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Collapse of lipidic ultrasound contrast agents under
high-frequency compressive load has been historically
interpreted by the vanishing of surface tension.
By contrast, buckling of elastic shells is known to
occur when costly compressible stress is released
through bending. Through quasi-static compression
experiments on lipidic shells, we analyse the buckling
events in the framework of classical elastic buckling
theory and deduce the mechanical characteristics
of these shells. They are then compared with that
obtained through acoustic characterization.

This article is part of the theme issue ‘Probing and
dynamics of shock sensitive shells’.

1. Introduction
Ultrasound contrast agents (UCAs) are encapsulated
bubbles of a few micrometres in diameter, which have
now been widely used in the clinic for microvascular
perfusion imaging of the heart, the liver, the kidney
and other organs [1,2]. After being intravenously
administered, they act as efficient acoustic scatterers
owing to their compressibility. They are typically excited
by an ultrasonic pulse with a centre frequency close to
their MHz Minnaert frequency, the eigenfrequency of the
uncoated bubble [3].

2023 The Author(s) Published by the Royal Society. All rights reserved.
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The first generation of UCAs were such free gas bubbles whose effect on a received acoustic
signal was discovered by serendipity during an echography of the aorta by Gramiak & Shah
[4]. As bubbles tend to dissolve rapidly in blood plasma, a second generation of UCAs was
developed, made of air bubbles encapsulated by a thin shell: galactose as in Echovist� (1991),
albumin (a human protein) as in Albunex� (1995) or galactose and palmitic acid as in Levovist�

(1995). A third generation of UCAs includes shelled microbubbles with higher life-time, air being
simply replaced by a gas with higher molecular weight, of lower solubility: SF6 as in SonoVue�

(2001), C3F8 as in Definity� (2001) or C4F10 as in Sonazoid� (2007). The gas core of all these
contrast agents is encapsulated by phospholipids.

While commercial UCAs are quite polydisperse in size, narrowing the size distribution
of UCAs is a way to match better their frequency bandwidth with the relatively narrow
one of ultrasonic devices, thus increasing the sensitivity of the whole detection process [5].
Detection of the point spread function of single UCA is a crucial step that led to the discovery
of ultrasound localization microscopy [6,7], which is a super-resolution ultrasound imaging
technique implemented in both two and three dimensions [8]. Recently, monodisperse lipid-
coated microbubbles were produced using flow-focusing devices [9,10], and they showed 2–3
orders of magnitude higher acoustic sensitivity than that of polydisperse UCAs, be it in vitro [11]
or in vivo [12]. To overcome high pressure drops and potential jamming during long operations,
a T-junction microfluidic device and ultrasound were combined to produce microbubble
suspensions with a narrow size distribution at a high production rate, ∼106 bubbles s−1 [13,14].
One step further towards versatility, easy storage and transportation were recently achieved
by Soysal et al., who succeeded in preparing monodisperse shelled microbubbles that can be
freeze-dried then de-frozen without apparent change of size or acoustic behaviour [15].

2. Mechanics of UCAs
Despite their relative simplicity (a spherical air bubble coated by an orthoradially isotropic
material), UCAs exhibit a rich dynamics that depends on their size, shell material and shape
of the applied ultrasound waveform [16]. When excited close to resonance at a centre frequency
f0, shelled microbubbles can oscillate nonlinearly, i.e. they generate echoes at higher harmonics
(2f0, 3f0 · · · ), subharmonics f0/2 [17] or ultrahamonics 3f0/2 [18]. Dollet et al. also reported non-
spherical oscillations at pressure amplitudes much below a rupture threshold [19]. By using
the nonlinear nature of UCAs, various contrast-enhanced ultrasound imaging techniques have
been developed to enhance the signal coming from UCAs especially in the small capillaries
embedded in tissues, like harmonic imaging, pulse inversion [20], contrast pulse sequence [21]
and amplitude modulation.

Linear models are able to predict the resonance frequency of a UCA whose shell mechanical
properties, including the shell elasticity and the pressure inside the bubble at equilibrium, have
been characterized [22,23]. These models can also be used to estimate adequate properties from
the experimental measurement of the frequency. One popular model is the Hoff model [24],
which consists of the thin-shell limit of the Church model [25], where a finite thickness shell is
considered. It is assumed to be made of a homogeneous, incompressible and isotropic material
described by a Kelvin–Voigt model. Due to the small thickness of the lipidic shells, zero-thickness
models were also developed by de Jong et al. [26].

