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Abstract

The shape of plants can be sensitive to dehydration. Here, we focus on herbaceous plants whose
petiole cross-section is U-shaped and contains a lot of water. Among a large range of plants
showing the same behaviour, we examine Spathiphyllum that exhibits a pronounced, sudden
but reversible drooping under dehydration. We show that it is the consequence of a high-
amplitude hinge mechanism located at the base of its long petioles, similar to a carpenter’s
tape folding under sufficient load. Mechanical testing demonstrated that small-amplitude
bending rigidity decreases by only a factor of three during dehydration, due to tissue shrinkage
rather than material softening. The petiole is composed of water-rich parenchyma tissue:
drooping occurs abruptly at 35%-40% of mass loss, remaining reversible unless dehydration
is prolonged. Inspired by these observations, we introduce a biomimetic hinge which offers
a programmable bending stiffness and nonlinear behaviour under load, with applications in
computing mechanical metamaterials.

1. Introduction

The responses of plants to water stress are especially noticeable in herbaceous plants that are
non-lignified. Dehydration, or the loss of water mass, induces a drop of the turgor pressure in
cells. In non-lignified plants, plant tissues are less stiff, and noticeably deform with a much larger
amplitude compared to woody plants. We remind the reader that internal turgor pressure is not
only important for the swelling of tissues but is also the essential source of growth (Dumais,
2021). Turgor pressure is an osmotic effect: when the external water potential is high, due to
a humid environment, the water flows into the cell through its membrane because the water
potential is there lowered by the presence of osmolites. This results in the cell swelling and the
building of a turgor pressure with a magnitude of a MPa (Dumais & Forterre, 2012). Dehydration
can result in shape changes commonly observed on specific parts of plants such as the palm
leaves (Guo et al., 2024) presenting a bilayer effect (Timoshenko, 1925) on its folds, on the stems
of resurrection plants (Rafsanjani et al., 2015), on the scales of pine cones (Reyssat & Mahadevan,
2009), on the seeds of Erodium (Aharoni et al., 2012), on the long petioles of of Caladium petioles
(Caliaro et al., 2013) or on the Gerbera peduncles (Lehmann et al., 2019).

A common interpretation of the shape change of plants is that a decrease in turgor pressure
results in a loss of tissue rigidity, as observed on pieces of potato tubercule (Falk et al,
1958). Mechanical models at the cell scale were developed, elaborating on the fact that a local
deformation of a spherical shell under pressure is more difficult when it is pressurised above a
threshold, as show when a point force (Vella et al., 2012) or a spherical indenter is pushed in
(Couturier et al., 2022). The same reasoning was developed at the tissue scale (Nilsson et al.,
1958; Warner et al., 2000), where models assume that rigidity has a part linked to the bending of
solid cell walls plus a part due to pressure. The influence of solid properties and internal pressure
was comforted on pneumatic cellular bioinspired materials (Tadrist et al., 2022). However, the
effect of pressure on the bending rigidity B was found to be counter-intuitively negligible on
elongated tubular shapes for small deformations (Haseganu & Steigmann, 1994; Qiu et al., 2022;
Siéfert et al., 2019), it is only at large deformations that pressure has an effect by counteracting
buckling.


https://dx.doi.org/10.1017/qpb.2025.10030
mailto:philippe.marmottant@univ-grenoble-alpes.fr
https://creativecommons.org/licenses/by/4.0
https://orcid.org/0000-0001-6828-6656

Drooping of U-shaped petioles under water stress
Hydrated

Dehydrated

d= Spathiphyllum
\\_\~ LS LW/V
Ve

I\GAY

7l : \ y

A. Schliebach et al.

Some U-shaped petioles do not deflect under dehydration

e Hemerocallis Iilioasphowkgfx\_ \ /

‘mv - 4

Drooping monitoring of Spathiphyllum

0 i é :I’» 4‘1 é tli % é é 1|0 1|1 1|2 1|3 1‘4 1IS 1|6 1'7 1|8 1|9 20
time (days .
(days) rewatering

Figure 1. Behaviour of the petiole under water stress. (a)-(e) Photographs of five plants with a U-shaped petioles when turgid (left column), and when drying (right column).
Plants shown in (a)-(d) feature a strong localised bend (highlighted by an arrow) when dehydrated, whereas plant in (e) does not exhibit any significant shape change. The five
plants are: (a) Leucanthemum (family of Asteraceae, common name Daisy), (b) Arabidopsis caucasica (Brassicaceae), (c) Hosta (Asparagaceae), (d) Spathiphyllum (Araceae) and (e)
Hemerocallis lilioasphodelus (Asphodelaceae). Insets show the U-shaped cross-section. (f) Side view of the Spathiphyllum plant under dehydration: Natural intelligence (NI)
monitoring of the position of the characteristic points of the petiole and leaf (red crosses) and definition of an angle for the petiole on the watered (left image) or dehydrated
plant (right image). (g) Evolution of the angle of the petiole with respect to the horizontal, time t = 0 at 5 pm, start of the period without watering, rewatering on day 17.

Shadowed bars represent nights.

At the plant scale, on elongated parts such as the peduncle of
flowers (Lehmann et al., 2019) there can be a dramatic change of
the global shape under drought. If this change is due to a decline
in the global bending modulus B, the softening of the local tissue
was found to be weak, the tissue softening being monitored by the
effective Young’s modulus E.g = B/I, where I is the second moment
of area.

