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We explore the intrinsic dynamics of spherical shells
immersed in a fluid in the vicinity of their buckled
state, through experiments and three-dimensional
axisymmetric simulations. The results are supported
by a theoretical model that accurately describes the
buckled shell as a two-variable-only oscillator. We
quantify the effective ‘softening’ of shells above the
buckling threshold, as observed in recent experiments
on interactions between encapsulated microbubbles
and acoustic waves. The main dissipation mechanism
in the neighbouring fluid is also evidenced.

1. Introduction
Buckling of elastic structures has recently emerged as a
powerful mechanism to trigger fast motion at small scale.
This includes fast reorientation of microswimmers [1,2],
thrust generation in fluids [3,4] or, through solid friction
[5], valves actuation for flow control [6,7] or fast actuation
of optical lenses [8]. Smart design of materials in order to
obtain the desired buckling behaviour has now become
an intense field of research [9–12].

From a modelling perspective, stable configurations of
structures prone to buckling have been widely explored,
as well as the stress or strain thresholds that have to
be overcome to switch between states. The existence of
(at least) two stable states separated by energy barriers
allows for the design of robust devices that can maintain
their state within a certain range of external perturbation
without any external energy input. While the picture in

2021 The Author(s) Published by the Royal Society. All rights reserved.
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terms of equilibrium states is now quite clear, at least for simple geometries (rods, half-spheres,
closed spheres), full control of soft structures by external signals requires to know more about
their dynamics. Recent papers have shed light on the complexity of the first-stage dynamics, close
to the buckling threshold, where the response time of the material depends on classical dissipative
mechanisms coupled to intrinsic slowing down observed in such a critical phenomenon [13–15].
The goal of the present paper is to explore the second-stage dynamics, around the buckled state,
where the geometry is often more complex than that of the initial state.

Because of their ubiquitousness in nature but also of their simplicity in terms of fabrication
and of modelling, spherical closed shells enclosing a compressible fluid are particularly in the
spotlight [3,16–30]. Existing studies are essentially focused on understanding the scenario of the
buckling instability that occurs beyond a certain threshold of compression or deflation, and on
characterizing the stability branches [22,24,25,29]. More recently, shells made of non-isotropic
material have also attracted some attention [31–33]. In terms of dynamics, the reaction of shells to
a steep increase of pressure have been recently studied [15,34], while an experimental study has
highlighted the role of dissipation within the shell while reaching the stable buckled state [29].

Hollow microshells have been used for decades as ultrasound contrast agents (UCAs),
and their resonance frequencies in the spherical configuration have been widely studied [35].
Noteworthy, even in such a simple configuration, the existing models lack to describe accurately
all experimental observations [36]. Depending on the applied acoustic field, UCAs may also
buckle. In [37], the current state of a suspension of UCAs is controlled by a low-frequency acoustic
field while the propagation velocity of a high-frequency acoustic signal is measured. The authors
observe a decrease of this sound speed while the ambient pressure is increased above a certain
threshold, in marked contrast with the standard results in a simple fluid. As in other preceding
works [38,39], this is interpreted as a ‘softening’ of the shell due to its buckling. This interpretation
is consolidated by the existence of a hysteretic loop as the ambient pressure is varied, which is
also a signature of the buckling–unbuckling transitions. A very different study reaches the same
conclusion: in [40], primary Bjerkness forces on hollow micrometric shells are measured; a strong
rise of this force above a given amplitude of the applied acoustic field is interpreted again as a
signature of the sudden ‘softening’ of the shell. This interpretation is supported by independent
measurements of the buckling pressure by AFM.

In all the above-mentioned studies, the data are not quantitatively fitted by a model. Indeed,
to our knowledge, the sole model accounting for shell response in the buckled state is that of
Marmottant et al. [41], which has been refined in [42]. These models assume that in the buckled
configuration, the elastic response of the whole shell is simply that of the encapsulated gas while
that due to shell material has disappeared, as if the shell was broken.

In the present work, we show that this rough approach is not valid. While our results confirm
the effective softening due to buckling, we highlight a more complex interplay between gas
response and shell material response, reaching the unexpected result that softening is even more
pronounced than that obtained through neglecting shell material response.

2. Statement of the problem

(a) Description of relevant parameters
We consider spherical elastic shells made of an isotropic, incompressible elastic material of
Young’s modulus E and initial thickness d. We have performed experiments on home-made shells
of centimetric size (see appendix A), which allowed checking the consistency of our numerical
simulations where the different relevant parameters could be varied on a wider range. In these
simulations, we consider isolated zero-thickness elastic shells of initial radius R0 whose elastic
constants (compression and curvature modulus) are functions of E and d (see appendix B).
These shells are immersed in a Newtonian fluid in which the Navier–Stokes equation is solved.
They are filled with a gas at pressure P that is assumed to be instantaneously set by the shell
volume according to an adiabatic process, a reasonable hypothesis considering the high velocities
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encountered in this problem: PVκ = P0Vκ
0 , where V is the shell volume, V0 its initial value, P0 the

initial pressure and κ is the polytropic coefficient. While the fabrication process of shells makes it
difficult to obtain a measurable initial pressure other than the atmospheric one, the simulations
have allowed to vary it so as to explore the relative contributions of gas compressibility and shell
elasticity on the overall response. The thin shell limit that is considered here, though it may appear
as a strong simplification, is indeed a relevant model even to describe thick shells, as evoked in
[29] and confirmed in the following. The ambient pressure is initially equal to P0 and is suddenly
increased to a constant value Pext, which is large enough to trigger buckling.

The large range of parameters we consider here will allow us to establish post-buckling
dynamics for a wide range of objects and scales, from the thin colloidal shells that are used, in
particular, as UCAs [41,43–45] or photoacoustics contrast agents [46], to macroscopic shells in
elastomer, which are among the favourite building blocks in soft robotics [3,5,9].

To describe this whole range, we consider the dimensionless problem obtained by considering
the shell radius R0 as the lengthscale (its mid-plane radius for a real shell), Ed/R0 as the pressure

and elastic modulus scale, and ρf as the density scale. The time scale is then
√

ρf R3
0/(Ed). This

scaling is that of the undamped period of an oscillating shell when the contribution of inner
pressure is neglected.

The problem now depends on four parameters: the reduced thickness of the shell d̂ = d/R0, the
initial pressure P̂0 = P0/(Ed/R0) in the shell when it is in its stress-free spherical configuration,

the applied pressure P̂ext and the dimensionless viscosity of the fluid η̂ = ηf /
√

Edρf R0 that will

characterize the damping in the system. This last number is the equivalent of an Ohnesorge
number where surface tension has been replaced by the two-dimensional elastic modulus Ed.
We detail in table 1 the typical values of the three parameters d̂, P̂0 and η̂ (characterizing the
initial state) one may find when considering microshells and macroshells used within the current
research context, as well as the range covered by our experiments and simulations.