However, using these models to retrieve the shell mechanical properties generally fails to
provide consistent results throughout the various experimental techniques used to characterize
UCAs. In particular, an apparent increase of shell visco-elastic constants with the radius
of the UCA is generally reported, as summarized in [27]. As discussed recently in [27,28],
considering compressibility or anisotropy of the material, or refined laws for the surface tension,
may help resolve this issue. In both cases, these articles highlight the impact of the initial
state (and particularly the inner pressure) on the final results. This points to the necessity of
completing spherical oscillation experiments with supplementary mechanical parameters and
tests to retrieve, beyond effective quantities, genuine mechanical characteristics of a given UCA.
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3. ‘Buckling’ and/or rupture of lipidic UCAs
Rupture of UCAs under large acoustic stress has been reported several times in the literature,
for lipidic [29] or polymeric ones [30]. This can be triggered on purpose while using UCAs as
drug carriers that would release their cargo [31]. While rupture of the shell is the cornerstone
in drug delivery systems, it is often an undesired behaviour in imaging processes that needs
to be avoided. By using a high-speed camera, Bouakaz et al. observed the break up of polymer
microshells when the mechanical index (MI) of an ultrasonic pulse exceeds a certain threshold
[29]. Before the rupture, the authors found a ‘transient regime’ where the microshells may
undergo severe size reduction under overpressure without significant expansion during the low-
pressure half period of the pressure cycles. The MI is defined as the peak negative pressure
divided by the square root of the frequency of the ultrasound wave: in this condition, the break
up of UCAs at high MI may be seen as a phenomenon that occurs at high-pressure amplitudes if
enough time is provided for the associated strong deformation to occur.

Later, various high-speed optical observations of commercial UCAs under acoustic excitation
mentioned the appearance of non-spherical deformations upon compression. Chetty et al. showed
the existence of several folds [32], which was also observed in [33], while Luan et al. highlighted
budding and even shedding of small vesicles upon a given compression threshold [34].

Slower processes can also lead to non-spherical deformations. Dissolution of the inner gas
leads to the apparition of several wrinkles [35], which may be preceded by budding [36,37].

(a) ‘Buckling’ from the surface tension models viewpoint
Nonlinear oscillations of UCAs, including the so-called compression-only regime where the shells
spend more time compressed than extended [29], but also non-spherical deformations upon high
enough load, may indeed both be accounted for through a model developed by Marmottant
et al. [5,33,38]. This model is initially based on quasi-static measurement of the mechanical
behaviour of flat monolayers of lipids; in these experiments, a decrease of the surface tension
γ upon compression was observed, until it quasi-vanishes when the available space for each lipid
molecule is of the order of their cross section. In other words, tension drops when polar heads
completely shield the gas–liquid surface interaction. Upon extension, the surface tension reaches
a plateau, which is given by the surface tension of the bare interface (i.e. around 70 mN m−1 for
air–water interfaces). It is therefore assumed a constant surface tension above a given surface Aext,
a zero surface tension below a surface Ab and a linear variation of the surface tension with shell
area A in between, which is (perhaps abusively) called the ‘elastic regime’. Later on, smoother
parametrization was proposed to allow for analytical resolution of the dynamics [39,40]. Segers
et al. recently showed that it was possible to directly retrieve a γ (A) curve resembling the ad hoc
assumptions proposed by Marmottant et al. [38], by analysing the radial oscillations of a shelled
bubble under different external static pressures, to scan the different equilibrium areas [11].

The elastic constant associated with this orthoradial tension is the two-dimensional
compression modulus χ = Adγ /dA, where A is the shell area. Due to the small thickness
compared with the shell radius, the bending energy is considered negligible in this model. In the
‘elastic regime’, the elastic constant χ is therefore proportional to the shell area; considering the
small extent of the elastic regime, this is often presented in the literature as a ‘constant modulus’
regime.

It is important to emphasize a collateral feature of these surface tension models: the surface Ab
at which the elastic modulus vanishes is also that where the surface tension vanishes.