There is thus a dichotomy between the change of shape of the
plant and the limited softening of its tissue. The solution to this
apparent paradox is well described on a recent paper by Chandler
et al. (2025), who showed on cellular sheet that pressure controls
the geometry of the cross-section and therefore the inflation of
the cross section area. The apparent bending rigidity of the plant
indeed undergoes a ‘geometrical’ stiffening: at large pressures, the
cross-section size increases, resulting in a global stiffer response to
external loads since it increases the second moment of area I.

Here, we focus on the behaviour of the petiole, which links the
leaf to the stem. In addition to its functional role - holding the leaf,

and conveying the sap — observations reveal that in many species
the petiole wilting also protects the leaf against damages by direct
sun and may protect against water stress (Chiariello et al., 1987;
Gonzalez-Rodriguez et al., 2016; Zhang et al., 2010).

Petioles present a large diversity of shapes (Filartiga et al., 2022):
among these, petioles whose cross-section assume a U-shape, also
called sulcate or canaliculated (Faisal et al., 2010) are common
among several families of plants (including the Arabidopsis genus)
(see Figure 1).

The U-shape reinforces the bending stiffness of the petiole,
resulting in a more rigid beam for the same amount of material
compared to a circular cross-section shape (Ennos et al., 2000).
U-shaped structures present a high stiffness to weight ratio, and
are ubiquitous in plants, as well as in civil engineering and applied
mechanics. The mechanics of large amplitude deformation of
U-shaped structures was extensively studied (Barois et al., 2014,
2021; Kumar et al., 2023; Seffen & Pellegrino, 1999; Taffetani et al.,
2019; Wei et al., 2023; Wuest, 1954).



Quantitative Plant Biology

To induce dehydration, a drastic procedure is to rinse out the
soil and hold plants with elastic clamps and let it dry in air, with
roots exposed to air. We observe that in some cases gravity is
enough to bend the U-shape petiole when turgor is lost (Figure
1(a)-1(c)). This localised bending is common among species with
U-shaped petioles, from very different plant families, dicotyledon
(such as Leucanthemum and Arabidopsis caucasica) or monocotyle-
don (such as Hosta). However, it is not systematic since petioles
without water-rich tissues do not bend at all under gravity, leaves
remaining at the same position in our drying test (such as Hemero-
callis, Dracaena or Vriesa featuring thin leaves).

The problematics that emerges is: how does wilting occur with
a U-shape petiole? Is it a change of the spontaneous curvature with
an active bilayer effect (Armon et al., 2011; Reyssat & Mahadevan,
2009), or a passive effect due to the softening of the tissue as initially
hypothesised (Nilsson et al., 1958; Warner et al., 2000) or due to the
evolution of the cross-section geometry as modelled by Chandler
etal. (2025)?

Here, we explore this problematics by looking at the spectacular
change of shape of Spathiphyllum, a common interior plant from
the Araceae family that dramatically changes its appearance under
dehydration; a state that is reversible (Figure 1(g)). This non-
lignified plant has no stem and consists of a group of leaves, each
blade being attached directly to the root by a long petiole. The
plant features a U-shaped cross-section only at the base of the
petioles.

Our approach is the following: First, we describe the global plant
shape and this natural intriguing process. Second, we present the
anatomy and the geometry of petiole sections. Third, we carried
out bending and mass measurements to characterise the softening
of the petiole under drought. Fourth, we focus on the plant part pre-
senting the highest bending: the base, acting as a hinge. We model
the non-linear mechanics of the base, inspired by the carpenter’s
tape. Lastly, possible engineering applications are suggested with a
biomimetic model, actuated by pressure.

2. Monitoring the plant shape under dehydration

A first observation is that under sustained drought, all petioles
became more horizontal, with leaves drooping. However, all lift
up in less than one day after rewatering (Figure 1(g) and Movies
MO, M1 and M2 in the Supplementary Material. Movie MO in
the Supplementary Material is all-public movie summarising the
findings, and Movies M1 and M2 in the Supplementary Material
show the shape evolution). We recorded and analysed a sequence
of photographs of a petiole and leaf taken during 20 days. The
images were too complex to be analysed with artificial intelligence
techniques, so we used standard ‘natural intelligence (NI)’ to mon-
itor the position of the characteristic points of the petiole and leaf,
using a human brain to click on points on a sequence of images.
The points that we tracked were: base and middle of the petiole,
base, middle and extremity of the leaf blade. The result was a
sharp decrease in the angular height when unwatered for a long
duration (here 17 days; this duration fell to two days when the
roots were removed from the soil). This process was reversible after
rewatering, if dehydration was not too prolonged. In the process,
the petiole remained quite straight, the global curvature in between
the base and the leaf attachment increased by only 50% (Figure
S1 in the Supplementary Material). As a side note, the leaves rose
up every night but eventually fell vertically in the dehydrated state
(Figure S1 in the Supplementary Material).

