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Topological and geometrical disorders correlate robustly

in two-dimensional foams
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A two-dimensional (2D) foam can be characterised by its distributions of bubble
area and number of sides. Both distributions have an average and a width
(standard deviation). There are therefore at least two very different ways to
characterise the disorder. The former is a geometrical measurement, while the
latter is purely topological. We discuss the common points and differences
between both quantities. We measure them in a foam which is sheared, so that
bubbles move past each other and the foam is ‘shuffled’ (a notion we discuss).
Both quantities are strongly correlated; in this case (only) it thus becomes
sufficient to use either one or the other to characterise the foam disorder.
We suggest applications in the analysis of other systems.
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1. Introduction

Two-dimensional (2D) cellular patterns fill the plane without gaps or overlaps. Even if we

consider here only the class of patterns where most cells meet in threes, they are ubiquitous

in nature: from 2D foams to biological tissues, including geology, hydrodynamics, ecology

and geography, as well as 2D cuts of three-dimensional foams and other cellular patterns

in metallurgy, astronomy and biological organisms [1,2]. Each cell is characterised by its

area A, which is an intrinsic property determined by the amount of matter it encloses, and

its number of neighbours n, which can vary according to the mutual arrangement of cells

within the pattern.

There are at least two quantities which characterise the disorder of a pattern: the

distribution of A and the distribution of n [1–3]. In the present article, we study whether it

is possible to simplify the description of disorder to only two numbers, namely the width

of each distribution, called the geometrical and topological disorders, respectively.

Both measures of disorder are independent [4,5].1 However, statistically, a cell’s value of

n tends to increase with its size (perimeter or area): small cells tend to have fewer

neighbours, and larger cells have more neighbours (see [1,2,6–14] and references therein).

We can thus expect that, except when the initial conditions due to preparation are

important, there is a correlation between these two measures of disorder.
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We investigate here whether this intuition is correct and under which conditions

the disorder of a pattern can statistically be described by a single number. We first describe

experiments on a sheared monolayer of bubbles (Section 2), and compare the results

(Section 3) with simulations of similar systems (Section 4).

2. Materials and methods

2.1. Foam preparation

The set-up is similar to that of Abd el Kader and Earnshaw [15]. We use a bubble

monolayer (quasi-2D foam) confined at the air–water interface by a glass plate (Figure 1a),

as introduced by Smith [7] and adapted by Vaz and Fortes [16]. It provides all the

properties that we require (unlike both other quasi-2D foams, namely, those confined

between two parallel glass plates or a bubble raft exposed to the air [17]): the water

provides easy access to the foam and enables us to prepare precisely the chosen

distribution of bubble areas. It also facilitates the manipulation of the boundaries, in

particular that of the rubber bands (see below). The glass plate facilitates observation and

prevents bubbles from breaking: the foam lifetime is limited only by coarsening, which

takes several hours and does not affect the results presented below.

The trough is a rectangle 44 cm long and 20 cm wide. The foam is enclosed in a smaller

square of size 18� 18¼ 324 cm2, with four independent boundaries (Figure 1b). A rigid

rod (fixed boundary) is attached to the trough itself. Another rigid rod (moving boundary)

is attached to the glass lid, which slides laterally under the control of a motor.

The rectangle is closed on each side by a rubber band (passive boundaries): it thus deforms

into a parallelogram at constant area (Figure 2).

The trough is filled with a solution of 10% commercial dishwashing liquid in water.

A pump blows air into a tube placed below the surface of water, which is moved back and

forth to produce an homogeneous foam. At low flow rate, the solution surface tension

and the tube diameter together fix the bubble volumes [18]. The histogram of bubble

volumes therefore has a single peak. Its width increases with the flow rate, from ‘narrow

monomodal’ (Figure 3a) to ‘polydisperse’ (Figure 3b). Using two tubes simultaneously

yields a histogram of bubble volumes with two peaks. The distance between peaks

can be chosen smaller than their width (‘with shoulder’, Figure 3c), or larger (‘bimodal’,

Figure 3d).

Figure 1. Experimental set-up. (a) Side view: bubbles are sandwiched between the water surface
and a horizontal glass plate. (b) Top view: a computer controlled motor moves one rigid boundary,
while the other one is fixed; the lateral boundaries are passive.

