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Geometrical, topological, and energetical properties on an interface between the lametdrthe isotropic

sponge phask; are considered. The sponge phase shows a characteristic interbilayer sephrttadris

larger than the interbilayer separatidnin the L, phase. This feature controls the experimentally observed
phenomenon of orientational epitaxy (Quilliet, C.; Blanc, C.;rié;, M.Phys. Re. Lett.1996 77, 522) that

keeps the lamelldt, bilayers tilted with respect to the interface. We discuss the concentration profile near
the interface, the geometry of smooth matching between the bilayers of both phases and estimate the surface
tension of the,—L3 interface at equilibrium orientation of layers. The energy needed to deviate the layers
from the equilibrium orientation (“anchoring” energy) is calculated using the Fretd@htorova dislocation

model. The model also predicts faceting, which is observed experimentally. Both the surface tension and
anchoring energies are of the ordeiafl,, whereK is the bend elastic constant. The role of layer undulation

in tangential anchoring is discussed and illustrated experimentally. Finally, an outcome of the theory is that
the orientation is related to the topological parameter of the sponge phase (coordination number of the passages
introduced by Portet al, J. Phys. (Paris)1988 49, 511).

1. Introduction

One of the interests of soft matter systems such as colloidal
solutions of amphiphilic species is that the characteristic lengths
are much higher than in the classical objects of solid state
physics (between 10 to 100 nm). In particular, the order
parameter variations through an interface between such systems
are likely to occur on mesoscopic scales.

We present here a model for the interface between two phases
of membranes: the lamellay, phase and the “spongéj phase,
which are solutions of surfactants. Thg phase is made of
bilayers of surfactants, or membranes, separated by the solvent,
with a repeat distance, = 6 + dw, whered,, is the thickness
of the layer of solvent, and is the thickness of the membrane
(Figure 1). It has a smetic A symmetry: liquid order in the
membranes, and solid, or crystalline, order perpendicularly to
the membranes. Its free energy density is written

f, =", K(div n)® + Y,B(ou/dc)* + K g 1)

Figure 1. Approximate arrangement of surfactant bilayers in the sponge

whereu is the displacement of the bilayers measured along the Ls (above) and lamellat, (below) phases.

axis¢g perpendicular to the layerB,is the compression constant, o ) ) )
K andK are the bend and saddle-splay smectic elastic constantsh@ve in mind in the present theoretical work is the symmetric
which respectively specify the energy cost of the mean and SPonge phase, whose widely admitted model is as follows: it
Gaussian curvature of the smectic. The unit normal to the layersiS made of a single bilayer without edges nor seams, separating
is the directom. We have divn = +(o1 + 05) of the order of the whol_e_ so_lvent into tW(mquwaler_\tent_angled _partshenc_e
+(92u/8x2 + d2uldy?) if the curvatures are small, anp= 0107; the qualification ofsymmetricand bicontinuousgiven to this
o1 and o, are the principal curvatures of the layérs. model of the sponge phase (Figure 1). This bilayer has a
The Lz or sponge phase is more complex; it is isotropic but nontrivial topology, with many connections such as handles,
birefringent under shear, and generally stable over a rather®' Passages, and shows a zero average mean curvature and a
narrow range of compositions. There are probably several Negative average Gaussian curvaftiteThis phase has no
sponge phases, among them the “symmetric” and the uasym_posnmnal nor orientational order; it features a typical interbilayer

metric” are clearly documented (see below). Thehase we distanceds; which has been put experimentally into evidence
by X-ray and neutron small-angle scatterinds does not

* Author to whom correspondence should be addressed. correspond to a Bragg peak, of evidence, but to a bump in the
lUniversit’ePierre-et-Marie-Curie. intensity vs wave vector plét. This distanced; is also
Kent State University. ; iotic ai
§ Unité de Recherche Assd@€09 du CNRS, assd@eaux Universite acknowledged as being the characteristic size of“passage_s ,,Or
de Paris VI et Paris VII. handles. We shall adopt the above model of the “symmetric

® Abstract published irAdvance ACS Abstractf)ecember 15, 1996. sponge phase.
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Figure 2. Definition of anglesf, and 6, that thel, bilayers make
with the interface.

Experimental studié$ revealed that there is a nontrivial tilt
angle6 between the., bilayers and thé.,—L3 interface. The
order of magnitude of this angle is consistent with the hypothesis
of matching between the two characteristic distartzesndds
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In theLs phase, we adopt the LandaGinzburg free energy
by adding a gradient term to the expansion due to Wenrienstro
et al./ viz.