3. Anatomy and rigidity of the petiole

A closer inspection was performed by looking at sections of the
different parts of the petioles (Figure 2(a)). At the end of the petiole,
there is a junction, the pulvinus, slightly swollen and lighter in
colour, which is known to actively orient the leaf. Sections revealed
that the pulvinus is roughly cylindrical, as well as the top of the peti-
ole (not shown). On the contrary, the base of the petiole presents
a U-shape, with an important cavity on the adaxial side, closer to
the central vertical axis. The cavity is filled by a newer growing
leaf, and leaves are nested within each other. There is a transition
from the base to the top of the petiole, the U-shape evolving in a
rounder shape with thin side blades remaining, see middle cut on
Figure 2(a).

Transversal cross sections of the excised leaf, 1-mm thick, were
cut with a razor blade, placed on a glass slide and installed under
a macroscope (Zeiss Axio Zoom.V16) in an air-conditioned room
(T = 20°C). The camera was driven by the ZEN software (Zeiss,
ZEN 3.9) that allowed to record a sequence of images with a time
step of 5 minutes during the natural air drying. For each record,
a stack of 20 images was recorded at different altitude positions
in order to apply an ‘extended depth of focus” post-treatment that
corrects the non-perfect flatness of the sample. Magnification was
x13.2 for a spatial resolution of 0.24 pixels/pm.

All the sections reveal that most of the interior tissue is a water-
filled parenchyma tissue with large cells. There are also vascular
bundles, lignified, see regularly spaced spots on the figure, that can
be coloured using a dye (Figure S2 in the Supplementary Material).
The interior is protected by a green and dense cuticle.

3.1. Mass and width decline

In order to estimate the local evolution of the properties of the
plant, we performed a range of measurements on: (i) the whole
plant with roots (out of the soil), (ii) a petiole cut at the base and
the top extremity, and (iii) small pieces of the petiole at different
locations (Figure 2(b)). The dehydration was performed in ambient
air, eventually killing and drying completely the plant.

The mass loss can reach more than 90% of the initial mass for
the petiole (Figure 2(c) and more than 95% for cut pieces (Figure
S3 in the Supplementary Material). Indeed, most of the aerial part
of the plant is constituted with water, the interior tissue acting like
a reservoir. The mass decay over time is well described by a model
with homogeneous diameter that accounts for the fact that exposed
surface area of the cut section subject to evaporation is decreasing
over time (see Appendix A). The model is fitted adjusting only k,
the rate constant giving the flux of evaporation through the cut
surface. This model better fits data than a model with a cross-
section constant over time.

Width measurements were performed using a caliper, from the
side (operating from the top would provide less reproducible results
due to the thin blades). They featured, like mass measurements,
a strong decay of the diameter until complete drying, up to 60%
(Figure 2(d). There was no significant change in axial length. This
results from the natural structural anisotropy of the vascular fibres
made of long cells making them less extensible in the longitudi-
nal direction, while the tissue can easily contract transversely in
between fibres.

3.2. Bending stiffness evolution

We also performed 3-point bending measurements on the same
samples as for mass and width measurements. The outer points
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Figure 2. Geometrical and mechanical characterisation over dehydration. (a) Anatomy of the petiole. Left: description of the different parts of the petiole. Right: transverse
cross-sections, shown at the same scale (bar represents 1 mm). (b) Photograph of cut entire petiole (bottom) and pieces of the petiole (top). Blue arrows depict a 3-point bending
test with a support span of L, = 25 mm. (c) Relative mass loss versus time. The relative mass loss is defined as (mq — m) /my, with m, the initial mass and m the actual mass. Entire
petiole without leaf L = 33.5 cm. The continuous line represents a fit with a decaying cross-sectional area and evaporation flux k = 1.0 x 10~ kg/s/m?. The dotted line represents
a model assuming evaporation through a constant cross-sectional area. The green zone shows the range 0 to 0.3-0.4 where dehydration is reversible, while above irreversible
tissue death starts to occur. (d) All the pieces feature a strong diameter loss, while the length remains constant. (e) The bending modulus measured with a bending test follows
three phases: a decay, then a plateau for a critical mass loss, and eventually an increase near complete drying. Lines are guides to the eye. Measurements on entire petiole, pieces

and whole plant with roots.

were separated by L; = 25 mm and a force F was applied on the cen-
tre point. After positioning the sample in a custom 3-point bending
setup, we incremented progressively the central position § from 0
to 1 mm. The position is changed via a translation stage (Thorlabs
Z625B). On this stage is attached a central rod via a 1-N force sensor
with a Wheatstone Bridge (Phidget 3139_0). This rod is a 2-mm-

thick aluminium plate with a rounded V-shape on the bottom to
avoid cutting the stem while applying the force on a small area. The
Wheatstone Bridge is sampled with a DAQ (Phidget DAQ1500) at
10 Hz. The synchronisation between the actuator and the sampling
is done by a multi-thread homemade Python script. We performed
a linear fit to obtain the stiffness k, from the relation F = kd.
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Table 1. Decay of bending modulus until a plateau, values

fitted
Water loss Bplateau Buatered /Bplateau
atplateau  (N/mm)
U base 0.33 147 3.6
Middle 0.36 231 3
Top 0.44 354 3
Pulvinus 0.38 39 12

Note: Average values presented, with a standard deviation less than
30% for Bp1ateaus and less than 40% for By atered /Bplateau-

The force was applied from the side of the petiole and not on
the adaxial or abaxial side, resulting in side bending in order to
avoid contact with the thin blades and get more reproducible
measurements. The stiffness k relates the force F = k§ to small
central displacements J. According to the linear theory of
elongated beams, the force is F = 48B§/L; (Landau & Lifschitz,
1967), with a bending modulus B that is deduced from the
stiffness.

