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Geometrical, topological, and energetical properties on an interface between the lamellarLR and the isotropic
sponge phaseL3 are considered. The sponge phase shows a characteristic interbilayer separationd3 that is
larger than the interbilayer separationdR in theLR phase. This feature controls the experimentally observed
phenomenon of orientational epitaxy (Quilliet, C.; Blanc, C.; Kle´man, M.Phys. ReV. Lett.1996, 77, 522) that
keeps the lamellarLR bilayers tilted with respect to the interface. We discuss the concentration profile near
the interface, the geometry of smooth matching between the bilayers of both phases and estimate the surface
tension of theLR-L3 interface at equilibrium orientation of layers. The energy needed to deviate the layers
from the equilibrium orientation (“anchoring” energy) is calculated using the Frenkel-Kontorova dislocation
model. The model also predicts faceting, which is observed experimentally. Both the surface tension and
anchoring energies are of the order ofK/dR, whereK is the bend elastic constant. The role of layer undulation
in tangential anchoring is discussed and illustrated experimentally. Finally, an outcome of the theory is that
the orientation is related to the topological parameter of the sponge phase (coordination number of the passages
introduced by Porteet al., J. Phys. (Paris)1988, 49, 511).

1. Introduction

One of the interests of soft matter systems such as colloidal
solutions of amphiphilic species is that the characteristic lengths
are much higher than in the classical objects of solid state
physics (between 10 to 100 nm). In particular, the order
parameter variations through an interface between such systems
are likely to occur on mesoscopic scales.
We present here a model for the interface between two phases

of membranes: the lamellarLR phase and the “sponge”L3 phase,
which are solutions of surfactants. TheLR phase is made of
bilayers of surfactants, or membranes, separated by the solvent,
with a repeat distancedR ) δ + dw, wheredw is the thickness
of the layer of solvent, andδ is the thickness of the membrane
(Figure 1). It has a smetic A symmetry: liquid order in the
membranes, and solid, or crystalline, order perpendicularly to
the membranes. Its free energy density is written

whereu is the displacement of the bilayers measured along the
axisς perpendicular to the layers,B is the compression constant,
K andKh are the bend and saddle-splay smectic elastic constants,
which respectively specify the energy cost of the mean and
Gaussian curvature of the smectic. The unit normal to the layers
is the directorn. We have divn ) ((σ1 + σ2) of the order of
((∂2u/∂x2 + ∂2u/∂y2) if the curvatures are small, andg ) σ1σ2;
σ1 andσ2 are the principal curvatures of the layers.1

TheL3 or sponge phase is more complex; it is isotropic but
birefringent under shear, and generally stable over a rather
narrow range of compositions. There are probably several
sponge phases, among them the “symmetric” and the “asym-
metric” are clearly documented (see below). TheL3 phase we

have in mind in the present theoretical work is the symmetric
sponge phase, whose widely admitted model is as follows: it
is made of a single bilayer without edges nor seams, separating
the whole solvent into twoequiValent entangled partsshence
the qualification ofsymmetricandbicontinuousgiven to this
model of the sponge phase (Figure 1). This bilayer has a
nontrivial topology, with many connections such as handles,
or passages, and shows a zero average mean curvature and a
negative average Gaussian curvature.2,3 This phase has no
positional nor orientational order; it features a typical interbilayer
distanced3 which has been put experimentally into evidence
by X-ray and neutron small-angle scattering;d3 does not
correspond to a Bragg peak, of evidence, but to a bump in the
intensity vs wave vector plot.2 This distanced3 is also
acknowledged as being the characteristic size of passages or
handles. We shall adopt the above model of the “symmetric”
sponge phase.
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fR ) 1/2 K(div n)
2 + 1/2B(∂u/∂ς)

2 + Kh g (1)

Figure 1. Approximate arrangement of surfactant bilayers in the sponge
L3 (above) and lamellarLR (below) phases.
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Experimental studies4,5 revealed that there is a nontrivial tilt
angleθ between theLR bilayers and theLR-L3 interface. The
order of magnitude of this angle is consistent with the hypothesis
of matching between the two characteristic distancesdR andd3
of the two phases in contact. Nevertheless, by considering more
accurately the data of Quillietet al.,5 we may observe a general
tendency of the measured valueθm of θ to be higher (by∼15%)
than the valueθ* ) sin-1(dR/d3) calculated from the X-ray data
and the epitaxial matching hypothesis. The hypothesis is
nevertheless still consistent, when a modification of the
characteristics of theL3 phase near the interface is taken into
account. This point is treated in section 2, utilizing a Landau-
Ginzburg expansion type. In section 3, we present an estimation
of the surface tension at the matching angleθm, and in section
4 we study how the surface energy changes when the bilayers
deviate from the matching value, in the framework of a
Frenkel-Kontorova model. In other words, we address smaller
and smaller typical distancesê when going from section 2 (ê
. dR, d3) to sections 3 and 4 (ê ≈ dR, d3). The results are then
compared to experimental data.

