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ABSTRACT:
We introduce a model that describes spherical oscillations of encapsulated microbubbles in an unbounded

surrounding fluid. A Rayleigh–Plesset-like equation is derived by coupling the Navier–Stokes equation that

describes fluid dynamics with the Navier equation that describes solid dynamics via the internal/external boundary

conditions. While previous models were restricted to incompressible isotropic shells, the solid shell is modeled here

as a compressible viscoelastic isotropic material and then generalized to an anisotropic material. The exact value of

the resonance frequency is calculated analytically, and the damping constant is computed in the approximation of

weak damping. A correction of the widely used Church model for incompressible shells is evidenced, and the effects

of shell compressibility and anisotropy are discussed. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

Various modalities have been used for diagnostic

imaging, such as clinical radiography, computed tomogra-

phy (CT), magnetic resonance imaging (MRI), and ultra-

sound (US). Safe, noninvasive, and relatively inexpensive,

US imaging techniques have been much improved by the

introduction of ultrasound micron size contrast agents

(UCAs). Image enhancers were essential because, first,

human blood within an organ has poor scattering properties

and low signal amplitude relative to human tissues, which

generate strong echoes, and, second, the old-school Doppler

technique (Campbell et al., 1983) could no longer satisfy

the demands, especially in some more complex and confined

geometries.

The presence of air bubbles inside an injected hand-

agitated saline solution during an echocardiography was the

first ultrasonic image enhancement technique that was pro-

posed (Gramiak and Shah, 1968). These bubbles are known

as the first generation of UCAs. As they dissolve rapidly in

the liquid, a second generation of UCAs was developed that

are made of air bubbles encapsulated by a thin shell: galac-

tose as in EchovistVR (1991) or albumin (a human protein) as

in AlbunexVR (1995) or galactose and palmitic acid as in

LevovistVR (1995). Finally, the third generation of UCAs

includes microbubbles with a longer lifetime, air being sim-

ply replaced by a gas with higher molecular weight, respon-

sible for decreased solubility: SF6 as in SonoVueVR (2001),

C3F8 as in DefinityVR (2001), or C4F10 as in SonazoidVR

(2007). All of these gases are encapsulated by phospholi-

pids. The resulting shells are known as soft-shell UCAs,

while the ones made with polymers are known as hard-shell

UCAs.

UCAs react to high amplitude pulses (1 MPa) of short

duration (on the order of ls). Even in the presence of such

agents, axial and lateral resolutions of ultrasonic devices

used in clinical applications are limited by diffraction, such

that the resolution is fixed by the typical wavelength, which

lies between 100 lm and 1 mm in practice. This limit has

been strikingly overcome recently: by analyzing the tran-

sient signal re-emitted by UCAs, in vivo resolution has been

decreased to about 10 lm, at a detection frequency high

enough to also allow velocity measurement in blood flow by

image correlation (Errico et al., 2015). Such a super-

resolved technique can also be implemented through a pho-

toacoustic device, where the UCAs are excited by light

rather than by sound (Vilov et al., 2017). The scattered US

signal of UCAs has also been recently used to discriminate

between two network topologies, with application to cancer-

ous tumor detection (Mohanty et al., 2019).

These recent advances are based on a complex interplay

between hardware development and post-processing to

extract the relevant information from the acquired signal.

The response of a shelled bubble is strongly dependent on

its size and on the shell material properties. While commer-

cial UCAs are quite polydisperse in size, narrowing the size

distribution of UCAs appears then as a way to better match

the relatively narrow frequency bandwidth of ultrasonic

devices with that of the UCAs, thus leading to better sensi-

tivity of the whole detection process. Recent works go in

that direction, making use of shell material of various types,

such as polymers (Liu et al., 2014; Song et al., 2018), phos-

pholipids (Gong et al., 2014; Helfield et al., 2014; Lum

et al., 2016; Parrales et al., 2014; Segers et al., 2016, 2020;

van Rooij et al., 2015) [sometimes forming more than twoa)Electronic mail: gwennou.coupier@univ-grenoble-alpes.fr
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layers (Shafi et al., 2019)], silica (Hu et al., 2011), or pro-

teins (Wang et al., 2020). This calls for models of bubble

oscillations that are able to describe a wide variety of shell

materials. While previous ones are focused on incompress-

ible and isotropic material, we present here a model that

includes compressibility and the possibility for spherical

UCAs to present different material properties in the radial

and orthoradial directions (“transverse isotropic” material),

a feature that would naturally occur for layered shells like

lipidic ones.

Such anisotropy has been shown to greatly influence the

buckling process of shells (Munglani et al., 2019; Pitois

et al., 2015; Quemeneur et al., 2012).

II. PREVIOUS MODELS

Since the early work of Besant (1859), who was con-

cerned by the time needed to fill up the empty space of a

collapsed bubble and the pressure generated at any point in

an incompressible liquid, forced vibrations of bubbles have

attracted attention for decades. Giving a simpler derivation

of Besant’s results, Lord Rayleigh (1917) generalized the

case to a cavity with nonzero pressure, i.e., to a gas-filled

bubble. The surface tension and the viscosity of the sur-

rounding fluid were taken into account [see Plesset and

Prosperetti (1977) for a review], leading to the famous

Rayleigh–Plesset equation.

To take into account the shell encapsulating the micro-

bubble, a semi-empirical model was developed (de Jong

et al., 1994; de Jong et al., 1992) by way of the introduction

of two ad hoc quantities, Sp and Sf, that account for the

effective elastic and dissipative properties of the interface.

Assuming a zero-thickness shell, which is motivated by the

proximity between the shell thickness and the molecular

scale, other models have introduced rheological constants

that are explicitly related to the expected properties of the

shell material. The first approach by Chatterjee and Sarkar

(2003) was followed by the models of Sarkar et al. (2005)

and Marmottant et al. (2005). In the latter, a nonlinear

model is proposed, presenting the elasticity of the shell as

an effective surface tension. Its linearized form is equivalent

to the de Jong model.

In Church (1995), a finite thickness shell was consid-

ered. It was assumed to be made of a homogeneous, incom-

pressible, and isotropic material that was described by a

Kelvin–Voigt model. This model was linearized relatively

to the thickness to radius ratio in Hoff et al. (2000), giving

rise to the Church–Hoff model. In Morgan et al. (2000), thin

shell UCAs were described by a constant thickness model

using bulk elasticity and viscosity.

Following Marmottant et al. (2005), other nonlinear

models have been proposed, with a more complex rheologi-

cal behavior like strain softening and strain hardening (Paul

et al., 2010; Tsiglifis and Pelekasis, 2008) or shear thinning

(Doinikov et al., 2009; Li et al., 2013).

III. CONFRONTATION WITH EXPERIMENTS

Vibration experiments on UCAs should a priori allow

the determination of the rheological constants of the mate-

rial, through the chosen model among those cited above, as

long as they are not too numerous. The final goal is usually

to choose the best fitting couple of one elastic and one vis-

cous parameter to describe the observed damped signal.

This couple is unique for the model selected, for instance,

(Sp, Sf) in the de Jong et al. (1992) model, ðGS; lSÞ in the

Church (1995) model, and so on. Note that using finite

thickness shell models requires making assumptions, or

additional measurements, to determine the value of the shell

thickness. In all models, additional assumptions are gener-

ally made in order not to consider the inner gas pressure as

an unknown to be determined.

Several techniques can be used to determine the shell

oscillations. In Gorce et al. (2000), a batch of encapsulated

microbubbles are insonated at frequencies up to 30 MHz,

and the viscoelastic parameters are deduced by measuring

the attenuation expression. The spectroscopy approach relies

on using a high speed camera to directly measure the radial

displacement of the UCAs, which is fitted with the theoreti-

cal one (van der Meer et al., 2007). Light scattering methods

were also developed (Li et al., 2013; Tu et al., 2009), where

the scattering cross section is related to the resonance fre-

quency containing the viscoelastic properties using the Mie

scattering theory. A photoacoustic measurement technique

was developed in Lum et al. (2016). Readers can refer to

Helfield (2019) and Versluis et al. (2020) for recent reviews

on linear model theory and experimental measuring

methods.

All the existing linear models are virtually the same,

with 2D moduli that can be expressed explicitly in terms of

3D moduli and thickness. Tables I–IV summarize some

experimental estimations of shell properties using the de

Jong, Marmottant, Church–Hoff, and Sarkar models, respec-

tively, for different UCAs and using various techniques.

TABLE I. Shell property estimations using de Jong model (de Jong et al., 1992). f and p are the characteristic frequencies and amplitudes of the acoustic

waves used to excite the UCAs. Sp and Sf are the elastic and viscous ad hoc parameters that are introduced in the model. The intervals for the viscoelastic

parameters correspond to cases where dependence on the radius was reported.

