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I. EXPERIMENTAL HEXAGRAM OBSERVATIONS: OTHER MATERIALS

To test the generality of our observations, we performed additional measurements on

three alkane–surfactant combinations beyond the hexadecane–trimethylammonium bromide

system discussed in the main text. In all cases, lenticular hexagon droplets transformed

into hexagrams upon reheating above TSE (see Fig. S1). Although these systems do not

exhaust the many alkane–surfactant combinations known to exhibit self-faceting[2, 3, 6-11,

15, 21-23, 26, 35], the results suggest that other self-faceting systems are likewise expected

to show the hexagon-to-hexagram transition.

FIG. S1. Similar hexagram-shaped droplets are observed for (a) heptadecane [H(CH2)17H]

alkane in a 1 mM octadecyltrimethylammonium bromide [H(CH2)18(CH3)3NBr] aqueous surfac-

tant solution; (b) hexadecane [H(CH2)16H] in a 0.6 mM nonadecyltrimethylammonium bromide

[H(CH2)19(CH3)3NBr] solution; and (c) hexadecane in a 10 mM BrijTM-78 solution.

II. ORIGAMI MODEL GEOMETRY

To obtain the geometric relations presented in the main text, we first calculate the di-

ameter D of our origami hexapita model (see Fig. 3(a)-(c) of the main text). For that, we

note that the geodesic distances between points on the folded hexapita are the same as those

measured on the initial hexagon, prior to folding. In particular, the side lengths a of the

initial hexagon, the geodesic distance
√
3R between the opposite permanent vertices, and
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the geodesic distance 2R between the midpoints of two opposite sides remain unaffected by

the folding. Thus:

D (R, ℓ) =
√
3R



ℓ⋆ +
2

3

√

1−
3

4
ℓ⋆2



 (1)

and the total volume of the inflated structure is:

V (R, ℓ) = 3
√
3R3 × ℓ⋆ (1− ℓ⋆)



ℓ⋆ +
4

9

√

1−
3

4
ℓ⋆2



 . (2)

Here ℓ⋆ = ℓ/R, with ℓ and R defined in Fig. 3 (main text). The folding corresponds to a

decrease in ℓ⋆ from 1 (flat pocket) to ℓ⋆ = 0. This variation of ℓ⋆ corresponds to an increase

in volume from 0 to a maximum value Vmax, followed by a decrease back to zero as ℓ⋆ → 0

(Fig. S2), at which point the 6 pyramids degenerate into flattened vertical wings, and the

central polygon collapses into a point (Fig. 3(g) of the main text).

For non-dimensionalization, we divide the volume of the hexapita (Eq. (2)) by VS =

4R3/
(

31/4π1/2
)

, which corresponds to the volume of a sphere having the same surface area

as the initial undeformed hexapita. The resulting dimensionless volume is thus given by:

v (ℓ⋆) =
37/4π1/2

4
ℓ⋆ (1− ℓ⋆)



ℓ⋆ +
4

9

√

1−
3

4
ℓ⋆2



 . (3)

Notably, since the surface area of the origami hexapita is fixed, this dimensionless value

simply equals to the compacity c introduced in the main text. By maximizing Eq. (3), we

find the maximum dimensionless volume that can be contained in an inflatable hexagonal

pocket, folded without stretch: vmax = 0.7126, corresponding to ℓ⋆max = 0.5949 (Fig. S2).

Refining the origami model by allowing the facets to bend and stretch induces a dependence

of the maximum volume on the pressure; nevertheless, it is possible to define a dimensionless

filling volume to be compared with this vmax (see Section II.C below).

Among the different dimensionless features that can be measured in emulsion droplet

movies, we choose the convexity angle α, defined in Fig. 3(b) of the main text, as it is non

local, yet easily measured and almost unaffected by the focus of the imaging system. By

simple geometry:

α =
2π

3
− 2 arctan

√

4

3ℓ⋆2
− 1, (4)

demonstrating that α varies from +π
3
to −π

3
when ℓ⋆ evolves from 1 to 0.
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FIG. S2. The dimensionless volume of the origami hexapita model exhibits a peak vmax = 0.7126

for an optimal ℓ⋆ = 0.5949 value (Eq. (3)). Note the detailed y-scale for v > 0.6.

Since R is only directly measurable for a flat shape, ℓ⋆ is not a convenient parameter

to measure in experiments. Therefore, we use Eqs. (1) and (4) to obtain a direct relation

between α and D/ℓ, which are readily measurable:

D

2ℓ
=

√
3

2
+

√

1

3ℓ⋆2
−

1

4
=

√
3

2
+

1

2
tan

(

π

3
−

α

2

)

. (5)

Interestingly, when α = 0, so that the horizontal projection of the inflated hexagon

provides an exact ‘Star of David’ (‘Magen David’ and also the guild emblem of the brewers;

Fig. 3(e) of the main text), ℓ = R√
3
, and the dimensionless volume is 0.7115, only a few

‰ smaller than the maximum volume.