2. Concentration Profile near the Interface

We are investigating the nature of the transition layer at the
interface between the lamellarLR and theL3 sponge phase in a
swollen surfactant. As stated above, we have experimental
evidence4,5 that the contact between the two phases at equilib-
rium, in the biphasic region, is of the “epitaxial” type, and is
below any “roughening transition”, so that the contact yields
faceting.6 The epitaxy is defined by the ratiodR/d3 ) sin θ*.
The optically measured tilt angleθm of the bilayers (Figure 2)
is systematically larger than the X-ray deduced angleθ*, and
the following considerations will also tend to explain this.
TheLR and theL3 phases in equilibrium do not have the same

composition; the transition is obviously first order, as in any
phase transition between multicomponents systems, generically.
Therefore the surfactant volume fractionφ shows a jump
φ3 - φR when going from theLR phase to theL3 phase.
However this cannot be so in the experimental situation: the
surfactant bilayers must vary continuously through the transition
layer, for obvious energetical and topological reasons; therefore,
the solvent volume fraction also varies continuously from its
valueφR ) φz)-∞ in the bulk of theLR phase to its valueφ3 )
φz)+∞ in the bulk of theL3 phase.
We analyze the transition region in two steps, first in theL3

phase, second in theLR phase. We assume a sharp transition
at z) 0, and a smooth variation on both sides, in theL3 phase
for z > 0, in theLR phase forz < 0.

In theL3 phase, we adopt the Landau-Ginzburg free energy
by adding a gradient term to the expansion due to Wennerstro¨m
et al.,7 viz.

where t, V, andw are positive elastic coefficients. We know
that this expression of the free energy is controversial8,9 in two
respects: in the first place, as shown by Cates, Roux,et al.,10,11

the thermal fluctuations of the membranes, which are well-
known to renormalize the curvature moduli, yield a logarithmic
term in the free energy (of the formδf3 ) t′φ3 ln φ), which can
be dominant at very high dilutions, i.e., when the characteristic
length d3 (which is of the order of the distance between
passages) is large, compared to the de Gennes-Taupin12
persistence lengthê ) lmol exp4πκ/kBT, wherelmol is a molecular
length; in fact, the samples we have been investigating are well
above this high dilution regime, and we can safely forget the
logarithmic correction. In the second place, we do not know
how the rigidity coefficientw scales withd3; it might diverge
for large dilutions; but again, we are not in a regime of high
dilutions. We therefore adopt the Landau-Ginzburg free energy
expansion in the form 2 above.
The Euler-Lagrange equation which minimizes the total

energy∫0∞f3 (φ, (∂φ/∂z) dz is

and at equilibrium we have

The positivez axis is along the outward normal to theLR
phase. Sinceφ3 ) φ∞ for z infinite, and (∂φ/∂z)z)∞ ) 0, the
first integral of eq 3 is

which, using eq 4 and after some standard manipulation, can
be written:

It is interesting to notice that the last member is always
positive. Hence, this equation makes sense whatever the value
of φ may be.
Let Φ ) φ - φ3, we get

Hence

whereΦ0 ) φ0 - φ3.
Looking at orders of magnitude, let us introduce the sponge

transition width Λ3 ) x5w/(Vφ33) ≈ 2dhφ3
-3/2, where dh )

xw/V is some material length (at leastof the order ofδ). Thus
Λ3 is large even whendh ∼ δ; in this caseΛ3 ∼ 2d3φ3

-1/2, since
d3 ) µ(δ/φ), whereµ is a numerical coefficient, of the order of
1.4, experimentally.2 Takingφ3≈ 5/100,d3≈ 40 nm, one gets
Λ3 ≈ 360 nm.

Figure 2. Definition of anglesθm andθ0 that theLR bilayers make
with the interface.

f3 ) -tφ3 + Vφ5 + w(∇φ)2 (2)
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Φ ) Φ0 exp[-x5Vφ3
3

w
z] + ... (8)
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What happens at the interfacez ) 0 deserves further
comments. Letd3;z)0 anddR;z)0 be the values ofd3 anddR at
the interface; we have

where we have introduced the dimensionless variableµ(z), µz)∞
) µ in the bulk. This variable is related to the coordination
number of the passages.2 Notice that, because of the continuity
of φ at this boundary, which yieldsφ0 ) φ3;z)0 ≡ φR;z)0, the
second equality in eq 9 can be written:

sincedR;z)0 ) δ/φ0 (apart of logarithmic corrections, which are
anyway small in the little swollen surfactants considered here).
We shall show soon thatθ0 is close toθm. Hence, taking for
the value ofθ0 the optically measuredθm, we see that the
coordination numberZ at the boundary can be estimated directly
from the experiment. We postpone to section 5 a more detailed
discussion of the topological parameterµ.
The boundaryz ) 0 is a surface of continuity forφ, but a

surface of discontinuity for the density of passages (which
vanishes in theLR phase) and forZ. As such,z ) 0 can be
considered as the boundary between the lamellarLR phase and
the spongeL3 phase. In theLR phase, we expect the lamellar
layers to bend in order to react to the normal Ginzburg force
on theL3 side, relaxing from the valueθ0 near the interface to
θm further in the bulk (Figure 2). A calculation given in the
appendix shows that the relaxation length of the membranes
deformation is of the order ofΛR ≈ xdRλ/π sin θ*, which is
of the order of a characteristic lengthdR in the LR phase, i.e.,
much smaller thanΛ3. This calculation does not yield the value
of θ0 andθm directly; another relation is required, which states
that the boundary is in mechanical equilibrium atz ) 0:

We expectfR ≈ B(θ0 - θm)2 exp(2z/ΛR) ) BΘ0
2 exp(2z/ΛR)

and f3 ≈ -æ3(kBT/δ3). Sinceφ - φ3 ) Φ0exp(-z/Λ3), eq 11
yields

Hence,Θ0 ) θ0 - θm is rather small; withµ ) 1.4,d3/δ ) 20,
ΛR/Λ3 ) 1/10,Φ0 ) φ3/100,φ3 ) 5/100, one getsφ0 - φm ≈
50.