The vanishing of the elastic constant is a key ingredient to account for the compression-only
behaviour and the nonlinear modes observed upon a pulsed excitation [5,41]. In parallel, it is
understood that the absence of surface tension allows for the appearance of non-spherical shapes
of the interface. In the literature, these shapes are qualified as wrinkled, budded or buckled,
while in the initial work of Marmottant et al. [38], they are more schematized as bulged, while
being called buckled. On the other hand, buckling is generally defined as a mechanical instability
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under non-zero load, which triggers well-defined shifts in the geometrical configurations, to
minimize free energy or enthalpy. In particular, buckling of hollow elastic shells with constant
elastic modulus is a well-established mechanism. In front of the rich and unexplained collection
of non-spherical, dynamical, deformations of lipidic UCAs [29,32,34,36], the goal of the present
article is to take one step aside and examine how the shell buckling framework can be used to
describe the non-spherical deformations of lipidic shells under quasi-static compression.

In particular, the surface tension models state that the tension is always positive, i.e. the shell
would shrink if this tension was not balanced by a positive pressure difference across the shell,
from the inside to the outside (the Laplace pressure). Conversely, the classical theory for buckling
of elastic shells shows that a shell whose inner pressure is larger than the external pressure is
always stable [42] and that unstable branches are met when the external pressure overcomes the
inner pressure, i.e. when the shell is under negative tension. While the lipidic shell is compressed
until a point where lipids are closely packed (i.e. when surface tension vanishes according to
surface tension models), one can consider that repulsive forces will emerge in order to oppose
compression, giving rise to an elastic contribution that would be balanced by the external pressure
being larger than the internal pressure. The value taken by the internal pressure, and in particular
its initial value, is therefore a crucial determinant in this problem.

Another key difference between surface tension-based models and elastic material models is
that neglecting bending energy in surface tension models does not allow for first-order transitions
between two different states, but rather the progressive emergence of non-spherical shapes
while the surface tension progressively decreases, whose geometrical features are dictated by
the perturbing field (e.g. thermal, acoustic or hydrodynamic fluctuations).

(b) Buckling of elastic shells
While many experimental results obtained on UCAs activated dynamically by ultrasound have
been interpreted using surface tension models, buckling of elastic shells made of an isotropic
material has been widely investigated for decades, as has recently been discussed, e.g. in [43].
Most formulas from shell theory involve the mechanical properties of three-dimensional shell
materials, but one has to keep in mind that the models underlying all calculations consider the
thin shell as an elastic surface. In the following, we will limit the mechanical model adequate
to describe UCAs using only surface (two-dimensional) elastic parameters. This should avoid
misconceptions and/or wrong estimations that would arise from the use of formulas directly
implying three-dimensional parameters, while the objects whose behaviour is described using
these tools are not made of an isotropic material, but of a material whose properties and
organization in the shell confer to this latter orthoradially isotropic behaviour (such as a lipidic
layer). In particular, while the Poisson ratio in three dimensions is constrained to −1 ≤ ν ≤ 1/2
(ν = 1

2 corresponding to an incompressible material), these inequalities become −1 ≤ ν ≤ 1 in
two dimensions, the upper limit corresponding to the so-called incompressible surfaces (two-
dimensional shear modulus � two-dimensional compression modulus) that is not valid for thin
shells of an isotropic material.

In the following, we will reveal the link between buckling features and two-dimensional
mechanical parameters. These are the in-plane compression modulus χ2D, a bending modulus
κ and a Poisson ratio ν. For a spherical shell composed of a homogeneous, isotropic material of
finite thickness d, Young modulus E and Poisson ratio ν3D, these three-dimensional parameters
can be cast into the two-dimensional ones in the thin shell limit d � R, through the relationships
ν = ν3D, χ2D = Ed/(2(1 − ν)) and κ = Ed3/(12(1 − ν2)).

How specific mechanical properties will impact the buckling process of microshells has already
been questioned for other types of materials. To account for the buckling of protein shells like
viruses, Ru introduced the possibilities of both a bending modulus not related to homogeneous
three-dimensional elastic properties and of a transverse shear modulus that would be much
smaller than the in-plane shear modulus [44]. Noteworthy, the concern of Ru was for effective
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thicknesses deff smaller than d.1 As buckling is a localized event, introducing an effective thickness
is also a way to account for the surface heterogeneities, where buckling would be preferentially
triggered. This possibility has been used successfully by Chitnis et al. to account for the rupture of
polymer microshells [45]. A few years later, the same group demonstrated that information on the
buckling threshold of these shells under quasi-static loading can be used as a qualitative indicator
for their response under ultrasound [46].

