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Two-dimensional patterns in Rayleigh-Taylor
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We stady experimentally and theorctivally  the evolution o two-dimensional
patierns in the Rayleigh Tayvlor instability ol a thin laver of viscons fluid spread on
a solid surface. Vartous kinds of patterns of different svmmetries are observed. with
possible transition hetween patterns. the preferred symmetries being the axial and
hexagonal ones. Starting from the lubrication hy pothesis, we derive the nonlinear
ovolution cquation of the interface. and the amplitude equation of its Fourier
components. The evolution laws of the different patterns are ealeulated at order two
or three, the preforred symmetries being related to the non-invarianee of the system
by amplitude refleetion. We also diseuss qualitatively the dripping at tinal stage of
the instability,

1. Introduction

In this paper. we report experimental observations of the two-dimensional
patterns arising in the gravitational instability of a thin laver of viseons Auid and we
derive nonlinear evolution equations for the patterns having different syvmmetries.
The Rayleigh Taylor instability is a gravitational mstability ocenrring when there
i an adverse density stradification in a lluid. e when the resultant aceeleration is
directed from the heavier towards the lighter Huid (Taylor 1950). 1f the instability
oceurs al an interface between two innmiseible Huids, iU can be understood as a
gravitational amplitication of capillary waves, the surlace tension acting as s
stabilizing etfeet.

I the case ol two semi-intinite layers of inviseid fuids, the lincar stabilify analyvsis
(Chandeaselkhar 19851 leads to the lollowing dispersion relation for normal modes of
deformation ol the intertace ety = oxp[i{gr + o) |

s eyt ve

: (1.1}
Pt

- =

where ¢ s the net aceeleration. py(p) is the density of the upper (lower} Huid and
i the surface tendion. The interlace ix unstable when o® is negative (w = io). for
wavenumbors ¢ smaller than the capillary wavenumber g, = {|p3—p]|g/y]:l'_ the
deformation increasing with a time constant 7 = /7,

The dyvhamics of the gravitational instability is completely ditterent i the fluids
are contained i a porous medivm or in a Hele-Shaw cell. cases in which the viseous
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Fisrge [ Dispersion relationship in the Rayleigh Tavlor instability of a thin Javer of viscons
iluid, The instability ocewrs when the density g, of the wpper luid is larger than that of the lower
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cffeets are dominant. The veloeity field 8 then given by Darvevis law aned the
. - . .
dispersion relation is
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T = {1.2)
where g (y,) is the viscosity of the upper {lower) fluid and & is the permeability of the
medium (for a Hele-Shaw cell of thickness & the permeability is & = L4%). When the
inferface is displaced with a normnal average velocity B the term |y, /k— y,/k| Wy
should be added {o the destabilizing gravity term {(p,—p,) 9. 1 1he displaced Huid
15 the more viscous one, the viscous lingering (Saffman & Taylor 1958) instability is
superimposcitl on the gravitation instability.

The dynamics of the Rayleigh Taylor instability is also governed by viscous
effects if one of the floid Llayers is very thing e if the thickness e, of the laver is much
smaller than the viscous diffusion length F = (yr/p)% In this case. the hydrodynamic
problem is identical to that encountered in Huetuations of soap films (Vrij 1966),
When the wavelength of the instability is lavge compared to the thickness ¢, the use
of the lubrication theory vields the dispersion relation (Vrij 1966 Babehin of «of.
1983}

a = — (3 /3y [y —pa) g + vt (1.3

The relation (1.3) is plotted on figure 1. Again. the perturbations of the interface
having a wavenumber smaller than the capillary wavenumber g, are amplified when
1< py. The fastest growing mode has a wavenumber g, = ¢./y 2. the time constant
being inversely proportional to the cube of the thickness of the layer.

The dissipative Ravicigh Taylor instability of thin films hag been less explored
than the instability of thick Jayers, where the viseous effects are often neglected. and
which has motivated most recent stucdios (Tan 198G Jacobs & Catton 1985¢. b Tooss
& Rossi 1989). Yet. the problem of gravitational instability at very low Revnolds
number is important in geophysical processes (rising of salt domes. for exampled. and
model laboratory experiments have been performed to investigate this phenomenon
(Nettleton 1934: Whitehead & Luther 1975 Whitchead 1988). Recently Yiantsios &
Higgins (1988} have performed a careful theoretical and numerical study of the
problem of the thin laver. However. their study was restricted to the case of one.
dimensional perturbations. and the selection of two-dimensional patterns has
received little attention up to now, Whitchead & Luther (1973) have discussed the
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development of an hexagonal pattern. but the horizontal extent of their laboratory
experiment was too small to investigate the problem of symmetry seleetion. In
addition to the geophysical problems. the instability of thin layers i important in the
genesis of Ltwo-phase flow in situations of film boiling {Berenson 1962 Sainzon 1989
mainson ef of 1990),

In §2 we present our experimental investigations of the thin-layer instability.
Ditferent patterns {rolls " hexagonal. axisyvmmetric. annalar of sixtold symmetrey L)
are observed with possible transitions between patterns of different symmetry. We
then try toselect these patterns by varving the nature of the nutial perturbation. At
large times. we observe that the axial and hexagonal svmmetries are preferred. We
also briefly discuss the latest stage of this instability when dripping has oceurred.

In §3 we propose a nonlinear analysis of this problem based on the lubrication
theory. We derive the nonlinear evolution cquation of the interface. and we
investigate the growth initiated by small perturbations of this interface. This
approach s very similar to that developed by Jacobs & Catton (19884, 6) in the
inviseid case, except that we discuss the nonlinear growth in terms of interactions
hetween Fourier modes (see for instance Busse 1978). The essential property of the
systemn studied is its non-invarianee by amplitude reflection. that introduces second
order non-lincarities in the evolution equations. We present different solutions of the
amplitude equations caleulated at order two or theee! for different initial corulitions.
[n all cases. the seeond-order nonlinearities favour the growth of the hexagonal and
axisymmetrie patterns. in agreement with our experimental observations,

Whitchead & Luther (1975) have discussed the influence of second-order
nontinearities in the growth ofan hexagonal perturbation of the interface. but in the
limit of a vanishing surface tension. Our approach takes into account the capillary
effects and allows us to treat higher-order nonlinearities. In addition, we propose a
simplificd analysis of the annular patterns that avoid treating nonlinear interactions
between Bessel funetions (§3.5).