The bending modulus of the petiole follows three phases when
mass loss progresses: (i) a decrease, (ii) a long plateau, eventually
followed by (iii) a fast increase, a rigidification when the drying is
close to final (see Figure 2(e)). The typical water loss required to
reach the plateau is given in Table 1 and was around 0.35 (i.e., 35%
of the initial mass). The decrease in stiffness was very high in the
pulvinus (which explains why leaves droop), but was limited to a
factor around 3 in the rest of the petiole.

In the literature, an effective Young’s modulus is computed from
the bending modulus, using the fact that B = EI for a beam made
of a homogeneous material, with E the Young’s modulus and the
second moment of area I = 7(d/2)*/4 for round beam of diameter
d (Landau & Lifschitz, 1967). Here, although the petiole cannot
be considered as a beam made of homogeneous material since it
contains different types of tissues, we can define an effective Young’s
modulus E.g = B/I, taking the measured width as the diameter d.
The measured effective Young’s modulus following this method did
not seem to decrease on the physiologically reversible range 0-0.4
in water loss, the phase (i) before the plateau (Figure S4 in the
Supplementary Material). This echoes the work by Niklas (1991),
who included Spathiphyllum plants on vibration tests and found
a small variation of the effective Young’s modulus over dehydra-
tion in the physiological range. Similarly, Lehmann et al. (2019)
showed that if the bending modulus B of the peduncles of Gerbera
flowers decreased between the turgescent and the wilting state
there was no change of the effective Young’s modulus E.¢ = B/I.
Caliaro et al. (2013) found as well a decrease of the effective
Young’s modulus Eg of 40% at most for Caladium petioles under
drought.

The U base shape is not round, but we found that its bending
modulus evolved like the rest petiole for small loads (see again
Figure 2(e)). A detailed analysis of the second moment of area
from the images of a cross section shows that size (cross-
section area) is the main driving for this reduction, and not
the evolution of the shape (see Figure S5 in the Supplementary
Material).

This experimental part indicates that the strong decrease of
diameter is the main explanation for the decrease of the bending
modulus. But this decrease alone cannot explain the dramatic
falling behaviour of petioles.

4. High amplitude bending of the base: A hinge
4.1. Angular change

Although the overall curvature of the petiole did not increase
significantly, there was a strong bending of the base. This was more
conveniently observed by taking the whole plant out of soil. The
plant was held by tweezers, exposing the root directly to air which
speeded the drying. The key observation was that the U-shape of
the base opened and marked a clear localised fold (Figure 3(a)
and Movie M3 in the Supplementary Material). More precisely,
the photographs revealed that the U-shaped petiole unwrapped
starting from the base and then the opening progressed further up,
before the folding occurred. The folding was localised at the base
where the torque applied by the weight of the rest of the plant was
maximum (Figure 3(b)).

The angle of the petiole with respect to the horizontal (‘angu-
lar height’), measured on images taken from the side, suddenly
dropped at a critical mass loss (around 0.35 of the initial mass),
and even became negative (Figure 3(c)). The change in angle (from
the initial to the final value) was large: we observed ranges from
90° up to 120° in angle amplitude. It was observed that a mass loss
of around 0.4 was not fatal and coud be reversed by watering, the
petiole lifting up as before with yellow stains showing the effect of
hydric stress on epidermal cells.

4.2. Carpenter’s tape analogy and Roman toy model

The U-shaped part became thinner over drying as revealed by the
observation of slices (Figure 4(a)). In particular we observed that
the thickness of the centre of the U shrunk rapidly (Figure S5 in
the Supplementary Material).

In order to simplify the mechanics, we model the base as a
U-shaped plate of Young’s modulus E, width w, uniform thickness
h, parameters that can evolve during drying. The important param-
eter is the initial transverse curvature of the plate ko, that we moni-
tor using the projected thickness d, with a ratio d/h of the order 3-4
for turgid plants. From basic geometry, we have the relation ko/p ~
4d/h for small curvatures, with p = h/w” a characteristic curvature.

The U-plate of initial transverse curvature k = ko is rigidified
compared to a flat plate. However, for a sufficient torque, the
transverse curvature decreases and a mechanical instability occurs,
leading to the sudden bending of the U-plate. This is commonly
observed with a metallic carpenter’s tape (Figure 4(b)), where d/h
is initially of order 60.