fy=—t¢’ + v4° + W(V4)’ 2
wheret, v, andw are positive elastic coefficients. We know
that this expression of the free energy is controvei8ial two
respects: in the first place, as shown by Cates, Retual, 1011
the thermal fluctuations of the membranes, which are well-
known to renormalize the curvature moduli, yield a logarithmic
term in the free energy (of the fordf® = t'¢3 In ¢), which can
be dominant at very high dilutions, i.e., when the characteristic
length d; (which is of the order of the distance between
passages) is large, compared to the de Gennhaspirn?2
persistence length= o exp4rx/ksT, wherelmo is @ molecular
length; in fact, the samples we have been investigating are well
above this high dilution regime, and we can safely forget the
logarithmic correction. In the second place, we do not know
how the rigidity coefficientw scales withds; it might diverge

of the two phases in contact. Nevertheless, by considering morefor large dilutions; but again, we are not in a regime of high

accurately the data of Quilliet al.,®> we may observe a general
tendency of the measured valéig of 8 to be higher (by~15%)
than the valu@* = sin~(d./ds) calculated from the X-ray data
and the epitaxial matching hypothesis. The hypothesis is
nevertheless still consistent, when a modification of the
characteristics of thés phase near the interface is taken into
account. This point is treated in section 2, utilizing a Landau

dilutions. We therefore adopt the Landa@inzburg free energy
expansion in the form 2 above.
The Euler-Lagrange equation which minimizes the total

energy[ofs (¢, (0¢/92) dz is

2W(°pla7) = —3tp* + 5vg” ()

Ginzburg expansion type. In section 3, we present an estimationand at equilibrium we have

of the surface tension at the matching angjlg and in section

4 we study how the surface energy changes when the bilayers

deviate from the matching value, in the framework of a
Frenket-Kontorova model. In other words, we address smaller
and smaller typical distancé&swhen going from section 25(

> d,, ds) to sections 3 and £(~ dq, d3). The results are then
compared to experimental data.

2. Concentration Profile near the Interface

We are investigating the nature of the transition layer at the
interface between the lamellbg and thel; sponge phase in a
swollen surfactant. As stated above, we have experimental
evidencé® that the contact between the two phases at equilib-
rium, in the biphasic region, is of the “epitaxial” type, and is
below any “roughening transition”, so that the contact yields
faceting® The epitaxy is defined by the ratidy/d; = sin 6*.

The optically measured tilt anglé, of the bilayers (Figure 2)
is systematically larger than the X-ray deduced aijleand
the following considerations will also tend to explain this.

Thel, and thel3 phases in equilibrium do not have the same
composition; the transition is obviously first order, as in any

3t = 5Svg’ 4)
The positivez axis is along the outward normal to thg
phase. Sinces; = ¢. for z infinite, and @¢/92),=. = 0, the
first integral of eq 3 is
W(3pl2)* = —t(¢° — ¢3) + v(¢° — ¢3) (5)
which, using eq 4 and after some standard manipulation, can
be written:

wW(dpla2° =1, v[3¢°(¢° — ¢3) — 20%(¢° — 3]
= 30(¢ — ¢)° (203 + 4930 + 6py0° + 3¢°) (6)

It is interesting to notice that the last member is always
positive. Hence, this equation makes sense whatever the value
of ¢ may be.

Let ® = ¢ — ¢3, we get

phase transition between multicomponents systems, generically.

Therefore the surfactant volume fractigh shows a jump
¢3 — ¢o When going from thel, phase to thel; phase.
However this cannot be so in the experimental situation: the
surfactant bilayers must vary continuously through the transition

W(d¢/02) = W(dD/02)* = Sug3d* + O(D%)  (7)
Hence
5 3
c1>=<1>0exp[—w ?33 z] + .. 8)

layer, for obvious energetical and topological reasons; therefore, Where®o = ¢o — ¢s.

the solvent volume fraction also varies continuously from its
valueg, = ¢,=—« in the bulk of thel, phase to its valugs =
¢2=+w in the bulk of thel; phase.

We analyze the transition region in two steps, first in lthe
phase, second in the, phase. We assume a sharp transition
atz= 0, and a smooth variation on both sides, in thehase
for z> 0, in thelL, phase forz < 0.

Asis large even whed ~ ¢; in this caseAz ~ 2d3¢5

Looking at orders of magnitude, let us introduce the sponge

transition width Az = v/5wW/(vgs®) ~ 2dgp, ¥, whered =

vW/v is some material lengtlaf leastof the order 0f). Thus
12 .

, since
ds = u(d/¢), whereu is a numerical coefficient, of the order of
1.4, experimentally. Taking¢s ~ 5/100,ds ~ 40 nm, one gets

Az ~ 360 nm.
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What happens at the interface = 0 deserves further
comments. Lets.—o anddy.,—o be the values ofl; andd, at edge
the interface; we have

dot;z:O 6
b0 = Sing, 03 ©) :

-

seam
A
where we have introduced the dimensionless variafdg ;—.
= u in the bulk. This variable is related to the coordination

number of the passagésNotice that, because of the continuity N

lindrical brid,
of ¢ at this boundary, which yield$o = ¢3.,—0 = ¢a:z=0, the eyncnebrcee
]
\
Qi ‘
\
Y
N

second equality in eq 9 can be written:
Uy—oSINOy =1, (10)

sinced,.,—0 = d/¢o (apart of logarithmic corrections, which are
anyway small in the little swollen surfactants considered here).
We shall show soon thd, is close tof,. Hence, taking for

. > brid )
the value offy the optically measured,, we see that the N cuP/n_geS__\
coordination numbeZ at the boundary can be estimated directly ¢ N /
from the experiment. We postpone to sectiha more detailed d
discussion of the topological parameter Figure 3. Healing of free bonds with an edge (a), seam (b), cup bridge