3. Microscopic Geometry of theLr-L3 Interface and
Estimation of the Interfacial Tension

The interfacial energy is defined by an excess energy of
healing of “free bonds” that are exposed when the two phases
are cut and put in contact along the interfacial plane. Topology
and energy of the interface strongly depend on the tilt angleθ
between theLR bilayers and the interface. In this section we
analyze the case of matching,θ ) θm ) sin-1(dR/d3,surf), where
d3,surf is the periodicity of the surface layer of theL3 phase
(Figure 2). According to our discussion above (section 2), we
haved3,surf ) d3;z)0. For the sake of simplicity, we shall note
this quantityd3.
There are three basic geometries of healing: (a) with “edges”

and “seams” (Figure 3a,b); (b) with “bridges” and “cups” (Figure
3c,d) and (c) with alternating “passages” and “bridges” (Figure

4). As we shall see below, it is the geometry (c) that results in
likely the smallest energy of the interface and naturally provides
the matching conditionθ ) θm ) sin-1(dR/d3) for the tiltedLR
bilayers.
(a) An edge of an individual bilayer and a seam (a junction

of three bilayers) have molecular-scale curvatures∼1/δ. The
line energy is high,2,13,14of the order ofκm/δ, whereκm is the
bending modulus of the monolayer. The surface energy of a
unit area is then roughlyσR,e ≈ κmsin|θ|/δdR for the LR side
andσ3,e≈ κm/δd3 for theL3 side.
(b) Bridges provide healing by connecting pairs of bilayers.

A semicylindrical bridge (Figure 3c) that connects two neigh-
boring LR bilayers has a curvature∼1/dR and line energy∼
κ/dR, where κ is the bending modulus of the bilayer. The
interfacial energy per unit area of theLR side is thusσR,b ≈
κsin|θ|/dR

2. For theL3 side, the analog of a bridge is a cup of
positive Gaussian curvature (2/d3)2 that covers oneL3 passage
(Figure 3d). The energy of one cup is∼ (2κ + κj) and thusσ3,b
≈ (2κ + κj)/d32; hereκj is the Gaussian curvature elastic constant

Figure 3. Healing of free bonds with an edge (a), seam (b), cup bridge
(c), and cylindrical bridge (d).

Figure 4. Matching structure of theL3-LR interface with continuous
bilayers for the matching angleθm: (a) cubic model and (b) relaxed
structure; local Gaussian curvature is positive in zone 1 and negative
in zones 2.
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for one bilayer (κj ) KhdR). Since the curvature of bridges and
cups is smaller than that of edges and seams (especially for
sufficiently diluted phases),σR,b, σ3,b < σR,e, σ3,e. Thus a
realistic model of theLR-L3 interface should operate with pairs
of bilayers.
(c) To illustrate the most plausible geometry of healing with

passages and bridges, one can first employ the cubic model of
the sponge phase and the corresponding “square” model of the
interface, in which theL3 surface is represented by a set of
squares with sidesd3, separated by distancesd3 (Figure 4a).
With theLR bilayers tilted by the angleθm, all the edges of

theL3 squares, which are oriented along the axisy, are matching.
These edges are shown by bold lines in Figure 4a. Nonmatching
edges of squares (plain lines along thex axis) and nonmatching
parts ofLR bilayers (dashed lines along they axis) form a new
set of squares shifted by distanced3 with respect to the initial
set. These squares can be filled with plaquettes of sized3× d3
(shadowed areas in Figure 4a). Obviously this arrangement with
flat plaquettes will relax as in Figure 4b. The junctions between
theL3 passages and theLR planes have partly positive Gaussian
curvature (Figure 4b, zone 1) and partly negative one (Figure
4b, zone 2). The energy of the interface is likely to be a linear
combination ofκ andκj. The above discussion suggests thatκ

enters inσm as σm ≈ aκ/d32 wherea ≈ 1 is a geometrical
constant; theκj term can reduce the energy due to the presence
of the passages; henceσm ≈ (aκ - cκj)/d32, wherec ≈ 1 is
another geometrical constant. Near theLR-L3 phase transition
the saddle-splay constantκj is expected to be positive or, at least,
close to zero.3,15 Therefore, the surface tensionσm of the
interface is majored byσm ≈ aκ/d32. With κ ≈ kBT andd3 )
40 nm, one getsσm ≈ 10-6 J/m2 (10-3 erg/cm2), i.e. a very
small value. In principle, to this value two additional terms
should be added, that come from the integration of the gradients
of concentration and tilt over distances respectivelyΛ3 andΛR.
These two terms are of the order ofwΦ0

2/Λ3 and
BΛR(θ0 - θm)2, respectively. Since we foundΛ3 to be rather
large and (θ0 - θm) to be rather small, we do not expect
significant changes in the estimate ofσm above.
In the following section we discuss what is the energy

W(θ - θm) needed to deviate theLR lamellar bilayers from their
equilibrium substrate-imposed tilted orientation; this quantity
is often called “anchoring energy” in the physics of thermotropic
liquid crystals, see, e.g., review by Blinovet al.16