This non-linear behaviour can be reproduced by the Roman
toy model (Ponomarenko, 2012; Roman, 2024) (see Appendix B).
This toy model assumes a uniform transverse curvature k along the
width, and therefore approximates the traditional analysis by Wuest
(1954) where the shape has not a uniform transverse curvature. The
U-shape is flexible in opening, and the transverse curvature k can
decrease compared to the initial value, softening the response. The
torque needed M to produce a curvature K with this non-linear
model is

o B K LB ko/p)’ +2 5 (K[p)* + 55 (K/p)*
12w p |:1+g (K/p)z]Z

where 3 = 1/60 and p = h/w”. The material can be non-isotropic
when the parameter « is different from 1, to account for a transverse
bending modulus weaker than the longitudinal bending modulus
by a factor « (< 1), since the petiole is reinforced by longitudinal
bundles. The nonlinear response using the exact but more complex

; 1)
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Figure 3. Nonlinear hinge at the petiole base. (a) View from above of a plant extracted from soil, in the initial state and then after drying for one day. (b) Another plant (featuring
petiole B), seen from the side at times 6.4, 23.2, 25.3 and 47 h, with relative mass loss of 0.16, 0.32, 0.34 and 0.42, showing the opening of the U shape starting from the base, and
then the folding. This experiment was reversible after watering. (c) Angle with respect to horizontal versus time, for three petioles.
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Figure 4. Mechanics and analogy with the carpenter’s tape. (a) Cross-section of the U-shaped base when hydrated (top) or dehydrated (bottom), showing the decrease in
thickness of the U. Drawing: mechanical approximation with a constant thickness U-shaped plate. (b) Carpenter’s tape with a transverse curvature k (radius of curvature 1/k, top
image). Under torque load, the tape presents a bent region with a longitudinal curvature K (bottom image) while the transverse curvature vanishes there. (c) Non-dimensional
torque 12wM/Eh* versus non-dimensional curvature K/ p for the isotropic toy model (lines, « = 1) for several transverse curvature d/h =~ ko /4p, with p = h/w? and for the Wuest
model (dotted lines, with v = 0). (d) Simulation of the shape of a homogeneous beam with constant bending modulus (left) and U-shaped beam with the same bending modulus
but with non-linear response described by the toy model (right, d/h = 3.8 just below critical point, Lp = 0.12). The linear weight p was increased regularly, up to the point that
ugL? /EI reaches 14. Colours indicate local curvature.
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predictions from Wuest (1954) (see Appendix C), provides qualita-
tively similar results.

The curves displaying the non-dimensional torque M / b as
a function of the non-dimensional longitudinal curvature K/p
feature two regimes depending on the initial transverse curvature
parameter ko/p: (i) monotonously increasing for transverse curva-
ture smaller than a critical value, such that d/h < (d/h). ~ 3.9 for
the isotropic case o = 1 or (ii) presenting a peak for d/h > (d/h).,
the peak height increasing with d/h (Figure 4(c)).

In the first regime, monotonous, the bending is stiff at low
deformation (high slope on the curve) and then becomes less stiff
after an inflection point.

In the second regime, imposing an increasing torque M from
zero induces small curvatures until the peak is reached, then lead-
ing to a snap. A smaller o compared to 1 does not change the
initial slope of the curve but changes the height of the first peak
(Figure S6 in the Supplementary Material). After the jump, the tape
presents two spatial parts sharing the same torque, one with low
curvature Kj, and the other with high curvature K;. The Maxwell
construction provides the torque value such that the transition
from the low to the high value does not generate any work. This
condition can be expressed as |, Ig > MdK =0, meaning an equal area
above and below the Maxwell plateau (horizontal dotted line of
Figure 4(c)). The same phase separation effect, originally developed
for phase transitions between different states of matter, appears in
the propagating bulges of cylindrical rubber balloons (Kyriakides
& Yu-Chung, 1991; Lestringant & Audoly, 2018), and involves a
spatial transition (Kumar et al., 2023).

In the plant experiments, the torque M exerted by the weight
of leaf did not increase with time. It would even be the opposite
since the water mass was decreasing. A decrease of the diameter d
(round part of petiole) or thickness h (U-shaped base) at constant
petiole length provides a torque scaling as M ~ d* ~ h*. However, we
expect the non-dimensional torque M/[Eh*/12w(1-1*)] ~h™* to
increase over time, since E did not seem to vary from our bending
measurements.

It is not really clear from section experiments if the U-shape
spontaneously opened up in a reference stress-free state during
drying, which would mean a decreasing d/h (see photographs of
Figure S5 in the Supplementary Material). For the sake of simplicity,
we propose the following interpretation: the value of d/h is roughly
constant and the evolution of the cross-section geometrically sim-
ilar. From the model behaviour, we deduce that its value is slightly
lower than the critical value 3.9 in experiment, meaning a smooth
transition (as observed on time lapse series) and no jump as for a
metallic tape. This value seems plausible when looking at the plant
cross-section, but exact calculations would be needed to account
for the specific geometry and the anisotropy.

As a conclusion, we demonstrate that the thinning of the U-
shaped base is the main driver for the shape transition, since it
changes the non-dimensional torque. The behaviour is well mod-
elled with a U-shaped plate with d/h close to the critical value
meaning a smooth transition with a large angle change, an optimal
operating point for a transition that is reversible without hysteresis,
as illustrated by a simulation of beam obeying this non-linear
model in Figure 4(d).

5. Biomimetic programmable hinge

Taking inspiration from the nonlinear hinge of the Spathiphyl-
lum plant, we designed a soft pneumatic actuator that mimics its

remarkable bending properties. Here, we actively control the trans-
verse curvature, whereas in the case of Spathiphyllum, it is rather
the U-shaped cross section that varies in size with turgor pressure
following a homothetic dilation. The structure is an elastomeric
ribbon containing airways along its length that are off-centred
(Figure 5(a)).