UCA R20 (lm) f (MHz) p (kPa) Sp (N/m) Sf (10�6 N/m � s) Method Reference

SonoVueVR 0.6–4.5 1–10 <10 0.35–2.61 0.46–3.42 Attenuation Gorce et al. (2000)

AlbunexVR 2.5–6 0.7–12.5 Not known 8 4 Attenuation de Jong and Hoff (1993)

DefinityVR 0.5–2.5 12–28 25 1.71 0.015 Attenuation Goertz et al. (2007)

1–3 7–15 25 1.64 0.15 Attenuation Faez et al. (2011)
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Such experiments may also be used to validate the

model that is used to describe the results. This requires

determining by another means the rheological properties of

the shell material. Such validations are scarce in the litera-

ture and yield only accurate order of magnitude so far.

Atomic force microscopy (AFM) is a direct approach used

to estimate UCAs’ properties. However, depending on the

model used to extract elastic constants from the force-

displacement curve of an AFM, very different values can be

found (Abou-Saleh et al., 2013; Buchner Santos et al., 2012;

Lytra et al., 2020; Shafi et al., 2019). This makes the valida-

tion of spherical oscillation models a tricky task so far. As

an example, in Buchner Santos et al. (2012) and Lytra et al.
(2020), values between 8 and 38 MPa are found for the

Young modulus E0 of a DefinityVR UCA probed by an AFM.

For an incompressible material, the 2D compression modu-

lus v2D is E0d0, where d0 is the shell thickness, estimated to

be around 5 nm for such UCAs. This leads to

0:04 < v2D < 0:2 N/m, which is not in agreement with the

values around 1 N/m found with the de Jong (Table I) or

Marmottant (Table II) model. Note, however, that static

values of the shell may differ considerably from dynamic

values measured in the MHz range.

In addition, experimental determinations have led to

unexpected dependences of the viscoelastic parameters on

shell radius, as also shown in Tables I–III. van der Meer

et al. (2007) observed a dependence of the shell viscosity on

the initial bubble radius using the Marmottant model for

BR14VR . Chetty et al. (2008) measured an increase in the

shear modulus G0 with the radius using the Church–Hoff

model for SonoVueVR . Tu et al. (2009) and Li et al. (2013)

measured an increase in the elasticity and the viscosity

parameters of the shell with the shell radius, using the line-

arized Marmottant model for SonoVueVR . Identical observa-

tions were made by Doinikov et al. (2009) (lipid

encapsulated bubbles with the de Jong model), Helfield and

Goertz (2013) (DefinityVR with the Marmottant model), and

Parrales et al. (2014) (home-made monodisperse encapsu-

lated microbubbles with the linearized Marmottant model).

This dependence on radius of the material properties

was not substantiated by physical arguments, suggesting

that extra modeling was required.

So far, the models have not considered the possible

compressibility or anisotropy of the material constituting the

shell. The purpose of the present article is to include these

effects in the model of bubble oscillations and to quantify

their influence on the linearized oscillation properties, i.e.,

the eigenfrequency and the damping coefficient.

IV. MODEL

We consider an encapsulated gas bubble immersed in an

incompressible fluid with a density qf and a shear viscosity lf.

The effect of the liquid compressibility could be further

included as described in the work of Prosperetti (1987). The

bubble shell is modeled as a viscoelastic solid of initial thick-

ness de. Furthermore, it was shown according to thin shell the-

ory that a shell made of a homogeneous material with Poisson

ratio � may sustain a maximum relative loss of volume

DV=Vð Þb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �Þ

1þ �

r
d0

R20

(1)

TABLE II. Shell property estimations using the Marmottant model (Marmottant et al., 2005). f and p are the characteristic frequencies and amplitudes of the

acoustic waves used to excite the UCAs. Analysis of experiments through the model allows determination of the 2D compression modulus v2D and the sur-

face dilatational viscosity jS. In the linearized version of the model, they are related to the constants introduced by de Jong through Sp ¼ 2v2D and

Sf ¼ 12pjS. The intervals for the viscoelastic parameters correspond to cases where dependence on the radius was reported.

UCA R20 (lm) f (MHz) p (kPa) v2D (N/m) jS (10�8 N/m � s) Method Reference

SonoVueVR 0.975 2.9 130 1 1.5 Spectroscopy Marmottant et al. (2005)

0.8–3.25 2.5 150 0.024–0.87a 0.1–3 Light scattering Tu et al. (2009)

0.75–3.25 2.5 150 0.39–0.55 0.05–2 Light scattering Tu et al. (2011)

0.8–3.25 2.5 150 0.4–0.55 0.1–3 Light scattering Li et al. (2013)

BR14VR 1.9 1.5–2.5 <40 0.54a 2.3 Spectroscopy van der Meer et al. (2007)

DefinityVR 0.72–1.4 1 308 0.5–0.97 0.01–0.9 Light scattering Tu et al. (2011)

1.4–2.8 4–13.5 6–25 0.5–2.5 0.02–0.6 Spectroscopy Helfield and Goertz (2013)

Home-made lipid shell 2.9–6.3 0.5–4 0.28–0.85 3–6 Attenuation Parrales et al. (2014)

aLinearized version of the model.

TABLE III. Shell property estimations using the Church–Hoff model (Hoff et al., 2000). The thickness d0 is an estimation that is made in each paper. f and

p are the characteristic frequencies and amplitudes of the acoustic waves used to excite the UCAs. The intervals for the viscoelastic parameters correspond

to cases where dependence on the radius was reported.

UCA R20 (lm) d0 (nm) f (MHz) p (kPa) G0 (MPa) lG (Pa � s) Method Reference

SonoVueVR 1.78 4 2.5 150 20 0.6 Light scattering Tu et al. (2009)

3–5.5 2.5 6.8–7.3 40 1.9–105 1 Microscopy Chetty et al. (2008)

SonazoidVR 1.6 4 2–6 300–800 52 0.99 Attenuation Sarkar et al. (2005)

OptisonVR 1.5 5–10 3.6–4.3 100 20.7 1.7 Attenuation Chatterjee and Sarkar (2003)
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before it buckles (Hutchinson, 1967; Quilliet, 2012), where

d0 and R20 are the shell thickness and external radius at rest,

respectively. The first fraction is on the order of 1, except

for exotic values of � close to –1. Even for shells happening

to be thicker than the commercially available ones,

ðDV=VÞb is hence reasonably expected not to exceed 1/10.

This point, plus recent experimental results suggesting that

pressure-volume relationships obtained within the frame-

work of thin shell theory apply also for thick shells (Coupier

et al., 2019), indicates that we may safely consider, here and

in the following, that the linear elasticity framework is suffi-

cient to describe the spherical behavior of a wide range of

UCAs in the unbuckled regime.

A. Quasi-static approximation

In the absence of body forces, the equation of motion in

the solid (Landau and Lifschitz, 1986) reads

qS

@2u

@t2
� $ � r ¼ 0; (2)

where qS is the initial density of the solid, u is the displace-

ment field, and r is the Cauchy stress tensor calculated on

the actual configuration.

If we consider only elastic contributions to the stress,

the dimensional analysis of Eq. (2) shows that if the parame-

ter e ¼ x2
0d2

eqs=E, which compares the orders of magnitude

of the first and second term in Eq. (2), is small, then acceler-

ation can be neglected [see, e.g., Langtangen and Pedersen

(2016)]. Here, E is a typical elastic constant of the material,

and x0 is the (unknown) shell pulsation. Physically,
ffiffi
e
p

is

the ratio of the typical time scale s0 ¼ de

ffiffiffiffiffiffiffiffiffiffi
qs=E

p
needed for

an elastic wave to travel across the shell thickness de over

the time scale x�1
0 of the motion of the boundary. In gen-

eral, E is not smaller than 100 MPa for a polymeric material

where de � 100 nm, but for lipid shells of thickness on the

order of 5 nm, which are made of the type of anisotropic

material that we discuss later in this paper, orders of magni-

tude as low as 100 kPa were proposed for an effective isotro-

pic Young modulus (Shafi et al., 2019). Hence, with

qS � 1000 kg/m3, s0 is expected to be smaller than

5� 10�10 s. This implies that, with x0 usually measured or

found according to previous models lower than 10 MHz, e is

lower than 10�4.

The acceleration term can therefore be neglected for

actual UCAs and will be so in the rest of this paper. The res-

olution of Eq. (2) under this assumption will serve to deter-

mine the boundary conditions for the stress in the fluid, to

determine its acceleration.

A problem similar to ours has been widely studied

recently, that of a bubble oscillating in a liquid confined by

a viscoelastic solid (Doinikov et al., 2018; Doinikov and

Marmottant, 2018; Vincent and Marmottant, 2017; Wang,

2017). A simplifying hypothesis that is used in Vincent and

Marmottant (2017) and Wang (2017) is to consider that the

surrounding solid is not accelerated by the pressure waves.