2. Experimental
2.t Brperimental sel-up

An experimental investigation of the Ravleigh Tayvlor instability requires the
preparation of @ Hat flnid interface in an unstable density stratification. This is done
in two steps in our experiment. First. a drop of silicon oil is spread by gravity on a
glass plate. vielding a viscous pancake. approximately 30 em in diameter, and a
fraction of millimeter thick. The spreading is very slow and it takes about two dayvs
Lo get a completely spread drop. The spreading has to be stopped because the edge
of the pancake beeomes irregular owing to surface heterogeneitios of the glass plate.
secondly, the glass plate is turned over within a few seconds, a time much smaller
than the characteristic time of the gravitational instability {(figure 2). Given the
physical characteristics of the silicon oil (density p = (.97 g/em?®,  viscosity
# = 1000 e’ and surface tension ¥ = 21 dyne/em) and the tyvpical thickness of the
layer e, = 0.2 mm we can devive the capillary length A, = (y/py) = .49 mm. The
corresponding wavelength ol the fastest growing mode should then be

Ay =20y 24, = 13.2 mm. (2.1}

The time constant of the instahility is obtained from the dispersion relation (1.3) and
the assoctated time constant for Ay is

Ty = 12py/elptgt = 350 s, {

| B9
[
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The mean thickness ey is derived by dividing the total volume of Huld (varving
from (35 to 200em®) by the area of the ol pancake. The local thickness was not
measured directly bot we can nfer the thickness variation from the analysis of
viseolls gravity currents done by Huppert (19825 Tluppert obtained  similarity
solutions for the axisvmmetrie spreading ol a viscous drop neglecting surface fension
effects, a reasonable assomption for drops having a radios much larger than the
vapillary length. exeept in the vicinity of the drop edge. Psing Huppert's solution.
which compares quite well to experimental data;

elr ty = A1 W1—1r2t by (2.3)

where £is the time elapsed from the beginning of spreading. Taking, for example. s
volume equal to 20 em® and wspreading time of twao days, we et the thickness of the
oil layer ranging from 0.227 mm at the centre to 00166 mm at 15 em from the centre,
Accordingly, the time constant of the instability should inerease by approximately
a fuctor of two from the centre to the edge of the laver. This explains the faster
developinent of the instability in the centre of the layer. in addition to that observed
at the very edge. where the interface hax a large curvature caused by the eontaet line.

The development of the instability is monitored either by a video recording or by
photographix taken at fixed intervals. The deformation of the interface is revealed by
two different technigues. The first ane is very simple and consists in strongly dyeing
the oil. The intensity of light Aransmiticd through the oil layver decreases
exponentially with the thickness of the layver. Then thicker parts appear as darker
spots on the photographs (figure 3). This allows s 1o do a simple determination of
the spatial structure of the instability. Tn the second technique. a raled sereen is
photographed thrangh the oil Taver (igure 2). The refraction of the light rays on the
oil airinterface shifts the apparent position of the lines of the ruled sereen. When the
slope of the interface remains stall. the local apparent displacement of the sereen §
i proportional to the local <lope of the interface & = d&/dw:

§=ain,— ) [ D+, (1 =171, (2.4)
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A6

A
Ficure 3. Typical structures occurring in the instability. Thicker parts of the fluid layer appear
as darker spots. The two structures designated A are initially axisymmetric and were initiated by
small dust on the interface. These structures are likely to develop a six-fold symmetry like the one
designated A6 and finally evolve into an hexagonal pattern like H. Line structures are also
observed. The one shown by R was initiated by the thickness gradient close to the edge of the fluid
layer.

where n, and n, are the refraction indices of the oil and glass, ¢, is the thickness of
the glass plate and D is the distance from the ruled screen to the interface (figure 4).
With D = 56 mm, ¢, = 5 mm, n, = 1,41, n, = 1,52 and a mesh m of the ruled screen
equal to 0.8 mm, a displacement d = m corresponds to a slope of the interface
o =0.03. The smallest displacement which can be detected is of the order of
magnitude Im. corresponding to a slope a = 0.006.

The image of the screen through an axisymmetric perturbation of the interface is
a ‘vasarelyan’ figure such as the ones shown on figure 5.

2.2. Experimental results

As can be seen on figure 3 different patterns can be observed simultaneously in the
unstable layer: axisymmetric patterns (concentric rings), axisymmetric patterns
whose rings break into peaks (often with a six-fold symmetry), hexagonal patterns
and, finally, lines which we sometimes call ‘rolls’. The distance between two rolls is
(Am)exp = 12.5 mm in rather good agreement with the expected value Ay, = 13.2 mm
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FieurEe 4. Refraction of the light rays on the fluid interface and apparent shift of a ruled
screen located at a distance D below the interface.

deduced from the linear analysis. The distance between two neighbouring peaks in
hexagonal patterns is (Ap)e,, = 14.9 mm, the ratio (Ap/Ay)ey, & 1.19 being very close
to the expected value 2/4/3 = 1.15. In order to examine the competition between
spatial modes of different symmetries, we analysed the evolution of the layer with
different initial perturbations.

2.2.1. Evolution of an axisymmetric perturbation

nless extreme care is taken to protect the oil layer during the long spreading
operation, small specks of dust from the ambient atmosphere fall on the interface and
create small circular dimples on the free surface (the spatial extent of these
perturbations is of order of A, (Nicolson 1949; Cloitre 1989)). Very often, the
instability of the interface grows from these initial perturbations as concentric rings
{figure 3). Meanwhile, clean parts of the oil layer do not show any appreciable
deformation during the first half-hour following the overturning of the glass plate.
This demonstrates that the development of the instability is very sensitive to the
initial amplitude of the deformation.

The time evolution of an isolated axisymmetric pattern is shown on figure 5 as a
series of photographs of the deformed ruled screen. From the initial bump in the
interface, concentric rings develop outwards and up to four or five rings are
frequently seen. From the time evolution of the slope of the interface at a given
point, it is possible to give an estimate of the time constant of the instability
Texp = 200 to 300 s, in qualitative agreement with the linear analysis giving
Ty = 350 s.

When the curvature of the interface is too large, the image of the scereen through
the oil layer disappears (see centre of figure 5e). In addition to the sideways
displacement of the image, the interface acts as a lens and moves the image out of
the depth of field of the viewing optics. This is a typical effect encountered in the use
of deflectometry techniques on fluid interfaces (Cloitre 1989).
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Ficure 5(a—f). Time evolution of an axisymmetric perturbation revealed by the distortion of

a ruled screen observed through the interface. The period of the screen is 0.8 mm.



358 M. Fermigier, L. Limat, J. E. Wesfreid, P. Boudinet and (. Quilliet

At later times, the axial symmetry is broken into a six-fold one (figure 6), with six
peaks on the first ring and twelve peaks on the second ring. Very often, this effect is
due to the interaction of the axial pattern with another one. We were not able to
observe isolated axisymmetric patterns for a long enough time to test if the
symmetry breaking also occurs without interaction with other structures.