Both in numerical simulations [22,24,26] or in experiments [29], it is now well established that
at equilibrium, the pressure difference Pext − P quasi-plateaus to a constant �Ppl as a function of
equilibrium volumes Ve. Therefore, varying the fourth parameter P̂ext strictly amounts to varying
the equilibrium pressure P̂e inside the shell, which we already set here by varying the initial
pressure. In our experiments and simulations, P̂ext is typically chosen such that the pressure
difference is right above the buckling threshold �P̂b = 4d̂/3 [22,26]. Increasing too much the
external pressure, or starting with very low pressure inside the shell, leads to a full collapse of
the shell, with the two opposite poles being in contact. This pertains to a new kind of physics
taking into account solid friction and requires additional development in the numerical method.
We will avoid these extreme situations in the present work.

In the following, we will often discuss the effect of the four control parameters by varying them
from a reference configuration (also chosen for figures 1 and 2), named R hereafter, where d̂ =
0.22, P̂0 = 0.9, η̂ = 0.004 and P̂ext = 1.6. This corresponds, for example, to a macroscopic situation,
where η = 1 Pa . s (e.g. glycerol), R0 = 22.5 mm, d = 5 mm, E = 0.5 MPa, P0 = 1 bar and Pext = 1.77
bar (figure 1), or to a microscopic configuration with the same pressures and elastic modulus and
η = 1 mPa . s (e.g. water), R0 = 22.5 µm and d = 5 µm.

(b) A 2-frequency oscillator
In the experiments as in the simulations, we consider the dynamics of a shell that is brought to
the onset of buckling by setting the external pressure Pext to a value determined by a preliminary
study. The external pressure is then kept fixed at this value and the dynamics of deformation
of the shell is recorded. The sudden collapse of a shell at the buckling transition is followed by
oscillations around the new equilibrium position. We show in figure 1 the oscillations of two
geometrical characteristics of a shell in configuration R, corresponding to one of our experiments.
A noticeable effect is the apparition of a second frequency in the oscillation pattern; moreover, in
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Figure 1. Oscillations of the width W and height H of the convex envelope of a shell with external radius Rext,0 =
25 mm, thickness d = 5 mm, Young’s modulus E = 0.5 MPa, initial internal pressure P0 = 1 bar, external pressure Pext =
1.77 bar, immersed in glycerol (experiments in the reference configuration R). Black lines correspond to the fit by the
sum of two damped sinusoidal functions, which are obviously necessary to recover the full curve for the width W. The
two frequencies are of the order 30 and 90 Hz, and are much lower than that typical of spherical configuration, which is
f = (1/2πR0)

√
(1/ρf )(3κP0 + 4Ed/R0)∼ 210 Hz (e.g. [41]). Here R0 is the mid-plane radius Rext,0 − d/2. Note that the

sole gas contribution leads to a Minnaert frequency (1/2πR0)
√
3κP0/ρf ∼ 140 Hz, which is also larger than the observed

frequencies. Theseobservations call for afinermodellingof theoscillationmechanismsaround thebuckled state. (Online version
in colour.)

agreement with the widely admitted softening of buckled shells, these two frequencies are much
lower than that typical of the spherical state.

The apparition of a second frequency invalidates the previous models where the oscillations
come from the sole contribution of gas compressibility. Note that we cannot expect more complex
behaviour, like the apparition of a second frequency, to emerge from a bubble yet having a non-
spherical shape: it has been shown recently [47], in agreement with [48], that the generalized
Minnaert model, where the radius of the spherical bubble is replaced by the effective radius
extracted from the volume, is robust against geometry changes.

In the experiments, buoyancy issues have required to restrict the displacement of the shell,
which was attached to a fixed support through a suction pad located at the pole opposite to the
buckling pole. In order to build up a general view of the oscillation mechanism devoid of any
suspicion of strong influence of the boundary conditions, we turn to the numerical simulations,
which allow to consider free shells and a larger range of parameters. We shall come back in §5d
to the impact of having a part of the shell that is fixed.

3. Post-buckling oscillations of a free shell
We illustrate in figure 2 the buckling process as obtained from the simulations. From the many
available data characterizing the shell shape, we focus on its volume V and surface S and plot in
figure 3 their oscillations towards their equilibrium values Ve and Se. The drop in volume is all
the more pronounced as the initial pressure is low. By contrast, the shell surface increases along
the buckling process, and reaches a value close to the initial value of the sphere, which hardly
depends on the initial pressure. This validates the vision of the buckling process as a mechanism
that makes the shell switch from a spherically compressed state to a more favourable state where
the in-plane compression energy is released, the cost to pay being the curvature energy, which is
localized in the rim [19].
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(a) (b) (c)

(e) ( f ) (g) (h)

(d)

Figure 2. Images of the buckling process from the simulations. The corresponding times are indicated in figure 3a. The arrows
refer to the fluid velocity, scaled by the velocity magnitude. (a–d): buckling process, until the buckling spot reaches its deepest
spot and the buckling oscillations around the equilibrium state set in. Two of these oscillating configurations are shown in (e–f ).
(g) is the final equilibrium state. (h) shows the respective contour of the shell, where the purple plus symbols refer to the shape
shown in (e) (illustrated by the purple shell contour), the asterisks refer to (f ) (illustrated by the blue shell contour) and the
black line to (g). The arrows indicate the movement of the surface grid points. The arrows in (e–g) are scaled four times larger
than in (a–d) for visualization purposes. See also the corresponding movie in the electronic supplementary materials. (Online
version in colour.)

