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Temperature-controlled droplet shape transformations have been extensively studied, uncovering
the mechanism of convex liquid polyhedron formation but failing to account for concave edges. Here,
we reveal interfacially-frozen metastable droplets with hexagram projections and concave edges.
We combine macroscopic experiments, numerical simulations, and an analytical geometric model,
elucidating the mechanism of these phenomena: previously unreported, mobile-fold nano-origami.
Our findings open new avenues in self-assembly of complex faceted liquid and solid nanostructures
for nanotechnology applications.

Classical, force-free liquid droplets are spherical at
equilibrium[1]. However, in the last decade, temperature-
controllable self-faceting shape transformations have
been discovered in surfactant-stabilized oil-in-water and
water-in-oil emulsions with a wide variety of chemical
compositions[2–6]. These counterintuitive transforma-
tions, driven by ‘interfacial freezing’ (IF), crystallization
of a ≈ 2 nm-thick surface monolayer of the droplets[7, 8],
enable unconventional strategies for synthesis of colloids
and nanoparticles[9–11], shed light onto the mysteri-
ous mechanisms of morphogenesis[12] and the origin of
life[3, 6, 13], and provide a unique probe for the elusive
elastic properties of curved quasi-2D crystals[14, 15].
Most reported self-faceting experiments[2, 6] involved

quasi-equilibrium cooling of the emulsion, with the spher-
ical droplets undergoing a sphere-to-icosahedron trans-
formation, followed at a slightly lower temperature T =
TSE by the flattening of the icosahedra into triangular,
parallelogram, or hexagonal lenticular shapes with aspect
ratios[10, 14] reaching ≈ 10. These shapes, exhibiting
only convex vertices and edges, are dictated by ‘discli-
nation’ defects, lattice sites of the IF hexagonal crystal
having a coordination number z = 6−q, where q < 6 is an
integer referred to as ‘topological charge’[14, 16]. Since
the angle between the nearest neighbor bonds of a pris-
tine hexagonal lattice site is 2π/6, a charge-q defect cor-
responds to an angular deficiency of (2π/6)q. By classical
Euler’s topological formula[16–18], the sum of topological
charges q over any simply-connected closed surface, such
as the IF crystal fully covering a droplet’s surface, is pre-
cisely 12. Positive charge disclinations promote positive
Gaussian curvature, inducing the sphere-to-icosahedron
transition, upon which the 12 vertices of the icosahedron,
each bearing a topological charge of q = +1, buckle out
of the spherical surface[19, 20]. The subsequent transfor-
mations into the triangular, parallelogram, or hexagonal
lenticular shapes involve the coalescence of four, three, or
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two q = +1 defects, respectively, forming the vertices of
these shapes. While the outlined-above mechanism was
initially subject to some controversy[3, 4, 21], it has been
later verified by direct experiments[6, 7, 14, 22].

Remarkably, sporadic observations reported that
rapid temperature variation, either reheating[2] or
otherwise[23], may induce more complex out-of-
equilibrium droplet shapes, where droplet’s 2D projec-
tion presents a profile with concave apices. In view
of the previously studied conformations—where convex
apices in a profile indicated convex vertices in the droplet
shape—one may wonder if a concave apex in the pro-
file suggests the presence of non-convex vertices in the
droplet shape. In particular, this could indicate the ex-
istence of negative-q defects, which would correspond, at
least locally, to a negative Gaussian curvature[16, 24].
Importantly, on a closed surface the generation of such
defects must be precisely compensated by a similar
amount of extra positive charge, to avoid Euler’s topolog-
ical formula violation[16, 17]. Yet, in the absence of sys-
tematic experiments, the evidence for the extra positive
charge could not be tested and the physical mechanism
behind the formation of concave apices in the observed
profiles remained unknown.

Here we demonstrate lenticular hexagon-to-hexagram
droplet profile transformations, with concave apices re-
producibly formed by a well-defined temperature varia-
tion protocol. We fully resolve the mechanism of this
transformation, demonstrating it to avoid both the ex-
tra positive topological charge generation and Euler’s
topological formula violation. In contrast to previously
reported self-faceting mechanisms[2, 4, 6, 11, 14], the
present transformation involves no splitting or displace-
ment of topological charges — processes that necessarily
require mediation by dislocations[25]. Instead, this trans-
formation is driven by spontaneous origami-like folding
of the droplet’s surface, which we reproduce employing
a macroscopic experimental model, a simple analytical
model, and computer simulations.