2.2.2. One-dimensional perturbations: lines or ‘rolls’

Additional initial perturbations were made by stretching a thin metal wire across
the oil layer after the spreading was completed. The wire has a diameter slightly
larger than the thickness of the fluid layer and it is not wetted by the oil. In the stable
configuration, before the overturning of the plate, the interface is depressed by the
wire. The perturbation is easily calculated from the Laplace equation: it decays
exponentially from the wire as exp (—|z|A,). Once the glass plate is inverted, one-
dimensional structures (lines parallel to the wire) develop from the wire (figure 7).
Again, the distance between two neighbouring lines is close to A,;. These structures
do not remain one-dimensional : after a while, the lines are broken into peaks in an
hexagonal pattern. The first peaks appear on the wire. Let us mention again that the
distance between two peaks along a line parallel to the wire is larger than Ay by a
factor 2/4/3.

2.2.3. Perturbation by two wires crossed at 60° and at 90°

The tendency of the system to develop a pattern with a triangular symmetry is
enhanced if the initial perturbation is created by two wires crossed at 60° (figure 8).
As in a the experiment with a single wire, a set of lines moves outwards from each
wire. When the two sets of lines cross they create a perfect hexagonal pattern of
peaks.

In order to test the stability of a square pattern of peaks (as it is observed, for
instance, in the surface instability of ferrofluids with a magnetic field normal to the
interface — see Wesfreid & Allais 1985), the experiment was also performed with
two wires crossed at 90° (figure 9). At a late stage (figure 97), when the instability has
spread all over the fluid pancake, the quadrangular symmetry is observed only in
some areas of the fluid. The tendency to go back to the triangular symmetry can be
made somewhat quantitative by counting the number of neighbours of each peak,
using the skeletonization from image treatment. On figure 9(¢), 8% of peaks have
four neighbours, 32 % five neighbours and 60 % six neighbours.

The overall conclusion of these experiments is that the preferred symmetries in the
gravitational instabilities of thin films are the axial symmetry and the hexagonal
symmetry in the initial nonlinear stage.

2.2.4. Final stage of the experiment: dripping

At the last stage of the experiment, typically two hours after the start with the
conditions given in §2.1, enough fluid has been accumulated in the peaks of the
interface for them to become unstable. The fluid then begins to drip from the solid
surface, a phenomenon well known to painters and sailors awakened by water
condensed on cabin roofs.

Although we did not observe it, there should exist a threshold to this dripping
instability. If the initial thickness e, is small enough, the volume of fluid accumulated
from a surface area of order inA}, will be too small to exceed the critical volume for
the stability of a hanging drop. Myshkis ef al. (1987) determined the critical volume
J* of an isolated drop as a function of the contact angle of the fluid interface with
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Fiaure 6. Axisymmetric structure of figure 5 at a later stage, when the
axial symmetry has been broken.

the solid interface. In our experiment the contact angle is zero (a film of oil always
remains on the glass) and V* = 19A2. If the fluid is collected from an hexagon of area
1612 A2%/+/3, the critical thickness is given by e* = (194/3/16m%)A,., and is associated
with a critical Bond number B, = (e*/A,)* & 0.04. In our case, its value is 0.31 mm
which is larger than the initial thickness in our experiment. According to the above
criterion, and contrary to our observations, oil should not drip from the glass plate.
The discrepancy probably arises from the fact that the drops are not isolated and are
connected to a large reservoir through a tiny film. Very often, dripping occurs after
the pairing of two neighbouring peaks which then form a peak large enough to exceed
the critical volume V*. Such pairings can be seen on figures 9d, 9¢ and 9f, in the
upper right-hand corner of the fluid layer. Once it has started, the dripping
phenomenon occurs at random positions (and presumably at random times) and
destroys the spatial regularity of previously well-organized structures such as the one
observed with two wires at 60° (figure 10).

In the one-dimensional case, the existence of a critical Bond number has also been
found numerically by Yiantsios & Higgins (1989). The same argument of drop
stability allowed them to calculate a value for B, that was in agreement with their
numerical observations. Interestingly, their data also exhibit a tendency towards
drop coalescence at the latest stages of the instability for B < B,.

3. Theoretical discussion
3.1. Ewvolution equation — linear growth

The geometry of the experiment is recalled on figure 11. At time ¢ = 0, a thin layer
of viscous fluid (mass density p, viscosity 7, thickness e;) is submitted to a
destabilizing gravity field g = gz. At time ¢, the fluctuations of the interface are
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Fi1curE 7 (a—c). For caption

> facing page.



Two-dimensional patterns in Rayleigh—Taylor instability 361

(d)

Ficure 7(a—¢). Time evolution of the instability imitiated by a single wire stretched through
the fluid layer.

amplified, and the local thickness becomes a function of the position 7 in the plane
(x.y): e(r.t) = e, +L(r. 1), {(r.t) being the surface displacement. In this section we
establish an evolution equation for ¢, which holds in the experimental conditions
presented in §2.2. We also specify its general validity conditions after briefly
discussing the linear growth regime.

In view of the typical features of our experiment (very long timescales, very
viscous fluid, etc.), we neglect the inertial effects. The Navier Stokes equations
reduce in this case to the Stokes ones, and the flow is governed by the following set
of equations:

yVu+n02u/oz? = VP, (3.1a)
yV2v,+90%0,/022 = 0P /0z—pyg, (3.1b)
V.u+tdv,/0z =0, (BHlie)

where u = (v,.v,) and v, are respectively the horizontal and vertical components of
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(d)

A

FicurEe 8(a—f). Time evolution of the instability initiated by two wires crossed at 60°. The
time interval between two pictures is 240 s.
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FicurE 9(d-f). For caption see page 366.
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®

Fiaure 9(a—i). Time evolution of the instability initiated by two wires crossed at 90°. The time
interval between two pictures is 360 s. Pairing of two neighbouring peaks is indicated by arrows.
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Ficure 10. Late stage of the hexagonal pattern shown on figure 8. Dripping has already occurred
close to the crossing of the wires and begins to disorganize the regular array of peaks.

VI 0,

@® -
y =

- e 2

Ficure 11. Schematic representation of the unstable layer. In the limit ¢, < A, the slope of the
interface is negligible, and the velocity field reduces to that of a half-Poiseuille flow.

the velocity and P(r,z,t) is the pressure field. By convention, the gradient operators
V., and the Laplacian V* are relative to the a- and y-coordinates throughout.