Here, we have shown that this hypothesis holds for our prob-

lem, due in particular to the thinness of the shells.

Note that the resonance frequency x0 is the unknown of

this problem, so the validity of the hypothesis has to be

checked a posteriori.

B. Stress-strain relation in the solid

We consider the shell as being made of a transverse iso-

tropic material, i.e., whose properties in the orthoradial

plane do not depend on the direction considered but can be

different from that in the radial direction. The elastic proper-

ties of such a material are characterized by five independent

elastic constants. The stress-strain relationship can be

written as follows (Lubarda and Chen, 2008):

rel
ij ¼ k �kkdijþ 2l �ijþ 2ðl0� lÞ ðdi0i�i0jþ di0j�i0iÞ
þa ð�i0i0dijþ di0idi0j�kkÞ þ bdi0idi0j�i0i0 ; (3)

where � is the strain tensor, k is the first Lam�e coefficient, l
is the shear modulus in the plane of isotropy, l0 is the out-

of-plane shear modulus, and a and b are two other coeffi-

cients. The direction i0 points the axis of transverse isotropy.

For an isotropic material, a ¼ b ¼ 0 and l0 ¼ l. For radial

displacements, the elastic Cauchy stress tensor has only

diagonal components given by

rel
rr ¼ ðkþ 4l0� 2lþ 2aþ bÞ �rr þ 2ðkþ aÞ �hh;

rel
hh ¼ rel

// ¼ ðkþ aÞ �rr þ 2ðkþ lÞ �hh;

(

(4)

with �rr ¼ @u=@r and �hh ¼ �// ¼ u=r, where u ¼ uðr; tÞ is

the Eulerian radial displacement in the shell.

The viscoelastic properties of the material are described

by the generalized Kelvin–Voigt model (Thompson and

Kelvin, 1865; Voigt, 1892), where the complete strain tensor

reads r ¼ rel þ rvisc, where rvisc is the viscous stress. For a

transverse anisotropic material, integrating a thermodynami-

cally consistent model (Dalenbring, 2002) based on the

augmented Hooke’s law (AHL) (Dovstam, 1995) in this

fluid-structure interaction problem requires finite element

implementation. Another approach may be to consider

TABLE IV. Shell property estimations using the Sarkar model (Sarkar et al., 2005). f and p are the characteristic frequencies and amplitudes of the acoustic

waves used to excite the UCAs. ES and jS are the surface dilatational elasticity and viscosity, respectively, introduced in the model.

UCA R20 (lm) f (MHz) p (kPa) ES (N/m) jS (10�8 N/m � s) Method Reference

SonazoidVR 3.2 2–6 200–600 0.51 1 Attenuation Sarkar et al. (2005)

Home-made PLA shell 0.7–1.5 2.5–3 100–150 0.02 0.85 Attenuation Paul et al. (2013)
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viscosity effect for only some components of the stress ten-

sor (Lubarda and Asaro, 2014).

We will therefore consider two cases in this paper, both

going one step further compared to the model by Church

(1995) that considers an isotropic and incompressible

material:

(1) A viscoelastic isotropic material, which can be

compressible,

(2) An anisotropic, purely elastic, material, which is trans-

versely isotropic and compressible.

In the case of an isotropic linear material, the elastic

stress reads

rel
rr ¼ K0 þ 4

3
G0

� �
�rr þ 2 K0 � 2

3
G0

� �
�hh;

rel
hh ¼ rel

// ¼ K0 � 2

3
G0

� �
�rr þ 2 K0 þ 1

3
G0

� �
�hh;

8>>><
>>>:

(5)

where we have introduced the shear modulus G0 ¼ l and

the bulk modulus K0 ¼ kþ 2
3
l. Both are a priori functions

of the oscillation frequency, which would call for the resolu-

tion of a self-consistency equation when the oscillation fre-

quency will be eventually found as a function of, in

particular, these elastic constants. We introduce the

Kelvin–Voigt viscous stress rvisc whose expression is simi-

lar to that of the elastic stress:

rvisc
rr ¼ lK þ

4

3
lG

� �
_�rr þ 2 lK �

2

3
lG

� �
_�hh;

rvisc
hh ¼ rvisc

// ¼ lK �
2

3
lG

� �
_�rr þ 2 lK þ

1

3
lG

� �
_�hh:

8>>><
>>>:

(6)

The viscosities lK and lG describe the friction losses

due to volume changes and shear, respectively. Little is

known, in general, about the values of the loss moduli and,

in particular, the “viscous Poisson ratio,” whose definition

may vary depending on the authors (Lakes and Wineman,

2006). Its determination generally requires the performance

of two independent experiments aiming at determining, e.g.,

a shear loss modulus G00 and a traction loss modulus E00 [see,

e.g., Guillot and Trivett (2011)]. From a modeling perspec-

tive, one approach consists in following Lemaitre and

Chaboche (1994), where it is assumed, with no explicit justi-

fication, that the ratio lK=lG is equal to K0=G0, which

amounts to saying that the viscous Poisson ratio that would

characterize a ratio of strain rates is equal to the elastic

Poisson ratio that characterizes the ratio of strains (Linn

et al., 2013; von Ende et al., 2011). Without this assump-

tion, and considering an AHL model as in Tschoegl et al.
(2002), Pritz (2009) has proposed bounds for the potential

values of the loss moduli for materials with a positive

Poisson ratio and a low enough shear loss factor. He shows

that 2=3 < K00=G00 < 1, which, for a sinusoidal signal of

given pulsation w0, amounts to the tight inequalities

2=3 < lK=lG < 1. We discuss these two assumptions in

Sec. V J, but one should keep in mind that the difficulties in

characterizing accurately two dissipation constants in visco-

elastic materials, whose properties are often frequency

dependent, must lead to consideration of the aforementioned

relationships as pure hypotheses for now.

V. ISOTROPIC COMPRESSIBLE SHELL

A. Deformation in the solid

The Eulerian radial displacement u within the shell is

defined on the actual configuration as the variation from an

unstrained position holding no stress within the shell,

uðr; tÞ ¼ r � re; (7)

where r is the actual position of a material particle located at

re in the reference configuration.

The radial displacement u(r, t) is then calculated by

solving Eq. (2) in the quasi-static approximation:

$ � ðrel þ rviscÞ
� �

r ¼ 0: (8)

The ratio between the viscous and the elastic terms in

the above equation is given by the ratio between the loss

and storage moduli. Previous experimental studies on

existing UCAs show that the ratio between the viscosity and

the storage modulus is on the order of 10�8 � 10�9 s (see

values in Tables I–IV); therefore, x0sS is often small, which

we will take as a hypothesis in the following.

For an isotropic solid, from ½$ � r�r ¼ ð@rrr=@rÞ
þð2=rÞðrrr � rhhÞ and using Eqs. (5) and (6), we are led to

solve

@2

@r2
þ 2

r

@

@r
� 2

r2

� �
ðuþ sS _uÞ ¼ 0; (9)

with

sS ¼
lM

M0
; M0 ¼ K0 þ 4

3
G0; lM ¼ lK þ

4

3
lG: (10)

The solutions of Eq. (9) can be written as

uðr; tÞ ¼ aðtÞr þ bðtÞ
r2
þ AðrÞe�t=sS ; (11)

where the term in A(r) characterizes the internal relaxation

within the shell. Note that since x0sS is small, this term will

marginally contribute to the overall response of the shell,

and we shall therefore place ourselves in the conditions

where it is zero.

The two variables a(t) and b(t) depend on the long time

t� sS associated with the variations of the boundary condi-

tions. We first express them as functions of R1ðtÞ and R2ðtÞ,
respectively the internal and external radii of the shell,

which are our variables of interest. This is achieved thanks
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to Eq. (7), which leads to uðRiÞ ¼ RiðtÞ � Rie, for i¼ 1, 2.

R1e and R2e are the values of the radii in the unstrained case,

and R10 and R20 are their values at equilibrium in the fluid,

which may differ from R1e and R2e, notably because of

hydrostatic pressure. We find

aðtÞ ¼ R2
2ðtÞ R2ðtÞ � R2e½ � � R2

1ðtÞ R1ðtÞ � R1e½ �
R3

2ðtÞ � R3
1ðtÞ

; (12)

and

bðtÞ ¼ R2
1ðtÞR2

2ðtÞ
R3

2ðtÞ � R3
1ðtÞ
fR2ðtÞ R1ðtÞ � R1e½ �

� R1ðtÞ R2ðtÞ � R2e½ �g: (13)

Note that a and b are on the order of 1 relative to the dis-

placements at the boundaries, in agreement with the linear

elastic theory used here to characterize the deformation

tensor.