Right after the buckling transition, the signals are, as in the experiments, well fitted by the sum
of two sinusoidal functions damped by the same decreasing exponential, as shown in figure 3b.
For each simulation, we then obtain three characteristic parameters of the shell dynamics: two
frequencies ω− and ω+, with ω− < ω+, and a single relaxation time τ . We define ω± as the
intrinsic frequency, obtained from the measured frequency Ω± through ω2± = Ω2± + 1/τ 2. These
three parameters are similar for both V and S, as well as for other characteristic parameters such as
the width or the height of the shell (as discussed with figure 9 further in the text). They all depend,
a priori, on the four control parameters of the problem. In all the simulations we considered, the
contribution of the highest frequency to the signal is between 50% and 80% smaller than that of the
lowest frequency. We shall then focus first on this latter. In figure 4, we show how this frequency
ω− varies with some control parameters, starting from the reference configuration R. In figure 4a,
the initial pressure P̂0 is kept fixed and the external pressure is set right above the threshold for
buckling, and the dependency with space parameters is explored. Decreasing the thickness d of
a shell of given radius leads to the intuitive result that the frequency decreases, as a result of the
decrease of the shell elasticity. For a given reduced thickness d̂, figure 4a shows that the reduced
frequency does not vary significantly for small enough values of the reduced viscosity η̂. When
damping becomes more important, the frequency decreases, illustrating the threshold at which
viscous stresses start to influence the dynamics of the shell beyond a mere linear damping.
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Figure 3. (a) Oscillations of the volume V and surface S of a shell in configurationR (P̂0 = 0.9) and two other initial pressures
(simulations). Letters indicate the times at which the snapshots of figure 2 were taken. V0 and S0 are the initial values of the
shell volume and surface, respectively. (b) Thin black line : fit of the time evolution of V and S after the buckling stage for a shell
in configurationR, by the sum of two sinusoidal functions damped by the same decreasing exponential function. For both V
and S, the frequencies are similar. (Online version in colour.)
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Figure 4. Main pulsationω− as a function of some control parameters. From the reference configurationR (d̂ = 0.22, P̂0 =
0.9, η̂ = 0.004), one parameter is varied at a time. (a) Following (i): effect of varying d: d̂ therefore varies but also η̂ (see
colourbar). Following (ii): effect of varying R0 at fixed d̂ (thus η̂). (b) Effect of varying P̂0 at fixed P̂ext − P̂0 (blue disks) or P̂0
with P̂ext set such that the final shape is preserved whatever the initial pressure (orange squares). (Online version in colour.)
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Less intuitive is the variation of the frequency with the equilibrium pressure inside the shell,
shown in figure 4b. Starting from shell in configuration R, we varied the initial pressure P̂0 from
0.36 to 1.8. The resulting equilibrium pressure P̂e increases conjointly with this initial pressure.
The result is that in the meantime, the frequency decreases. One can question this observation by
extrapolating, in a first approach, that the contribution of the gas to the frequency would scale
like the Minnaert frequency ωM of a free spherical bubble: ω2

M ∝ Pe/V3/2
e , where we have simply

replaced the usual radius of the original Minnaert expression by a generalized radius based on
the volume, as in [47,48]. Since the volume at equilibrium Ve is an increasing function of internal
pressure Pe, it is not clear a priori that the Minnaert frequency increases with pressure. In the
spherical case, it can however be calculated that V3/2

e does not increase as quickly as Pe. In our case
of buckled configuration, data from the simulations show also that such a Minnaert contribution
increases with the equilibrium (or the initial) pressure. Therefore, the origin of the decrease of ω−
with increasing internal pressure has to be found elsewhere.

In order to separate the direct effect of pressure on compressibility from its indirect effect
through its influence on the shell volume, it is insightful to consider the following configuration:
from the reference configuration R in its buckled equilibrium state, we have varied the inner and
external pressure by the same amount δP̂, which does not modify the shape of the shell. Then,
using this state as the reference state for inner pressure calculation (i.e. P̂V̂κ = (P̂e + δP̂)V̂κ

e ), we
apply a small perturbation to the shell and measure the induced oscillations, thus characterizing
the pressure contribution to the elastic response, at fixed geometry. As shown in figure 4b, while
this contribution is now increasing with the pressure, this increase of the frequency squared
with the inner pressure is sublinear, in contrast with the spherical case. Note that the procedure
amounts to vary P̂ext together with P̂0 such that the final shape is the same in all simulations.
We checked, for a zero offset δP̂, that these oscillations with small amplitudes are similar to that
obtained right after the shell has buckled, which initially implies larger deformations. This can be
seen by the proximity between the two data points for P̂e � 1.5 in figure 4b.

In order to decipher these behaviours, we introduce a reduced model, which is then used to fit
the dataset obtained from the simulations.

4. Model
We describe the dynamics of the system through Lagrangian mechanics, which is an energy
approach that allows to introduce the generalized coordinates that are the more relevant to the
problem (see [49] for such an approach in the case of spherical oscillations).

In this frame, the dynamics is given by

d
dt

∂L
∂ q̇i

− ∂L
∂qi

= −∂D
∂ q̇i

. (4.1)

The Lagrangian function L is defined as L = T − U with T and U the kinetic and potential
energies of the system, respectively. The Rayleigh dissipative function D allows to introduce
non-conservative forces in the formalism, providing they originate from viscous friction and
that pressure drag is negligible. We shall see later that, due to the high buckling velocities, this
assumption is fragile. The qi and q̇i are the generalized coordinates and velocities that characterize
the state of the system.

The observation that the dynamics is well described by two frequencies calls for a modelling
of the system as a pair of coupled oscillators. We then choose to describe the shell through two
parameters, which naturally appear as relevant parameters in this problem: while the volume V
is intimately related to the gas behaviour and is also the usual control or output parameter in shell
buckling studies, the surface S appears in the stretching contribution of the elastic energy. While
in the spherical case both parameters are interdependent, in the buckled state that introduces at
least one more degree of freedom they can vary independently, as depicted in figure 5.
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S
S

R0
up

urr

uq

q

S

V
V V p

(a) (b) (c)

�

Figure 5. (a) Sketch of the parameters used to describe the shell dynamics. In addition to the volume V, we consider the surface
S of the shell. In the buckled configuration, both can vary independently. The simplified viewwith springs andmasses presented
in (b,c) allows to model the flow field resulting from the variations of V and S. The Mises truss [50,51] is a convenient simplified
model that has proven its efficiency to describe buckling dynamics of shallow arch [52] or elastic hemisphere (the ‘jumping
popper’ toy) [14], in particular when the system is subjected to oscillating external forces. In this paper, we do not go further in
the analogy that will be developed in subsequent papers, but we simply make the remark that in the three-dimensional shape
obtained by axial rotation along the horizontal axis of the closedMises truss depicted in (b) and (c), with the two lateral masses
always located at fixed distance 2R0, V variations can bemadewhile keeping S constant, as in (b), while in (c) surface variations
are obtainedwhile keeping V constant. This is obtained by a similar horizontalmotion of both poles, keeping their interdistance
� constant. This results in an hydrodynamic dipole p at long range. Its intensity is related to the volume changes on each side
of the mid-surface S′ = S/2 indicated in grey. The assumption of fixed distance 2R0 between the two flanks is supported by
the numerical simulations where we saw that most of the deformation occurs along the axis of symmetry (figure 2h). (Online
version in colour.)

The modelling consists in writing how the elastic energy of the shell material and the potential
energy of the inner gas depend on these two variables V and S, as well as the kinetic energy and
the dissipation due to viscous friction.