The boundaryz = 0 is a surface of continuity fog, but a (c), and cylindrical bridge (d).
surface of discontinuity for the density of passages (which
vanishes in the, phase) and foZ. As such,z= 0 can be
considered as the boundary between the lamgllgshase and
the spongd.3 phase. In the, phase, we expect the lamellar
layers to bend in order to react to the normal Ginzburg force
on thels side, relaxing from the valu@, near the interface to
Om further in the bulk (Figure 2). A calculation given in the
appendix shows that the relaxation length of the membranes
deformation is of the order ok, ~ v d, A/ sin 6%, which is
of the order of a characteristic length in the L, phase, i.e.,
much smaller tharhs. This calculation does not yield the value
of 6y and 6, directly; another relation is required, which states
that the boundary is in mechanical equilibriumzat O:

ofy  of,
E z=0 B E
We expect, ~ B(0p — 0m)? exp(Z/As) = BOZ exp(2Z/Ay)

andf; ~ —@3(kgT/6%). Sinceg — ¢3 = Poexp(—2z/Az), eq 11
yields

(11)

z=0

Figure 4. Matching structure of thés—L, interface with continuous

2 szT Ay 2d3 Ay bilayers for the matching angké.: (a) cubic model and (b) relaxed
Oy 1Py~ 3¢36TB Al ~ S Al structure; local Gaussian curvature is positive in zone 1 and negative
3 3 in zones 2.

Hence ®¢ = 6y — O is rather small; witht = 1.4,d3/0 = 20,
Ao/Az = 1/10,Py = ¢3/100, ¢p3 = 5/100, one getgo — ¢m ~
50,

4). As we shall see below, it is the geometry (c) that results in
likely the smallest energy of the interface and naturally provides
the matching conditio® = 6y, = sin~(d,/ds) for the tiltedL,,
bilayers.

(a) An edge of an individual bilayer and a seam (a junction
of three bilayers) have molecular-scale curvaturd¢d. The

The interfacial energy is defined by an excess energy of line energy is hig#;1314of the order ofk/d, wherek, is the
healing of “free bonds” that are exposed when the two phasesbending modulus of the monolayer. The surface energy of a
are cut and put in contact along the interfacial plane. Topology unit area is then roughlyg,e ~ «msin|0|/dd, for the L, side
and energy of the interface strongly depend on the tilt afigle andose ~ km/0ds for the Ls side.
between the, bilayers and the interface. In this section we (b) Bridges provide healing by connecting pairs of bilayers.
analyze the case of matchir= 0., = sin(dy/ds sur), where A semicylindrical bridge (Figure 3c) that connects two neigh-
ds surf is the periodicity of the surface layer of theg phase boring L, bilayers has a curvature1/d, and line energy~
(Figure 2). According to our discussion above (section 2), we «/d,, where k is the bending modulus of the bilayer. The
haveds surf = ds.—0. For the sake of simplicity, we shall note interfacial energy per unit area of the side is thusoyp ~
this quantityds. ksin@)/d,2. For thels side, the analog of a bridge is a cup of

There are three basic geometries of healing: (a) with “edges” positive Gaussian curvature @@)? that covers oné; passage
and “seams” (Figure 3a,b); (b) with “bridges” and “cups” (Figure (Figure 3d). The energy of one cupis(2« + k) and thusss
3c,d) and (c) with alternating “passages” and “bridges” (Figure ~ (2« + k)/ds% herek is the Gaussian curvature elastic constant

3. Microscopic Geometry of theL,—L3 Interface and
Estimation of the Interfacial Tension
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for one bilayer £ = Kd,). Since the curvature of bridges and

cups is smaller than that of edges and seams (especially forof the troughs.

sufficiently diluted phases)gop, 03p < Oge 03e Thus a
realistic model of thé.,—Lgz interface should operate with pairs
of bilayers.

(c) To illustrate the most plausible geometry of healing with
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of then-th and (+1)-th bilayer from the corresponding bottoms
Therefore, the derivative of the bilayers’
displacementi along the bilayers’ normat can be expressed
asau/ag = (av/ax) + p cotfy, and the compression energy as
1,B[(av/3x) + pcotdm]2.

In fing, the equilibrium position and its global energy results

passages and bridges, one can first employ the cubic model offfom a balance between the potential energy and the compres-
the sponge phase and the corresponding “square” model of thesion energy. The problem formulated this way is reminiscent

interface, in which thd_z surface is represented by a set of

squares with sideds, separated by distances (Figure 4a).
With the L, bilayers tilted by the angléy,, all the edges of

theLs squares, which are oriented along the gxa&re matching.

of the Frenke-Kontorava modelof a chain of identical particles
connected by identical springs, subjected to a force which varies
periodically along the chail. A number of author$-1° have
extended this model by allowing the nonconstrained period of

These edges are shown by bold lines in Figure 4a. Nonmatchingthe chain to be different from that of the substrate potential;

edges of squares (plain lines along #exis) and nonmatching
parts ofL, bilayers (dashed lines along tgexis) form a new

set of squares shifted by distangewith respect to the initial
set. These squares can be filled with plaquettes ofdsize ds
(shadowed areas in Figure 4a). Obviously this arrangement with
flat plaquettes will relax as in Figure 4b. The junctions between
thelL; passages and theg planes have partly positive Gaussian
curvature (Figure 4b, zone 1) and partly negative one (Figure
4b, zone 2). The energy of the interface is likely to be a linear
combination ofc andk. The above discussion suggests that
enters inom as om ~ arx/ds? wherea ~ 1 is a geometrical
constant; the term can reduce the energy due to the presence
of the passages; heneg, ~ (ax — cx)/ds?, wherec ~ 1 is
another geometrical constant. Near the-Ls phase transition
the saddle-splay constants expected to be positive or, at least,
close to zerG:*> Therefore, the surface tensiam, of the
interface is majored by, ~ ax/ds?. With « ~ kgT andd; =