Here, to take into consideration the importance of surface tension effects for lipidic UCAs,
we will reconsider thin-shell buckling theory in the presence of a surface tension γ . As a
first approach, and considering the number of parameters to be determined, we will consider
this surface tension to be constant (but potentially non-zero), as considered in the Marmottant
model in the vicinity of the buckling threshold. This surface tension is an effective surface
tension accounting for all surface effects around the gas–lipid layer–fluid interfaces, a minimalist
approach aiming at discussing easily surface tension effects. Our model will be confronted with
the behaviour of lipidic UCAs in the vicinity of their potential buckling threshold under quasi-
static load. To that aim, here we consider monodisperse microbubbles with different covering
shell compositions to vary their mechanical properties and submit them to a slowly varying
external pressure while monitoring their shape deformation through a microscope.

4. Buckling of an elastic shell in presence of surface tension

(a) Equilibrium in spherical mode
In spite of its geometrical simplicity, the problem of the instability of a spherical shell requires
to enter into cumbersome calculations (see §4b). Before introducing them, we establish the
equilibrium conditions in the spherical configuration and in the small deformations limit.

Let us consider a model for a shell of mid-radius R with spherical symmetry, taking into
account both shell Hookean elasticity (compression modulus χ2D and a Poisson’s ratio ν), a
bending modulus κ and a surface tension γ due to the enthalpic cost of contact between
incompatible chemical species such as polar–apolar media. The free energy of the whole object
writes:

F (R) = 1
2
χ2D

(
�S
S

)2
× 4πR2

ref + γ × 4πR2 + 8πκ , (4.1)

where Rref is the radius at which the compressive Hookean part is zero, and �S/S =
(R2 − R2

ref)/R2
ref is the relative area change. Rref must not be confused with the initial radius R0,

which is that of the shell immersed in the fluid under atmospheric pressure Patm. The first term
simplifies at first order in δR/R = (R − Rref)/Rref as 8πχ2D(R − Rref)2; hence, it is straightforward
to see that the effect of surface tension, in this low deformation, spherical mode, is to modify the
compression modulus from χ2D to χ2D(1 + (γ /2χ2D)).

From the dependency of F with the volume loss �V, we can infer the relationship at
equilibrium between the pressure drop across the shell, and geometrical and mechanical features:

Pext − Pint = ∂F
∂(�V)

= 2χ2D

R

(
1 − R2

R2
ref

)
− 2γ

R
, (4.2)

where the first term provides the contribution of the in-plane compression to the pressure drop,
and the second term corresponds to the Laplace pressure.

Experimentally, the external pressure Pext is controlled, but there is no access to the pressure
Pint inside the shells. It is related to the quantity of gas initially trapped in the shell. As we
are considering slow variations of external conditions, we consider also that the gas process is
slow enough to be isothermal and use Pint/Pref = (Rref/R)3, where we have introduced the inner
pressure Pref in the reference state Rref.

1Ru introduced the thickness d0 such that the bending modulus reads κ = Y2Dd3
0/(12(1 − ν)d), leading to d2

eff = d2
0/d, and found

a buckling threshold equal to that given in equation (4.11), in the absence of surface tension.
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For small deformations ((δR/Rref) � 1), we obtain the shell radius as a function of external
pressure:

R = A + BPext, with

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A = (4Pref + (4χ2D/Rref) − (4γ /Rref))

((3Pref/Rref) + (4χ2D/R2
ref) − (2γ /R2

ref))

B = −1

((3Pref/Rref) + (4χ2D/R2
ref) − (2γ /R2

ref))

. (4.3)

To go further in the determination of the unknown parameters χ2D, γ , Pref and Rref, one can
use supplementary hints obtained through the observation of the buckling, which are detailed in
the following section.

(b) Buckling threshold and post-buckling shape
(i) Critical buckling pressure

Over a certain pressure drop �Pb = (Pext − Pint)c called ‘critical pressure’, a thin shell of an
isotropic medium undergoes a non-spherical deformation casting the shell into a bowl shape,
potentially with several radial folds (like in a deflated beach ball).