To form the self-faceting emulsion, we suspend by mag-
netic stirring the oil [hexadecane, CH3(CH2)14CH3] in a
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FIG. 1. Bright-field microscopy images of a lenticular hexag-
onal droplet (a) transforming on heating into a hexagram (b),
evolving into (c), and eventually transforming into a spher-
ical droplet (d). Note the lateral contraction of the droplet
[the scale bar is shown in (d)]. Note also the folds halfway
between the convex vertices in (b), scattering light roughly
along the radial direction. The definitions of D, 2l, and α
(see main text) are shown in (c). The inset to (d) shows
the schematic temperature-dependence of the droplets’ inter-
facial tension, γ(T ), exhibiting a near-zero (negative) slope
above the interfacial freezing temperature Ts, a high positive
slope at T < Ts, and vanishing of the interfacial tension at
T = TSE, where the icosahedra distort into polygonal lentic-
ular shapes. ‘Glow’ LUT is applied for better visibility of the
microscopy images.

1 mM aqueous surfactant [octadecyltrimethylammonium
bromide, CH3(CH2)17(CH3)3NBr] solution (1-2% o/w),
as described in detail elsewhere[2]. Although many oil-
surfactant combinations exhibit self-faceting[5, 8, 21, 23,
26] at surfactant concentrations near or above the critical
micelle concentration (CMC)[5], we focus on this partic-
ular system because it is well characterized and conve-
niently exhibits transition temperatures close to room
temperature. The emulsion is loaded by capillarity into
a 0.1×2×50 mm VitrocomTM borosilicate glass capillary,
sealed by an instant epoxy glue, and glued wide face down
onto a brass platelet. The platelet is then mounted on
a temperature-controlled baseplate for bright field mi-
croscopy using an inverted Nikon TiE setup equipped
with dry Plan Apo 20× (NA = 0.75) and Plan Fluor
100× (NA = 0.9) objectives, and a Nikon DS-Fi1 CCD
camera for video acquisition[2, 8].

To observe the droplet shape transformations, we cool
the emulsion droplets (spherical-state radii ≈ 10 − 45
µm) quasistatically (0.1-0.4◦C/min) from ≈ 28◦C, where

the droplets are perfectly spherical, through the sphere-
to-icosahedron transition, down to TSE ≈ 20◦C, where
the icosahedra flatten, forming the laterally-expanding
polygonal lenticular shapes. Once the transition is
detected by optical microscopy, we immediately stop
the cooling scan , wait 2-10 min for full temperature
equilibration, and focus on one of the lenticular hexagons
(Fig. 1(a)). Next, we increase the temperature very
slowly (≈ 0.1◦C/min), which induces lateral contrac-
tion of the hexagonal droplet. Strikingly, the contraction
is accompanied by the fascinating hexagon-to-hexagram
shape transformation, followed by hexagram-to-sphere
transformation [see Fig. 1 and Video S1 in Supplemen-
tary Information (SI) [27]]. A similar transformation is
also observed for other oil-surfactant combinations that
exhibit self-faceting (see SI, Section I). Faster heating
(≈ 1◦C/min) limits shape relaxation and yields slightly
distorted hexagrams.

The observed shape transformations are governed by
the interplay between the droplet interfacial tension
and the elasticity of the interfacial crystalline mono-
layer. Notably, the 2D Young’s modulus Y of the in-
terfacial crystal was previously estimated[2, 7, 19] to
lie within 0.6 < Y < 80 mN/m, comparable to the
values reported for liquid alkane-surfactant interfacial
monolayers[28] (1 < Y < 18 mN/m) and unilamellar
phospholipid vesicles[29] (50 < Y < 300 mN/m). How-
ever, vesicles and emulsion droplets whose surfaces are
2D-liquid have a zero shear modulus and therefore do not
exhibit self-faceting transitions. Although certain non-
spherical shapes have recently been reported for emul-
sion droplets without IF[30], these shapes are not faceted.
Faceting and other shape transformations also occur in
droplets of anisotropic bulk phases[31–33], where bulk

elasticity contributes to the deformations, in contrast to
the transitions studied here, which are driven by the crys-
tallinity of the interfacial layer.