These equations must be completed by the appropriate boundary conditions. The
non-linearities are introduced at this step by the conditions involved at the moving
interface. A first study of the problem has been made by Whitehead & Luther (1975)
in the limit of a negligible surface tension. In this case, the dominant wavelength of
the instability Ay was comparable to the depth of the layer. In our case, the situation
is very different: the layer thickness e always remains very small compared to A,
which is in fact determined by the competition between capillarity and gravity. As
a result, the slope of the interface remains very small, and the treatment of the
problem can be greatly simplified by using the lubrication theory (Batchelor 1967).
The evolution obtained will hold in the linear regime { < ¢, < A, and also in a
nonlinear regime defined as { x ¢, < A,.
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After neglecting corrections of order ({/A)%, the boundary conditions reduce to:

u=0 at z=0, (3.2a)
pou/dz=10 at z=e(r,i), (3.26)
P,—P = yV-{Ve/{14(Ve)2}} x yV2¢ at 2z = e(r. 1), (3.2¢)

where P, denotes the atmospheric pressure, and vy is the surface tension. Still in the
lubrication approximation, after neglecting corrections of order (e/A)2, the pressure
and velocity fields are easily calculated:

P(r,z,ty = P,—pgle—2)—yV?, (3.3a)
u(r,z,1) = %z(?e—z)V(pge-l—yV%)‘ (3.30)

These approximations lead to a very simple solution of (3.1): the pressure field is
hydrostatic, while the horizontal velocity ficld suggested on figure 11 reduces to a
half-Poiseuille flow driven by the horizontal pressure gradient.

The evolution equation can now be deduced from the equation of motion of the
interface:

e ¢
a%— [Beey Ve =,y = —f udz,

0

which is equivalent to the mass conservation equation:

) (4
Zyv. f udz = 0.
ot 0
This finally gives
ag 1 3 2 ;
g"‘@v' [eo +E)* V(pgl+yV20)] = 0. (3.4)

In this nonlinear equation, the growth rate of {(r.{) is determined by the
competition between a gravity and a capillarity term. The respective influences of
these two factors are obvious in (3.3): the gravity tends to concentrate the fluid in
the regions of positive { where the pressure is lowered (amplification effect). while the
capillarity moderates the resulting growth.

A more general and more rigorous derivation of this equation, based on a
perturbation expansion, has been recently given by Yiantsios & Higgins (1989) in the
case of the two-fluid problem. Equation (3.4) is also mentioned in an article by
Pismen (1981), as a special case of the equation describing the flow of a film along an
inclined plate, which can be treated with exactly the same methods (Benney 1966
Oron & Rosenau 1989¢,b). We also mention that a one-dimensional version of (3.4)
has been found to govern the instability of a thin annular film in a cylindrical
capillary (Hammond 1983; Gauglitz & Radke 1988).

We now rewrite (3.4) after separating a linear and a nonlinear contribution :

¢ e
at+377(

2

ng2§+yV4§>+§§7V-[<3§+ 38+ &) V(pgl +yV0)] = 0.

The linear operator is classical in the lubrication deseription of thin films (Vrij
1966 ; Babchin et al. 1983) but, to our knowledge. the properties of the nonlinecar part
have never been discussed. Most available studies are numerical and restricted to the
one-dimensional case (Hammond 1983; Yiantsios & Higgins 1989), or focused on a
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different nonlinearity involving terms of the kind £&, ¢ or (V{)* (Kuramoto 1984;
Manneville 1988; Dewel, Borckmans & Walgraef 1984). The term (¢, { arises when
a mean drift is superimposed on the film flow by means of a shear stress (Babchin
el al. 1983) or of a component of gravity (Oron & Rosenau 1989a,b) parailel to the
film.

When the perturbation of the interface is small compared to e,. the nonlinearities
can be neglected, and the linear operator leads to an exponential growth of Fourier
modes:

L (r.1) = Looxp (ig-ryexp (7,0,

o, = (6/3m) (pga* —vq*). (3.6)

We thus recover the results announced in §1.3, in particular the selection of a

dominant wavenumber gy, given by ¢ = pg/2y = 2n/A, and associated with a

typical growth rate oy = eip®g®/12yy. A particular class of solutions is obtained by
solving the lincar part of (3.53) in polar coordinates (r, 8), giving

Lyon (r0) = £, (qr) cos [nO] exp (o, 1), (3.7)
o, being again given by (3.6), and the J, being the Bessel functions of the first kind.
The solution n =0 corresponds to the axisymmetric structures observed in our
experiment around the dust. As we will see in §3.5, the annular system with
secondary maxima reproduced on figure 6 can be analysed as superpositions of JJ, and
J, patterns, n being multiples of 6.

We now make more precise the validity conditions of (3.4). As usual in lubrication
calculations the approximations made on the velocity field are of order a®, « = {/A,
being the typical slope of the interface. Except in the case when dripping occurs, {
is at most of order ¢, and we obtain a first validity condition:

/N = egpgly < L. (3.8)
We have also checked that the nonlincarities involved at the boundary due to the
interface slope were of the same order. The relevant nonlinearities retained in (3.4)
are thus only those involved through the vertical displacement of the interface,
which modifies the ‘mobility * (¢, + {)® of the fluid in the horizontal pressure gradient.
Another condition is obtained by considering the inertial terms that we have
neglected in the Navier—Stokes equations. We have estimated the Reynolds number
of the flow calculated above, which reduces to Re = e{/[*, ] being the viscous diffusion
scale given by * = 5/poy. The second validity condition is thus given by:
el = b pPgP /Ayt < 1. (3.9)
A quantity similar to / is involved in the propagation of gravity—capillarity waves
on the surface of a viscous fluid (Leblond & Mainardi 1987). In this problem, the
spatial extent of the velocity field in the z-direction is determined by the wavelength
A, and also by [. This lengthscale has also been taken into account in recent studies
of the magnetic instability of a thin film of ferrofluids spread on the free surface of
a heavier liquid (Valet & Wesfreid 1988; Lister & Kerr 1989). In the case of our
experiment, e2/A% is of order 1072, while ¢2/1% is about 107%. The lubrication model is
thus perfectly valid in this case. We should mention another limitation of our
approach contained in the nonlinearity of (3.4): at later stage of the instability,
harmonics of small wavelength will be excited, and the condition (3.8) will not remain
true for these wavelengths. However, our calculations will be limited to the third
order growth, that involves only the first harmonics, and this problem will not be
relevant here.

with, just asin (1.3)
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Ficure 12. The various patterns obtained by superposition of N pairs of modes of equal amplitude.
(a) “‘Roll” system N = 1: (b) square pattern N = 2; (¢) hexagonal-peak pattern and hexagonal-hole
pattern N = 3: (d) the J-peak pattern, the ./ -hole one (J¥), and more generally all the .J, patterns,
are obtained in the limit NV =oc0, the wave vector being integrated over a circle. We have also
suggested the angular dependence of the amplitude a(g).