B. Velocity in the solid

The velocity field in the shell vs is the material deriva-

tive of the Eulerian displacement uðr; tÞ:

vsðr; tÞ ¼
Du

Dt
¼ @u

@t
þ $u � vsðr; tÞ: (14)

For small deformations, j$uj � 1, the radial compo-

nent of the velocity vs thus can be approximated to

vs 	
@u

@t
¼ _ar þ

_b

r2
; (15)

where _a and _b are the time derivative of the variables a and

b. Direct calculation of _a and _b, shown in the Appendix,

leads to expressions that violate the kinematic boundary

conditions, i.e., vsðr ¼ R1Þ 6¼ U1 and vsðr ¼ R2Þ 6¼ U2,

where we define U1 ¼ _R1 and U2 ¼ _R2. However, the devia-

tions from the kinematic boundary conditions remain on the

order of jRi � Riej=Rie, consistent with the assumption of

small deformation and linear elastic behavior. Hence, we

can restrict the velocity to its leading order expression,

where R1e coincides with R1 and R2e with R2. This leads to

an expression for vs that can otherwise be obtained directly

from Eq. (15) by applying continuity condition at R1 and R2:

vsðr; tÞ 	 avr þ
bv

r2
; (16)

where

av ¼
R2

2ðtÞU2 � R2
1ðtÞU1

R3
2ðtÞ � R3

1ðtÞ
; (17)

and

bv ¼
R2ðtÞU1 � R1ðtÞU2½ �R2

1ðtÞR2
2ðtÞ

R3
2ðtÞ � R3

1ðtÞ
: (18)

The above calculated displacement and velocity gener-

alize the ones found in Church (1995), where an incom-

pressible solid material is considered. Such materials are

characterized by a traceless deformation tensor,

�rr þ �hh þ �// ¼ 3a ¼ 0; (19)

leading to the following displacement in the solid:

uincðr; tÞ ¼ R2
1ðtÞ R1ðtÞ � R1e½ �

r2
; (20)

where we have also used the relation a¼ 0 to reformulate

the expression of b. The velocity vs given by Eq. (16) then

becomes

vinc
s ðr; tÞ ¼

R2
1ðtÞU1

r2
: (21)

Equations (20) and (21) are identical to the ones found in

Church (1995), where the solid velocity was calculated

directly from the law of conservation of the mass for an

incompressible fluid, $ � vs ¼ 0, while the displacement was

deduced from volume conservation that reads, in the small

deformation limit, $ � u ¼ 0. Note that the two approaches

are cross-consistent only in the small deformation frame-

work: then in this case, $ � u ¼ 0, and moreover the 1=r2

behavior of vs is recovered only if Eq. (14) is approximated

to Eq. (15).

Note finally that the displacement can also be defined

on the reference configuration, i.e., using Lagrangian for-

malism without significant difference (Altenbach et al.,
2008).

C. Equations of motion in the liquid

The conservation of mass for an incompressible fluid in

a spherical coordinate system gives

1

r2

@

@r
ðr2vÞ ¼ 0; (22)

where v ¼ ðvf ðrÞ; 0; 0Þ is the radial Eulerian velocity vector

in the fluid. For r¼R2, vf ðr ¼ R2Þ 
 U2.

The velocity profile of the fluid is then

vf ðrÞ ¼
U2R2

2

r2
: (23)

The Navier–Stokes equation for an incompressible fluid

and irrotational flow reads (Landau and Lifschitz, 1987)

qf

@vf

@t
þ vf

@vf

@r

� �
¼ � @P

@r
: (24)

Integration of Eq. (24) between R2 and þ1, using

Eq. (23), leads to

qf R2
_U2 þ

3

2
U2

2

� �
¼ Pf jr¼R2

� P1; (25)
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where Pf jr¼R2
is the pressure in the fluid near the shell bound-

ary, and P1 is the sum of the applied acoustic pressure

PacðtÞ and the ambient pressure P0.

In addition, conservation of radial momentum at the

external surfaces of the shell imposes

�PGðtÞ ¼ ðrel
rr þ rvisc

rr Þjr¼R1
� 2c1

R1

(26)

and

ðrel
rr þ rvisc

rr Þjr¼R2
¼ �Pf jr¼R2

þ rf
rrjr¼R2

� 2c2

R2

; (27)

where c1 and c2 are the surface tensions, respectively at the

internal and external boundaries of the shell, and PGðtÞ is

the pressure of the gas inside the bubble. We assume the gas

obeys a polytropic law, such that PGðtÞ ¼ Pg0
ðR10=R1Þ3j

,

where PG0
is the equilibrium gas pressure and j is the poly-

tropic exponent of the gas. The radial component rf
rr of the

viscous stress equals

rf
rr ¼ 2lf

@vf

@r
¼ �4lf

U2R2
2ðtÞ

r3
: (28)

The normal stresses in the shell are obtained from Eqs.

(5), (6), (11), and (15), noting that as done for the velocity,

the strain rate _� is approximated in the linear elasticity limit

to _� ¼ @�=@t; therefore, the relation between _� and vs is sim-

ilar to that between � and u. We have then

rel
rr ¼ 3K0a� 4G0

b

r3
; (29)

rvisc
rr ¼ 3lKav � 4lG

bv

r3
: (30)

Inserting Eqs. (29) and (30) in the first boundary condi-

tion (26) leads to a first equation for R1 and R2:

�PG þ 2
c1

R1

¼ 3K0a� 4G0
b

R3
1

þ 3lKav � 4lG

bv

R3
1

:

(31)

Replacing a, b, av, and bv with their values (12, 13, 17,

and 18) in the above equation, one eventually gets

�PG þ 2
c1

R1

¼ 3K0
R2

2ðR2 � R2eÞ � R2
1ðR1 � R1eÞ

R3
2 � R3

1

�4G0
R2ðR1 � R1eÞ � R1ðR2 � R2eÞ½ �R2

2

ðR3
2 � R3

1ÞR1

þ3lK

R2
2U2 � R2

1U1

R3
2 � R3

1

� 4lG

R2U1 � R1U2ð ÞR2
2

ðR3
2 � R3

1ÞR1

: (32)

We use the second boundary condition (27) to get rid of

the unknown fluid pressure in Eq. (25), such that

qf R2
_U2 þ

3

2
U2

2

� �
¼�2c2

R2

�P1�4lf

U2

R2

�3K0aþ4G0
b

R3
2

�3lKavþ4lG

bv

R3
2

:

(33)

This equation can be rewritten in a form that resembles

a Rayleigh–Plesset equation by replacing the term R2 � R2e

in a and b thanks to Eq. (32):

qf R2
_U2 þ

3

2
U2

2

� �

¼ �P0 � PacðtÞ � 2
c2

R2

� 4lf

U2

R2

þ PG � 2
c1

R1

� �
1� 4G0

3K0 þ 4G0
R3

2 � R3
1

R3
2

 !

�4G0
3K0

3K0 þ 4G0
R3

2 � R3
1

R3
2

R1 � R1e

R1

þ4
U2

R2

�
lG 1� 4G0

3K0 þ 4G0

� �
� lK

3G0

3K0 þ 4G0

�

�4
U1

R1

lG 1� 4G0

3K0 þ 4G0

� �
� lK

3G0

3K0 þ 4G0
R3

1

R3
2

" #
:

(34)

In this expression, it is interesting to observe that the

elastic contribution of the internal gas is modulated by the

intrinsic elastic properties of the shell. This feature will

disappear in the incompressible limit. Equations (32) and

(34) constitute a system of differential equations for

the two unknowns R1 and R2. For incompressible materi-

als, the Rayleigh–Plesset equation is sufficient, as R1 and

R2 are simply linked through the incompressibility

condition.

D. Unstrained vs initial radii

As mentioned before, the unstrained radii may be dif-

ferent from the initial radii: Rie 6¼ Ri0. The radius Rie is

defined by the unstrained state of the shell before it is

plunged into the liquid, after what stresses within the shell

take place, due to the surface tension at the interfaces, and

the internal and external pressures.

Taking Eqs. (32) and (34) at equilibrium (U1 ¼ U2 ¼ 0;
P1 ¼ P0), one can extract the displacements Ri0 � Rie.

They can be written R1e ¼ R10ð1þ Z1Þ and R2e ¼ R20ð1
þ Z2Þ, with

Z1 ¼
1

3K0
R3

20

V̂ S

P0þ
2c2

R20

� �
�R3

10

V̂ S

PG0
� 2c1

R10

� �" #

� 1

4G0
R3

20

V̂ S

P0�PG0
þ 2c2

R20

þ 2c1

R10

� �" #
; (35)
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Z2 ¼
1

3K0
R3

20

V̂ S

P0þ
2c2

R20

� �
�R3

10

V̂ S

PG0
� 2c1

R10

� �" #

� 1

4G0
R3

10

V̂ S

P0�PG0
þ 2c2

R20

þ 2c1

R10

� �" #
; (36)

where V̂ S ¼ R3
20 � R3

10.

These formulations highlight the effect of compressibil-

ity, which is the same for the two radii.