4. Orientational-Dependent Part of the Interfacial Energy

The action of theL3 substrate on the configuration ofLR
bilayers can be modeled by a periodic potentialU3. In the
“matching” state,θ ) θm ) sin-1(dR/d3,surf), theLR bilayers sit
at the bottom of theU3 potential troughs; in this section we
will continue to denoted3,surf as d3. The surface tensionσm
estimated above corresponds to the matching state. Any angular
deviationsF from θ ) θm should increase the interfacial energy.
WhenF * 0, the spacingdR/sin(θm + F) ≈ d3(1 - F cot θm)
between the bilayers at the interface does not matchd3. In order
to decrease the corresponding expense in the potential energy
U3, each bilayer has to displace toward the nearest minimum:
this may induce some compression energy (theB term in eq
1).
The compression energy of theLR bilayers can be easily

derived if one considers the constraints imposed on the
coordinatesxn and xn+1 of two neighboring bilayers by the
changeF in tilt. Obviously, the bilayers would remain un-
strained when their separationxn+1 - xn ) d3 + νn+1 - νn
measured along the axisx is equal todR/sin(θm + F) ≈ d3(1 -
F cotθm). Hereνn andνn+1 are, respectively, the displacements

of then-th and (n+1)-th bilayer from the corresponding bottoms
of the troughs. Therefore, the derivative of the bilayers’
displacementu along the bilayers’ normalς can be expressed
as∂u/∂ς ) (∂ν/∂x) + F cotθm and the compression energy as
1/2B[(∂ν/∂x) + Fcotθm]2.
In fine, the equilibrium position and its global energy results

from a balance between the potential energy and the compres-
sion energy. The problem formulated this way is reminiscent
of theFrenkel-KontoroVa modelof a chain of identical particles
connected by identical springs, subjected to a force which varies
periodically along the chain.17 A number of authors18,19 have
extended this model by allowing the nonconstrained period of
the chain to be different from that of the substrate potential;
this is the case we consider below.
If the interface is sufficiently long, the mismatch would create

dislocations along the interface. When|F|, 1, the dislocations
are well separated and the final surface energy includes the
energy of a numberN of dislocations (per unit length:N|b| ∼
|F|, whereb is the Burger’s vector of the dislocation). For an
isolated dislocation, the displacementν would be changing from
ν ) 0 at one end of the interface, say atx f -∞, to ν ) (b
at another endx f ∞. We do not consider the case when|F|
becomes large enough to produce phenomena such as com-
mensurate-incommensurate transitions (for a complete analysis
of these, see the recent book by Chaikin and Lubensky20; the
estimate of the critical|F| (below which the model is valid for
our system) is given below.
The energy of interface per unit length along they axis can

be thus written as the integral

whereν ) ν(x) is the displacement field,Λ is the length along
thezaxis, on which the compression is effective (to be estimated
below).
Since the quantity of interest is the differenceU between the

energy of the dislocated state and the energy of the dislocation-
free state, then theν-independent term1/2BΛF2 cot2 θm has to
be subtracted from the integrand in eq 12:

The equilibrium arrangement of layers corresponds to the
solution of the Euler-Lagrange equation for the functional (13):

The first integral of eq 14 is of the form20

whereε is the constant of integration whose value should be
determined by minimizing the energyU with respect toε. It is
easy to see what is the physical meaning of the particular value
ε) 0: the caseε) 0 corresponds to noninteracting dislocations
separated by infinitely large distancesL f ∞. Really, for the
isolated dislocations the interfacial junctions between theLR
and L3 bilayers far away from the dislocations cores are not
disturbed; therefore, in the remote regions dν/dx) 0 andU3 )
0 (the latter means thatν ) 0, (b). With these boundary
conditions imposed, the first integral of eq 14 gives the result
(15) with ε ) 0.

U′ )∫-∞

∞ [U3(ν) + 1/2BΛ(dν
dx

+ F cotθm)2]dx (12)

U )∫-∞

∞ [U3(ν) + 1/2BΛ(dν
dx)

2
+ ΒΛF(dν

dx)cotθm]dx (13)

BΛd
2ν
dx2

)
∂U3

∂ν
(14)

1/2BΛ(dν
dx)

2
) U3(ν) + ε (15)
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Physically, in our model of theLR-L3 interface (which has
no dislocations in the ground state),ε ) 0 corresponds to a
small deviation|F| , 1 of the bilayers from an equilibrium
orientation. Below, following Chaikin and Lubensky,20 we
estimate the critical value|Fc| above which the ground state
contains interacting dislocations separated by some finite
equilibrium distanceL(ε). We substitute eq 15 into eq 14
(taking into account different signs for positive and negativeF)
and use the idea that the displacement fieldν(x) changes by
the Burgers vector( b whenx changes by( L:

wheren is the total number of bilayers along thex axis. The
equilibrium condition∂U/∂ε ) 0 has only two solutions:20

and

(whenL is finite). The critical value|Fc| above which the finite
separationL between the dislocations becomes energetically
preferable, is thus

As we will see below, the average value ofx2U3/BΛ is likely
to be of the order of 0.1-1, thus the critcal tilt|Fc| is large, of
the order of tens of degrees. Since we are primarily interested
in small deviations from the equilibrium,|F| < |Fc|, we can
proceed with a simple case of independent dislocations andε

) 0.
The (positive) energyW(F) per unit area needed to deviate

the bilayers from the equilibriumθ ) θm by a small angle|F|
, 1 is therefore defined asW(F) ) σ - σm ) Ud/L ) Ud|F|cot
θm/d3, whereUd is the energy per unit length of one isolated
dislocation. We useε ) 0 in eqs 13 and 15, and take into
account different signs of the derivative∂ν/∂x for F > 0 andF
< 0 to find first the energy per unit length of one dislocation:

and then theF-dependent part of the interfacial energy that scales
as |F|:

To estimate the absolute value of the anchoring energy
coefficient

one has to specify the periodic potentialU3 that models the
action of the sponge substrate as well asΛ.