(a) Potential energy
The potential energy can be written U = Ug + Uext + US. The internal energy Ug of the gas reads,
assuming an adiabatic behaviour:

Ug = P(V)V
κ − 1

= P0Vκ
0

(κ − 1)Vκ−1 . (4.2)

The term Uext is the opposite of the work done by the external pressure on the shell, therefore

Uext = PextV. (4.3)

Finally, US is the elastic energy in the shell. For a given value of external pressure, equilibrium
conditions ∂L/∂V = 0 and ∂L/∂S = 0 lead to the following set of equations that determine the
equilibrium configuration (Ve, Se):

Pext − P(Ve) + ∂US

∂V
|(Ve,Se) = 0 (4.4)

and
∂US

∂S
|(Ve,Se) = 0. (4.5)

As recalled before, at equilibrium the pressure difference Pext − P quasi-plateaus to a constant
�Ppl as a function of equilibrium volumes Ve. The plateau pressure �Ppl depends on shell
elastic properties and thickness over radius ratio. While there is to our knowledge no available
theoretical expression for it, an ad-hoc expression was proposed in [29] based on numerical
simulations.
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Buckling is the mechanism by which the compressed spherical shell switches into an
energetically more favourable configuration. Since bending energy is located in the rim, one
can consider in a first approximation that at equilibrium, the surface in the buckled state is not
compressed, as shown in figure 3a, where the surface area at equilibrium is only 5% lower than
the initial one. In the scheme of figure 5a, it corresponds to an inversion of the right spherical
cap towards the left pole. This implies that we can consider in first approximation that Se = 4πR2

0,
independently from Ve. As a consequence of this and of the existence of the plateau pressure �Ppl,
∂2US/∂V2|(Ve,Se) = 0. This assumption has been validated afterwards by letting the above partial
derivative be a free parameter in the fitting procedure of the data, which eventually lead to very
small values compared with the other elastic constants of the problem. Around an equilibrium
configuration, the elastic energy of the shell finally reads

US = US(Ve, Se) − �Ppl(V − Ve) + AVS(V − Ve)(S − Se) + 1
2 ASS(S − Se)2, (4.6)

where AVS = ∂2US/∂V∂S|(Ve,Se) and ASS = ∂2US/∂S2|(Ve,Se). These parameters depend, a priori, on
the equilibrium state.

As discussed above, we expect the variations of elastic energy with S to be that of the stretching
energy in the spherical case, since the curvature energy is localized in the rim. The elastic energy
for a sphere of radius R can be directly obtained from the general expressions that are recalled in
appendix B (equations (B6) and (B7)):

US,sph = Ustretch + Ubend, with

and Ustretch = 8πKA

(
1 − R

R0

)2
R2 and Ubend = 8πKB

(
1 − R

R0

)2
.

⎫⎪⎬
⎪⎭ (4.7)

We have introduced the area bulk modulus KA = dE and the bending stiffness KB = d3E/9.
From d2Ustretch/dS2|Se = Ed/Se in the spherical case, we therefore postulate that ASS = Ed/Se.

Similar reasoning is not possible for AVS, as V and S are interdependent in the spherical case.
We simply assume that the scaling AVS = Ed/Ve kVS, where kVS is a dimensionless constant, will
capture the dependency with space variables. Since there are two relevant space variables that are
R0 (or Se) and Ve, other scalings could be possible. Complementary tests with the general scaling
AVS = Ed/(Vβ

e R3(1−β)
0 )kVS while proceeding with the fitting procedure of the data according to the

model have indeed shown that β � 1 is the best choice.

(b) Kinetic energy
We now turn to the determination of the kinetic energy T. The determination of the fluid flow
around the oscillating shell is a complex problem, for which we only consider the long distance
solution, obtained by adding the contributions of the constant surface and of the constant volume
motions of the shell.

Far from the shell (i.e. neglecting the shape details), shell volume variations lead to a flow
induced by a point source, imposing a flow rate q = V̇. By incompressiblity of the fluid, one
obtains a first (radial) contribution v1 to the fluid velocity:

v1 = V̇
4πr2 ur. (4.8)

Determining the flow due to surface variations is more complex. We wish to establish its
dependency with the two dynamical variables V and S. To that end, the geometry of the
shell is simplified through an analogy with an axisymmetric spring-mass system, sketched in
figure 5b,c.

As sketched in figure 5c, this simplification of the shell geometry leads to assimilate the
deformation at constant volume to the synchronized motion of the two poles, thus considered as a
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pair of source/sink of flow rates q′ and −q′. This gives rise to an hydrodynamic dipole producing
the flow field

v2 = 2p cos θ

4πr3 ur + p sin θ

4πr3 uθ , (4.9)

where θ is the angle between up that points in the pole to pole direction and the radial unit vector
ur, and uθ is the associated unit vector (figure 5c). The dipolar moment is p = q′�, where � is the
pole to pole distance. The dipolar approximation is well supported by the PIV observations made
in [3], though it has been shown there that more complex patterns can take place due to shear
waves near the flanks. The flow rate q′ is related to the deformation of the shell. As we have
symmetrized the problem in a first approximation, by considering that the source and the sink
have the same absolute intensity, we relate the flow rate q′ to the motion of the mid-surface (of
area S′ = S/2) going through the midpoint between the two poles, depicted in grey in figure 5c. As
the poles move with velocity vp, the rate of change of volume on each side of the mid-surface is
q′/2 = πR2

0vp/3. A bit of geometry gives the relation between the pole velocity vp and the variation
Ṡ′ of the mid-surface, eventually leading to

q′ = −R0

3
S(S2 − 4π2R4

0)−1/2Ṡ. (4.10)

Finally, as V = πR2
0�/3, p can be written under the form p = g(V, S)Ṡ where g(V, S) =

−(VS/πR0)(S2 − 4π2R4
0)−1/2.

Eventually, the kinetic energy is obtained by integrating (1/2)ρf (v1 + v2)2 on the whole fluid
volume Ω . By lack of knowledge on the effective shape, we integrate from R0 to ∞ and
compensate our successive approximations by introducing numerical prefactors α1 and α2 to the
monopolar and dipolar terms, which we expect to be of order unity. They constitute the cost to
pay in this simplified—then tractable—model.

We eventually obtain

T = α1 ρf
V̇2

8πR0
+ α2 ρf

g(V, S)2 Ṡ2

12πR3
0

. (4.11)

(c) Dissipative function
The dissipative function D reads D = ηf

∫
Ω (uij)2 dV, where uij is the symmetric strain rate tensor

in the fluid. We implicitly assume here that dissipation originates from viscous friction and that
pressure drag is negligible; this is the framework in which the Rayleigh dissipative function has
been introduced and validated so far. From the above expression for the fluid velocity, D can be
straightforwardly calculated and we find by integrating from R0 to ∞

D = β1
ηf

2π

V̇2

R3
0

+ β2
6ηf

5π

g(V, S)2Ṡ2

R5
0

, (4.12)

where the βi have been introduced, as αi for the kinetic energy, to account for the lack of precision
in the integration domain.