40 nm, one getsy, ~ 107% J/in? (1078 erg/cn?), i.e. a very
small value. In principle, to this value two additional terms
should be added, that come from the integration of the gradients
of concentration and tilt over distances respectivehyandA.
These two terms are of the order Of\ICDS/Ag and
BA(0o — Om)?, respectively. Since we foundl; to be rather
large and §o — 6m) to be rather small, we do not expect
significant changes in the estimate af above.

In the following section we discuss what is the energy
W(O — 6) needed to deviate thg, lamellar bilayers from their
equilibrium substrate-imposed tilted orientation; this quantity
is often called “anchoring energy” in the physics of thermotropic
liquid crystals, see, e.g., review by Blin@t al®

4. Orientational-Dependent Part of the Interfacial Energy

The action of thel; substrate on the configuration &f;
bilayers can be modeled by a periodic potentigl In the
“matching” statef = 0m = sin~Y(du/ds sur), theL,, bilayers sit
at the bottom of theJ; potential troughs; in this section we
will continue to denoteds sy asds. The surface tensioom
estimated above corresponds to the matching state. Any angula
deviationsp from 6 = 6, should increase the interfacial energy.
Whenp = 0, the spacingly/sin(@m + p) ~ d3(1 — p cot Oy)
between the bilayers at the interface does not majchn order

this is the case we consider below.

If the interface is sufficiently long, the mismatch would create
dislocations along the interface. Whigh < 1, the dislocations
are well separated and the final surface energy includes the
energy of a numbeN of dislocations (per unit lengthN|b| ~
|p|, whereb is the Burger’s vector of the dislocation). For an
isolated dislocation, the displacementiould be changing from
v = 0 at one end of the interface, sayxat> —, to v = +b
at another end — . We do not consider the case whigi
becomes large enough to produce phenomena such as com-
mensurateincommensurate transitions (for a complete analysis
of these, see the recent book by Chaikin and Lubetiskiye
estimate of the criticallp| (below which the model is valid for
our system) is given below.

The energy of interface per unit length along thaxis can
be thus written as the integral

U= ffw[ug(v) + 1@51\(%(

+ pcot Hm)Z]dx (12)
wherev = v(X) is the displacement field\ is the length along
thez axis, on which the compression is effective (to be estimated
below).

Since the quantity of interest is the differeriddetween the
energy of the dislocated state and the energy of the dislocation-
free state, then the-independent terr,BAp? cof 6y, has to
be subtracted from the integrand in eq 12:

u=/L

The equilibrium arrangement of layers corresponds to the
solution of the EulerLagrange equation for the functional (13):

U,0) + 1/231\(@)2 + BAp(@)cot 0.

dx dx dx

(13)

iy _ s

BA&— - (14)
The first integral of eq 14 is of the for#h
r
2
1/251\(%() = Uy) +e (15)

to decrease the corresponding expense in the potential energwheree is the constant of integration whose value should be

Us, each bilayer has to displace toward the nearest minimum:
this may induce some compression energy @herm in eq
1).

The compression energy of thg, bilayers can be easily
derived if one considers the constraints imposed on the
coordinatesx, and x,+1 of two neighboring bilayers by the
changep in tilt. Obviously, the bilayers would remain un-
strained when their separatiofys — Xy = d3 + vpe1 — vp
measured along the axids equal tody/sin(@m + p) ~ d3(1 —

p cotfy). Herev,andvni; are, respectively, the displacements

determined by minimizing the energywith respect te. Itis
easy to see what is the physical meaning of the particular value
€ = 0: the case = 0 corresponds to noninteracting dislocations
separated by infinitely large distanckes— «. Really, for the
isolated dislocations the interfacial junctions between lthe
and L3 bilayers far away from the dislocations cores are not
disturbed; therefore, in the remote regiongt = 0 andU; =

0 (the latter means that = 0, +b). With these boundary
conditions imposed, the first integral of eq 14 gives the result
(15) withe = 0.
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Physically, in our model of thé,—Ljs interface (which has
no dislocations in the ground state)= 0 corresponds to a
small deviation|p| << 1 of the bilayers from an equilibrium
orientation. Below, following Chaikin and Lubensk§ we
estimate the critical valugo| above which the ground state

Lavrentovich et al.
The periodic potentials can be taken sinusoidally:

UO( - COSZL)

Uy(v) = 5 (21)

contains interacting dislocations separated by some finite With periodP; and amplitudeJ,. Below we discuss the possible

equilibrium distancel(¢). We substitute eq 15 into eq 14
(taking into account different signs for positive and negagiye

and use the idea that the displacement fie(g) changes by

the Burgers vectoi b whenx changes byt L:

_Ndy b
U= Jov/2BA(Us + e)dv — el — BAbJp|cot6,) (16)

wheren is the total number of bilayers along theaxis. The
equilibrium conditiondU/de = 0 has only two solution¥®

L =0

and

tand,, .»
2(U; + €)/BA dv

lol =

(whenL is finite). The critical valudpc| above which the finite
separationL between the dislocations becomes energetically
preferable, is thus

° J2U/BA

lpel = (17)

As we will see below, the average value\bPU4/BA is likely
to be of the order of 0:11, thus the critcal tiltp.| is large, of

the order of tens of degrees. Since we are primarily interestedthe minimum ofUa.

in small deviations from the equilibriump| < |p¢|, we can
proceed with a simple case of independent dislocationsecand
= 0.