The structures were made of platinum-catalyzed silicone rubber
(DragonSkin 10NV from Smooth-On) and were fabricated by mix-
ing a prepolymer base and a curing catalyst in a 1:1 weight ratio. The
liquid mixture was then poured on a 3D-printed mold (printed with
a Prusa i3 MK3) and covered with a PMMA plate to ensure proper
thickness of the sample. At the same time, a portion of the mixture
was poured on a flat surface, yielding a 1.1-mm thick sheet. After
curing (that typically takes 2 hours) and unmoulding, the structure
was glued on the thick sheet using a very thin layer of the uncured
mix of the same material as a glue. The structure was then pierced
with a needle and connected to a pressure source, with a pressure
Sensor.

5.1. Pressurisation and transverse curvature

Upon pressurisation, the airways tend to change in cross-section,
whereas their length remains unchanged (Siéfert etal., 2019). As the
channels are off-centred, it generates a torque within the plate and
hence transverse curvature in the ribbon in a similar way to com-
mon pneumatic soft robots (Shepherd et al., 2011) (Figure 5(a)).

The structure was inflated at various pressures and a picture
was taken in the plane of the cross section. We computed the
mean curvature 1/R of the ribbon by measuring the chord A
and maximal deflection d. Basic geometry gives the relationship:
R=(8*+A%[4)/26.

To model the curvature resulting from the applied pressure
in the airways, we adopt a bilayer approach (Timoshenko, 1925).
We consider two layers in the structure, one of thickness h — b
containing centred airways of height /,, and the other of thick-
ness b. We then applied the model derived in Siéfert et al., (2019) to
compute the target strain € = f (¢,%,p/E) within the top layer, where
¢ = wa/(Wa +wy) is the channel in-plane density, 1) = ha/(h—b) is
the relative channel height, p is the applied pressure and E is the
Young modulus of the material. Note that this model is nonlinear,
as it computes the stresses in the deformed configuration. In a
second step, an energetic bilayer approach is applied (Siéfert et al.,
2021), considering a top layer with an inelastic strain e and a bottom
passive layer: the elastic energy is computed in each layer, assuming
a cylindrical configuration with the curvature 1/R and the strain at
the first layer midplane &, as the two unknowns:

(h=b)/2 2
I )/ ( —e) dz

2(1 1/2) (h=b)/2

(h=b)/2 ( 4 2
+2¢f (—+§—e) dz] 2)

ha/2 R

EwL —h/2+b/2
Uy=—7r—"—> d 3

: 2(1-v2) J-nj2-b)2 (R 5) = )

The total energy U, + U, is then minimised with respect to R and
& to get the curvature as a function of the strain ¢ in the top layer
and the geometry. Again, the actual values of h,;, H and ¢ in the
deformed state are input in the formula to take into account the
geometric nonlinearities.
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Figure 5. Active hinge inspired by the petiole base. (a) Left: the elastomeric structure contains off-centred airways along its length, that produces unidirectional curvature when
pressurised. Right: curvature as a function of pressure for a structure with L = 100 mm, w =32 mm, h=2.7+0.1 mm, b = 0.55+0.1 mm, h, = 1.15+0.05 mm,w, = 0.85+0.05 mm,
wy, = 1.15+0.05 mm, E = 550 + 20 kPa and v = 0.5. Circles correspond to experiments and the solid line to the model without any fitting parameter (Egs. (2) and (3)).

(b) Programmable stiffness: when the pressure is increased, the transverse curvature induces a strong bending stiffening, such that the structure may sustain its own weight.
Bending modulus, measured with a 3-point bending test, as a function of the inner pressure. Circles correspond to experiments and the solid line to the toy model (Eq. (B.1)),
inferring the curvature computed in (a). (c) The nonlinear response may be also programmed. Upon compression, the structure buckles and exhibits a peak force that strongly
varies with the transverse curvature and hence the inner pressure. Beyond this point, the force decreases to reach a plateau, that barely varies with the applied pressure.

(d) Programmable hysteretic response: cantilever experiment in which the end force is gradually increased and then decreased. As pressure is increased within the structure, it
transitions from a smooth to a discontinuous behaviour with two jumps for the final orientation 6, exhibiting a hysteretic loop that increases in size with the applied pressure.
(right) Overlay of pictures with a regularly increasing (resp., decreasing) force, corresponding to the green curve, highlighting the sudden jump in orientation. For (c) and (d),
structure with w=50mm, h=2.6+0.1mm,b=0.6+0.1 mm, h, =1+0.05mm, w, = 0.8+ 0.05mm, w,, = 1.2+ 0.05 mm, E = 550 + 20 kPa and v = 0.5. L = 120 mm for (c); for (d),
L =105 mm (yellow curve); L = 80 mm (green curve); L = 60 mm (blue curve).

5.2. Programmable bending stiffness distance of 57 mm. The force displacement curve was fitted linearly
to get the stiffness and the bending stiffness was deducted using

To measure the bending stiffness of the samples, we performed  standard linear beam theory.

a 3-point bending test with a universal testing machine (Zwicki Controlling the transverse curvature enables us to increase by a

0.5 kN from ZwickRoell). The two supports were separated by a  factor of 6 the bending stiffness, as it strongly affects the apparent
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thickness d of the structure (see Eq. (B.1)). This dramatic increase
in stiffness enables the structure to transition from drooping under
its own weight to sustain it with minimal deflection as pressure
is increased. Note that this effect is geometrical and results from
the change in cross section and not from the pressure itself. The
pressure within the airways is known to have a negligible impact
on the bending stiffness of inflated elongated structures (Comer &
Levy, 1963; Le Van & Wielgosz, 2005; Siéfert, 2019).