(d) Dynamics around equilibrium
We obtain the oscillation equations by considering only first order terms in �V = V − Ve and
�S = S − Se in the Lagrangian equation (4.1), using equations (4.2), (4.3), (4.6), (4.11), (4.12) and
g(Ve, Se)2 = 4V2

e /(3π2R2
0):

α1
ρf

4πR0
�V̈ = −κPe(Ve)

Ve
�V − Ed

Ve
kVS�S − β1ηf

1

πR3
0

�V̇ (4.13)

and

α2
2ρf

9π3R5
0

V2
e �S̈ = −Ed

Ve
kVS�V − Ed

4πR2
0
�S − β2ηf

16V2
e

5π3R7
0

�Ṡ. (4.14)
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Together with the equilibrium conditions

Pext − Pe = �Ppl = E
(3/4)0.75 (2.34 10−6 + 0.9(d/R0)2.57),

(according to [29]) (4.15)

and

P0Vκ
0 = PeVκ

e , (4.16)

that set Pe and Ve, these equations allow to determine the motion of the shell as a function of
the initial pressure P0 inside the shell, the external pressure Pext, the initial shell radius R0, its
thickness d, Young’s modulus E and the fluid density and viscosity ρf and ηf . The impact of the
geometry differs for each term considered in the equations, where R0 and Ve appear with different
powers.

Switching to the dimensionless parameters, equations (4.13) and (4.14) become

α1

4π
�

¨̂V = −κP̂e(V̂e)

V̂e
�V̂ − kVS

V̂e
�Ŝ − η̂

β1

π
�

˙̂V (4.17)

and

2α2

9π3 V̂2
e �

¨̂S = − kVS

V̂e
�V̂ − 1

4π
�Ŝ − η̂

16β2V̂2
e

5π3 �
˙̂S. (4.18)

In most cases of interest (table 1), η̂ is small. This means that the fluid does not influence the
shell dynamics, which would simplify the design and optimization of such a system, as well as
its modelling: we can consider η̂ as a small parameter and look for solutions of equations (4.17)
and (4.18) under the form Ae(iω̂0−δ̂)t, where δ̂ is a small parameter, instead of a general form A eiω̂t

which would result in a complex quartic equation for ω̂. There are such non-trivial solutions of
the equations of motions if and only if the determinant of the associated matrix is zero:

(
α1

4π
(iω̂0 − δ̂)2 + κP̂e(V̂e)

V̂e
+ η̂

β1

π
(iω̂0 − δ̂)

)

×
(

2α2

9π3 V̂2
e (iω̂0 − δ̂)2 + 1

4π
+ η̂

16β2V̂2
e

5π3 (iω̂0 − δ̂)

)
−
(

kVS

V̂e

)2
= 0. (4.19)

Taking the leading order in δ̂ and η̂ (which is the 0th order) of the real part of the above equation
we obtain two eigenpulsations

ω̂2
± = 9π2α1 + 32πα2κ V̂e P̂e ±

√
(9π2α1 − 32πα2κ V̂e P̂e)2 + 2 α1α2(48π2 kVS)2

16α1α2V̂2
e

. (4.20)

This constitutes the central result of this study. The leading order of the imaginary part of
equation (4.19) gives the two relaxation times τ̂± = δ̂−1

± associated with the two above pulsations.
A priori, these two times can be different. Nevertheless, we directly make use of the observation
that all obtained oscillation signals in the simulations are very well fitted by the sum of two
sinusoidal functions damped by the same exponential function. Consequently, there is only one
damping time. It can be shown that τ̂+ − τ̂− is proportional to 5α2β1 − 18α1β2, which is therefore
taken to be 0. Injecting the obtained value of β2 in the expression for τ̂ ≡ τ̂±, we obtain

τ̂ = 2
α1

β1
η̂−1 that is, τ = 2

α1

β1

ρf

ηf
R2

0. (4.21)
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5. Discussion

(a) Oscillation frequencies
We discuss the agreement between the model and the simulations. According to these, for the
maximal value explored η̂ = 1.3, the dynamics is fully damped. Below η̂ = 0.13, few oscillations
are seen and we are only able to determine the frequency ω̂− that contributes the most to the
signal. Below η̂ = 0.013 both frequencies can be accurately determined. This range corresponds
also to the small damping limit that lead to equation (4.20). This equation suggests that V̂2

e ω̂2±
plotted as a function of V̂eP̂e follows a master curve. In figure 6, we follow this idea and find
that indeed the data collapse reasonably on a single curve considering the large range of control
parameters considered. The set of data for V̂2

e ω̂2− and V̂2
e ω̂2+ are well fitted by the proposed

equation (equation (4.20)), the free parameters being α1, α2 and kVS.
Fitting the two frequencies together leads to α1 = 3.6 ± 3.5%, α2 = 1.1 ± 4.1% and kVS = 0.23 ±

6.6%. These are acceptable ranges: αi larger than 1 was expected since it is intended to be a
correction of the fact we have not included the fluid inside the sphere of radius R0 in the
calculation of the kinetic energy.

Interestingly, ω2− vanishes for a finite pressure, which sets a stability limit of the buckled state,
which is given by

V̂eP̂e = 4π
k2

VS
κ

. (5.1)

This provides the minimal pressure needed to maintain the buckled shape.
The physical meaning of the two frequencies is particularly clear in the large P̂e limit. From

equation (4.17), we see that ω+ and ω− can then be interpreted as the contributions of the (now
decoupled) volume and surface oscillations, respectively. From equation (4.20), we obtain

ω̂2
+ ∼

P̂e→∞
4πκP̂e

α1V̂e
. (5.2)

Though this expression ressembles a Minnaert contribution, as in the model of Marmottant
et al. [41], it indeed differs from it by a factor R0/(α1Re) and will be smaller in most cases, as
illustrated in the next section.

The smallest pulsation ω− becomes, in the large P̂e limit:

ω̂2
− ∼

P̂e→∞
9π2

8α2V̂2
e

. (5.3)

Contrary to the spherical case, where the remaining contribution at high pressure is that of the
gas pressure, we end up here with the sole contribution of the shell material compressibility. The
high pressure makes the whole shell incompressible, but the buckled geometry makes it possible
for the surface to evolve independently, with its own associated stiffness ASS. The equivalent
picture is that of two springs in series, one of them becoming infinitely stiff: the dynamics is then
given by the smooth one. This contrasts with the case of the spherical geometry, where the springs
are in parallel (see equation (B 13)).

The above considerations help explain the behaviour shown in figure 4b: as P̂0 increases,
V̂e increases and equation (5.3) shows that the pulsation is eventually a decreasing function of
the initial—or of the equilibrium—pressure. For fixed volume V̂e and varying inner pressure,
equation (5.3) tells us that the frequency converges towards a finite limit, thus explaining why it
does not increase linearly with the pressure (as in the spherical case), as shown in figure 4b.

(b) ‘Softening’ of buckled shells
Our results demonstrate that the oscillation frequencies of a shell drop after it has buckled.
This so-called ‘softening’ is illustrated in figure 7 where we compare the obtained frequencies
with that of the spherical case before buckling and that proposed in [41] for the buckled case.
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Figure 6. Dots : The two oscillations frequenciesω− (triangles) andω+ (discs) as determined from the fit of the oscillations
from numerical simulations. A joint fit of the two set of data by equation (4.20) leads to the full line curves. (Online version in
colour.)