The (positive) energ¥(p) per unit area needed to deviate
the bilayers from the equilibriurd = 6, by a small anglép|
< 1is therefore defined a&(p) = o0 — o = Ug/L = Ug|p|cot
Om/ds, whereUy is the energy per unit length of one isolated
dislocation. We use = 0 in eqs 13 and 15, and take into
account different signs of the derivatige/ox for p > 0 andp
< 0 to find first the energy per unit length of one dislocation:

=/ [BA(dV) +BAp cotd 3

ﬂ) 2BAU,dv — |p|bBA cot6,, (18)

and then the-dependent part of the interfacial energy that scales
as|pl:

Wee) = o /2ol cot [y Ustiow +0() (1)

To estimate the absolute value of the anchoring energy

coefficient
VZBA
W, = B oto,, fo U,(v)dv (20)

one has to specify the periodic potentid that models the
action of the sponge substrate as wellAas

values ofP; and Uo.

Psis directly related to the surface valuedaf At first sight,
one can choosB; = ds. If P3 = ds, then the Burgers vector of
the dislocation considered above must be takeb astP; =
+d;: Frenket-Kontorova model above does not allow disloca-
tions other than the elementary ones vitlr +P3 = +ds. For
example, there are no solutions with double Burgers vdator
= 42P3, which is easy to verify by calculating the equilibrium
displacement field/(x) for an isolated dislocation using eq 15
with € = 0 and the explicit potential (eq 21):

7th 27 [ Yo L
tan—— ex;{j:— ﬁ(x E)]

4P, P
where the dislocation center is locatecat L/2: the coefficient
tan@rh/4P3) eliminates solutionb = +£2P3. On the other hand,
topological peculiarities makie = +2d; dislocations energeti-
cally preferable over the dislocatiobhs= +ds, as discussed in
section 3. In fact, the junctions between the pairs of bilayers
and the smoothly connected handles have a periodicitys
= 2d;, as it is clear from Figure 4. Therefore the periodicity
of the potentialJ; should be set aB; = 2d;. With P3 = 2ds,
the dislocationsh = +P3 = +2d; represent an elementary
dislocation for which the above calculations within the Frerkel
Kontorova model are justified.

The amplitudeU, can be estimated as the energy of elastic
reshaping of the_3 handles when a bilayer is displaced from
The reshaping is due to the necessary
continuity of the bilayer between thg andL3 phases. Hence
Up is strongly related to the elasticity of thg phase. We do
not know much about this latter, but it is likely to scalekdd;
= /c/d§ per unit area. The saddle-splay constant does not enter
Up as soon as the shifts of the neighboring bilayers are nearly
equal and topology of the handles is preserved. In the core of
the dislocations the topology is broken and geontribution
might be nonzero; one can include this contribution into the
“core energy” of the defect.

With P; = 2d; and Uy ~ K/ds, one gets for the energy per
unit length of dislocation line

8
Uy~ —/BKA, + O(p)

We can test the validity of this latter result by using the results
of the smectic elastic theody. In smectics, the lateral extension
(here ing direction) of the dislocation core of Burger’s vector
bis 20%/. We can compare this quantity with the characteristic
length in the FrenketKontorova dislocation over which the
displacement changes kb; as follows from eq 22, this length

is approximately| 2d3;vBA/Up (numerical calculations
using eq 22 show thatchanges by-0.95 x b over the interval

| defined as above). This comparison provides  10d, which

is an upper estimate, since is of the order of the relaxation
length A, ~ d, calculated in the appendix. Note thbl
somehow smaller thali/d; taken above, would allowk ~ A,

~ d,. In any case, although the exact solutiofx) can be
obtained only numerically in a discrete model, it is clear that
for |p| < 1 both the exact and the continuum solutions preserve
the dependenc®/(p) ~ |p|; their difference is expected only

2P,
y=—"rtan "
JT

(22)

(23)
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in the energy of the dislocation core whengdk is large; even reminiscent of thermotropic smectic droplets where spherical
here, however, the exact results should not depart in the orderand generic focal conic domains form a well-established

of magnitude from the ones found above. hierarchy®-2” controlled by the balance of the surface and elastic
Now we are in the position to estimate the anchoring bulk energy?®2° One might worry if the elastic energy of large
coefficient in the continuum model as L droplets with numerous defects could overweigh the surface

energy. Although we do not know the exact configuration of
layers in large droplets with multiple defects, this is unlikely:
the family of focal conic domains forms a fractal object whose
energy scales @™, where the exponemh is still substantially
smaller than 2° On the other hand, elastic bend energy can
influence the size of the smallest domains in the droplet, at scales
where the bulk and surface contributions are compardble.