The seminal work of Koiter [47] has been recently revisited by Hutchinson [43], in a context of
growing interest for the complex instability mechanisms of hollow shells [48–50]. To handle the
delicate calculation of the stability analysis of such shells, a simplifying hypothesis is typically
made regarding the amplitude of the deformations. Be it following moderate rotation theory or
Donnell–Mushtari–Vlasov (DMV) theory, the stability analysis continues to the establishment of
a set of two equations between the stresses and the inward radial displacement w away from the
equilibrium spherical state. As we wish to introduce the contribution of a constant surface tension
in the problem, we need to go into the detail of the derivation of these equations, which we do
following the enlightening book of Ventsel & Krauthammer [51]. We refer to the equations in this
reference by the suffix VK and follow their derivation of the two governing differential equations
(leading to equations 17.36 VK in the absence of surface tension, and for a more general geometry)
in the framework of DMV theory.

The first equation in 17.36 VK (or 3.3 in [43] with another convention for the displacement
which points outward) is the equilibrium equation; it involves the Airy stress function Φ which
can be differentiated (equation 17.31 VK) to obtain the in-plane normal forces N1 and N2 and
the in-plane shear force N12. For a purely elastic material, these forces are related to the in-plane
strains through Hookean laws (equations 12.45 VK and 12.48 VK). We rewrite these equations,
obtained in the thin-shell limit of a three-dimensional homogeneous material, by introducing
directly the two-dimensional elastic constants and by subtracting a constant surface tension γ to
the normal forces:

Ni = 2
1 + ν

χ2D(εi + νε3−i) − γ , i = 1, 2 (4.4)

and

N12 = 1 − ν

1 + ν
χ2Dε12, (4.5)

where εi are the in-plane linear strain components and ε12 the in-plane shear strain. The Airy
function is now related to these new stresses. The stress couple–curvatures relations (12.46 VK),
which involve the bending modulus κ (noted D in [51]), remain unchanged.

The equilibrium equation for the shell submitted to a normal surface load directly involves the
in-plane stresses Ni (and not a stress–strain relationship) and a bending contribution (equation
17.32 VK); therefore, it remains unchanged in our context. This leads to the first equation between
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the Airy function and w, in the context of spherical geometry (first equation of equation 19.127 VK
together with 19.130 VK):

κ∇2∇2w = 1
Rref

∇2Φ − �PRref

2
∇2w. (4.6)

The second equation that is needed is the compatibility equation, which arises from
the reduction from a three- to a two-dimensional configuration: as the three in-plane
strain components are only defined through two in-plane displacements, they must fulfil a
compatibility condition. This compatibility equation (equation 17.35 VK) relates the different
strain components. In our context, equation (4.4) shows that the linear strains εi can now be
written as the sum of an elastic strain and a constant term that is proportional to the surface
tension γ . Examination of equation 17.35 VK shows that this latter term does not lead to additional
contribution in the equation, which finally leads to the same second equation in equation 17.36 VK
(or in equation 19.127 VK for spherical geometry):

∇2∇2Φ + Y2D

Rref
∇2w = 0, (4.7)

with Y2D = 2(1 − ν)χ2D the two-dimensional Young modulus. Therefore, a stability analysis as
done in [43] or [51] leads to the same buckling pressure difference across the shell as in the absence
of surface tension:

�Pb = 4
√

Y2Dκ

R2
ref

. (4.8)

Note that this buckling threshold is not what would be obtained by naively replacing χ2D by
the whole compression modulus in the presence of surface tension χ2D(1 + (γ /2χ2D)).

(ii) Bending modulus through the typical length deff

While introducing the buckling threshold as an additional information to infer the shell
properties, we have also introduced the bending modulus κ , leaving our initial under-
determination unsolved. However, bending energy not only contributes to set the buckling
threshold but also controls the final buckled shape. In this configuration, the dimple is circled by a
rim of radius r and width � that concentrates the deformation, in both bending and compression.
Following (with two-dimensional parameters) the calculation done by Landau & Lifschitz [52]
in the absence of surface tension, the bending energy scales as (12(1 − ν2)κr3/R2�), while the
stretching energy scales as Y2Dd3�3/R4. The sum of the two terms is minimum for � =√

Rrefdeff,
where deff =√

6(1 + ν)κ/χ2D.
This characteristic distance deff for elasticity drives the deformation of shells in the buckled

configuration. It is equal to the thickness d for a thin shell of an isotropic material. As in [53]
who considered lipid vesicles and showed that deff �= d, we leave here this possibility open and
consider deff as a parameter that still needs to be determined.