The periodic potentialU3 can be taken sinusoidally:

with periodP3 and amplitudeU0. Below we discuss the possible
values ofP3 andU0.
P3 is directly related to the surface value ofd3. At first sight,

one can chooseP3 ) d3. If P3 ) d3, then the Burgers vector of
the dislocation considered above must be taken asb ) (P3 )
(d3: Frenkel-Kontorova model above does not allow disloca-
tions other than the elementary ones withb ) (P3 ) (d3. For
example, there are no solutions with double Burgers vectorb
) (2P3, which is easy to verify by calculating the equilibrium
displacement fieldν(x) for an isolated dislocation using eq 15
with ε ) 0 and the explicit potential (eq 21):

where the dislocation center is located atx) L/2: the coefficient
tan(πb/4P3) eliminates solutionsb) (2P3. On the other hand,
topological peculiarities makeb ) (2d3 dislocations energeti-
cally preferable over the dislocationsb ) (d3, as discussed in
section 3. In fact, the junctions between the pairs of bilayers
and the smoothly connectedL3 handles have a periodicityP3
) 2d3, as it is clear from Figure 4. Therefore the periodicity
of the potentialU3 should be set asP3 ) 2d3. With P3 ) 2d3,
the dislocationsb ) (P3 ) (2d3 represent an elementary
dislocation for which the above calculations within the Frenkel-
Kontorova model are justified.
The amplitudeU0 can be estimated as the energy of elastic

reshaping of theL3 handles when a bilayer is displaced from
the minimum ofU3. The reshaping is due to the necessary
continuity of the bilayer between theLR andL3 phases. Hence
U0 is strongly related to the elasticity of theL3 phase. We do
not know much about this latter, but it is likely to scale asK/d3
) κ/d3

2 per unit area. The saddle-splay constant does not enter
U0 as soon as the shifts of the neighboring bilayers are nearly
equal and topology of the handles is preserved. In the core of
the dislocations the topology is broken and theKh contribution
might be nonzero; one can include this contribution into the
“core energy” of the defect.
With P3 ) 2d3 andU0 ≈ K/d3, one gets for the energy per

unit length of dislocation line

We can test the validity of this latter result by using the results
of the smectic elastic theory.21 In smectics, the lateral extension
(here inς direction) of the dislocation core of Burger’s vector
b is 2b2/λ. We can compare this quantity with the characteristic
length in the Frenkel-Kontorova dislocation over which the
displacement changes by(b; as follows from eq 22, this length
is approximately l ) 2d3xBΛ/U0 (numerical calculations
using eq 22 show thatν changes by(0.95× b over the interval
l defined as above). This comparison providesΛ∼ 10dR which
is an upper estimate, sinceΛ is of the order of the relaxation
length ΛR ≈ dR calculated in the appendix. Note thatU0

somehow smaller thanK/d3 taken above, would allowΛ ≈ ΛR
≈ dR. In any case, although the exact solutionν(x) can be
obtained only numerically in a discrete model, it is clear that
for |F|, 1 both the exact and the continuum solutions preserve
the dependenceW(F) ≈ |F|; their difference is expected only

U )
nd3
L
(∫0bx2BΛ(U3 + ε)dν - εL - BΛb|F|cotθm) (16)

L-1 ) 0

|F| ) tanθm

b ∫0bx2(U3 + ε)/BΛ dν

|Fc| )
tanθm

b ∫0bx2U3/BΛ dν (17)

Ud )∫0L[BΛ(dν
dx)

2
+ BΛF cotθm

dν
dx]dx)

∫0bx2BΛU3dν - |F|bBΛ cotθm (18)

W(F) )x2BΛ
d3
|F| cotθm∫0bxU3(ν)dν + O(F2) (19)

Wa )
x2BΛ
d3

cotθm∫0bxU3(ν)dν (20)

U3(ν) ) U0(1- cos
2πν
P3 ) (21)

ν )
2P3
π

tan-1 [tan πb
4P3

exp[(2π
P3xU0

BΛ(x- L
2)]]

(22)

Ud≈ 8
πxBKΛd3 + O(F) (23)
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in the energy of the dislocation core where dν/dx is large; even
here, however, the exact results should not depart in the order
of magnitude from the ones found above.
Now we are in the position to estimate the anchoring

coefficient in the continuum model as

which is rather large,Wa ≈ (10-6-10-5) J/m2 with typical
estimatesκ ≈ kBT anddR ) (20-40) nm.
Note in conclusion that the dislocation contribution to the

LR-L3 interface energy is similar to the anchoring energy of
the interface between a thermotropic smectic A phase and a
homeotropically treated wall.22,23 In both cases it is the layered
structure which makes the leading term in the surface energy
nonanalytic (W(F) ≈ |F|) and large: the anchoring coefficient
∼K/dR in eq 24 can be compared to the value≈K/lmol
experimentally found in thermotropic smectic A far from the
smectic-nematic transition.23 An important difference is that
the lamellar bilayers at theLR-L3 interface can have nontrivial
(and large) tiltθm imposed by the peculiar structure of the
sponge phase.