If the shell is incompressible (K0 � PG0
;P0; ci=R10),

one has

Zinc
i ¼ P0 � PG0

þ 2c1

R10

þ 2c2

R20

� �
R3

20 þ R3
10 � R3

i0

4G0V̂ S

;

(37)

which is identical to the expression found in Church (1995)

when PG0
¼ P0, which was hypothesized in that paper.

In Doinikov and Dayton (2006), where incompressible

shells are also considered, the authors find the same relation

as Eq. (37), which is the first order of their Eq. (33).

However, in a second step, they go further in the calculation

using deformation profiles that are valid in the compressible

case and find expressions [Eqs. (40) and (41) in their paper]

that contradict our findings and the ones in Church (1995)

and in Sarkar et al. (2005) in that they find the counterintui-

tive result that surface tension tends to increase the equilib-

rium radius. Here, we are satisfied with the observation that

an increase in surface tension leads to a shrinkage of the

shell. This altogether suggests that care must be taken not to

mix expressions from the compressible case with expres-

sions from the incompressible case.

It is worth emphasizing that in the incompressible case,

the ratio of the volume in the unstressed configuration to

that after the shell is plunged in the fluid, namely

½R3
20ð1þ Zinc

2 Þ
3 � R3

10ð1þ Zinc
1 Þ

3�=ðR3
20 � R3

10Þ, is equal to 1

in this model or in the other models (Church, 1995;

Doinikov and Dayton, 2006; Khismatullin and Nadim,

2002) only to first order in Zinc
i . This corresponds to the

domain of validity of the linear elasticity framework. In the

general case, one must therefore restrict the obtained expres-

sions to the first order in Zi for consistency.

E. Linear analysis

Assuming a small-amplitude oscillation, linear equa-

tions for the Ri can be obtained using the following

relations:

R1ðtÞ ¼ R10 1þ xðtÞ½ �; jxðtÞj � 1;

R2ðtÞ ¼ R20 1þ yðtÞ½ �; jyðtÞj � 1;

U1ðtÞ ¼ R10 _x;

U2ðtÞ ¼ R20 _y: (38)

Keeping only the first-order terms in x, y, Z1, and Z2,

and using Eqs. (35) and (36), Eq. (32) becomes,

� 3jPG0
� 2c1

R10

þ 4G0R3
20 þ 3K0R3

10

R3
20 � R3

10

 !
x

þð4G0 þ 3K0ÞR3
20

R3
20 � R3

10

y� 4lGR3
20 þ 3lKR3

10

R3
20 � R3

10

_x

þð4lG þ 3lKÞR3
20

R3
20 � R3

10

_y ¼ 0: (39)

Dividing this equation by K0 and taking the limit

K0 ! 1, one gets x ¼ yR3
20=R3

10, which is the relationship

obtained for an incompressible material as in Church

(1995). Equation (39) is therefore a generalization of this

relationship for the case of a viscoelastic compressible

material.

Equation (39) together with the linearized

Rayleigh–Plesset-like equation obtained from Eq. (34) con-

stitutes the following linear system:

M €X þ B _X þ KX ¼ FðtÞ; (40)

where

X ¼
x

y

 !
; FðtÞ ¼

�PacðtÞ
0

 !
; M ¼ 0 qf R

2
20

0 0

" #
;

B ¼
b11 b12

�4lGR3
20 � 3lKR3

10

R3
20 � R3

10

ð4lG þ 3lKÞR3
20

R3
20 � R3

10

2
64

3
75

with

b11 ¼ 12

K0lG � G0lK

R3
10

R3
20

3K0 þ 4G0
;

b12 ¼ 4 lf þ 3
K0lG � G0lK

3K0 þ 4G0

� �
; (41)

and

K ¼
k11

�2c2

R20

k21

ð4G0 þ 3K0ÞR3
20

R3
20 � R3

10

2
6664

3
7775 (42)

with

k11¼ 3jPG0
�2c1

R10

� �
1� 4G0

3K0þ4G0
R3

20�R3
10

R3
20

 !

þ 12G0K0

3K0þ4G0
R3

20�R3
10

R3
20

;

k21¼�3jPG0
þ2c1

R10

�4G0R3
20þ3K0R3

10

R3
20�R3

10

: (43)

The free oscillations of the shells (Pac¼ 0) are

described by non-trivial harmonic solutions of the above

system X ¼ X0ekt, where k ¼ �dþ ix, that are obtained by
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setting detðk2M þ kBþ KÞ ¼ 0. This leads to a polynomial

equation on the order of 3 for k, which can be solved analyt-

ically (yet leading to very long expressions) or numerically.

This equation reads

c1k
3 þ c2k

2 þ c3kþ c4 ¼ 0; (44)

where

c1 ¼ �b21m12; c2 ¼ det B½ � � k21m12;

c3 ¼ b11k22 � b12k21 � b21k12 þ b22k11; c4 ¼ det K½ �:
(45)

For the sake of comparison with the literature, and

making use of the observation that the damping coefficient is

usually small, we present the leading order approximation

and the first-order correction with respect to this damping

coefficient in the following. Note that this is a second and

independent approximation, based on the usual values of dis-

sipation factors, that is added to that of small deformation.

F. Leading order approximation

For B¼ 0, Eq. (44) becomes det½K� � k21m12k
2 ¼ 0;

therefore, k ¼ ix0, where the undamped resonance fre-

quency x0 is given by

x2
0 ¼

3K0 þ 4G0

qf R
2
20

"
4G0

3K0

3K0 þ 4G0
R3

20 � R3
10

R3
20

þ 3jPG0 �
2c1

R10

� �
1� 4G0

3K0 þ 4G0
R3

20 � R3
10

R3
20

 !#

� 3jPG0 �
2c1

R10

� �
R3

20 � R3
10

R3
20

þ 4G0 þ 3K0
R3

10

R3
20

" #�1

� 2c2

qf R
3
20

: (46)

This constitutes the central result of this paper. The last

term in the above expression is the classical contribution of

the surface tension of the outer surface, which acts against

an effective mass of fluid whose scale is given by the shell

size. By contrast, the contribution of the shell elasticity and

of the elastic forces acting on the inner side of the shell (the

gas pressure and the surface tension) are strongly coupled.

As discussed later, this coupling disappears in the incom-

pressibility limit. As in the Rayleigh–Plesset expression for

a free bubble—xRP
0 ¼ ½ 1

qf R2
20

ð3jPG0 � 2c1

R20
� 2c2

R20
Þ�1=2

, which

is recovered here with Eq. (46) taken in the limit of vanish-

ing shell volume (R10 ! R20)—adding surface tension

makes the shell pulsation decrease, at fixed PG0. In practice,

PG0 is not known or measurable, and it would be preferable to

express the pulsation as a function of the external pressure P0.

While this is easily done for a free bubble, leading to an

increase in pulsation with surface tensions, this is more com-

plex in the present situation: PG0 and P0 also couple through

the elastic stress within the shell, which depends on the refer-

ence configuration ðR1e;R2eÞ, which is not known in general.

In this context, measuring oscillation frequency cannot

be sufficient to determine the elastic constants of the shell

material. Even if surface tensions are assumed to be zero,

and considering that the external radius is known, we are

left with four unknowns, which are the two elastic constants,

the internal pressure and the internal radius. This is one

more than in the Church model and two more than in zero-

thickness shell models. Even in these simpler models, and in

all cases, one needs to know more about the fabrication pro-

cess of the shell to know their stress-free state or to make

additional assumptions. In Church (1995), it is for instance

assumed that permeability of the shell under study allows us

to consider that PG0 ¼ P0, which may be true for thin lipid

shells, but not for thicker shells, as pointed out in Doinikov

and Dayton (2006).

For an incompressible shell, the undamped natural fre-

quency becomes

xinc
0 ¼ ðqSR2

10a
incÞ�1=2

 
3jPG0 �

2c1

R10

� 2c2

R20

R3
10

R3
20

þ 4G0
R3

20 � R3
10

R3
20

!1=2

; with ainc ¼
qf

qS

R10

R20

:

(47)

This differs from the expression proposed in Church

(1995):

xCh
0 ¼ ðqSR2

10a
ChÞ�1=2

(
3jPG0 �

2c1

R10

� 2c2

R20

R3
10

R3
20

þ 4G0
R3

20 � R3
10

R3
20

1þ ZCh
1 1þ 3R3

10

R3
20

 !" #)1=2

;

(48)

with

aCh ¼
qf

qS

R10

R20

þ 1� R10

R20

: (49)

The first difference lies in the effective mass character-

ized by the coefficient a, since we neglected the inertia of

the shell. Note that it introduces a correction on x2
0 on the

order of d0=R20, where d0 ¼ R20 � R10, that is of at most a

few percent for actual UCAs.