To understand the origin of lateral expansion and con-
traction of polygonal droplets upon cooling and heating,
respectively, note that the interfacial tension γ exhibits
a non-monotonic dependence on temperature. In par-
ticular, while γ(T ) exhibits a near-zero negative slope
above the interfacial freezing transition temperature Ts ≈
26◦C, the slope is high and positive at T < Ts, leading to
vanishing of γ at T = TSE (inset to Fig. 1(d)). This be-
havior, reflecting the loss of the interfacial entropy[34, 35]
at T = Ts, is a well-known signature of the interfacial
freezing effect, verified in numerous studies of interfacial
freezing, at bulk interfaces[5] and at the surfaces of emul-
sion droplets[2, 19, 35]. On rapid cooling below TSE,
γ transiently turns negative, promoting the increase of
the surface area A of the droplets and leading to com-
plex non-equilibrium phenomena[15, 36]. Importantly,
our capillary-contained oil-in-water emulsion droplets are
compressed by buoyancy against the top of the containing
capillary. This compression is negligible for the present
droplet sizes, except for in the close vicinity of TSE, where
γ is ultralow, allowing the buoyancy to significantly flat-
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FIG. 2. (a) A macroscopic hexapita model undergoing a shape
transformation into a lenticular hexagram (b) upon inflation.
The edge length of the hexagon is ≈ 4 cm. (c)-(d) Numerical
Surface Evolver simulations of hexapita inflation: (c) after a
very slight inflation (d⋆ = 0.01, ν2D = 0.5, v = 0.656); (d)
after significant inflation (d⋆ = 0.01, ν2d = 0.5, v = 0.84).
Each of panels (c) and (d) presents two views of the sim-
ulated shape. Note the similarity in the appearance of the
folds forming between the vertices in both macroscopic exper-
iments (encircled in yellow in the inset of (b)) and numerical
simulations (inset to (d)); see SI [27] for a quantitative com-
parison of these folds’ geometry. Similar folds also appear in
microscopy images of the emulsion droplets (Fig. 1(b)).

ten the droplets[14]. This flattening appears in bright-
field microscopy videos as lateral expansion on cooling.
Conversely, heating the droplets away from TSE increases
the γ value and decreases A, so that the droplets deflat-
ten, appearing to undergo contraction. Since the vol-
ume of each droplet V is conserved, with the thermal
expansion over this narrow T range being negligible, the
droplet’s contrast in microscopy images increases upon
the deflattening (notice the gradual change of contrast
from Fig. 1(a) to (d)).

To describe the geometry of the observed shapes by
a single parameter, we adopt the ‘compacity’: c =
6π1/2V A−3/2. The compacity is essentially a dimen-
sionless volume, which equals 1 for a perfect sphere
and tends to 0 for a flat object. We hypothesize that
the hexagon-to-hexagram transition, induced by the γ-
controlled contraction of A, is governed solely by the
corresponding change in c, together with the presence
of the six q = +2 topological charges located at the ver-
tices of the initial lenticular hexagon. Guided by this hy-
pothesis,description, we reproduce the observed shapes
by a simple macroscopic experimental model. In this
model, we increase c by the inflation of V , so that the
shape transformations conveniently occur at a constant
A, rather than at a constant V (and decreasing A) as
in the emulsions. In particular, we glue two hexagonal
plastic sheets along the edges, forming a closed surface,
referred as ‘hexapita’ (an hexagonal version of the well-
known Mediterranean round bread with a hollow, pocket-
like interior, known as a ‘pita’) (Fig. 2(a)). Note, that the

angular deficiency at each of hexapita’s vertices is 2π/3,
corresponding to a topological charge of q = +2, as in
the experimental hexagonal droplet; q is zero everywhere
else. To control the internal volume of our hexapita, we
poke a small hole and flow air inside[37], inflating the
space enclosed by the two hexagonal plastic sheets. Strik-
ingly, the shape produced by the inflation of our hexapita
almost perfectly matches the one observed in emulsion
experiments (cf Fig.2(b) and Fig.1(b)). Furthermore, a
closer examination reveals the folds formed half-way be-
tween the vertices (blown-up in the inset to Fig. 2(b)),
similar to the ones occurring in the emulsion droplets
(Fig. 1(b)). Notably, the angular deficiency at the ver-
tices of the hexapita does not change during this trans-
formation: the transformation occurs by simple folding,
rather than by cutting and gluing. The successful macro-
scopic reproduction of the hexagon-to-hexagram transi-
tion supports our hypothesis that the transformation is
governed by compacity together with the fixed locations
of the topological defects. Under these conditions, the
same mechanism should operate in closed elastic shells
of either microscopic or macroscopic size, provided that
bending is far less costly than stretching, a regime that
is quantified below.
Our successful qualitative reproduction of the hexagon-

to-hexagram shape transformation by macroscopic
hexapita experiments, motivates the construction of an
even simpler geometrical model, aiming at a quantita-