5. Discussion and Comparison with Experiments

Nucleation and Shape of Lr Droplets. Let us briefly
summarize experimental findings on nucleatingLR droplets in
anL3 sponge matrix4,5 which reveal a phenomenon of orienta-
tional epitaxy at theLR-L3 interface. The tilt angleθm is close
to the valueθ ) sin-1(dR/d3) expected from the hypothesis that
the layers are tilted to match the characteristic distancesdR and
d3 > dR in the two phases. The shape of the droplets of 10-
100µm size is highly nonspherical and show either cylindrical4,5

or more complex logarithmic spiral5 profiles. The logarithmic
spiral droplets have a concentric spherical packing ofLR bilayers.
Larger droplets are more spherical; however, their boundaries
are made of curved surface regions; the inner structure contains
many defects that are hard to decipher.
The free energy of theLR droplet of radiusR that nucleates

in the sponge matrix is defined by the condensation energy gain
∼∆fR3 < 0 (∆f is the bulk energy density difference between
theLR andL3 phases), the elastic energy∼ κR/dR > 0 of possible
bend deformations (see the discussions below), the surface
tension energy∼σmR2 > 0 and the surface anchoring energy
∼W(F)R2 > 0. We restrict our consideration to the case where
R is large enough to provoke spontaneous growth; it is
apparently the case for the droplets studied experimentally.4,5

The surface tension estimated in section 3 is rather small,
σm ≈ κ/dR

2 ≈ 10-6 J/m2, if compared to surface tensions at
other isotropic-liquid crystal interfaces (for example, it is about
10-5 J/m2 for the thermotropic nematic-isotropic interface24. The
smallness ofσm is natural in our model of matching since the
layers preserve continuity when crossing the interface, see Figure
4.
Despite the smallness ofσm, the surface energy term definitely

overweighs the elastic energy term forR. dR, since the latter
generally scales asκR/dR; the ratio of the surface-to-elastic bulk
energy is thus of the order ofR/dR. The smallness of the elastic
term precisely implies that the layers have the shape of Dupin
cyclides, see the review by Boltenhagenet al.25 Among these
are spheres and focal conic domains. Spherical packing of
layers is observed in logarithmic spiral droplets of radius 10-
100µm. Thus the elastic energy of these dropets scales asR,
as follows from eq 1. In largerLR droplets, one experimentally
observes numerous focal conic domains; these droplets are

reminiscent of thermotropic smectic droplets where spherical
and generic focal conic domains form a well-established
hierarchy26,27controlled by the balance of the surface and elastic
bulk energy.28,29 One might worry if the elastic energy of large
LR droplets with numerous defects could overweigh the surface
energy. Although we do not know the exact configuration of
layers in large droplets with multiple defects, this is unlikely:
the family of focal conic domains forms a fractal object whose
energy scales asRm, where the exponentm is still substantially
smaller than 2.30 On the other hand, elastic bend energy can
influence the size of the smallest domains in the droplet, at scales
where the bulk and surface contributions are comparable.28

Because of the estimates above, for theLR phase we expect
this scale to be small, of the order ofdR.
With elastic energy negligibly small forR . dR, the shape

of theLR droplets filled with Dupin cyclides is defined by the
balance of the two surface terms, the “isotropic” surface tension
σm(θ ) θm) and the “anisotropic” anchoring energyW(θ - θm).
If the anchoring were weak,W , σm, then the droplet would
adopt a shape close to a spherical one. However, as the
Frenkel-Kontorova model suggests, the anchoring coefficient
is large,Wa/σm ≈ 1 ÷ 10. As a result, theLR droplet shape is
nonspherical to allow the surface orientation ofLR bilayers to
be as close toθ ) θm as possible over the whole interface.
With Wa/σm ∼ 1 ÷ 10, angular deviations|F| ) |θ - θm| >
0.1 rad on extended portions of the surface are unlikely.
The situation is reminiscent of the phenomenon of faceting

known for solid crystals. In both cases the underlying mech-
anism is the presence of cuspsW(F) ≈ |F| in the surface energy
function20 and of a large value of the coefficientWa. The
faceting in LR phase features two important differences as
compared to the solid crystals. First, because of the one-
dimensional positional order, the facets of the lamellar “monoc-
rystals” take the shape of conical surfaces of revolution. Second,
since the bend energy is small, the inner structure can be highly
bent. One can imagine that small nucleating droplets are in
the shape of spherical layers enveloping a nucleation site (for
example, a dust particle). When such a droplet grows, it
preserves the concentric spherical packing since the transforma-
tion into a set of flat bilayers requires topological changes (e.g.,
one has to drill out a cone to unfold the concentric layers) with
high elastic and anchoring energy penalties. With spherical
packing preserved, the surface adopts a logarithmic spiral
“faceting” with θ ) θm and σ ) σm for concentric layers
crossing the interface. Although the logarithmic spiral geometry
does not provide the absolute minimum of the surface energy
(e.g., conically shaped droplets with flat layers of the same
volume are of smaller surface area5, it is stable over long
duration of observations.5 Experiments5 also show that angular
deviations fromθ ) θm are small: |F| < 0.1 over more than
90% of the total surface area, which agrees with the estimates
of Wa/σm above.
Tangential Anchoring. In the limiting case of tangential

anchoring,θ ) 0, theLR bilayers are parallel to the interface
and thus avoid crossing it. The interfacial region can be
composed, for example, of passages connecting the sponge bulk
to theLR bilayer that is the closest to the interface; similarly,
theL3 passages can be covered with cup-bridges shown in Figure
3d. The curvature contributiona′κ/d32 to the interfacial energy
σ| is of the order ofσm ≈ aκ/d32 estimated in section 3 for the
matching case, or even smaller thanσm. However, for tangential
anchoring there is another contribution to the interfacial energy
σ|. TheLR bilayers that run parallel to the interface are subject
to alternating attractive and repulsive forces set by theL3
structure and thus experience an undulating action of the type