In our case in the presence of surface tension, χ2D should be replaced by the effective
compression modulus χ2D(1 + (γ /2χ2D)), which leads to

deff =
√

6(1 + ν)κ
χ2D(1 + (γ /2χ2D))

. (4.9)

Since it drives elastic deformations, this quantity can be evaluated experimentally on buckled
shells, either by looking at the size of the rim or, more conveniently, by examining the presence
of radial folds within the dimple. Numerical simulations presented in [54] have highlighted an
empirical geometrical relationship between the number of folds Nf and the characteristic length:

Nf = 0.940
√

Rref/deff. (4.10)

Through equation (4.9), we can now rewrite the bending modulus κ , which cannot be
determined directly, as a function of deff (and other unknown parameters), and inject it in the
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expression for the buckling threshold:

�Pb = 4χ2D

Rref

√
1 − ν

3(1 + ν)
deff

Rref

√
1 + γ

2χ2D
. (4.11)

Using equations (4.11) and (4.2) right before buckling provides:

Rref − Rb =
(

Rb

Rref

)2
√

1 − ν

3(1 + ν)

(
1 + γ

2χ2D

)
deff + γ Rb

2χ2D
, (4.12)

where Rb is the radius of the sphere at buckling threshold. Since Rref − Rb happens to be small (of
order a few % of the initial radius), in the following, we will not make difference between Rb and
Rref in the expression of values at first order for the deformation (Rref − Rb)/Rref, hence,

Rref = Rb

(
1 +

√
1 − ν

3(1 + ν)

(
1 + γ

2χ2D

)
deff

Rref
+ γ

2χ2D

)
. (4.13)

5. Experimental methods

(a) Monodisperse microbubble production
The monodisperse microbubble suspensions were produced in a flow-focusing device described
in detail in [11].The bubbles were formed at a temperature of 55◦C to minimize bubble coalescence
in the outlet of the flow-focusing device [55]. The lipid coating material comprised DSPC and
DPPE-PEG5000 mixed at a 9 : 1 molar ratio (Corden Pharma, Liestal, Switzerland) and at a total
lipid concentration of 12.5 mg per mL of air saturated Isoton (Beckman Coulter Life Sciences,
Indianapolis, IN, USA). The lipid dispersion was prepared exactly as described in [56]. The freshly
formed bubbles were initially formed enclosing a gas mixture of 15 volume% C4F10 in CO2, but
once stabilized after CO2 dissolution, they ended full of nearly pure C4F10 gas, as detailed in [57].
The gas and liquid flows were controlled as described by van Elburg et al. [58].

(b) Acoustic characterization of the shell stiffness
These microshells react to an ultrasound pulse by oscillating at a characteristic resonance
frequency that depends on the stiffness that will be called dynamic stiffness χdyn in the
following—to keep in mind it may differ from that obtained in a quasi-static situation. In the spirit
of surface tension-based models, this stiffness is associated with variations of surface tension with
shell area. It was obtained by fitting a theoretical linear oscillator model to measured attenuation
spectra, exactly as described in [11]. The size distribution of the bubble suspensions were also
input to the fitting procedure and were obtained using a Coulter Counter (Beckman Coulter
Life Sciences, Indianapolis, IN, USA). The attenuation spectra were measured by transmitting
narrowband 30-cycle ultrasound pulses with frequencies ranging from 0.5 up to 5.0 MHz in
steps of 100 kHz through the bubble suspension confined by a sample holder (8 mm acoustic
path length). The transmit transducer (Olympus V304, 2.25 MHz, 1.88 inch focal distance, 1 inch
aperture) was calibrated using a fibre-optic hydrophone (Precision Acoustics). The transmit
pulses were generated by a waveform generator (Tabor 8026) and amplified (vectawave, VBA100-
200) to a peak negative pressure amplitude of 5 kPa. The receiving transducer (Olympus V307,
5 MHz, 1.93 inch focal distance, 1 inch aperture) was connected to a digital oscilloscope (picoscope
5444d) to record the attenuated signals from which the attenuation spectrum α was calculated as
follows [59]:

α = 20
d

log10
|Vref|
|Vbub| , (5.1)

where d is the acoustic pathlength and Vref and Vbub are the amplitudes of the received signal
without and with microshells, respectively, at the transmit frequency fT. Microshells of dynamic
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P

valve

microscope

high speed
camera

40X

pressure
regulator

Figure 1. Experimental set-up for buckling experiments. The pressure sensor ‘P’ measures the pressure inside the chamber at
the level (according to gravity direction) as the microscope objective. (Online version in colour.)

stiffness ranging from 0.55 to 4.5 N m−1 were considered in the following. In a forthcoming paper
from the Twente groups, it will be disclosed how the shell stiffness is controlled.