Inverting Eq. (4), we obtain:

ℓ∗ =
2√
3
cos

(

π

3
−

α

2

)

, (6)

which allows the R value to be obtained directly from α and D:

R =
D

ℓ∗
√
3 +

√

4

3
− ℓ∗2

. (7)

Note, that the surface area of a flat hexagonal pocket is given by A =
(

6
√
πV
v

)2/3
, and in

origami folding, A remains invariant. Therefore, for a given combination of D and α, this

expression, together with Eqs. (2),(3), and (7), determines the value of A (i.e., the open

symbols in Fig. 4(b) of the main text).
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III. DROPLET SHAPE SIMULATIONS

A. Modeling the interfacial crystal as a thin elastic sheet

We complement the results of our origami calculations, using the softer (stretchable

and bendable) model of the thin elastic interface, which is solved numerically [see main

text, Fig. 2(c)-(d) and Fig. 4(a)]. For that purpose, the energy associated with tangential

deformations of an isotropic 2D surface is characterized by a pair of 2D elastic parameters[51]:

the 2D Young’s modulus (Y ) and the 2D Poisson’s ratio (ν2D). In addition, the bending

modulus κ governs the out-of-plane deformations of this symmetric surface[42]. A thin

sheet of “transversely isotropic” material[43], where the mechanical properties are locally

invariant under rotations about the normal to the sheet, but may differ along the normal

direction — such as in surfactant bilayers or monolayers — can similarly be modeled as a

2D isotropic elastic surface. However, in contrast to fully-isotropic thin sheets, the quantity

d = [12(1 − ν2
2D)κ/Y ]1/2 cannot be identified with the thickness of a transversely isotropic

thin sheet[51]. Nevertheless, the corresponding dimensionless parameter, d⋆ ≡ d/R, remains

useful for our studies, as it characterizes the scale of the deformations[42]. Together, d⋆, ν2D,

and the dimensionless volume v = 31/4π1/2V/ (4R3), form a complete set of dimensionless

control parameters that determine the energy landscape of our 2D surface.

B. Surface Evolver simulations: technical details

Our numerical simulations employ the Surface Evolver[40] finite element framework, us-

ing linear Hooke’s law and assuming a linear elastic curvature response. Thus, the energy

per unit surface area, minimized by Surface Evolver, is given by eelast =
1
2
(κc2 + ǫijKijklǫkl),

where ǫij and Kijkl are, respectively, the dimensionless surface Lagrangian finite strain ten-

sor[52] (see details in Quilliet et al. [42] and the SI of Fierling et al. [41]) and the elasticity

tensor[51]. Here, c is the mean curvature, whose integral over a sphere[53] is 16π.

To capture a broader range of deformations, the in-plane elasticity part 1
2
ǫijKijklǫkl was

integrated on the undeformed surface, in a Lagrangian framework [40]. In our numerical

calculations, the surface is discretized using a hexagonal mesh with 12288 facets. For each

choice of internal volume, the bending and stretching of the surface were adjusted to mini-

mize the energy. In some cases, the energy could be further reduced by additional inflation
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followed by deflation, suggesting that this process helps the algorithm avoid local minima

in the energy landscape. Due to the mesh resolution required for the modeling of thin

hexapitas, the range of d∗ could only be explored down to d∗ = 0.005. Note that even more

complex shapes may emerge at lower d∗ values, although significantly greater computational

power would be required to carry out simulations in this regime.

C. Pressure simulations and filling volume

In our Surface Evolver simulations, the volume enclosed by the 2D surface is an externally

controlled parameter, so the simulations yield the difference between internal and external

pressure: P = ∂Eelast

∂V
= ∂

∂V

(

˜

eelast
)

, obtained as the Lagrange multiplier. The correspond-

ing dimensionless quantity, Padim = P
d∗Y3D

= RP
Y
, where Y3D is the 3D Young’s modulus,

increases non-linearly as a function of v (see Fig. S3).

The dimensionless parameters Padim and v enable comparison of pressure curves across

high (d⋆ ≥ 0.03) and low (d⋆ ≤ 0.02) ranges of d⋆ values. As mentioned in the main text,

the hexagon-to-hexagram transition occurs at low d⋆, while the high-d⋆ hexagons expand

continuously, without any shape transitions (Fig. S4(a)-(b)). The low-v range of the Padim(v)

curve is dominated by the bending energy, so that the pressure hardly varies. Buckling

corresponds to a jump in pressure which happens only for the low-d⋆ hexapita (Fig. S3,

inset). In the high-v range of the curve, pressure significantly increases. In this regime,

dominated by the stretching energy, the curves obtained for both d⋆ = 0.01 and d⋆ = 0.03

almost perfectly overlap. Furthermore, a quasi-linear evolution takes place in this v-range,

with a slope of order 1 obtained at high v, where the shape is near-spherical. This linear

part defines the ‘filling volume’ vfill as the intersection of the linear fit to Padim(v) and the