652 C. Quilliet et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
J
F
 
-
 
I
N
P
 
G
r
e
n
o
b
l
e
 
S
I
C
D
 
1
]
 
A
t
:
 
0
9
:
1
7
 
1
2
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



The shape of the bubbles, and thus the fraction of the glass plate touched by the water,

varies with the foam thickness h [19], which is the distance between water and glass in the

absence of bubbles (Figure 1a). At small h the foam is extremely wet and the bubbles are

round. At large h the bubbles are dry but begin to pile on top of each other making

a 3D foam [20]. We use the intermediate range (35h56.8mm) for which the bubble

monolayer is moderately wet. In this range, the bubbles can deform and store elastic

energy. The foam has a finite shear modulus and thus behaves as a 2D elastic solid until it

yields and bubbles rearrange.

2.2. Measurements

A circular fluorescent tube (diameter 48 cm) is placed just above the trough. A video

camera records a 33 cm wide, 25 cm high field of view. Images are analysed using ImageJ

(http://rsb.info.nih.gov/ij/) and skeletonised: white bubbles are surrounded by black

boundaries with a thickness of one pixel. The number n of sides (i.e. of neighbours) of each

bubble is measured without ambiguity. At a given h each bubble’s volume determines

its projected area seen from the top [21]. Hereafter we call ‘bubble area’ the area A of each

skeletonised bubble. (In the original image, this corresponds to the area of the gas and

almost all of the liquid.)

For each foam, we plot the histogram of A and n; Figure 3 shows different examples.

We check that both averages, hAi and hni, have the expected values. Here the total number

N of bubbles is typically 570–1800 (with a maximum of 2719); hAi is close to the total area

of the foam divided by N (that is, the inverse of the bubble density), typically 18–65mm2;

hni is always equal to 6, minus a small correction of order 1/N [1,22].

We then measure the standard deviations�A¼ (hA2i� hAi2)1/2 and�n¼ (hn2i� hni2)1/2.
To enable comparisons, in what follows we only consider the dimensionless standard

Figure 2. The foam is initially prepared within a square of side 18 cm (a,b,c) which can be deformed
into a parallogram of the same area, here at an angle of 30� (d,e). The images show samples with
the smallest (a,d) and largest (b,e) width �A/hAi of the bubble area distribution. (f) Same bimodal
foam as in (c), after 44 cycles of shear.
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Figure 3. Four examples of histograms of bubble area A (left) and number n of sides (right) in
freshly prepared foams: (a) narrow monomodal, (b) polydisperse, (c) with shoulder, (d) bimodal.
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deviations �A/hAi and �n/hni as measurements of the geometrical and topological

disorders:

�A

Ah i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
� �

Ah i2
� 1

s

;
�n

nh i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
� �

nh i2
� 1

s

:

ð1Þ

In principle, it is possible to define n unambiguously even for bubbles at the boundaries [5].

However, we choose to remove these bubbles (which may be poorly detected due to bias

in the skeletonization) when evaluating both measures of disorder, which are very sensitive

to changes in even a small number of bubbles [2].

2.3. Shear cycles

In agreement with theory [23] and simulations [24], all results presented below are

independent of the strain amplitude if it is well above the yield strain. A shear cycle

consists in shearing the foam by displacing the movable boundary a distance 10.4 cm and

back, and then to �10.4 cm, and back again. This corresponds to an angle of þ30� to �30�

and a strain amplitude of þ10.4/18¼þ0.58 to �0.58. For dry foams, the yield strain

is larger [23]; we obtain a larger strain amplitude by preparing the foam with the

movable rod which is at the position �4.1 cm (at the left limit of the camera field of view):

the cycle is then at positive strain from 0 to (10.4þ 4.1)/18¼ 0.8, then down to

�(10.4� 4.1)/18¼�0.35. For the driest foam, we also reduce the size of the trough by

reducing the distance between the fixed and movable rods to 10.5 cm; N is then smaller

(413 versus 879 bubbles), and a cycle consists of positive strains in the range from 0 to

(10.4þ 4.1)/10.5¼ 1.4, then down to �(10.4� 4.1)/10.5¼�0.6.

A cycle lasts for T¼ 275 s and the maximum velocity is 37.9� min�1, slow enough that

the results presented here do not depend on the velocity. The bubble deformation and

the velocity gradient enforced by the lateral boundaries are uniform (up to non-affine

displacements due to local disorder). During shear, each cell area is conserved, so that

�A/hAi keeps its initial value. We measure �n/hni at each period.