L,—Ls interface energy is similar to the anchoring energy of Because of the estimates above, for thephase we expect

the interface between a thermotropic smectic A phase and athIS §cale to.be small, of the. order df.

homeotropically treated walk23 In both cases it is the layered Wit elastic energy negligibly small f&R > d,, the shape
structure which makes the leading term in the surface energy©f the Ly droplets filled with Dupin cyclides is defined by the
nonanalytic YW(p) ~ |p|) and large: the anchoring coefficient balance of the two surffice terms, the “|§otrop|c" surface tension
~Kld, in eq 24 can be compared to the valaeK/lmo om(0 = 6m) and the “anisotropic” anchoring energy(6 — ).
experimentally found in thermotropic smectic A far from the If the anchoring were weaklV < o, then the droplet would
smectic-nematic transitiol¥. An important difference is that ~ adopt a shape close to a spherical one. However, as the
the lamellar bilayers at thie,—L3 interface can have nontrivial ~ Frenket-Kontorova model suggests, the anchoring coefficient
(and large) tilt6,, imposed by the peculiar structure of the IS large,Wyom ~ 1 + 10. As aresult, thé, droplet shape is

8 [BKA
W""Nn d,

cotf, ~ (1= 10)(;‘—2 ~(1+10), (24)

which is rather largeW, ~ (1076—1075) J/n? with typical
estimatesc ~ kgT andd, = (20—40) nm.
Note in conclusion that the dislocation contribution to the

sponge phase. nonspherical to allow the surface orientationLgfbilayers to
be as close t@ = 6, as possible over the whole interface.
5. Discussion and Comparison with Experiments With Wyom ~ 1 + 10, angular deviationfp| = [0 — 0| >

0.1 rad on extended portions of the surface are unlikely.

The situation is reminiscent of the phenomenon of faceting
known for solid crystals. In both cases the underlying mech-
anism is the presence of cuspp) ~ |p| in the surface energy

Nucleation and Shape of l, Droplets. Let us briefly
summarize experimental findings on nucleatingdroplets in
an L3z sponge matri%® which reveal a phenomenon of orienta-
tional epitaxy at thé.,—Lz interface. The tilt angl®y, is close . -
to the vglueﬁyz sin~Y(d./ds) expected from the k?ypothesis that functior?® and of a large value of the coefficieMs The
the layers are tilted to match the characteristic distadgesd faceting inL, phase features two important differences as
ds > d, in the two phases. The shape of the droplets of 10 compared to the solid crystals. First, because of the one-

100um size is highly nonspherical and show either cylindfi€al dimenfional positional order,_the facets of the Iame_llar “monoc-
or more complex logarithmic spifaprofiles. The logarithmic rystals take the shape (_)f conical sur_faces of revolution. Sec_ond,
spiral droplets have a concentric spherical packirig,dilayers. since the bend energy is small, the inner structure can be highly
Larger droplets are more spherical; however, their boundariesPent: One can imagine that small nucleating droplets are in
are made of curved surface regions; the inner structure containdh® shape of spherical layers enveloping a nucleation site (for
many defects that are hard to decipher. example, a dust partl_cle). When sut_:h a_droplet grows, it
The free energy of thi, droplet of radiusR that nucleates preserves the concentric sphenca_ll packing since the transforma-
in the sponge matrix is defined by the condensation energy gamtlon into a set_of flat bilayers requires topological f:hanges (e._g.,
~AFRE < 0 (Af is the bulk energy density difference between ©ne€ has to drill out a cone to unfold the concentric layers) with
theL, andLs phases), the elastic energy«R/d, > 0 of possible high elastic and anchoring energy penalties. With spherical
bend deformations (see the discussions below), the surfaceP@cking preserved, the surface adopts a logarithmic spiral
tension energy-omR2 > 0 and the surface anchoring energy faceting” with 6 = 6y and o = o for concentric layers
~W(p)R2 > 0. We restrict our consideration to the case where Crossing the interface. Although the logarithmic spiral geometry
R is large enough to provoke spontaneous growth; it is does not provide the absolute minimum of the surface energy
apparently the case for the droplets studied experimerftally. (€-9., conically shaped droplets with flat layers of the same
The surface tension estimated in section 3 is rather small, Volume are of smaller surface afeat is stable over long
Om ~ klde2 ~ 1076 Jn?, if compared to surface tensions at duration of observatiorsExperiment8also show that angular
other isotropic-liquid crystal interfaces (for example, it is about deviations fromg = 6, are small: |p| < 0.1 over more than
1075 J/n? for the thermotropic nematic-isotropic interfaterhe 90% of the total surface area, which agrees with the estimates
smallness obr, is natural in our model of matching since the ~ Of Wo/om above.
layers preserve continuity when crossing the interface, see Figure Tangential Anchoring. In the limiting case of tangential
4, anchoring,0 = 0, thel, bilayers are parallel to the interface
Despite the smallness of,, the surface energy term definitely ~and thus avoid crossing it. The interfacial region can be
overweighs the elastic energy term > d,, since the latter composed, for example, of passages connecting the sponge bulk
generally scales asR/d,; the ratio of the surface-to-elastic bulk  to the L, bilayer that is the closest to the interface; similarly,
energy is thus of the order &d,. The smallness of the elastic  thels passages can be covered with cup-bridges shown in Figure
term precisely implies that the layers have the shape of Dupin 3d. The curvature contributicai«/ds? to the interfacial energy
cyclides, see the review by Boltenhagetral?®> Among these oy is of the order ofoy, &~ ax/ds? estimated in section 3 for the
are spheres and focal conic domains. Spherical packing of matching case, or even smaller thapy However, for tangential
layers is observed in logarithmic spiral droplets of radius 10  anchoring there is another contribution to the interfacial energy
100um. Thus the elastic energy of these dropets scalég as o). Thel, bilayers that run parallel to the interface are subject
as follows from eq 1. In largdr, droplets, one experimentally  to alternating attractive and repulsive forces set by lthe
observes numerous focal conic domains; these droplets arestructure and thus experience an undulating action of the type
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Figure 5. Undulation of lamellar bilayers at tHe,—L; interface with
tangential anchoring.