tive description of this phenomenon. Similarly to the
macroscopic experiments, this model assumes the q = +2
charges to remain fixed at the vertices of the initially-flat
hexapita. In addition, the shape is assumed to maintain
the 6-fold symmetry about the z axis, with the (slight)
bending, stretch and shear of the facets neglected, so that
only linear origami folds are permitted (green dashed
lines in Fig. 3(a)). In this purely 3D deformation mode
(i.e., without in-plane deformation of the surface), verti-
cal creases emerge midway between the vertices (orange
dashes in Fig. 3(a)), forming the folds shown as vertical
(i.e. z-parallel) blue lines in Fig. 3(c). The folded 3D
shape has flat hexagons as its top and bottom, both ro-
tated by π/6 relative to the initial flat hexagonal pocket.
The shape’s edges are capped by six rectangular-based
pyramids, oriented horizontally (Fig. 3). For a given
value of either the edge a or the apothem R of the initial
hexagonal pocket, the inflated shape is fully determined
by the choice of ℓ (Fig. 3(d)-(g)). Conversely, the angle α
(defined in Fig. 3(b)) unequivocally determines the ratio
D/2ℓ (see SI [27]):

D

2ℓ
=

√
3

2
+

1

2
tan

(π

3
−

α

2

)

, (1)

allowing the model to be tested by a direct, quantitative,
scale-free, comparison with emulsion experiments.
To identify the mechanism driving the hexagon-to-

hexagram transitions in emulsions, we first quantitatively
characterize the shape of the experimental liquid hex-
agrams by their D/2ℓ and α (Fig. 1(c)), measured by
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FIG. 3. (a) A flat hexagonal pocket folds along the green dashes, forming creases along the orange dashes, resulting in a 3D
shape. (b) and (c) show its top and side views, respectively. Note the z-axis orientation. (d)–(g) display 3D renderings for
ℓ⋆ ≡ ℓ/R = 0.8, 0.6, 0.3, and 0.02. The parameters α and D, defined in (b) and (c), are fully determined by ℓ and the initial
hexagon edge a.

direct microscopy. Strikingly, the resulting values for
several different samples overlap (Fig. 4(a)). Further-
more, note the perfect match between the experiments
and Eq. (1), derived from our very simple origami model,
with no adjustable parameters (Fig. 4(a)). This agree-
ment strongly supports the validity of the central as-
sumption of our origami model[38]: that the topological
charges remain fixed at the tips of the vertices, with no
generation, annihilation, or displacement of the charges.
Remarkably, the location and length of the folds do not
arise from a fixed, prescribed design — as is typically the
case in origami[39] — but instead continuously evolve.
Indeed, the folds ‘slide’ across the 2D crystal during the
evolution of ℓ, as illustrated in Fig. 3 and detailed in the
SI calculations[27]: the non-trivial pattern formed by the
folds depends uniquely on a single global control param-
eter — the reduced volume compacity.

As an additional test of our origami model’s validity,
we use it to analytically calculate the droplet’s surface
area A and compare it to the experiment. We first define
ℓ⋆ ≡ ℓ/R and obtain: ℓ⋆ = (2/31/2) cos (π/3− α/2) and
R = D[31/2ℓ∗ + (4/3 − ℓ∗2)1/2]−1, allowing us to com-

pute A = 4
√
3R2 for any given combination of D and

α (see SI [27]). We measure D and α from our experi-
mental microscopy images, substitute them into the ex-
pressions for ℓ⋆ and R, and extract the model prediction
for A. The results, obtained in heating scans for three
different samples, demonstrate that A decreases (open
symbols in Fig. 4(b)), as expected from the temperature-
induced increase of γ in the range TSE < T < Ts (inset
to Fig. 1(d)).

While measuring the surface area of inflated 3D hexa-
gram droplets is challenging with conventional bright-

field microscopy, our experiments provide an accurate
measurement of A in two limiting cases: (a) very thin
droplets observed near TSE ; (b) spherical droplets formed
upon heating of the hexagrams. For thin droplets, A
is approximately twice their projected area in the x-y
plane, Ap, as measured by bright-field microscopy. Re-
markably, the surface areas of the thin droplets thus ob-
tained, smoothly converge to the ones predicted by the
origami model (compare open symbols and crosses in
Fig. 4(b)). For the spherical droplets, A = 4πr2, where
r is the droplet radius measured by microscopy. Once
again, these values (solid symbols in Fig. 4(b)) follow
the temperature trend of the origami model predictions
(open symbols). These results strongly support the valid-
ity of our origami model, justifying the assumptions un-
derlying its foundations. With that, notably, our origami
hexapita has zero volume for a perfectly hexagonal shape
(i.e., α = 60◦); consequently, the volumes predicted by
this very simple model are invalid.