5.3. Compression of elastomeric samples

Beyond the linear stiffness, the nonlinear response may also be
controlled by harnessing the opening of the U-shaped cross section
upon loading.

The ribbon was compressed at various pressures using the uni-
versal testing machine in a horizontal configuration. 3D-printed
clamps with a curvature matching approximately the transverse
curvature of the inflated ribbon were mounted on ball bearings to
ensure free rotation of the edges and a simply supported boundary
condition. The compression test was performed at 200 mm/min.

When axially compressed, a flat simply supported ribbon first
compresses while remaining flat but then buckles out of plane as
the end-to-end distance is decreased (Figure 5(c)). This second
step occurs at an almost constant load. For a transversely curved
ribbon however, once the structure buckles out of plane, the force
continues to increase as the end-to-end distance is decreased due to
the high bending rigidity. The U-shaped cross section opens and the
structures exhibit a peak force, beyond which the force decreases
to reach a plateau (Figure 5(c)). Hence, the maximal force that the
structure can sustain before dramatically collapsing may be actively
adjusted by varying the internal pressure. Assembling such active
elements in a metamaterial would lead to cellular structures with a
tunable crushing load, realizing a versatile mechanical fuse.

5.4. Cantilever experiment

Additionally, the rich nonlinear behaviours described in Figure 4
may be reproduced with only one active structure: at low pressure,
and hence low transverse curvature, the ribbon smoothly deflects
as an end force is increased in a cantilever experiment (Figure 5(d),
blue curve).

The ribbon was clamped at one edge using the curved
3D-printed clamps described above with an initial angle of 23°
above horizontal. Paper clips of 0.67 g were then sequentially fixed
on a small thread glued at the free end of the ribbon to increase
the end force and a picture was taken from the side to measure the
end orientation « of the ribbon. The clips were then removed in the
unloading phase. The length of the cantilever was adjusted such that
it barely sags under its own weight, when no additional end force
was added. As the bending stiffness was highly dependent on the
transverse curvature, the length was different in each experiment:
L =105 mm for p = 0.56 bar; L = 80 mm for p = 0.49 bar and
L =60 mm for p = 0.36 bar.

However, above a critical pressure, the deflection of the beam is
discontinuous and a ‘snap’ occurs at a critical load. When unload-
ing, another jump appears, but for a different load, revealing an
hysteretic loop in the loading/unloading process. Both the critical
snapping force and the size of the hysteretic loop may be tuned by
adjusting the inner pressure in the structure (Figure 5(d), green and
yellow curves). This bioinspired nonlinear hinge could be a useful
building block for the design of tunable hysterons in computing

mechanical metamaterials (Bense & van Hecke, 2021; Chen et al.,
2021; Mei et al., 2021).

6. Conclusion

As a conclusion, we demonstrated that the change in shape of
Spathiphyllum is due to a geometric mechanism, namely, the open-
ing of U-shaped base under the weight load, softening the bending
of the base and inducing a localised fold. This phenomenon is
driven by the thinning of the petiole, rather than a decrease of
the Young’s modulus. This nonlinear mechanical system is likely
to be on an optimal operating point for a reversible transition,
featuring a high enough bending resistance to maintain the shape
with minimum deflection over a large span of water content, while
strongly and reversibly bending at a critical value of water loss.
The same phenomenon was observed on other species featuring U-
shaped petioles and water-rich tissues, suggesting that this sudden
nonlinear drooping has evolved independently at least four times in
angiosperms (Zuntini et al., 2024), specifically in Araceae, Aster-
aceae, Brassicaceae and Asparagaceae. This evolutionary conver-
gence indicates the physiological relevance of this remarkable prop-
erty: the sudden drooping on the floor at a critical water loss close
to their physiological limit allows the leaf blades to hide from the
sun and get closer to the ground (Chiariello et al., 1987; Gonzalez-
Rodriguez et al., 2016; Zhang et al., 2010). This property relies on
two collaborative effects: a U-shaped cross-section at the base of the
petiole, that enables a nonlinear bending response, and a softening
of the petiole, that may be driven by cross-section thinning or
tissue softening, and triggers the drooping under almost constant
weight load. Perspectives are to explore in more detail the precise
role of the geometrical parameters of the U-shaped cross-section,
especially the varying thickness, on the nonlinear bending response
of the petiole. The precise effect of water loss on the shape and
thinning of the cross-section is also yet to be rationalised.

Appendix

AppendixA: Model for the drying of cut leaves taking into account
the shrinking section area

Water content in the petiole is followed by the relative weight
fraction ¢, = My /(M + M), where M,, and M; are the water and
dry mass. The petiole piece after cutting is considered as cylindrical.
The mass of water in a cylindrical piece is M,, = pSL¢, with p
the density of the hydrated leaf (chosen to be that of water for
numerical applications), S = wd” /4 is the area of the cross-section of
the petiole and L is the length of the section. We assume the drying
occurs by fluxes through the two cut surfaces of leaf pieces, with a
rate proportional to the cut surface, inspired by Guo et al. (2024):

dM,,
dt

with k is a rate constant giving the flux of evaporation through the
cut surface [water mass per unit time per unit area].