3. Results

We cover a decade in �A/hAi, from about 0.1 to 1. Figure 2 shows foam samples with

the smallest (Figure 2a and d) and largest (Figure 2b and e) width �A/hAi of the bubble

area distribution. We make the different kinds of distribution overlap, that is, the width of

some polydisperse foams are larger than some bimodal foams. In principle, it would be

possible to prepare foams for which the width of the area distribution is slightly larger than

1 by including a few very large bubbles. However, this would make the distribution

spatially heterogeneous. At the other extreme, a foam with a width of the area distribution

smaller than 0.1 would be possible with other experimental set-ups, but with only a small

number of non-hexagonal bubbles the distribution of the number of sides would again

become spatially heterogeneous.2

This range covers a large variety of foams already studied in the literature. Larger

�n/hni, up to 0.5 or 0.6, would instead correspond to simulated irregular-shaped structures
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generated by fragmentation (fractal topological gas [25]). Lower �n/hni, down to zero,

can be obtained only in highly controlled structures, with periodic boundary conditions

(as in simulations) or with boundaries far away from the analysed image. For instance, the

fruit fly retina (Figure 6b) is part of a large honeycomb lattice of 800 facets.3

Figure 4 indicates a clear correlation between bubble size and number of sides

for sheared foams (unsheared foams are similar, data not shown). There is still debate

(for reviews see [1,2,6–14]) regarding (i) in which systems this relation is linear, following

Lewis, or not linear; (ii) whether it is related to entropy maximisation, energy minimisation

or both (free energy minimisation); (iii) what is the value and significance of the linear

intercept; (iv) whether n correlates better with bubble perimeter or area (or volume, in 3D);

(v) and especially up to what precision the relation can significantly be considered as linear

for practical or theoretical applications. Here, in a narrow monomodal foam there are

too few points to reach a conclusion; in polydisperse and bimodal foams the relation is

certainly not linear, in agreement with references [13,14].

We usually perform measurements at an integer number of shear cycles (and,

in some case, at half cycles). Any given pattern can be represented by a point in the plane

(�A/hAi,�n/hni). During a shear experiment, this point moves vertically: the bubbles

Figure 4. Size-topology correlation for foam experiments after several shear cycles: (a) narrow
monomodal, (b) polydisperse, (c) bimodal. Closed squares: average size hA(n)i of the population of
bubbles with n sides (made dimensionless by the global average area hAi); bar: the standard deviation
calculated on each population. Dashed line: proportion P(n) of bubbles in this population.
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rearrange and the distribution of the number of sides changes while the area distribution

remains fixed. Weakly disordered foams become more ordered: �n/hni decreases. On the

other hand, bimodal foams (Figure 2c and f) become increasingly mixed (Figure 5b):

�n/hni increases. This is important and not trivial [4].

Figure 6. Correlation between measures of disorder. (a) Sheared foams: each point is the final value
of �n/hni and �A/hAi. Solid line: power law �n/hni¼ 0.27(�A/hAi)0.8. Dashed lines: lower bound
for topological disorder (See note 2) [26], for the extreme values of N in these experiments (413 and
2719). Note the log–log scale. (b) Other systems: Solid line: Equation (2), same as in (a). Open
symbols: foam simulations; open downward-pointing triangles, Surface Evolver [27] simulations [23]
shuffled by cycles of shear, as in the present experiments; open upward-pointing triangles, same with
periodic boundary conditions [23]; open diamonds, Surface Evolver simulations shuffled by cycles of
uniaxial elongation [24]; open squares, Potts model simulations at constant tension, with periodic
boundary conditions, shuffled by increasing the fluctuations [28,30]. Closed symbols: biological cells;
closed downward-pointing triangles, facets (ommatidia) in a fruit fly (Drosophila) retina are
arranged in an ordered honeycomb; closed upward-pointing triangles, same for the rough eyemutant
retina [29]; closed square, simulations using the Potts model of cells with adhesion and cortical
tension, with periodic boundary conditions, shuffled by increasing the fluctuations [28,30].

Figure 5. (a) Evolution of topological disorder under shear for given bubble area distribution – �n/
hni (normalised by its asymptotic value to facilitate comparisons) versus number of shear cycles.
Data correspond to Figure 4: diamonds – narrow monomodal; triangles – polydisperse; squares –
bimodal. (b) Evolution of the fraction of contacts between unlike (small–large) bubbles during shear
for a bimodal foam.
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In all experiments, �n/hni reaches a plateau after a few shear cycles (Figure 5a). Final

values tend to cluster on a single curve (Figure 6a), namely, the power law:

�n

hni ¼ 0:27
�A

hAi

� �0:8

:
ð2Þ

This is the main result of this article. It does not seem to depend on the distribution’s shape

(higher moments). In our foams, the width of the area distribution varies from 0.1 to 1,

and that of the topology distribution from 0.03 to 0.3. In this limited range, Equation (2)

means that �n/hni is close to 0.3 �A/hAi.