To do so, we consider increasing values of the external pressure Pext starting at P0 such that
the shell is first in its spherical configuration until the pressure difference reaches the buckling
pressure. In the buckled state, we consider either the Marmottant et al. model [41] or ours.
The equilibrium configurations are calculated for each value of Pext, with the internal pressure
given by the adiabatic condition (equation (4.16)) and the resulting pressure difference being
equilibrated by the elastic restoring force, which is given by equation (4.15) in the buckled case
and by −dUS,sph/dV in the spherical case, where US,sph is given by equation (4.7).

We show in particular that the ‘softening’ is characterized by a drop of the oscillation
frequencies by factors 5 (for ω−) and more than 2 (for ω+) for parameters that are typical of the
usual commercial UCAs, and is much more pronounced than that predicted in previous models,
over a large range of parameters.

(c) Damping
The scaling of the damping time τ = 2(α1/β1)(ρf /ηf )R2

0 predicted by equation (4.21) is the only
one that can be built when considering only viscous effects in a fluid of density ρf , and viscosity
ηf in the vicinity of an object of size R0. Indeed, the assumption of viscous friction only was
needed to calculate a dissipative function. It turns out that, due to the high Reynolds numbers that
characterize the flow, this scaling does not hold in most of the considered range of parameters. We
consider the Reynolds number based on the maximal flow velocity vpole that is located near the
buckling pole, which is then defined as Re = vpoleR0ρf /ηf . As shown in figure 8, the dimensionless
relaxation time ηf τ/(ρf R2

0) indeed depends on the Reynolds number, while it would be constant
if the dissipation was only of viscous origin (see equation (4.21)). The dependency with the
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Figure 7. Oscillations frequencies around equilibrium position (normalized by that of the stress-free sphere) for several pairs
of parameters (d̂, P̂0), as a function of applied external pressure P̂ext. (a) P̂0 = 0.4 fixed and varying d̂. (b) d̂ = 0.02 fixed
and varying P̂0. The low bounds correspond typically to commercial lipidic UCAs while the high bounds are relevant for soft
polymeric shells, which are often thicker but made of a softer elastic material. Full lines indicate the single frequency in the
spherical case (see equation (B13) in appendix B), and the two frequencies in the buckled case. Dotted lines correspond to the
predictions in [41], where it is assumed that the pulsation is theMinnaert pulsation for the shell of radius R0 at ambient pressure:
ω = (1/R0)

√
3κPext/ρf . (Online version in colour.)

Reynolds number is indeed pretty close (with no adjusted parameter) to that of the relaxation
time towards constant velocity for a settling shell of radius R0, for which the drag coefficient Cx

is known [53]. This leads to the following general expression for the relaxation time:

τ = 8
3

ρf R2
0

ηf Cx(Re)Re
. (5.4)

The scaling of equation (4.21), which was valid only in the low Reynolds limit, is preserved,
but a dependency of the prefactor with the Reynolds number must be introduced, in order to
account for the hydrodynamics regime. In particular, in the heart of our space parameter of
interest, the dissipation regime is thus that of the Allen regime [54], where a combination of
viscous and pressure effects leads to a drag coefficient that roughly scales like R−0.6

e , in the
1 <Re < 103 range.

As for the purely viscous case, considering the data for η̂ = 0.13, where Re < 0.1, equation (4.21)
gives α1/β1 = 0.17, quite close to the case of spherical oscillations where it would be equal to 0.125
according to [49].

We eventually make the remark that the model predicts that, for not too high η̂—which will be
the case in most situations—the frequencies scale with 1/R0, for a given reduced thickness d/R0.
This implies that the typical maximal velocity at the pole vpole, which scales like ωR0, is scale
independent. In particular, on a large range of inner pressures, we can use the large pressure limit
of equation (5.3) as an estimate for the leading frequency ω−, leading to

vpole �
√√√√9π2E(d/R0)

8α2ρf V̂2
e

. (5.5)

With typical values E(d/R0) = 1 bar, ρf = 1000 kg m−3 and V̂e = 1/2 × 4π/3, we find vp ∼ 15
m · s−1. This implies that, even at small scales, the Reynolds number will be quite high, in the
range 1–103 discussed above, which was obtained in the simulations.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 S

ep
te

m
be

r 
20

21
 



16

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210378

..........................................................

10–1

10–1

10–2

10–3

1 10 103
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95
Ve/V0

102

Reynolds number Re

h
ft

 /(
rf

R
2

)
0

Figure 8. Theoretical oscillation relaxation time as a function of local Reynolds number (simulations). For a spherical bubble
of radius R0 settling in a fluid, the (velocity dependent) typical time needed to reach stationary velocity is ηfτ/(ρf R20)=
8/(3CxRe), where Cx is the drag coefficient [53] (that depends onRe) andRe the Reynolds number. The full line indicates
this quantity, whichmatches perfectly themeasured damping time for the oscillationswithout any adjusted parameter. (Online
version in colour.)

(d) Fixed shells: the effect of boundary conditions
In practical applications, a shell may be linked to other components. For our experiments on
six different shells (see appendix A), buoyancy issues have required to restrict the displacement
of the shell. For the three shells of external radii 7.5 mm, 25 mm and 75 mm, but identical d̂ we
checked the scalings ω ∝ 1/R. We have also simulated the same six shells in the same attachment
conditions, assuming the part of the shell connected to the suction pad is fixed. In spite of this
simplification, we find good agreement between the simulations and the experiments within 15%
maximal variation for the measured frequencies, with no adjustable parameters.

In addition, these simulations show that the oscillation frequency is smaller by 25–50% than
that of the free shell case. This is in qualitative agreement with the decrease of oscillation
frequency of an initially free beam when it is attached at one end [19]. Yet this fact is not that
intuitive since the attachment may lead to less fluid motion in the vicinity of the attachment patch,
therefore less accelerated mass. Noteworthy, the additional local constraint also modifies the
relative weights of the two sinusoidal responses, depending on the considered quantity (figure 9).
While both frequencies are well present whatever the boundary condition when considering
the volume oscillations, the picture is different when considering the oscillation of the height
H of the shell or of its width W, as defined in figure 1. In particular, for the height, a single
frequency becomes predominant in the attached case, as seen in figure 1 for the experiments. As
a signature of robustness of the modelling, the same pair of frequencies is sufficient to describe
the oscillations, whatever the considered quantity. A more systematic study of the dependency
of each frequency on the boundary condition, and of its relative weight is the full signal, would
require to define and parametrize the attachment area precisely. We simply conclude here that the
two-oscillator modelling is a robust description that remains valid for shells with fixed parts.
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Figure 9. Oscillations of the volume V, height H and width W for a shell in configuration R, which is attached or free
(simulations). Thin black lines indicate thefit by thedamped sumof two sinusoidal functionswith the same frequenciesω+ and
ω− for the three space variables. The amplitude ratio A+/A− of the two functions differs according to the variable considered.
Free case: ω̂+ = 2.0 and ω̂− = 1.0; for V, A+/A− = 0.52, for H, A+/A− = 0.21, for W, A+/A− = 0.22. Attached case:
ω̂+ = 1.6 and ω̂− = 0.4; for V, A+/A− = 1.3, for H, A+/A− = 0.006, forW, A+/A− = 0.4. (Online version in colour.)