Wa≈ 8
πxBKΛ

d3
cotθm≈ (1÷ 10)

κ

dR
2
≈ (1÷ 10)σm (24)
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u) u0 cos(πx/d3) with amplitudeu0∼ dR (Figure 5). A classical
calculation in smectics elasticity1,31 shows that there would be
a contribution to a surface energyσ| that scales approximately
as κ/dRλ. Obviously this effect of undulations would vanish
when the layers have quasiperpendicular (perpendicular or
highly tilted) orientation at the interface.
The relative stability of parallel or quasiperpendicular anchor-

ing of the lamellar layers on theLR-L3 interface will depend
on the relative values of the curvaturea′κ/d32 and undulation
κ/dRλ energies. A largeλ value would induce preferentially a
parallel anchoring, while for a “harder” lamellar phase with
small λ, a tilted anchoring would be easier.
In view of this possibility, it is interesting to observe the

behavior of a lamellar phase in whichλ can be tuned. A good
candidate is the ferrosmectic system, a quaternary mixture SDS/
pentanol/water, whose swelling solvent is composed of cyclo-
hexane with a suspension of magnetic nanoparticles. When only
the magnetic particles volumic fractionφp in the swelling solvent
is increased, thenλ decreases whiledR

32 andκ33 remain constant.
Moreover, this system presents aLR-L3 phase transition when
increasing temperature, which allows us to observeLR droplets
into the spongeL3 phase as in refs 4 and 5 and provides
information on the tilt angleθm. Figure 6 shows such droplets
in two systems that differ only by their solid particles contents.
In Figure 6a the droplets are spherical with a concentric spherical
packing of bilayers: the anchoring is planar. These droplets
have been obtained in a system of low global magnetic particles
volume fractionφp; the smectic penetration lengthλ of the
lamellar part is then large. Figure 6b in contrast shows what
happens in a system whereλ is small andφp large: the droplets
are anisotropic, which is characteristic of a quasiperpendicular
orientation4,6,26,34and large anchoring coefficient. These features
are then consistent with the tendencies discussed above.
Topology of the Bulk and Interface. The above model of

matching of tilted layers implies a smooth transition between
topologically different phases. Spatially changing topology falls
within a broader circle of problems related to the role of the
topological parameterµ in the LR-L3 transition. Our consid-
eration in section 2 suggests that its surface valueµz)0 can be
estimated experimentally from the data onθm, asµz)0≈ µz)0,m
≡ 1/sinθm, see eq 10. In Figure 7,µz)0,m is plotted as a function
of weight percentage of brinePbr, not much different from (1
- φ) × 100, with data reported by Quillietet al.5 It turns out
thatµz)0,m is slightly smaller than the bulk value.32 According
to Porteet al.,2 µ relates in some way to the coordination number
Z of the passages in an ideal “cubic” model; the Scherk surface
yields Z ) 6, i.e. µ ≈ Z/4 ) 1.5: the sponge phase has
seemingly a coordination number close to 6. A smaller value
µ < 1.5 means a smaller coordination number. Intuition goes
the same direction as the experimental result which states that
µ decreases when one gets closer to the interface: the coordina-
tion number vanishes in theLR phase, and we expect that in
the sponge phaseZ should decrease monotonically through the
transition region. For instance,θ0 ) 60°, sinθ0 ) 0.87 (close
to experimental values) yieldsZ ≈ 2.31.

Another interesting feature of Figure 7 is thatµz)0,m changes
with φ: µz)0,m is approximately 1.1 for the larger values ofφ
(g0.2), and approximately 1.3 for the smallerφ’s, which might
indicate that there is some difference in the sponge phase
structure for the two regimes of dilution. Other experiments
carried on the same system ref 35, ref 36 (measurements of
birefringence under shear), and ref 37 (detailed phase diagram)
also reveal two types of sponge phase. Measurements show
that in the more dilute samplesφ < 0.2 the birefringence scales

Figure 5. Undulation of lamellar bilayers at theLR-L3 interface with
tangential anchoring.

Figure 6. Polarizing optical microscopy observation of birefringent
LR droplets of a ferrosmectic in the isotropic sponge phaseL3, at T≈
50 °C, of a quaternary mixture of sodium dodecyl sulfate (SDS) 4.6%
weight/pentanol 4% weight/water 11.6% weight/swelling solvent:
suspension of magnetic particles in cyclohexane, 79.8% weight. (a, top)
φp ≈ 0.008; (b, bottom)φp ≈ 0.023;φp ) volume fraction of particles
in cyclohexane.

Figure 7. Plot of µz)0,m ) 1/sinθm vs Pbr.
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as expected in the usual model of the “symmetric” sponge phase
(i.e. asφ-2 38). The less dilute samples,φ > 0.2, show a
different behavior.36 All the above theoretical considerations
in this article, in particular the study of the concentration profile,
section 2, were based on the symmetric sponge phase model.
Note that a spontaneous symmetry breaking of the symmetric
sponge to an “asymmetric” sponge phase, where the two media
of solvent are not equivalent, has been predicted14 on general
grounds and experimentally observed39 in a system different
from ours.