The other difference lies in the presence of a ZCh
1 term

in Church (1995). This is due to a subtle inconsistency in

the linearizing process: as discussed in Sec. V D, ZCh
1 must

be considered as a small parameter to keep the validity of

the linear elasticity framework. It characterizes the differ-

ence between the unstrained state and the equilibrium state,

the same way as x and y in Eq. (38) characterize the differ-

ence between the actual and the equilibrium state. Terms

like xZ1 should therefore not be included in the linearized
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equation, contrary to what is done in Church (1995) between

his Eqs. (12) and (17). Replacing ZCh
1 by its value in xCh

0 ,

one gets

xCh
0 ¼ ðqSR2

10a
ChÞ�1=2

"
3jPG0 þ

2c1

R10

3R3
10

R3
20

þ2c2

R20

1þ 2R3
10

R3
20

 !
þ 4G0

R3
20 � R3

10

R3
20

 !#1=2

:

(50)

One can see that the contributions of the surface tension

are incorrectly estimated with this contested expression by

Church, as this expression does not converge to the

Rayleigh–Plesset pulsation xRP
0 in the vanishing volume

limit.

G. First-order approximation

If Eq. (44) is expanded to the first orders in bij and d,

one gets that x ¼ x0 and

d ¼ � c3 þ b21m12x2
0

2k21m12

; (51)

which can be reformulated as

d ¼ 1

2m12

b12 � b11

k22

k21

þ k11

k2
21

ðb21k22 � b22k21Þ
� �

: (52)

As seen in Eq. (40), the first term b12 in the above

expression represents the damping directly affecting the

motion of the external radius of the shell, through the fluid

viscosity and a contribution of the shell viscosity. The sec-

ond term stems from the damping affecting the motion of

the internal radius, which is weighted by the elastic contri-

bution k22=k21. The third term stems from the coupling

between dissipation and elastic deformation inside the shell.

For an incompressible shell, the damping ratio d in

Eq. (51) simply becomes

dinc ¼ 2
ðR3

20 � R3
10ÞlG þ R3

10lf

qSR2
10R3

20a
inc

: (53)

In Church (1995), it reads

dCh ¼ 2
ðR3

20 � R3
10ÞlG þ R3

10lf

qSR2
10R3

20a
Ch

: (54)

As for the pulsation, a difference of a few percent

remains, which is related to the absence of shell mass in our

model.

H. Discussion: Effect of compressibility on x0

We discuss in this section to what extent the frequency

is modified when the material is compressible. We first con-

sider a reference configuration, denoted R, which is

considered in Church (1995): d0 ¼ 15 nm, PG0
¼ 101:3 kPa,

qf ¼ 1000 kg/m3, qS ¼ 1100 kg/m3, lf ¼ 0:001 Pa�s, G0

¼ 88:8 MPa, c1 ¼ 0:04 N/m, c2 ¼ 0:005 N/m, and j ¼ 7=5.

For such a shell whose external radius lies in the range

1–10 lm, we find that 0:99 < xinc
0 =xCh

0 < 1, which indicates

that while our model has led us to neglect the inertia of the

shell, this assumption will modify the final result by a negli-

gible amount. Note that in this example, since ci=Ri0 � G0,
the inaccuracy that we exhibited in the Church (1995) model

has no quantitative consequence. In the following, we con-

sider xinc
0 as the reference value for discussion.

We now discuss the effect of compressibility together

with an evaluation of the impact of the contribution of gas

compressibility. For most commercial shells, G0 is actually

10–1000 times the ambient pressure (see, e.g., Table III).

Since the G0 contribution is weighted by d / R (which is

roughly the ratio of the shell material volume over the vol-

ume of gas), both contributions are likely to contribute with

comparable weight.

As the contribution of the external surface tension is

purely additive, for simplicity we set c2 ¼ 0 and consider

several values of ~P ¼ PG0
� ð2c1=3jR10Þ, which character-

izes the contribution of the inner gas to UCA oscillations. In

this case, regarding space variables, R20 � x0 depends only

on d0=R20.

In Fig. 1, the ratio x0=xinc
0 is calculated for different

values of G0 and K0, which are set relatively to ~P.

An increase of compressibility significantly reduces

the resonance frequency. This effect is enhanced at the

higher relative thicknesses d0=R20, or shear moduli, and a

smaller Poisson ratio. In particular, when the bubble

radius decreases at fixed thickness, this effect of com-

pressibility will become relatively more important.

Compressibility thus introduces a dependence of the fre-

quency on the shell radius that is more complex than in

the incompressible case, where x0 / 1=R20 in the thin

shell limit.

For large values of G0, Eq. (46) yields, after setting

K0 ¼ ½2ð1þ vÞ=3ð1� 2vÞ�G0 
 f ð�ÞG0,

x2
0;G0�P̂

¼ 1

qf R
2
20

4G0
R3

20 � R3
10

R3
20

 !
3f ð�Þ

4þ 3f ð�ÞR
3
10

R3
20

:

(55)

Then

x0;G0�P̂

xinc
0;G0�P̂

 !2

¼
3f ð�Þ

�
1� d0

R20

�3

4þ 3f ð�Þ
�

1� d0

R20

�3

 gð�; d0;R20Þ:

(56)

In the thin shell limit, compressibility leads to a decrease

in the pulsation squared by a factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ð�Þ=½f ð�Þ þ 4=3�

p
.

Equation (55) can also be interpreted from the follow-

ing practical viewpoint: if one measures a shell pulsation
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and deduces from this measurement a value G00 for the shell,

assuming incompressibility, the same measurement can also

be obtained with a shell of shear modulus G0 and Poisson

ratio � obeying G00 ¼ G0gð�; d0;R20Þ.
The consequences are twofold: as gð�; d0;R20Þ is signif-

icantly smaller than 1, as soon as � < 1=2, the existence of

unforeseen compressibility will lead to an underestimation

of the shear modulus. For instance, for a shell of estimated

thickness 15 nm and external radius 2 lm, if � happens to be

0.4 instead of 0.5, gð�; d0;R20Þ ¼ 0:77, which means that

the shear modulus will be underestimated by 23%. This

value reaches 28% if d0 ¼ 200 nm.

Second, as g is an increasing function of R20, using a

model for incompressible material can lead to an artificial

increase in the (apparent) shear modulus with the radius, a

feature regularly pointed out in the literature.

These compressibility effects are more pronounced for

thick shells, and we are not aware of oscillation

FIG. 1. (Color online) Ratio of the undamped resonance frequencies x0=xinc
0 as a function of d0=R20, in the absence of external surface tension. G0 is fixed

to (a) G0 ¼ ~P, (b) G0 ¼ 5 ~P, (c) G0 ¼ 10 ~P, (d) G0 ¼ 100 ~P, (e) G0 ¼ 1000 ~P, (f) G0 ¼ 104 ~P. ~P is PG0
� 2c1=3jR10. We varied K0 as 100 G0;

10 G0; 3 G0; 2 G0; G0, and 2
3

G0, and the corresponding Poisson ratios � ¼ ð3K0 � 2G0Þ=ð6K0 þ 2G0Þ are shown on each curve. Note that when � ¼ �1;
x0 	 0.
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measurements in the literature based on thick shells like

polymeric shells. In addition, a more quantitative analysis of

the impact of compressibility on the radius dependence of

the frequency, by comparison with other suggestions like

nonlinear effects, requires us to know more about the inner

pressure inside the considered shells, which depends on their

manufacturing process and also potentially on the allotted

time for pressure equalization through transmembrane diffu-

sion. This point becomes even more evident in the zero-

thickness shell limit that is discussed in the following.

I. Discussion: From finite thickness to zero-thickness
shell

For vanishing thickness, considering the corresponding

limit in our finite thickness model or in that of Church

(1995) leads to models that can be compared to zero-

thickness models. In particular, in Hoff et al. (2000), the

vanishing thickness limit of the Church model is considered,

and the resulting frequency is shown to be similar to that

obtained in de Jong et al. (1992) or in the linearized version

of Marmottant et al. (2005):

x0�thickness
0 ¼ ðqf R

2
0Þ
�1=2

3jPG0 þ 4
v0

R0

;

� �1=2

; (57)

where R0 is the shell radius and v0 has the dimension of a

surface tension and includes in-plane elasticity effects as

well as surface tension effects on both sides of the interface

(de Jong et al., 1992; Hoff et al., 2000; Marmottant et al.,
2005; Sarkar et al., 2005; van der Meer et al., 2007). In Hoff

et al. (2000), when surface tension effects are neglected, v0

is shown to be equal to v2D ¼ 3G0d0, the in-plane surface

contraction modulus.

We examine here the small-thickness limit of our

model. We consider only the incompressibility limit, which

is already an interesting source for discussion and allows

direct comparison with the actual zero-thickness models.