U = Up cosfrx/ds) with amplitudeup ~ d, (Figure 5). A classical
calculation in smectics elastictty! shows that there would be

a contribution to a surface energythat scales approximately
as«/d,A. Obviously this effect of undulations would vanish
when the layers have quasiperpendicular (perpendicular or
highly tilted) orientation at the interface.

The relative stability of parallel or quasiperpendicular anchor-
ing of the lamellar layers on thie,—L3 interface will depend
on the relative values of the curvatuak/dz? and undulation
«/doA energies. A largd value would induce preferentially a
parallel anchoring, while for a “harder” lamellar phase with
small 4, a tilted anchoring would be easier.

In view of this possibility, it is interesting to observe the
behavior of a lamellar phase in whidhcan be tuned. A good
candidate is the ferrosmectic system, a quaternary mixture SDS/ y
pentanol/water, whose swelling solvent is composed of cyclo-
hexane with a suspension of magnetic nanopatrticles. When only
the magnetic particles volumic fractigg in the swelling solvent
is increased, theh decreases whild,32 and«33 remain constant.
Moreover, this system presenté aLs phase transition when
increasing temperature, which allows us to obsexrydroplets
into the spongel; phase as in refs 4 and 5 and provides
information on the tilt angl@,,. Figure 6 shows such droplets
in two systems that differ only by their solid particles contents. Figure 6. Polarizing optica}l microspopy opservation of birefringent
In Figure 6a the droplets are spherical with a concentric spherical - droplets of a ferrosmectic in the isotropic sponge pHasat T~

Ki f bil - th horing is bl h | 50 °C, of a quaternary mixture of sodium dodecyl sulfate (SDS) 4.6%
packing of bilayers: the anchoring is planar. These droplets weight/pentanol 4% weight/water 11.6% weight/swelling solvent:

have been obtained in a system of low global magnetic particles suspension of magnetic particles in cyclohexane, 79.8% weight. (a, top)
volume fractiongy,; the smectic penetration length of the ¢p ~ 0.008; (b, bottomp, ~ 0.023;¢, = volume fraction of particles

lamellar part is then large. Figure 6b in contrast shows what in cyclohexane.

happens in a system whetés small andp, large: the droplets iy

are anisotropic, which is characteristic of a quasiperpendicular ™~ f =~ 7 7T T T T T T T T T T T T T
orientatiort626:34and large anchoring coefficient. These features .

are then consistent with the tendencies discussed above. Ls ’

Topology of the Bulk and Interface. The above model of L . ]
matching of tilted layers implies a smooth transition between 14 [ ‘ ’ .
topologically different phases. Spatially changing topology falls i . ° ® ]
within a broader circle of problems related to the role of the 13 [ : ]
topological parametex in the L,—L3 transition. Our consid- f ] ]
eration in section 2 suggests that its surface valug can be 12 b ° b ]
estimated experimentally from the data@ asu,—o ~ puz=om [ o o $ ]
= 1/sin6p,, see eq 10. In Figure #z—omis plotted as a function ]
of weight percentage of brine,, not much different from (1
— ¢) x 100, with data reported by Quilli&t al> It turns out S i
thatu,—o mis slightly smaller than the bulk vali#. According 170 75 0 45 90 05
to Porteet al.,? u relgtes iq some way to the coordination number Figure 7. Plot of s
Z of the passages in an ideal “cubic” model; the Scherk surface
yields Z = 6, i.e.u ~ Z/4 = 1.5: the sponge phase has Another interesting feature of Figure 7 is thato n changes
seemingly a coordination number close to 6. A smaller value with ¢: u,—omis approximately 1.1 for the larger values of
u < 1.5 means a smaller coordination number. Intuition goes (=0.2), and approximately 1.3 for the smaligs, which might
the same direction as the experimental result which states thatindicate that there is some difference in the sponge phase
u decreases when one gets closer to the interface: the coordinastructure for the two regimes of dilution. Other experiments
tion number vanishes in thie, phase, and we expect that in carried on the same system ref 35, ref 36 (measurements of
the sponge phaséshould decrease monotonically through the birefringence under shear), and ref 37 (detailed phase diagram)
transition region. For instancéy = 60°, sin 6y = 0.87 (close also reveal two types of sponge phase. Measurements show
to experimental values) yields ~ 2.31. that in the more dilute samplgs< 0.2 the birefringence scales

r-

om = 1/sin Qm VS Pbr.
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as expected in the usual model of the “symmetric” sponge phasewhere A and® are operators acting daandT only. Itis a