6. Conclusion

The phenomenon of orientational epitaxy at theLR-L3
interface is an interesting example of anchoring behavior in
liquid crystal systems and deserves further studies. On the
experimental part, freeze-fracture studies are planned in order
to verify the epitaxial phenomenon and matching continuous
geometry of layers depicted in Figure 4. Hoffmannet al.6 have
published remarkable freeze-fracture microphotographs of flat
interfaces with tiltedLR bilayers for theLR-L3 biphasic region;
although they do not mention the phenomenon of orientational
epitaxy, their results give additional support to the idea of
matching. Other geometries of matching might include twist
boundaries suggested by Thomaset al.40 for lamellar block
copolymers. Extended studies of ferrosmectic systems subject
to the magnetic field would also be of importance: first, for
direct measurements of the surface tension; second, for produc-
ing field-orientedLR “monocrystals” with faceting at equilib-
rium. Theoretically, it would be interesting to clarify how the
topological parameterµ behaves during theLR-L3 phase
transition, across theLR-L3 interface and with changingφ. The
adequate form of the relevant free energy expansion with
gradient terms for broad range of concentrations also remains
a problem to solve.
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Appendix

Figure 2 represents the coordinates at thez ) 0 boundary.
The contact angle isθ0, but since the transition layer is of
mesoscopic size, i.e. not recognizable with the polarizing light
microscopy, the measured quantity isθm. The equilibrium
equation of the smectic layers, observed at a scale larger than
d3, i.e. in a continuous model, is

whereλ2 ) K/B is the penetration length squared, andu the
layers displacement, measured along theê axis, and periodic
along thex direction, with periodd3;z)0 ) 2π/q. Let u ) (S+
iT)expiqx + c.c., whereS andT are the functions ofz alone.
Equation A1 reads

whereΛ andΘ are operators acting onS andT only. It is a
long, but easy calculation, to show that

wherep ) d/dz is acting onSandT. Clearly, the solutions of
eq A1 are of the formu ) ∑kuk exp pkz × exp iqx + c.c.,
wherepk’s are the eigenvalues of the operatorp. To see the
nature of the solution it is enough to consider the solutions
obtained by equating to zero only one of the four factors which
enter inΛ2 + Θ2 ) (Λ + iΘ)(Λ - iΘ). The first factor in eq
A3, for example, has solutions

which display two lengths of relaxation and two periodicities.
We are interested in the relaxation lengths. Let

andψ be the argument of the complex numberωj , such that
cos2 θm - 4iλq sin θm ) (cos4 θm + 16λ2q2 sin2 θm)1/2 ×
exp(-iψ), i.e. tanψ ) 4λq sin θm/cos2 θm. The real partRωj
reads

Hence

Now, to look at orders of magnitude, we introduce in the
equations above the bulk values ofd3 and dR instead of the
exact values at the interface:

This quantity is not much different from (64π2λ2dR
2)/(d32 -

dR
2)2, since (d32 - dR

2) is small compared to 8πλdR. Within
the same approximation, it is large compared to unity, and we
eventually find

This result assumes that the periodicity of perturbations at the
interface isd3; with a periodicity taken twice as large, as in
section 3, one would getRp ≈ (πd32/2λdR

3)1/2

λ2∂
4u

∂η4
) ∂

2u

∂ê2
(A1)

(Λ + iΘ)(S+ iT)expiqx+ c.c.) 0, (A2)

(Λ + iΘ) ) [λ(psinθm + iq cosθm)
2 - p cosθm +

iq sinθm][λ(p sinθm + iq cosθm)
2 + p cosθm - iq sinθm]

(A3)

p)
cosθm - 2iλq sinθm cosθm ( xcos2 θm - 4iλq sinθm

2λ sin2 θm
(A4)

ωj )xcos2 θm - 4iλq sinθm

2λ sin2 θm

(A5)

Rωj )
cosθm cosψ/2

2λ cos1/2 ψ sin2 θm

)
cosθm

2λ sin2 θm
x1+ cosψ

2 cosψ
(A6)

Rp)
cosθm

2λ sin2 θm

[1(x1+ cosψ
2 cosψ ] )

cosθm

2λ sin2 θm

[1(x1+ x1+ tan2 ψ
2 ] (A7)

1+ tan2 ψ )
cos4 θm + 16λ2q2 sin2 θm

cos4 θm

≈

(d3
2 - dR

2)2 + 64π2λ2dR
2

(d3
2 - dR

2)2
(A8)

Rp≈ (πd3
2

λdR
3)1/2 (A9)
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The conclusion is that the relaxation lengthRp-1 ≈ sin θ*
(dRλ/π)1/2 is of the order of the characteristic distances in the
two phases, hence much smaller than the widthΛ of the
transition region. The angleθ of the bilayers relaxes elastically
on the relatively short distanceRp-1 to its bulk valueθm, which
cannot be significantly different fromθ0. On the other hand,
the bilayers suffer an undulation of small amplitude, but of large
periodicity Imp-1. We have:

Hence, within the same approximation as above,

of the same order of magnitude asRp-1.
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Imp)
q

sinθm[-2 cosθm ( 1
cosθmx 2

1+ x1+ tan2 ψ] (A10)

Imp-1≈ sinθ*xdRλ
π
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