Keeping only the zeroth and first orders in d0=R20 in

Eq. (46), we find the following expansion:

xinc
0 ¼ ðqf R

2
20Þ
�1=2

"
3jPG0 �

2c1

R20

� 2c2

R20

þ 12G0 þ 9jPG0 �
8c1

R20

� �
d0

R20

þ o
d0

R20

� �#1=2

:

(58)

By comparison with Eq. (57), this introduces a correc-

tion that implies that pressure and inner surface tension have

a more complex spatial dependence than that proposed in

the Church–Hoff model, where the first order in d0=R20 was

neglected in the inertial term.

We attempt to discuss the implication of our modeling

regarding the interpretation of experimental data. Authors

generally consider a given experiment for a set of shells of

different sizes, which they either watch [measuring thus the

radius oscillation (Chetty et al., 2008; Doinikov et al., 2009;

Li et al., 2013; Tu et al., 2009; van der Meer et al., 2007)]

or listen to [measuring thus the acoustic transmission

(Parrales et al., 2014)]. The obtained curves are then fitted

according to the chosen model, which results in the determi-

nation of the corresponding elastic modulus for each shell

radius. It is then generally observed that this constant

increases with the radius, which highlights the limit of the

chosen model. Other parameters are generally considered as

known, but they are not always given by the authors. In par-

ticular, the inner pressure PG0 is sometimes set to atmo-

spheric pressure without much justification (Doinikov et al.,
2009; Li et al., 2013; Tu et al., 2009; van der Meer et al.,
2007), but some authors do not specify their choice

(Parrales et al., 2014). On the other hand, the descriptions of

fabrication processes of home-made microshells often men-

tion initial gas pressure larger than 1 bar (Parrales et al.,
2014; Segers et al., 2016), which calls into question the

hypothesis of atmospheric pressure inside the shells.

Though diffusion may favor this hypothesis, such a phenom-

enon will also induce stresses inside the shell reaching its

new equilibrium, resulting in uncertainties about the exact

state around which the oscillations take place.

Finally, it is generally observed in all papers that while

the radius varies by a factor of 2–3, the corresponding elas-

tic modulus varies by a factor of 3–4. In Parrales et al.
(2014), this is the case, but contrary to most other papers,

where only the values of the elastic constants are given, the

measured frequencies are also mentioned. We therefore

use these raw data to make the following comments. In

Fig. 2, the pulsations found in the experiments are plotted

as a function of shell radius. Those shells are lipidic shells;

therefore, the small-thickness limit holds. The fit of their

data by the usual zero-thickness law [Eq. (57), assuming

PG0 ¼ 1 bar and j ¼ 1:4] is not that good, which illustrates

FIG. 2. (Color online) Dots: experimental pulsations found in Parrales et al.
(2014) as a function of shell radius. Full black line: fit with Eq. (57) with

fixed inner pressure PG0 ¼ 1 bar and v0 as a free parameter. Red dotted

line: fit with the same equation, but the pressure is also a free parameter.

Blue dashed line: fit with Eq. (58) with also the surface tension being a free

parameter. Using Eq. (58) allows the recovery of the full spatial dependence

of the data, with a 1=R0 and a 1=R
3=2
0 contribution.
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the conclusions of the authors who, considering each radius

separately, showed that the elastic modulus must be an

increasing function of the radius. We note, however, that

the fit yields v0 ¼ 0:21 N/m, which is smaller than all

the values reported by the author for the different shell

radii, which calls into question the (implicit) choice of

inner pressure or of polytropic constant they made.

Interestingly, letting PG0 free leads to a better fit, with PG0

¼ 1:6 bar. This shows the importance of the knowledge of

the inner pressure or, equivalently, of the polytropic coeffi-

cient that depends on the chosen gas and on the details of

the thermodynamics process, as discussed in Parrales et al.
(2014).

In the expression for the zero-thickness limit that we

established [Eq. (58)], we show that the contribution of pres-

sure is more complex and that it is important to decouple, in

the elastic contribution of the interface, bulk effects from

surface tension effects: they do not sum up in a simple v0

parameter. Using this expression, we find an even better fit

for the data of Parrales et al. (2014), illustrating thus the

complex interplay between all the parameters of these mod-

els. Note that we do not claim here that the parameters we

find are those that actually characterize the considered shell.

Our discussion simply highlights the need for a good

knowledge of a maximum of parameters, if one wishes to

extract one unknown parameter from the sole measurement

of oscillation frequencies.

J. Discussion: Effect of compressibility on the
damping

Reminder: Our model assumes that sS ¼ lM=M0 is

much smaller than x�1
0 . In the following examples, we

checked that sSx0 is always lower than 0.01. We set here

the fluid viscosity lf ¼ 0:001 Pa�s and the shear viscosity

lG ¼ 0:002 Pa�s.

As for the discussion on pulsation, we set c2 ¼ 0

and consider several values of ~P ¼ PG0
� ð2c1=3jR10Þ. In

Fig. 3, we show the ratio of the damping constants d=dinc

under the hypothesis that lK varies with lG the same way K0

varies with G0, i.e., the viscous and elastic Poisson ratio

are equal (Lemaitre and Chaboche, 1994). In Fig. 4, lK is

chosen to be equal to 0.7lG following Pritz (2009), where

it is shown that 2=3 < lK=lG < 1 for thermodynamic

consistency.

Compressibility has the effect of making the damping

constant decrease. As for the elastic constant determined

through the frequency, this may lead to an underestimation

FIG. 3. (Color online) Ratio of the damping ratios d=dinc as a function of d0=R20, in the absence of external surface tension. G0 is fixed to (a) G0 ¼ ~P, (b)

G0 ¼ 1:5 ~P, (c) G0 ¼ 4 ~P, (d) G0 ¼ 5 ~P. ~P is PG0
� ð2c1=3jR10Þ. We varied K0 as 100 G0; 10 G0; 3 G0; 2 G0; G0, and 2

3
G0, and the corresponding Poisson ratios

� ¼ ð3K0 � 2G0Þ=ð6K0 þ 2G0Þ ¼ ð3lK � 2lGÞ=ð6lK þ 2lGÞ are shown on each curve. Note that curves do not vary by more than 1% for G0 � 5 ~P.
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of the shear viscosity if an incompressible model is used.

For large values of G0 and K0 ¼ G0f ð�Þ compared to ~P, as

for the frequencies, the damping depends only on elastic

properties through the Poisson ratio, as can be seen through

Eqs. (41) and (42) taken in the limit G0;K0 � ~P. In practice,

as seen in Figs. 3 and 4, this limit is reached as soon as

G0 > 5 ~P, which is generally the case for actual commercial

UCAs. Interestingly, the choice of the model for the viscous

Poisson ratio has little impact on the final results: for high

values of K0, lK is not expected to contribute much for both

models, as its contribution vanishes in the incompressibility

limit [see Eq. (53)], and for values of K0 comparable to G0,
lK is close to lG in both models. If the Pritz (2009) model is

assumed though, the coupling between elastic and viscous

terms is such that the damping is not a monotonous function

of the Poisson ratio �.

VI. TRANSVERSE ISOTROPIC ELASTIC SHELL

We now examine the effect of anisotropy in the proper-

ties of a purely elastic material. We reformulate Eq. (4)

using elastic constants corresponding to standard deforma-

tions (Itskov and Aksel, 2002; Lempriere, 1968):

rel
rr¼

ð1��jjÞE0r

1��jj �2
E0jj
E0r
�2

hr

�rrþ
2�hrE

0
jj

1��jj �2
E0jj
E0r
�2

hr

�hh;

rel
hh¼rel

//¼
�hrE

0
jj

1��jj �2
E0jj
E0r
�2

hr

�rrþ
E0jj

1��jj �2
E0jj
E0r
�2

hr

�hh;

8>>>>>>>>><
>>>>>>>>>:

(59)

where E0r is the Young modulus for traction in the radial

direction, while E0jj is the Young modulus in the orthoradial

plane. �jj is the Poisson ratio in this same plane, and �hr is

the Poisson ratio governing deformations in the orthoradial

plane when there is a radial load.1

Thermodynamical consistency imposes (Lempriere, 1968)

�1 � �jj � 1;

�
ffiffiffiffiffiffiffiffiffiffiffiffi
E0r=E0jj

q
� �hr �

ffiffiffiffiffiffiffiffiffiffiffiffi
E0r=E0jj

q
;

�jj � 1� 2�2
hr

E0jj
E0r
: (60)

For an isotropic material of Poisson ratio �, these

inequalities reduce to �1 � � � 1=2. The case � ¼ 1=2

FIG. 4. (Color online) Ratio of the damping ratios d=dinc as a function of d0=R20, in the absence of external surface tension. G0 is fixed to (a) G0 ¼ ~P, (b)

G0 ¼ 2 ~P, (c) G0 ¼ 3 ~P, (d) G0 ¼ 5 ~P. ~P is PG0
� ð2c1=3jR10Þ. We varied K0 as 100 G0; 10 G0; 3 G0; 2 G0; G0, and 2

3
G0, and the corresponding Poisson ratios

� ¼ ð3K0 � 2G0Þ=ð6K0 þ 2G0Þ are shown on each curve. Note that curves do not vary by more than 1% for G0 � 5 ~P. In all cases, lK ¼ 0:7lG, following

Pritz (2009).
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corresponds to incompressible material as considered in

Church (1995).