3.2. Nonlinear growth of two-dimensional patterns
The various patterns described in §2 can be viewed as superpositions of N pairs of
modes (q;, —q;) with £, = ¥ and g, = gy, to which one should add harmonics in
the nonlinear growth. Different possibilities are suggested on figure 12. The ‘roll’
system (R), the square pattern (S) and the hexagonal one, respectively correspond to
N =1, 2, and 3. Because of the translational invariance, the relative phase ¢, of the
different Fourier modes {; = £ ;exp (ig;), can be selected without any restriction in
the ‘rolls” and ‘squares’ cases. In the case N = 3, the nature of the pattern obtained
does depend on this choice (Buzano & Golubitzky 1983). Two extreme cases are
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sugeested on ligure 12 (0) when @ — 65, 4 ¢h, + 65, = Done obtains an hexagonal lattice
of peaks (H} and when @ = 1 one obtaims an hexagonal lattice of holes H#*),This st
pattern ix sometimes called the triangular pattern” (Boudonvis & Seriven 19843, T
ix to be noted that the hexagonal and triangular patterns are images of each other
through the amplitude re H( wetion {——¢ and are thus not invariant in this
transform. This is to be compared with the rollx and square patterns. which do not
break this svimmetry.

The oy and J, patterns are obtained in the limit N =« the wave vector being
infegrated over a civele of radius gy (see figure 12(d). More precisely. the properties
of the Bessel function (see for instanee Abramowitz & Stecun 1964) allow (3.7) to he
written in the torm

T
C ey =8 1o/ 2m) [. i cos () oI et @) (b, (3,100

v =
[n this expression. the J, pattern appears as the superposition of an infinity of
Fouricr modes. with wave vector detined by the angle 6 = (x. ¢) and with amplitude
a function of ¢, The svmmetry order of this funetion s the same as that of the
pattern. In particular. the amplitude distribution i isotropic in the J, case. Again
the properties of these patterns with respect to amplitude reflection (£ - —2) differ:
for o # 6 the patterns are invaviant, but J, is not invariant and a ., peak pattern

{ealled Jon figure 12) is to be distinguished from a o/, hole one (/).

In the linear approximation. and for a given wavenumber g all the patterns of
flgure 12 have the same growth rates As s u=ual in hvdeodynamic instabilities
(Wesfreid & Zaleski 1984). the pattern sclection observed in §2 i clearly a
consequence of the non-lincarities of £3.4} These nonlinearities can also be disenssed
in the Fourier plane by deriving amphtlnl( cquations of the Fourier components (see
for instanee Pabin 1973, or Basse 197%).

In order to simplifs this discussion. we first detine non dimensional variables;

=gy g =ygy. U=oyl U=,
[n this notation alter dropping the primes. the evolution equation becomes

K+V [+ P20+ VG = 03 1L}

We now expand E(r. #) as a Fourier series

L.ty =2, (i’}l\p(lq ry.

q

where the g vectors are non-dintensional. The real nature of implies that .| Pl
and the nuss conservation that A, = 0. We then develop the eubie term in (3,113 and

us¢ the independence of the functions exp (ig-r). This finaily gives
dd

_]_gz (}(-"_ q J'"I +; (q L HE _'rfn} Iq'fr qhh{q o qy)
ot Fee q0

+3 E (q”'q)(2_(]?:)‘_'[;;{:*4:;!1‘_1(;('O‘(q_qrr_qh' q(‘}

Fo -

+ E {.qu'QJ{z_qﬁ}Aqrr —[ 4qr!O(q_QIi_qfr_Q('_QIf)‘ {3|2}

Fo-dn Gy
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Freere B30 Different mode interactions involved in the amplitude equation: (¢} and (6) second
urder interaction between a main mode and its Hest haroonie: third-order amplification of 4 main
muode: (oY and [¢] second-order interactiom between matn modes in the hexagonal aned A cases,

The first term on the vight-hand side corresponds to the linear growth analysed
above. the largest growth rate oy — 1. being obtained for ¢ = gy, = 1. The other
tern involve seleetion rules that are suggested on figooe 130 All these nonlinear
terms can be understond  as interactions between treiplets. quadruplets and
quintuplets of wave veetors, The mauin peeuliarity of (3.12) 12 the oceurrenee of a
secontorder term, This i< a very general property of hvdrodynamic instabilities that
break the symmetry e £ (Buzano & Golubitsky 1983} such as the Bénard
Marangoni one or that of the ferrottuids under a normal ficld (Cowley & Rosensweig
1967} In our case. this lack of symmetry is obvious in (3351 changing the «ign of
¢ not only changes the sign of the Autd veloeity but also its magmitude, For this kind
ol instability. the hexagonal pattern is very often dominant (at least near threshold).
and the appearance of this pattern in our experiment is thus not a surprise.

Vervotten. the discussion of nonlinearities in hydrodynamic instabilities. including
the pattern =clection problem. is through amplitude eguations for the main Fourier
modes (i T gy = 1), the dynamies of the harmonies being included in the third-
order termis. Thix approach is in faet relevant only in the vieinity of a bifurcation. the
distance Lo the threshold e heing treated ax a small parameter. This parameter defines
in particular the width of the domain of the mstable wave vectors Ag/g,, thal
should seale as e [n our ease. there i no such “control parameter . and the variation
of the growth rate in the lincar regime depicted on figure 1 corresponds to a ratio
Ag /gy ol order unity. Thixsituation is rentmiscent of the Sallman Taylor instability,
However, the tendeney o form an hexagonal pattern can be gqualitatively deduceed
from our cquations by defining o new small parameter that is simply the initial
amplitude of the perturbations,

I we call & the ovder of magnitude of the amplitudes of the main modes 4, in the
lincar regime. the fiest effect of the nonlinearities will be the generation of harmonies
g;+4q.. the amplitude of which will be of order & (ligure Gy, In turn, these
harmonies will interact with the paivs (g, —g,) (figure 135). modifving the growth of
the Ag, at order g4 This correetion is to be added to that inteoduced by the thivd-



374 M. Fermdgier. L. Limat. JOE. Wesfreid, P, Bowdinel and €' Quillicl

order term of (3.12). which ix also of arder €* (figure 13¢3. Both corrections will he the
smallest order ones for the roll and square patterns hut not for the hexagonal one.
In thisx case. the reladionship g, + g, +¢, = 0 is imposed to take into account the
interactions suggested on figure 13 (). which introduce a correction of order ¢* in the
Ay This correction can be studied in the simplest case of three paivs of modes of
cqual and real amplitudes: Agd) = 1. Tor 7= 1. 2. 3. At second arder, the
harntonies can be neglected and. for g = ¢ = L3100 reduces to

3

dd/dé =4 +34% (3.1:3)

We thus obtain that
(1} the hexagonal pattern of peaks is amplificd at order 204 > 0):

(i) the hexagonal pattern of holes is damped at the same order (4 < 0):
(it} the rell and square patterns are just modified at order €%, and thus follow Hnear
growth at order 2,

The cesults (1} and (30} also hold for the S -peak and the J -hole patterns because
their Fourier decomposition can be viewed ax the superposition of triplets of wave
vectors of equal amplitude. the growth of which being governed by (3.11). This
rernark s illustrated on ligures 13(d) and 13(r). where we see that the same
geometrical construction gives the sccond-order coupling hetween modes. (or the
and hexagonal patterns. At this level of analysis. the hexagonal-peak and J, peak
pattern appear to be dominant a second order. in agreement with our experimental
obsgervations. These observations are related to an important ssymmetry property of
the syvstem studied : the non-invarianee under amplitude refleetion ¢ - — ¢