6. Conclusion
In spite of the potentially huge number of deformation modes of a buckled shell, its dynamics can
be described by a pair of coupled oscillators. The two resulting modes decouple in the high inner
pressure limit and can be identified as the surface oscillation mode and the volume oscillation
mode. The former corresponds to the lowest frequency and contributes more to the overall signal
than the high frequency mode. Both frequencies are much lower than that in the spherical case.
This confirms and quantifies the apparent softening of buckled shells observed in the literature.
By contrast with previous models [41,42], we show that this softening is mainly due to the absence
of contribution of the inner gas.

We have also shown that over a large range of parameters, the dissipation mechanism is similar
to that of a sphere in translation in a fluid, whose drag coefficient is Reynolds-dependent.

The established model can be used to anticipate the behaviour of shells under more complex
actuations than a fixed applied pressure. Using the model of Marmottant [41], it has recently been
shown that buckling, by introducing an additional nonlinearity, may trigger complex dynamics
characterized by subharmonic behaviour or even chaos [55]. More work is also needed to identify
what controls the relative weight of each mode, and how this weight will be influenced by the
boundary conditions, like local bonds to another component. We plan to dig in that direction
in a near future. The model could also be further enriched by incorporating the contribution of
the bending energy, which may help improving the collapse of data of figure 6 since it would
introduce another dependency with the shell thickness. This contribution is already included in

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

08
 S

ep
te

m
be

r 
20

21
 



18

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A477:20210378

..........................................................

the description of equilibrium through the expression of the plateau pressure (equation (4.15))
but it is still poorly understood. Another open question is that of the viscous dissipation within
the shell material.
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Appendix A. Experimental set-up
As in [3], the spherical shells were realized by moulding two half hollow spheres made of
commercial elastomer resin ‘Dragon Skin© 30’ (Smooth-on) of Young’s modulus E = 0.5 MPa
(measured by traction experiments at 5% elongation, as well as Poisson’s ratio ν = 0.5). Other
experiments on this material have shown that it behaves linearly at least until 25% deformation
rate [34], thus validating the use of a linear model in the simulation. The two halves were then
glued together using the same material. Flat discs of diameter of order 20% the shell diameter and
thickness around 4% the shell thickness were added at the pole of one of the two external moulds
so as to create a weak point on one hemisphere, where buckling will systematically occur.

In order to explore the effect of size and of thickness over radius ratio, we have considered six
different shells whose external radii Rext,0 lie between 7.5 and 75 mm while their dimensionless
thicknesses d/(Rext,0 − d/2) are between 0.08 and 0.3. We cover one order of magnitude in size and
the relative thickness was varied by a factor almost 4. Reaching broader ranges poses technical
issues in the manufacturing process.

The shell under study was attached at the level of its pole opposite to the weak one to a
fixed support and immersed in a 60 × 60 × 60 cm tank in anodized aluminum with polycarbonate
polymer windows that could bear pressure differences of +2 bar. The tank was filled with
glycerol. Pressure variations were obtained with a pressure controller (OB1 by Elveflow)
connected to the thin layer of air that was left in the tank on top of the liquid. Shell deformations
were recorded using a fast camera. Pictures of an immersed grid of known characteristics allows
to characterize the deformation of pictures due to window deformation by the overpressure. As
in figure 1, the obtained images of the convex envelops of the shells are well contrasted and their
contours could be directly extracted and analysed using home-made routines written in Python.

Appendix B. Numerical method
The problem is numerically solved with finite elements making usage of the finite element
toolbox AMDiS [57]. An axisymmetric arbitrary Lagrangian–Eulerian (ALE) method is employed
according to [58], where the membrane points move with the fluid velocity v. This movement
is harmonically extended to the internal part of the grid using one of the mesh smoothing
approaches presented in [58].

The shell is modelled as an infinitely thin axisymmetric elastic surface, immersed in a
Newtonian viscous fluid of viscosity ηf and density ρf and filled with air. The hydrodynamics
in the surrounding fluid Ω are governed by the Navier–Stokes equations. The pressure due
to the internal air is implemented as boundary conditions on the shell surface Γ . Assuming
axisymmetric flow conditions reduces the problem to a two-dimensional meridian x–r-domain,
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describing half of the three-dimensional domain’s cross section. The simulation domain is shown
in figure 10. The problem in axisymmetric formulation reads [59,60]

ρf (∂tv + v · ∇v) = ∇ · S + vaxi, in Ω (B 1)

∇ · v + 1
r
vr = 0, in Ω (B 2)

S = ηf (∇v + ∇vT) − Pf I in Ω , (B 3)

where v = (vx, vr)T and Pf are the fluid velocity and fluid pressure, respectively. The axisymmetric
terms read

vaxi =
(2ηf

r2 vr + 1
r

(S + Pf I)
)

·
(

0
1

)
. (B 4)

The elastic shell reacts to in-plane (stretching) and out-of-plane (bending) deformations,
quantified by the stretching energy Estretch and the bending energy Ebend. The stretching energy
in an axisymmetric setting can be described in terms of the two principal stretches λ1 and λ2,
which provide information about relative changes of surface lengths in lateral and circumferential
direction, respectively. It is

λ1 = ds
ds0

and λ2 = rS

rS,0
, (B 5)

with the arc length parameter s of the interface curve Γ and the distance of the shell rS to the
symmetry axis. The subscript 0 refers to the quantities in initial state. The shell energies then read

Ebend =
∫
Γ

2KB(H − H0)2 dA (B 6)

and

Estretch =
∫
Γ

KA + KS

2
((λ1 − 1)2 + (λ2 − 1)2) + (KA − KS)(λ1 − 1)(λ2 − 1) dA, (B 7)

with area bulk modulus KA, area shear modulus KS, bending stiffness KB, mean curvature H and
spontaneous curvature H0, which is the mean curvature in the initial state. These three quantities
can all be calculated using Young’s modulus E, the Poisson ratio ν (which will be set to 0.5) and
the (initial) thickness d of the shell:

KA = dE
2(1 − ν)

, KS = dE
2(1 + ν)

, KB = d3E
12(1 − ν2)

. (B 8)

The force exerted by the shell is composed of the sum of the first variations of these energies
and of the force due to the pressure of the internal air. Note that our thin shell model is a
simplification that is made for technical purpose, but the elastic model describes a shell of any
thickness. Since the strains are small compared with the deformations of a thin shell, the in-plane
force is linearized in λi (see [61], appendix). In-plane and out-of-plane forces read [58]