P = 0 axis. The same value of vfill is obtained for both the low- and the high- d⋆ ranges,

indicating that the noticeable 3D shape difference between these two situations has only a

negligible influence on the energies at stake. As expected, the filling volume vfill = 0.84

is comparable to, and slightly exceeds, the maximum reduced volume vmax = 0.7126 of the

origami model.
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FIG. S3. Dimensionless pressure Padim = PR/Y as a function of the dimensionless volume v of an

inflated elastic hexapita, as obtained from numerical Surface Evolver simulations. A continuous

increase is observed for d∗ = 0.03 (green circles), where no abrupt shape transitions occur. The

abrupt pressure decrease at v ≈ 0.66, observed for d∗ = 0.01 (blue triangles) corresponds to the

hexagon-to-hexagram buckling transition (see the inset for a magnified plot in the near-transition

region). A linear fit to the Padim(v) dependence at high v extrapolates to P = 0 at v = 0.840,

defined as the filling volume vfill. ν2D = 0.5 is adopted in these calculations.

D. Fold size in simulated and experimental hexagrams

Upon transitioning to a lenticular hexagram shape, the numerically simulated surfaces

develop folds midway between the vertices, closely resembling those observed in macroscopic

experiments and emulsion droplets (Fig. 1 and 2 of the main text), in support of our proposed

self-folding mechanism. Moreover, both simulations and macroscopic experiments allow

precise quantification of fold size, as shown in Fig. S5(a), where a magnified view of the

fold region is provided. Remarkably, the dimensionless parameter describing the fold size,

x⋆ = x/R, increases linearly with d⋆, in both numerical simulations and experiments (cf.
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FIG. S4. (a) Top and (b) perspective views of a simulated droplet with d⋆ = 0.03, ν2D = 0.5, and

v = 1.381. At this high d⋆, no shape transformation occurs. At this high d⋆, the conformation for

weak inflation is very similar to that of low-d⋆ objects, such as in Fig. 2(c) of the main text, but

no shape transformation into a hexagram occurs upon further inflation.

FIG. S5. (a) The size of the fold, which forms midway between the vertices in both simulations

and experiments, is quantified by fitting a tangent circle of diameter x to its inner part. (b) The

dimensionless parameter x⋆ ≡ x/R increases linearly with d⋆.

circles and triangles in Fig. S5(b)). The corresponding linear fit gives: x∗ ∼= 0.68 d∗. The

observed agreement between experiments and simulations strongly supports the validity of

our 2D elastic model.

IV. MEASUREMENT OF HEXAGRAM SHAPE DESCRIPTORS (α AND D)

A. Experimental microscopy images

To measure D from a microscopy image of an emulsion droplet, we fit a nearly circular

circumscribed ellipse to the vertices of the droplet. The area of this ellipse, AEL, is mea-

sured, yielding D = (4πAEL)
1/2. The same procedure, with an inscribed ellipse rather than
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a circumscribed one, is used to determined the value of 2ℓ. The value of α is obtained by

measuring the angle between lines manually fitted to two edges (as shown in Fig. 1(c) of

the main text). For each hexagram, we repeat this measurement for all six possible choices

of α, taking the average value and the standard error of the mean.

B. Simulated droplets

The same procedure is applied to measure D and 2ℓ of the simulated droplets. The edges

of the simulated droplets are somewhat less linear, than the experimental ones. Therefore,

we performed precise edge detection using ChatGPT AI, verifying the accuracy of the edge

detection by overlaying the detected edges onto the image of the simulated droplet. We

then used automatic linear fits (in OriginLabTM software) to each of the 12 detected edges,

allowing the α angles to be determined. As with the experimental data, we calculate the

average of the six α values for each simulated droplet. However, the standard error of the

mean is totally negligible here due to the near-perfect symmetry of the simulated shapes.
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SUPPLEMENTARY VIDEO CAPTIONS

Video S1. A temperature scan of oil-in-water emulsion droplets, imaged via bright-field

microscopy, shows a large droplet undergoing a sequence of shape transformations. Upon

cooling, the droplet transitions from a sphere to an icosahedron, which then flattens into a

lenticular hexagonal shape. On heating, the lenticular hexagon transforms into a hexagram

before returning to a sphere. Black arrows indicate folds that emerge midway between the

hexagram’s vertices. These folds resemble those observed in the macroscopic model and

simulation (Fig. 2(b) and 2(d) of the main text). Since smaller droplets have a higher

transition temperature, a text label appears when the central droplet crosses TSE during

both cooling and heating. A pause symbol is displayed at the bottom during pauses, and

the ‘glow’ LUT is applied throughout for enhanced visualization. The small shift between the

observed sphere-to-icosahedron and hexagram-to-sphere transition temperatures is mainly–

if not entirely–caused by thermal lag; extrapolation to zero scan rate reduces the difference

to 0.14 ± 0.06◦C. Importantly, both transitions occur several degrees below the interfacial

freezing temperature Ts [2,19] (see main text).
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