Finally. we note that the results (i) and (i) ave consistent with those of Whitchead
& Luther (1973) obtained in the limit of vanishing surface tension. Following their
calculations, the nonlinearities amplily the growth of hexagonal cells with ascending
(low at their centre. and damp the other kind {descending flow). These cells are the
erpivalent of the hexagonal-peak and hexagoual hole patterns discussed here,

33 Thivd order growth of rolfs, squoees cond hexagons
In the case of the rolls. square and hexagonal patterns. we have improved the
qualitative arguments developed above by exaet caleulation at order &* The method
ix similar to that used by Jacobs & Catton (1988« b} in the caxe of the inviseid
Ravleigh Tavlor instability. We have considered the growth of an initial disturbance
given by A (0) = e for i = [ to N, where the &, are the main wave vectors suggested
on figure 12, and 4,{0) = 0 for the other wave vectors. When e is a stuall. positive and
real parameter. the cases N = 1. 2 and 3 correspond to the nonlinear growth of the
“rolls T squares and hexagonai-peak patterns (the hexagonal-hole pattern is oblained
for N = 3 and ¢ < (). We then performed a perturbation analysis by developing the
amplitudes as power series in e, For the main modes &, we have A (0 = A, (f) with

Ay = el (4 A N+, i+
for the first harmonies p =k, +k; + k. we write
A, =4, 0 +eld, i+

we W would write

and for the second ones r=k +k,+k, + k

A, =, 0+

By identifving the powers of € obtained in (3.12). one obtains a svstem of equations
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0 00 0 30

¢ —1
Frocre (4. Evolution of the amplitudes of the main modes for the roll {R), square (8}, hexagonal-
peak (H) and hexagonal-hole pattern (H*). caleulated at thired order for an initial non-dimensional
amplitude o, = ¢ = 0LOL AL the precision of the figare, the squared growth cannot be distinguished
fram the linear one.

in which the order v can be deduced from the orders »” < . The simplest caleulations
are obtained in the “roll” cagse. where by symmetry 4, , =4, , = 0:

dd, Jdi—d, , =W RN BT
g/ dt+ 80, = 64 . (3. 146)
el yfdi—dy o= =154, A, ,+343 (3. 14¢)

The solution of this system i casily obtained. giving

il e B NN e 1 R} — 8,2, 21 ,,—5 RE:
Ai '=ge —.3(;‘[1*"—';“—( +ie7 N+ _-lfzk}—s, |1Zt ¢ b‘]—f-.“. (3.15)

where the superseript (R stands for rolls . We have also careied the same caleulation
for the square and hexagonal cases. The only difference s that. in addition to the
main modes k; of amplitude Jdgand to the harmonies 2k, of amplitude d,,. o new
group of hartonies p of the kind +&, + &, is to be taken into account, of amplitude
g x I the square case. we obtain

A = et e —e T4
A =% M —e M+ {3.16)
AP =86 (e — 1)+,

amd in the hexagonal case
AP = et F B (0 — o) H L G e — QG e 4 1BB 0K, 203 T l
f . L . (3.17)
AW = Zede —o M4 A = et oy |

In figure 14, we have plotted the variation of A, (0/A4,(0 [or the four patterns:
rolls. squares, hexagonal-peaks and hexagonal-holes. These caleulations are in
perfect agreement with the qualitative analysis developed above and with the
experitnental results. In particular. we recover that the hexagonal-peak pattern is
the dominant one beeause of the second-order nonlinearitios, These nonlinearities
tend to damp the hexagonal-hole pattern. which isx thus practically impossible to
ohserve.
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For the four patterns, the third-order term involves a competition between a third-
order amplification and the moderating effeet of the harmonies, This appears Tor
instance w G3.14e) which holds for the role case. In this case. the harmonies seem to
dontinate, which is rentiniseent of the situation encountered for saturating instahbility
near o superervitical hifwreation. The situation is different in the ease of the hexagonal
pattern: the thivd-order term ix positive and increases again the wyrowih of this
pattern. In the square case, the two elfects practically compensate cach other, the
Lehaviour obtained being close to the linear one, As a result. the growth rate of the
square pattern s intermediate between the rolls and hexagonal-peak ones. This
rentark is perhaps related to the persisteney of the sgquare patiern ohserved loeally
i the case of the two wires at 90°,

We finally note that the growth of the first harmonies introduces a modification of
the shape of the interface at order ¢ Thix contribution tends to amplily the peaks
and 1o fill the valleys increaxing the asyvmmetey of the profilie with respeet to the
plane = = e This very general effect is ohserved mthe case of a system that is not
invariant under amplitude refleetion. such as for instance a ferrofuid interface under
a normal ficld. Ln our case. this asymmetry has its origin in the dilference of the fluid
mobility (e, +&* between regions of positive and negative £

3.4 Rolls hevagon Lrensition

The comparizon of the growth rates of the different patterns made in the previous
seetion allows us to understand  qualitatively the reason why some particular
svmmetries are selectied, However, it s elear Trom figuee 14 that the differences
hetween the calenlated growth Taws are not very pronounced. In addition, and as
mentioned above. the growth of the square and roll patterns as well ax that of the
hexagonal pattern, involves modilications of the interface at order £ associated with
the amplitudes of the first harmonies L, (0 and A, (0. Strietly speaking. the
hexagonal pattern t¢ thus not the only one to be amplified at order 20 Fhese
comsiderations suggest that a more careful analysis is reguired to understand the
restilte of the one-wire experiment diseissed in §2.2.2.