(i.e. as¢=239. The less dilute samplegs > 0.2, show a long, but easy calculation, to show that

different behaviof® All the above theoretical considerations

in this article, in particular the study of the concentration profile, (A +i©) = [A(psin 6,, + iq cos6,)* — p cos,, +

section 2, were based on the symmetric sponge phase model.iq sin6, J[A(psin6,, + iq cosd )2 + pcosh, —iqsiné,]

Note that a spontaneous symmetry breaking of the symmetric m m m Ag

sponge to an “asymmetric” sponge phase, where the two media (A3)

of solvent are not equivalent, has been predicted general wherep = d/dz is acting onSandT. Clearly, the solutions of

grounds and experimentally obser¥®ih a system different eq Al are of the formu = U exp piZ x expigx + c.c,

from ours. wherepy’s are the eigenvalues of the operar To see the
nature of the solution it is enough to consider the solutions
obtained by equating to zero only one of the four factors which

6. Conclusion enter inA2 + ©2 = (A + i®)(A — i®). The first factor in eq
A3, for example, has solutions

The phenomenon of orientational epitaxy at thg—Ls . _ . .
interface is an interesting example of anchoring behavior in cosé,,, — 2iAgsin 6, coso,, + \/cos,2 0., — 4ilgsin6,,

liquid crystal systems and deserves further studies. On theP = i
. . ; 24 sin 6,
experimental part, freezdracture studies are planned in order (Ad)
to verify the epitaxial phenomenon and matching continuous
geometry of layers depicted in Figure 4. Hoffmaetral® have which display two lengths of relaxation and two periodicities.

published remarkable freezéracture microphotographs of flat ~We are interested in the relaxation lengths. Let
interfaces with tilted_,, bilayers for theL,—L3 biphasic region;

although they do not mention the phenomenon of orientational cog 0, — 4iAqsing,,
epitaxy, their results give additional support to the idea of o= " (AS)
matching. Other geometries of matching might include twist 24 sin” O,

boundaries suggested by Thometsal#® for lamellar block _
copolymers. Extended studies of ferrosmectic systems subjectandw be the argument of the complex numbay such that

— A ; — 202 <i 1/2
to the magnetic field would also be of importance: first, for giij’“) iilllﬁar?m zm4,1 (s?r?ijgogala '?heSLrjaleerRf
direct measurements of the surface tension; second, for produc- ptiy), 1.e. 4 q m P @

ing field-orientedL, “monocrystals” with faceting at equilib- reads

rium. Theoretically, it would be interesting to clarify how the cosé,, cosy/2 cosé,, 1+ cosy
topological parametey behaves during thd,—L; phase R = T3 = A / > (AB)
transition, across thie,—L3 interface and with changing. The 2 cos”y sir’ 6, 24 sin’ 6, cosy

adequate form of the relevant free energy expansion with
gradient terms for broad range of concentrations also remains
a problem to solve.

Rp— cosby, 14 [Ltcosy|_
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Now, to look at orders of magnitude, we introduce in the
Appendix equations above the bulk values @& and d, instead of the

PP exact values at the interface:
Figure 2 represents the coordinates atzhle 0 boundary.

p cod 6, + 162°q° i’ 6,
The contact angle i®y, but since the transition layer is of l+tarfy = ~

4
mesoscopic size, i.e. not recognizable with the polarizing light cos b, ) - pp. s
microscopy, the measured quantity . The equilibrium (d;" — d,)" + 647°A°d,,
equation of the smectic layers, observed at a scale larger than «d 2_ 4 2)2 (A8)
3 o

ds, i.e. in a continuous model, is

. ) This quantity is not much different from (6212d,?)/(ds?> —
izﬂ _du (A1) dy.?)?, since (2 — dy?) is small compared tos8ld,. Within
ot 9&? the same approximation, it is large compared to unity, and we
08 .
eventually find

whereA? = K/B is the penetration length squared, anthe A1z
layers displacement, measured along &haxis, and periodic ~ nd;
along thex direction, with perioddz.—o = 27/q. Letu= (S+ P
iT)expgx + c.c, whereSandT are the functions of alone.
Equation Al reads This result assumes that the periodicity of perturbations at the
interface isds; with a periodicity taken twice as large, as in
(A +iO)(S+ iT)expgx + c.c.= 0, (A2) section 3, one would geRp ~ (rds%/24d,3)1/2

}F (A9)
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The conclusion is that the relaxation lend®ip~ ~ sin 6*
(deA/m)V2 is of the order of the characteristic distances in the
two phases, hence much smaller than the widthof the
transition region. The anglof the bilayers relaxes elastically
on the relatively short distané&p to its bulk valuef,,, which
cannot be significantly different frorfl,, On the other hand,
the bilayers suffer an undulation of small amplitude, but of large
periodicity Imp~1. We have:

Imp=
q [ 1 2
sin0| ~ 2%'m* cosd, 1+ V1+tafy A0

Hence, within the same approximation as above,

d A
Imp ™t ~ sin 6* 4/%

of the same order of magnitude Rp~.
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