0–700V for 150µm samples, 0–900V for the 300µm samples and 0–1200V for the 450µm at
a frequency of 10 kHz are applied to the droplets, corresponding to a range of η = 0–0.5.
The curvature is measured using interface profiles extracted from side view images, assum-

ing that the system is axisymmetric. For each voltage, several pictures from two independent
experiments were taken. The analysis starts 20 pixels above the contact line to avoid possible
artifacts due to the finite size of the pixels, which result in an apparent rounding of the tip of
the drop. We chose r(y) as the coordinates of the profile, in order to prevent numerical diver-
gences in the curvature calculations in case of contact angle of the drop larger than 90◦. We
obtain r(y) by detecting the inflection point in intensity variation from white (background) to
black (drop). The 3D curvature is calculated using finite differences and box averaging. We
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Fig. 3 – Excess curvature in µm−1 as a function of height y in µm: black dots 700V, black crosses
900V, gray dots 1200V. The lines are theoretical predictions for each set of experiments, respectively
from bottom to top, obtained with θL = 70◦ and η = 0.5 (θY = 99◦). Inset: excess curvature κ−κ0 at
0V, as a function of height in microns. These values are in good agreement with expected curvatures
for spherical caps of the same volume and contact angle as in the experiments within 4%. The large
variation around 300µm is due to the presence of the electrode coming out of the drop, in one of the
experiments. A linear trend attributed to gravity, obtained by a linear fit in the range of macroscopic
curvature and whose order of magnitude is in agreement with a rough estimate of hydrostatic pressure,
is substracted from all the data.

tested this procedure using a spherical cap with 1% noise, and it resulted in a shift of 3% in
the value of the curvature we calculated compared to the actual value [25].
The excess curvature κ(y) − κ0 as a function of height y is shown fig. 3, at high voltage

for the 3 different thicknesses (inset: κ(y) − κ0 as a function of height y for 0 V). κ0 is the
“macroscopic” curvature, i.e. far from the contact line. The latter is obtained by averaging
the curvature in the range 500µm and higher above the substrate. The 3 sets of experiments
correspond to η = 0.5, θL = 70◦, and θY = 99◦. For the sake of comparison, the results of
the analytical model for the same parameters are plotted along with the experimental results.
Despite the noise amplification induced by the derivation process, we detect a curvature
increase close to the triple line on the high potential curves. This deviation is clearly seen
until y 
 100µm above the triple line.

Conclusion. – Recent numerical results predict a curvature increase near the triple line
for a drop of conducting liquid at high electrical potentials, due to strong electrical fields
near the triple line. We present an analytical approach to this problem in the case of low
electrical fields, which leads to the same conclusions. We show that the horizontal component
of electrostatic forces vanishes at the three-phase line, resulting in Young’s angle exactly at
the triple line, for a perfectly conducting liquid. Similar behavior is observed for colloids [26].
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Our present experimental results show that a curvature increase can actually be detected
for a drop at high electrical potential. The variation is clearly seen up to a distance of the
order of a hundred microns above the contact line, and its amplitude is 10% of the asymptotic
curvature. These results are in qualitative agreement with our theoretical model.
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