I'n this seetion we show that the selection of the hexagonal pattern does not only
result from its larger growth rate, In fact the hesagonal growth can inhibit that of
another pattern. This is what happens in the one-wive experiment. that we modef as
[ollows. We again consider three pairs of modes sueh ax those suggested on figure
12(r). but with different initial amplitudes: d, () = ¢, and A (00 = A0 = ¢,
where ¢ and ¢, ave snwall. real and positive values. When e, < e this distrilution can
be viewed as the superposition of a roll svstem of amplitude 4 (0) = 4, (01—
A (D) = &) — 6, and of an hexagonal perturbation of amplitude 4 (0) = 007 = ¢,
[ a ealeulation at second order. we can negleet the influence of the harmonies. In
this ense. the amplitude cquations reduce 1o

d4,,
'('”L = "sz +3-'1i"|—'1;’f:;-

e,
i

dod,,
clt

- 0 g% (% — BOPE IR0 1)
=, +345 4% =Tt 3 EAE. (318

This system of equations generalizes (3.9) to the case of three modes of different
amplitodes. Knowing the initial conditions. the three amplitudes can be treated as
real numbers. and (3.18) can be rewritten in terms of amplitudes of the roll and
hexagonal pattern components A, = A=A, and A =1, =4, -

dd,
ot

fd,

=1, 340, oY,

= A, +347+34, 4, (314
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b} K 10 15 20
e'—1
Frovre 15,0 Evolution of the redueed amplitwdes 2 /400 in the voll-hexagon transition. calenlated
at second order for 4, (0} = &, = 05 and 4,000 = e, = 0005, L designates linear growth. The long-
time behavionr s in et anphysical, but the tendeney toward the hexagonal sitaation (A, /A, -1
ued the desnping aof the rdl vomponest (3,1 1 well recovered,

A short-time perturbation expansion similar to that used in the previous section
gives at order ¢*

Apt = ey of =36 e =0 L) = e ol F 3e ey Fogled —el | (320}

On both systems of cquations (3,19} and (3.20). we observe that in addition to the
nonlinear tenns discussed i the previous section, the second-order nonlinearitios
introduce a coupling between 4, and 4. This effect fends to damp the growth of
the rolls and to inereaxe that of the hexagonal pattern. The hexagonal-peak patier
dominates the roll one not ouly because of its larger growth rate but also beeause of
the nonlinear interaction between these two patterns at second order,

We also mention that (3.108) ean be solved exactly by sceleeting new variables o,
defined as A ;= w;it) ¢! and by noting that w, = uyand that «f —wj is constant. Afrer
sotne ealeulations we obtain

(=i _

A=Ay =Bl gy

- sinh (b, —¢b)

;o
6, —
tanh {¢b , — )}
the quantities ¢ and ¢ being defined as

§ = 3ei—eDde = [ cosh(d,) = 6 /e,

The evolution of A, anid 4, ix suggested on figure 15 We find an anphysieal
divergenee at a linite time £, given by it ) = ¢, . beeause our caleulation is in
et varreet only at second order, OF course, at long time, nonlinearities of higher
orcler with modify the growth and preannably vemove the singulavity. Because of this
peeulinrvity. thix solution iz not of great practieal interest. However. it gives
interesting results concerning the behaviour of the ratio o1, /o1, and of that of the
rell amplitude 4, = 4, —A,,:

. .l .
A/ =coshigy, =y Ay =] —edpoeosh{, —¢)— 1 |/sinhi (¢, —¢3).
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As suggested on figure 15, when t approaches ¢, the ratio -, /1, tends toward
1. This means that the perturbed roll pattern evolves toward an hexagonal one. in
agreentent with the experimental observations. Simultaneonsly. the roll component
of the pattern 4, vanishes at ¢, . This result is very important and means that the
growth of the hexagonal pattern would lead finally to the complete disappearance of
the roll component. just as observed in the experiments. Of course, the correct
deseription of thix evolution would require taking into account higher-order
nonlincaritics. and thus higher order harmonies.

A similar ealentation can be developed in the vase of the two wires at 607, but now
with ¢, € ¢, Similar results are obtained in this case: the system evolves toward the
hexagonal pattern. the two systems of rolls being progressively erased by the
hexagonal growth, A more general situation ean be studied using (3.203. that is the
case of three diflferent. complex, initial amplitudes A (0) = o, 0xp (id?) with o, > 0.
In all casex the hexagonal-peak pattern is oblained when + approaches +,. In
particular. the ratios ,/x; tend towards 1, and the sum of the phases @ = ¢ 4+ ¢, + ¢,
towards O (or 2um). An exeeption is the case of the hexagonal-hole pattern, for which
& remains cotstant and equal to m It s however, possible to show that this solution
ix unstable with respect to @ variations and finally relaxes toward the hexagonal
peak solution,

All these results obiained here at second order are in fact well known. but in a
slightly different context. In the case of a two-dimensional instability driven by a
control parameter, and close to a bilurcation point. {3.18) is veplaced by generalized
Landau equations (Haken 1975):

{ji\ ! o - " b
T:” = edy, +,,“:1::1:—g|:lh|“:l,‘, — g il + 14l
B L o WX IO IR A EIRE S
{jx\ . s a B ; "
(““ = ey + fA : "1::_, % TR POy P VLS S P B

where ¢ 1 proportional to the distanee to the threshold. and where the precise valnes of
Jogand ¢ depend on the nature of the nonlinearities. When f > 00 and in a wide range
of the other paramceters. the hexagonal-peak solution is an attractor point, and the
hexagonal-hole pattern is an unstable fixed point. 1n contrast to our second-arder
truncation, (3.22) leads (o a finite amplitude A4y at large times, Unfortunately. and
as explained in the previous section this approach is correct only near the hitfureation
point e = 0. where the dynamies of the harmonies can be neglected. their influence
being reduecd  to contributions to the thivd-order terms In our ease this
approxitmation is e Justified. and the influence of the third- and fourth-order
nonlinearities on the roll-hexagon transition remaing to be studicd.

3500 Simplified study of anvnudar paiterns
We now briefly diseuss the case of the annular patterns observed around the dust in
§2. Usually, the study of this kind of pattern requires expansion of the interface
perturbations over the Bessel functions and deriving new amplitude equations
(Normand 1984 Jacobs & Catton 1988« 6). Unfortunately. the properties of the
Bessel funetions complicate the caleulations. the seleetion rules disappearing from
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the amplitude equationg. In this section we propose a simplilied approach based on
the decomposition of the J, patterns over the Fourier modes presented in §3.20 We
thus consider the evolution of a continuoux one-parameter distribution of modes;

{ir. ) =f w(gh. Py et o b (3.2%)

with a(¢d 4+ f) = a*(eh. /). Just ax in the previous section we will restriet our study to
the dominant wavenumnber b = £y, = 1. and to the nonlinearities of sceond order. As
we have seen on figure 13(2). the socond order coupling between modes s basieally
the same as that given by (3.20). The evolution equation of a{h. £) ix thns given by

afh 1) = afh. 4+ 3u* (D +3n ™ (s —in ) (3.24)

The «implest solution of this equation is obtained for the J, patterns. In this case.
the amplitude does not depend on ¢b and one oblains, at short times.

aled 1) (O e 4+ Jre ()2 — e,

which is identical to the sccond-order growth law of the hexagonal pattern (see
(3171, We thus recover that. ax announced in §3.2. the ) and hexagonal patterns
have the same growth law. the J-peak and the hexagonal-peak ones being amplified
at xecond order.