In the specific case of a constant cross-section, this equation
rewrites into d¢y,/dt = —2k¢y/pL, implying an exponential decay
of the water weight fraction,

= —2kS¢hyy (A1)

Pw = w,0€Xp (—%t) (A2)

and the evolution of the total mass is given by Mo = M/ (1 — dw)
from the definition of ¢,,.
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However, here the area of the cross section varied significantly
over time, while the length of the cut sections did not evolve
significantly (due to the presence of longitudinal fibres). We thus
extend the previous analysis to include a variation of the cross-
section area. The total volume of the cylindrical section is given
by V = Miot/p = Ms/(1 - ¢w)/p and is now a function of ¢,. The
area of the section is thus S = M;/(1 - ¢w)/pL, and the water mass
is My = [¢pw/(1 = ¢w)]M; from the definition of ¢,,. We therefore
obtain from Eq. (A.1)

alis)

dt\1-¢u /) pL1-¢w’

It is solved by introducing the variable u = ¢y, /(1 - ¢w), leading to
u = upexp(—2kt/pL), and therefore obtaining

u ¢w,0exp(—2kt/pL)
S l+u 1-¢uo+dwoexp(—2kt/pL)’

bw (A3)

This yields a slightly more angular shape compared to an exponen-
tial decay (Eq. (A.2)), and agrees better with experiments (Figure
2(c) and Figure S3A in the Supplementary Material).

Appendix B: Roman toy model, extension to non-isotropic tissues

The bending modulus of the U-shaped plate (assuming here for
simplicity v = 0) is approximated for small transverse curvatures
(ko < 1/w)

2

EI(ko) = lEh3w[1+ﬂ(kO) ] (B.1)
12 P

with B = 1/60. The first term in the brackets describes a flat

plate (ko=0), and the second one a curved thin plate. Indeed

in the later case, in the cross-section plane with the X-axis on

the flat plate and Y the deviation, the neutral line is given by

Y, = f w2 (kon)th [hw = kow? /24, so that the second moment

—-w/2
of inertial is I = /7, (koX*/2 = Y,u)*hdX = kihw* [720.
The bending energy writes e; = EI(ko)K?/2 per unit longitudi-
nal length.

To account for the opening of the U-shape, the transverse cur-
vature of the beam, initially ko can evolve to k, implying an energy
cost e, = ER’w(k—ko)*/24.

Adding the transverse and longitudinal bending energies
(neglecting the crossed term, as done in Barois et al. (2014)), one
obtains the total elastic energy:

2
e(K,k):lEh3w{[1+6(k) ]K2+(k—ko)2}. (B.2)
24 p

We extend this model proposed by Ponomarenko (2012) and
Roman (2024) to describe the case where the transverse bending
costs less than the longitudinal bending, as observed in plants.
This is achieved by adding a prefactor « in front of the transverse
curvature energy ey, resulting in:

2
em(K k) = 214Eh3w{[1+ﬁ(l;) ]sz(k—ko)z}, (B.3)

with a = 1 for an isotropic plate, while « < 1 for an anisotropic plate,
which is more easy to bend transversaly.

The transverse curvature adjusts to minimise the energy. We
obtain equilibrium when 9e,,,/0k = 0 for k = k. such that

A. Schliebach et al.

ko

ke=—F—. (B.4)
1+ g%
For this value of the transverse curvature, the energy writes
1ERw 1+ 5 (K/p)*+B(ko/p)’
en =21 I« . . (K/p)*. (B.5)
1+ (K/p)
The couple exerted by a deformation is M = de;, /dK with
Swo 1428 (K/p)>+B(ko/p)* + 25 (K/p)*
apo w1125 (K/p)"+ B (kofp)”+ Gz (K/p)” (B6)

12 [1+2 (k/p)]

A crucial parameter is the initial transverse curvature ko/p
normalised with p = h/w?. For small transverse curvatures (small
compared to 1/w), simple geometry shows that this parameter
tends to ko/p ~ 4d/h.

The shape of a beam under its own weight, with a weight per unit
length (i, can be simulated by solving the evolution of the torque
along the curvilinear abscissa s: dM/ds = —ug(s— L) cos(9), with 6
the angle of the tangent vector with respect to the horizontal, and
L is the abscissa at the free end of the beam. Using the fact that the
curvature is K = df/ds = §', and the fact that dM/ds = §"”"dM/dK
this equation is an ordinary differential equation on 6 as a function
of s. The boundary conditions for Figure 4(d) are a fixed angle of
6 = 45° at the origin, and no torque at the end K = 6" = 0.

Appendix C: Wuest model

According to Wuest (1954), the torque needed to induce a lon-
gitudinal curvature K of a U-shaped beam (same notations as

%[K+ Z/k() - I/(ko + Z/K)Fl +

(k<)+VK)2 . _ 2 coshA—cos )\ _1 ___sinhAsin A
2| with Fi = S 5HS5008 B2 = 161~ Giabagsimay? and

A= [3(1-1))]Y4(K/p)'/? (Seffen et al., 2000; Soykasap, 2007;
Wauest, 1954). Note that in this model, the transverse curvature does
not remain homogeneous across the width during the bending,
contrary to the aforementioned toy model.

the Roman toy model) is M =
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