A. Displacement within the shell

Following the same steps as in Sec. V A, the displace-

ment now obeys the following equation:

d2u

dr2
þ 2

r

du

dr
� 2ku

r2
¼ 0; (61)

with

k ¼
E0kð1� �hrÞ
E0rð1� �kÞ

; (62)

which is the equivalent of Eq. (9) for this purely elastic

case.

The solutions of Eq. (61) have the form

uTrðrÞ ¼ aTrrbþ þ bTrrb� ; (63)

with b6 ¼ 1
2
�16

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8k
p	 


. Note that by virtue of Eq.

(60), it can be shown that k � �1=8 whatever the material

properties and therefore the exponents b6 are real. The iso-

tropic case corresponds to k¼ 1 then b� ¼ �2 and bþ ¼ 1.

The variables aT and bT are related to the boundary condi-

tions thanks to Eq. (7):

aTr ¼ ðR2 � R2eÞRb�
10 � ðR1 � R1eÞRb�

20

R
b�
10 R

bþ
20 � R

bþ
10 R

b�
20

(64)

and

bTr ¼ ðR1 � R1eÞRbþ
20 � ðR2 � R2eÞRbþ

10

R
b�
10 R

bþ
20 � R

bþ
10 R

b�
20

: (65)

The Rayleigh–Plesset-like equation can be derived fol-

lowing the same steps as in Sec. V C. For the sake of sim-

plicity, we calculate directly the resonance frequency in

Sec. VI B.

B. Resonance frequency

Following the same steps as in Sec. V E, one gets the

following system:

M €X þ KX ¼ FðtÞ; (66)

where

X ¼ x
y

� �
; FðtÞ ¼ �PacðtÞ

0

� �
; M ¼ 0 qf R

2
20

0 0

� �
;

and

KTr ¼
kTr

11

�2c2

R20

kTr
21 kTr

22

2
64

3
75;where

kTr
11 ¼ 3jPG0

� 2c1

R10

� �
1� 2

ðRbþ�1

20 � R
bþ�1

10 Þðbþ � 1Þ�1R
b�
10 Aþ � ðRb��1

20 � R
b��1
10 Þðb� � 1Þ�1R

bþ
10 A�

E0rð1� �kÞðbþ � b�Þ

( )

þ
2ðRbþ�1

20 � R
bþ�1

10 Þðbþ � 1Þ�1R
b�
10 Aþ E0rð1� �kÞb� þ 2�hrE

0
k

h i

1� �jj � 2
E0k
E0r
�2

hr

 !
E0rð1� �kÞðbþ � b�Þ

�
2ðRb��1

20 � R
b��1
10 Þðb� � 1Þ�1R

bþ
10 A� E0rð1� �kÞbþ þ 2�hrE

0
k

h i

1� �jj � 2
E0k
E0r
�2

hr

 !
E0rð1� �kÞðbþ � b�Þ

; (67)

with

Aþ ¼ bþð1� �kÞE0r � 1� ð2� bþÞ�hr

� �
E0k; (68)

A� ¼ b�ð1� �kÞE0r � 1� ð2� b�Þ�hr½ �E0k; (69)

and

kTr
21 ¼ �3jPG0

þ 2c1

R10

þ
R

bþ
20 R

b�
10 E0r 1� �k

	 

b� þ 2�hrE

0
k

� �
1� �k � 2

E0k
E0r

�2
hr

� �
R

b�
10 R

bþ
20 � R

bþ
10 R

b�
20

� �

�
R

b�
20 R

bþ
20 E0r 1� �k

	 

bþ þ 2�hrE

0
k

� �
1� �k � 2

E0k
E0r

�2
hr

� �
R

b�
10 R

b�
20 � R

bþ
10 R

b�
20

� � ; (70)
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kTr
22 ¼

R20R
b�þbþ�1

10 E0rð1� �kÞðbþ � b�Þ
� �

1� �jj � 2
E0k
E0r
�2

hr

 !
ðRb�

10 R
bþ
20 � R

bþ
10 R

b�
20 Þ

: (71)

Then the undamped resonance frequency is

xTr
0 ¼

det KTr½ �
m12kTr

21

 !1=2

: (72)

C. Discussion: Effect of anisotropy on x0

In what follows, the couple (E0 ¼ 2G0ð1þ �Þ,�) will be

used to describe the elastic properties of an isotropic solid

for the sake of comparison with the elastic properties of a

transversely isotropic material.

We first discuss what is the impact of anisotropy keep-

ing the material incompressible. In such a situation, it is

shown in Itskov and Aksel (2002) that �hr ¼ 1=2, while

�jj ¼ 1� ðE0jj=2E0rÞ. Thermodynamics constraints [Eq. (60)]

then impose E0r > E0jj=4.

We remark that Eq. (62). becomes k¼ 1, i.e., the defor-

mation function is the same as in the isotropic case. Second,

the terms in the KTr matrix implying the shell elastic con-

stants are all proportional to E0r and do not depend on E0k.
We conclude that incompressible shells oscillate exactly the

same way whatever the value of their in-plane Young modu-

lus, i.e., they oscillate like isotropic incompressible shells of

Young modulus E0r.
For anisotropic compressible material, in general,

hydrostatic stress does not necessarily induce a uniform

dilatation in the three directions. It is interesting for compar-

ison with the isotropic case to consider the situation where

this is true. In such a situation of isotropic volumetric

response, a bulk modulus can be defined as a material con-

stant (Itskov and Aksel, 2002). It is equal to

K ¼ E0r=½3ð1� 2�hrÞ�. In addition, it can be shown that �jj is

given by 1� E0jj=2ð1=E0r þ 1=3KÞ; the material properties

are thus described, for the radial motion considered here, by

three independent variables (e.g., K; E0r and E0jj) instead of

four in the general case and two in the incompressible case.

In this case also, the pulsation is that of the isotropic mate-

rial of moduli K0 ¼ K and E0 ¼ E0r, though the deformation

inside the shell is not the same: in Eq. (62), k is independent

from E0jj (but not necessarily equal to 1), and because �jj
appears only under the pattern 1� �jj in KTr, it can be easily

seen that the contribution of E0jj vanishes.

Finally, in Fig. 5, we consider a general (arbitrary) case,

based on the test case of the configuration R as it refers to a

lipidic shell, which we may expect to exhibit transverse

anisotropic properties. We have fixed �jj ¼ �hr ¼ 0:35 and

varied E0jj as a function of E0r, within the bounds allowed by

thermodynamics. Here, E0jj also influences the frequency,

which increases as E0jj increases.

In all cases, as for the isotropic case, these results show

that for a given measure of pulsation frequency, several sets

of elastic parameters can yield the same result. More com-

plex dependence with the external radius is also expected.

VII. CONCLUSION AND PERSPECTIVES

We have developed a finite thickness shell model for

the oscillations of an encapsulated bubble whose material

can be compressible and/or present different elastic proper-

ties in the radial and orthoradial directions. The main

hypothesis is that we have neglected the mass of the shell,

leading to infinite velocity for wave propagation in the

material, to simplify the equations. The next step would be

to consider the complete problem of wave propagation, as

done for instance in Doinikov et al. (2018) and Doinikov

and Marmottant (2018) for a bubble oscillating in a liquid

confined by a viscoelastic solid.

We have found exact expressions for the free pulsa-

tion of an encapsulated bubble, which could be used to

interpret more accurately experimental characterization of

UCAs. Our results suggest that neglecting compressibility

will lead to underestimation of the shear modulus and that

adding some compressibility in the model may explain the

apparent growth of the elastic moduli with the shell

radius.

Due to the growing interest in the development of new

generation UCAs, made of various material and built with

well defined radii, we expect that several opportunities to

test our model will emerge in the near future. Our predic-

tions can also be used to build more complete theories

accounting for the response of the shells to external signals.
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APPENDIX: DEFORMATION VELOCITIES

We present here the expressions obtained for _a and _b
by directly deriving a and b (see Sec. V B):

FIG. 5. (Color online) Ratio of the undamped resonance frequencies in the

compressible case xTr
0 =x

iso
0 . The values for the in-plane and out-plane

Poisson ratio are �jj ¼ �hr ¼ 0:35. We varied E0jj as 0:01 E0r; 0:1 E0r ;
0:5 E0r ; E0r and 2:65 E0r ; the isotropic constants E0 ¼ E0r and � are set to

88.8 MPa and 0.35, respectively.
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_aðtÞ ¼ R2
2U2�R2

1U1
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