If one starts now {rom a perturbed J, pattern. or from another J, pattern with
i £ 0. the ¢-dependence is to be taken into account. We can. however. simplify the
discussion by noting that. in (3.24). the evolution ol a(g.f) appears as the
superposition of those of an intinity of hexagonal patterns, of diflerent orvientations.
and without interactions. Bach of these patterns is defined by six wave veetors:
+k(ch). thi(h+im). +k(d—En). We can thus use the results suggested at the end of
the previous seetion : cach sub-pattern should evolve toward the hexagonal-peak one.
The patterns obtained asvmptotically (ax sccond order) must satisfy the following
relationships:

le(@i/a{d+3m)| = 1.
Arg (] + Arglold+ i) |+ Argla(d—3n) | = ¢ (modulo 2mr).

It is caxy to check that these conditions are satisfied for patterns of the kind

r 1y = a () Y+ 20 ap(thdy,, (ricos (), {:3.25)
o
with a, + 25, , of — 11"z, > 0. This condition prevents sign changes in a(¢. #) and thus
allows the phase condition to be satisfied. The evolution of the «; s in general very
complicated. unless one starts at £ = 0 from a pattern of this kind. In this case the
2;(f) can be deduced from the amphitude evolution that rednces to

(g 1) = rlgh O et 4+ Ba (o, Y e™ —o'). {3.26)

It is then casy to check that this kind of pattern is also amplified at second order.
with a «light evolution of its shape. We thus obtain that, in addition to the
axisyinmetric and hexagonal structures. another kind of favoured pattern can be
obtained by supcrposition of /., and .|, solutions of the linear problem {and more
genceally W/, solutions). We In licves that the structure reproduced in fizure 6 is of
this kind. This figure can be compared with fignre 16 where we have reproduced two

13 FLM 2
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(@)

(b)

Ficure 16. Two examples of annular patterns with secondary maxima amplified by the second-
order nonlinearities. Both patterns are superposition of .J, J, and ./, ones with respective weights
Ly BN L (o (a,).a(, =0.75, a, = 0.5. @, =0.25; (b) ay =a, = a, = 1. The respective angular
dependance a(¢) of the amplitude is also reproduced.

examples of patterns deduced from equation (3.25). The central maximum is that of
the J, function, the six secondary peaks on the first ring correspond to J(r) cos (66),
and the twelve others on the second ring are associated with the .J,(r) cos (120)
component. Depending on the respective weight of the ./, functions, the structure
obtained can be very close to a localized hexagonal pattern.

In §2.2.1, we have mentioned that these structures are very often intermediate
steps of a transition between the axisymmetric and hexagonal symmetries, initiated
by the perturbation of a .J structure by another pattern. A precise theoretical and
experimental study of this transition remains to be made. We can, however, propose
the following qualitative mechanism. Such a transition could be initiated by the
interaction between a .J, pattern and a Fourier component of another pattern. If we
identify the Oz axis with the direction of this wave vector, the second-order
nonlinearities will contaminate the directions ¢ = +in and +2r, leading thus to a
pattern of six-fold symmetry of the kind described above. At a later stage, this
pattern could evolve towards an hexagonal extended pattern, but the description of
this evolution is not possible using our simplified approach.

It is important to realize that the dynamics of the transition between the axial and
hexagonal symmetry is presumably very different from that of the roll-hexagon
transition. In the first case (J/,— H), both symmetries are amplified at second order,
while in the second one (R — H), only the hexagonal pattern is amplified. Qualitatively.
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we expect a greater stability for the axial symmetry than for the ‘roll’ one. This
prediction is in agreement with our experimental observations (compare figures 5
and 7).

Finally, we note that the solutions (3.25) are not invariant under amplitude
reflection {——{, because of the their J, component. These solutions share this
property with the hexagonal pattern and of course with the J, one. Our system
constitutes a very simple example of the influence of the symmetries on
hydrodynamic instabilities (see for instance Busse 1978; Buzano & Golubitzky
1983): positive and negative displacements of the interface are not equivalent, a
property that leads to the appearance of asymmetrical patterns with respect to the
unperturbed interface. In addition, for this kind of instability, the relevant
nonlinearities are of second order and favour the interactions of Fourier modes

separated by 60° angles. This finally leads to patterns invariant under a rotation of
60°.

4. Conclusion

In this paper, we have presented the first experimental study carried out in an
extended geometry of the Rayleigh-Taylor instability of a thin viscous film spread
on solid surface. We have observed that the nonlinear growth of this instability leads
to the formation of two-dimensional patterns exhibiting different symmetries:
‘rolls’, hexagonal, axisymmetric, annular of sixfold symmetry. The preferred
symmetries are the hexagonal and axial ones, but the other patterns can, however,
be forced at small ¢ before relaxing towards the hexagonal system. Starting from the
lubrication hypothesis, we have derived the evolution equation of the interface. We
have shown that the nonlinearities introduce a second-order term in the amplitude
equations that results from the non-invariance of the system under amplitude
reflection. By means of rather simple calculations, we have shown that these
quadratic terms explain the dominant nature of the hexagonal and axial symmetries.
We have also shown that an axisymmetric-hexagonal transition seems to be
possible, the intermediate patterns (annular of sixfold symmetry) involving
superpositions of ‘Bessel patterns’: J(qr), J4(gr) cos (60), J,,(g7) cos(126)....

All these results deal with the behaviour at short time. We have, however, given
a qualitative analysis of the dripping that we have observed at the latest stage of the
instability. Our argument leads to a critical Bond number B, = (¢,/A,)? & 0.04 above
which the final drops should spontaneously fall, the pendant drops remaining stable
below this threshold. In fact, we have observed that even for B < B, drops still fall
after coalescence between two pendant drops. This secondary instability of the drops
system obtained at large times deserves further investigation.

Another interesting aspect of our results is the observed evolution of the spatial
extent of the patterns. This phenomenon is obvious on figures 5, 7, 8 and 9. The
patterns are in fact nucleated in particular regions of the viscous pancake and
progressively invade the system. All the calculations made in §3 apply to infinitely
extended patterns and neglect this effect. A numerical study of this ‘propagation
effcct” is in progress (see Mitescu, Limat & Wesfreid 1990). A first theoretical
discussion can be found in Fermigier et al. (1991) together with a short version of the
present article. More recent data on the propagation effect, and on dripping processes
are also to be published (Limat et al. 1992).

After the completion of this work, we became aware of a previous theoretical study
of film instabilities (Hynes 1978) that included the case of the thin layer
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Rayleigh—Taylor instability. The results of this study agree with ours, except for the
J, patterns, whose growth was numerically found to dominate that of the hexagonal
patterns. This discrepancy remains to be discussed. We thank H. K. Moffatt for
having provided us with a copy of this work.

We have benefited from very helpful discussions with 1. Mutabazi, J. C. Nataf and
J. Prost. This work has received support from the DBT Program 1989 of the
National Institute of Universe Sciences (INSU) of France. One of us (M.F.)
acknowledges support from the National Science Foundation and the Centre
National de la Recherche Scientifique (NSF-CNRS contract n® 920075).
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