To address the limitations of the origami model,
while preserving its most important physical assump-
tions, we perform finite elements numerical simulations
of a hexapita with a stretchable, smoothly bendable sur-
face using the Surface Evolver software[40]. Adopting
the thin sheet description of the surface-covering interfa-
cial crystal, we assign it the elastic parameters κ, Y , and
ν2D, representing the bending modulus, the 2D Young’s
modulus, and the Poisson’s ratio, respectively[41]. With
the droplet volume set to a prescribed value, the elas-
tic energy of the interface is minimized by adjusting its
shape and strain (see SI [27]). As in our origami and
experiments, six topological charges (q = +2) reside at
the vertices of the simulated hexapita, dictating the lo-
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FIG. 4. (a) The mutual dependence between the dimen-
sionless shape descriptors, D/2ℓ and α, obtained from emul-
sion experiments (open symbols), closely matches the predic-
tions of the simple theoretical origami model (Eq. (1); solid
curve) and numerical elasticity calculations (half-filled sym-
bols). Note that α is 60◦ for a perfect hexagon and 0◦ for a
regular (i.e., simple) hexagram, as shown on top. The tilted
arrow indicates the time evolution of α and D/2ℓ during heat-
ing scan experiments, where the hexagon-to-hexagram transi-
tion occurs. Statistical measurement errors are smaller than
the symbols. (b) Microscopy-measured surface areas A of
thin droplets (crosses) and spherical droplets (closed symbols)
smoothly follow the trend predicted by the origami model,
based on experimentally measured D and α (open symbols).
Data from three different samples (denoted by Roman numer-
als) are shown in different colors, with the same colors and
symbols used in both (a) and (b). The curves serve as a guide
to the eye. Arrows indicate the time direction in these heat-
ing scans. At T < TSE, A increases with time at a constant
T , as γ is transiently negative[2, 7, 11, 15, 35].

cations of the tips where Gaussian curvature is concen-
trated. Note that the dimensionless shape descriptors,
such as D/2ℓ and α, depend only on: (i) the dimension-
less volume: v = 31/4π1/2V/(4R3) (equal to compacity
c, when the area does not change), with R defined in
Fig. 3(a); (ii) ν2D; (iii) d⋆ = [12(1 − ν22D)κ/Y ]1/2R−1.
For a hypothetical interfacial crystal with isotropic elas-
tic properties, d⋆ is the crystal’s thickness, divided by
R for non-dimensionalization. However, the interface-
normal and tangential elastic properties of interfacially-
frozen monolayers differ, primarily due to the anisotropic
nature of the constituent elongated molecules and their
locally parallel alignment within the layer, so d⋆ does not
have a simple geometrical interpretation, but provides

the elastic scale for the deformations[42–44].
In hexapitas with d⋆ ≥ 0.03, the initial hexagon ex-

pands continuously upon volume inflation, without un-
dergoing the hexagon-to-hexagram transformation (see
SI [27]). However, for d⋆ ≤ 0.02, the inflation gen-
erates folds halfway between the vertices, which form
through a sudden buckling[41] transition. These folds
impart a hexagram shape to the droplet (Fig. 2(c)-(d)).
Both the shape and the accompanying folds strongly re-
semble those observed in our macroscopic experiments
(Fig. 2(b)), as well as in the emulsions (Fig. 1(b)). For
a quantitative comparison of the simulated shapes to
experiments, we measure the simulated values of D/2ℓ
and α (see SI [27]). Strikingly, the resulting dependence
of D/2ℓ on α (purple half-filled symbols in Fig. 4(a))
perfectly matches both the experimental observations of
emulsion droplets (open symbols) and the analytical de-
pendence derived for the origami model (Eq. (1); solid
curve). This agreement strongly supports the proposed
mechanism of the hexagon-to-hexagram transitions.
In conclusion, we demonstrate that interfacially frozen

oil-in-water emulsion droplets, which spontaneously
adopt a lenticular hexagonal shape upon cooling while
retaining a liquid bulk, undergo a hexagon-to-hexagram
transformation upon heating. This transformation is suc-
cessfully reproduced by both a simple analytical origami
model and numerical simulations. The deformation pro-
ceeds via interface folding, which induces both concave
and convex edges. Both types of edges occur, and pos-
sibly meet, without the generation, annihilation, or dis-
placement of topological charges. This mechanism may
have broader implications for morphogenesis, where thin
crystalline shells can develop both concave and con-
vex edges to facilitate protein recruitment and other
crucial biological processes[6, 45–47]. Beyond biologi-
cal relevance, our findings suggest a new route for de-
signing complex-shaped colloidal particles[6]. Impor-
tantly, since self-faceting transitions are observed even
for nanometer-scale droplets[7], this approach may also
find applications in nanotechnology, paving the way for
advanced self-assembled metamaterials[48, 49] with tun-
able properties[50].
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