δEbend

δΓ
= 4KB[�Γ (H − H0) + (4H2 − 2Kg)(H − H0) − 2H(H − H0)2]n (B 9)

and

δEstretch

δΓ
= (2H n − ∇Γ )[(KA + KS)(λ1 − 1) + (KA − KS)(λ2 − 1)] + 2KS

R
(λ2 − λ1)

(
0
1

)
, (B 10)

where Kg is the Gaussian curvature.
For the contribution of internal pressure, we assume homogeneous air pressure P inside and

use adiabatic gas theory to relate this pressure to the inner shell volume V by P = P0 (V0/V)κ ,
where P0 and V0 denote the respective initial values, and κ = 1.4 by assumption of an adiabatic
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Figure 10. Numerical domain Ω for the simulations (white). The shell (dark grey) itself is not included. Γ is the domain
boundary referring to the shell surface. Illustration for the principal stretches in red. (Online version in colour.)

process. Accordingly, the stress exerted by the air is reduced to Pn = P0 (V0/V)κn whereupon the
boundary conditions become

Sn = −P0

(
V0

V

)κ

n − ∂Ebend

∂Γ
− ∂Estretch

∂Γ
on Γ (B 11)

and
Pf = Pext on ∂Ω\Γ . (B 12)

The numerical scheme in time step m + 1 can be summarized as follows. An implicit Euler
method is employed for the Navier–Stokes equations. In the following, time steps indices are
denoted by superscripts. The scheme reads:

(i) Calculate λ1, λ2, H, Kg and n from the position of boundary grid points along Γ (see [58]
for details). This allows computation of (δEstretch/δΓ )m+1 and (δEbend/δΓ )m+1 according
to equations (B 9) and (B 10).

(ii) Solve the Navier–Stokes equations (B 1)–(B 4) of the surrounding fluid.
(iii) Move every grid point of Γ with velocity v.
(iv) Calculate the grid velocity vgrid by using one of the mesh smoothing algorithms described

in [58] to harmonically extend the interface movement into Ω and move all internal grid
points of Ω with velocity vgrid.

A function Pext(t) imposes variable pressure at the boundary ∂Ω\Γ of the computational domain,
excluding the shell (see equation (B 12)). The values for Pext start for t = 0 at P0. Afterwards,
Pext is increased slowly until the maximum desired value Pmax is reached. The slow increase
of pressure circumvents the occurrence of shell oscillations in the spherical compression stage
before buckling. In order to analyse the post-buckling oscillations, the maximum pressure value
is kept constant afterwards.

For the simulation results shown in figure 4, we first compute the equilibrium state after
buckling as explained above. Then we impose an offset δP to both, the internal pressure P and
the external pressure Pext. The updated internal pressure acts as the new ‘initial’ pressure P0 for
the rest of the simulation. Subsequently, a perturbation to the shell is applied by adding another
prescribed pressure Pperturb to the new Pext. If the offset δP is zero, we could confirm that these
oscillations, whose initial amplitude is smaller, are similar to those obtained right after the shell
has buckled, which initially implies larger deformation.
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Figure 11. Pulsation ω̂ for spherical oscillation around equilibrium volume Ve, for the configurationR with varying initial
pressures P̂0 that are equal inside and outside the shell and varying external pressure increases δP̂; (a) and green: δP̂ = 0.45
and0.9< P̂0 < 1.8; (b) and red:δP̂ = 0.225 and0.18< P̂0 < 1.8; (c) andblue:δP̂ = 0.045 and0.18< P̂0 < 1.8. The dashed
lines indicate the best fit with equation (B13), where the pressure, geometric and elastic parameters are set to their values in
the simulation and fixed, and the sole free parameter is a prefactor that will account for themean error made in the simulation.
(Online version in colour.)

A weak spot is imposed into the formula when calculating the elastic moduli KA, KS and KB

by decreasing the thickness d locally around the centre of the weak spot, which is the membrane
point touching the symmetry axis (r = 0) on the right. This weak spot provides the perturbation
needed to trigger buckling, otherwise our code is stable enough to let the shell stay in its spherical
configuration, though unstable.

The oscillation frequencies are the main quantitative output of the simulations. They directly
depend on the total accelerated mass and, because of that, the size of the simulation box may bias
the results. To estimate this, we consider the spherical oscillations of the shell under low pressure
difference, such that it has not buckled.

To that purpose, we considered simulations of the shell in configuration R but considered
different initial pressure inside and outside the shell P̂0 going from 0.18 to 1.8. Then we applied
suddenly an external pressure P̂ext = P̂0 + δP̂ to the shell. For not too high values of δP̂, the shell
shrinks isotropically with damped oscillations towards its new configuration, characterized by an
equilibrium volume V̂e.

The radial oscillations of a coated shell have been documented by several authors, for two-
dimensional shells (thin shells) [41,62] and for real shell of finite thickness [36,49,56,63]. For
two-dimensional shells, the expressions for the oscillation frequency that are proposed in the
literature are generally obtained considering oscillations around the stress-free configuration of
volume V0. Here, we are interested in oscillations around any state, which results in a modified
expression for the pulsation, which we derive hereafter. In addition, models for thin shells
generally consider only the stretching energy, which scales with d, and discard the curvature
energy, which scales with d3. Here, in equation (4.7), we included both contributions in order to
account for the oscillations of the mid-plane of shells of any thickness.

This elastic energy in the spherical configuration given in equation (4.7) can be rewritten in
terms of V and V0, and we can follow the Lagrangian formalism that has lead to equation (4.13).
The pressure term is identical and the acceleration term can be calculated exactly by integrating
the kinetic energy arising from the monopolar term from the equilibrium radius Re to ∞.

The pulsation in the absence of damping then reads

ω2
sph = 1

ρf R2
e

[
3κPe + 4

3
V−2/3

e V−2/3
0 (4πKb(2V1/3

0 − V1/3
e ) + (36π )1/3KaV1/3

e (2V2/3
e − V2/3

0 ))
]

.

(B 13)
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In the absence of bending energy, and for oscillations around the stress-free state (Ve = V0), we
recover the usual expression [41,62] ρf R2

0ω
2
sph = 3κP0 + 4Ka/R0.

In figure 11, we plot the obtained pulsations in the simulation and compare them with the
expected values obtained from equation (B13). It is shown that the dependency with the shell
parameters is recovered but the theoretical expression for ωsph has to be multiplied by a prefactor
1.07 to obtain an agreement between numerical data and theory.

This means that while the physics is well described by the simulations, they lead to an
overestimation of the pulsation by 7%. This overestimation factor does not depend on the chosen
configuration so we associate it with the finite size of the simulation box Ω , which we checked
by decreasing its size. The considered size in the paper is the result of a compromise between
accuracy of the simulations and computation time.
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