4. Discussion

According to de Almeida and coworkers [31–33], ‘shuffling’ a foam involves enough

topological changes (‘T1’ neighbour swappings, considered here ; or ‘T2’ cell disap-

pearance during coarsening [1]) that it loses any memory of its initial condition.

The present results make this definition precise: a foam is shuffled after enough

rearrangements [23] that the topological disorder becomes more dependent on the

geometrical disorder than on the initial conditions.

This statistical (rather than exact) correlation of Equation (2) is not trivial. The curve

of Figure 6a seems to be stable under shuffling: it is reached asymptotically, when starting

from different initial conditions (Figure 5). It does not seem related to the minimisation of

any energy, and could apply to other systems. Examples from foam simulations as well as

biological tissues are plotted on Figure 6b. The collected data all fall in the same region of

the (geometrical disorder, topological disorder) plane. Most of them have �n/hni larger (up
to 1.5 or 2 times) than Equation (2).

The curve of Figure 6a appears as a statistical (rather than exact (See note 1), see the case

of non-shuffled foam in Figure 5b) lower bound for the topological disorder, at given area

disorder. It can be used in practice as a benchmark to test how shuffled a pattern is.

If a pattern has �n/hni very different from 0.3�A/hAi, it probably means that it is far from

being shuffled. There is no reciprocity: a non-shuffled pattern can be close to Equation (2).

5. Conclusion

To summarize, all the patterns that we examine are in the same region of the plane

(geometrical disorder, topological disorder). For a given width of the area distribution

(and independently of its higher moments), the ‘shuffled foam’ is well defined and realised.

It reaches a lower bound (Equation (2)) for the topological disorder, which is robust and

directly dependent on the geometrical disorder: �n/hni is close to 0.3�A/hAi. Theoretical
work could try to explain Equation (2) and its stability, for instance, by understanding the

respective roles of disorder and surface minimisation [31–33].

These results could be used to characterise patterns and determine causal relations

between both disorders. They could also be used to study how the foam’s disorder (now

quantified by a single number) affects its mechanical properties [24], and to improve

the characterisation of coarsening [3,33]. Perspectives include the study of fluctuations of

�n/hni, for example, within a shear cycle, and the generalisation of Equation (2) to other

658 C. Quilliet et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
J
F
 
-
 
I
N
P
 
G
r
e
n
o
b
l
e
 
S
I
C
D
 
1
]
 
A
t
:
 
0
9
:
1
7
 
1
2
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



discrete systems, such as granular matter and colloids [34,35], biological tissues [36] and

3D systems [33].
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Notes

1. For any �A/hAi it would be possible to construct a (non-shuffled!) foam of arbitrarily small
�n/hni, as in [4]. Consider a bimodal foam, where small bubbles, arranged in a honeycomb,
would be surrounded by a honeycomb of large bubbles. Non-hexagonal bubble would be at
the boundary between both honeycombs, and thus of order

ffiffiffiffi

N
p

. Thus by increasing N, �n/hni
could be made arbitrarily small.

2. When enclosing a honeycomb in a square box, boundary conditions impose at least two grain
boundaries with length of order N1/2 between perpendicular lattices. Topological considerations
[26] imply a minimal number of paired five- and seven-sided bubbles per unit line of grain
boundaries. We then estimate the topological disorder to be at least 1/[3� 121/8�N1/4].

3. Note that the topological order is already present before the retina is entirely differentiated and
the facet area can be defined: see Figure 2G, H of F. Chanut et al., Genetics 160 (2002) 623.
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[30] J. Käfer, T. Hayashi, A.F.M. Marée et al., Proc. Nat. Acad. Sci. USA 104 (2007) p.18549.

[31] R.M.C. de Almeida and J.R. Iglesias, J. Phys. A 21 (1988) p.3365; J.R. Iglesias and

R.M.C. de Almeida, Phys. Rev. 43 (1991) p.2763.

[32] R.M.C. de Almeida and J.C.M. Mombach, Physica A 236 (1997) p.268.

[33] G.L. Thomas, R.M.C. de Almeida and F. Graner, Phys. Rev. E 74 (2006) p.021407.

[34] P. Ziherl and R.D. Kamien, J. Phys. Chem. B 105 (2001) p.10147.

[35] C.N. Likos and C.L. Henley, Philos. Mag. B 68 (1993) p.85.

[36] S. Courty, J. Friedlander, F. Graner et al., preprint (2008).

660 C. Quilliet et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
J
F
 
-
 
I
N
P
 
G
r
e
n
o
b
l
e
 
S
I
C
D
 
1
]
 
A
t
:
 
0
9
:
1
7
 
1
2
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8