(c) Test case with SonoVue
To check the genericity of our result with our own-made shells, we also used a commercial
contrast agent, SonoVue/Lumason� (Bracco Spa, Milan, Italy). It consists of a phospholipid
shell encapsulating a sulphur hexafluoride gas core. Different measurements of their visco-
elastic properties, obtained through various experimental techniques, can be found in the
literature. These parameters are highly dependent on the theoretical model that is used to fit
the experimental data, which were also performed at many different conditions (see, e.g., the
effect of driving pressure in [23]). The elastic two-dimensional compression modulus is reported
to range from 0.024 to 2.61 N m−1, and the surface viscosity modulus κS from 0.1 × 10−8 to
3 × 10−8 N m s−1.

To maintain good stability of the SonoVue� microshells according to the manufacturer’s
suggestions, they were freshly reconstituted before use through a mixture of the lyophilisate with
5 ml physiological saline solution, to form a suspension that contains approximately 2 – 5 × 108

shells per millilitre with diameters ranging from 2 to 7 µm.

(d) Shell pressurization and observation
Shells were gently poured into degased water and placed in a Falcon microfluidic reservoir of
15 ml (Fisher Scientific, USA) connected to an Elveflow� pressure controller (Elvesys�, France)
and to a flow-through cuvette (Aireka Scientific� Co., Ltd) using PTFE tubings. The chamber
is made from quartz with a square cross section (12.5 mm × 12.5 mm), and it is placed under an
inverted microscope (Olympus�, model IX70) which was twisted 90◦ through three stabilizing
aluminium legs. This configuration allows to have an observation axis z perpendicular to gravity
axis y. After the injection in the chamber, the microshells float up due to buoyancy (see figure 1).

The other end of the observation chamber is connected (1) to a valve which is left open to inject
the UCAs into the chamber by a gentle increase in the pressure in the reservoir (of order 30 mPa
above atmospheric pressure), and closed to allow for pressurization of the chamber to compress
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the shells and (2) to a pressure sensor (MPS1, Elvesys�, France). Following the instruction of the
manufacturer, the sensor was first calibrated by connecting it directly to the outlet of the pressure
controller. This sensor was placed at the same altitude as the objective of the microscope and
allowed us to measure the ambient pressure around the shells, while checking potential time
delay in the response of the whole device regarding imposed pressure variation.

To correlate shell shape evolution with values of external pressure, both pressure sensor and
fast camera (Miro 310, Vision Research) are triggered through the Elveflow interface. Movies
are taken at a rate of 100 frame s−1. An automated stage (MS-2000, ASI, USA) is used to select
a microshell before the recording.

Experiments were conducted at room temperature (around 25◦C), and the concentration of
shells (∼105 shells mL−1) is such that interactions between shells can be considered negligible.

(e) Image analysis
To track the UCAs and get their shape at each time step, we developed a tracking algorithm with
sub-micron resolution. The intensity profile of a non-spherical shell is complex and depends on
the angle of the shell relative to the optical axis. Being interested essentially in the detection of
non-spherical deformation events, we approximate it by a two-dimensional elliptical Gaussian
distribution with a tilt angle θ [60]. The intensity is expressed as follows:

I(x, y) = I0 + A × exp

(
− x′2

2σ ′2
x

− y′2

2σ ′2
y

)
, with (5.2)

⎧⎨
⎩

x′ = (x − x0) cos θ − (y − y0) sin θ

y′ = (x − x0) sin θ + (y − y0) cos θ

, (5.3)

where (x0, y0) is the centre coordinate of the Gaussian model, θ is the rotation angle, σ ′
x and σ ′

y
are the standard deviation of x′ and y′ axis, respectively, A is the Gaussian amplitude peak and I0
is the background amplitude. The fitting parameters are estimated according to the least squares
principle. After the fitting, data are processed such as θ is always the angle of the short axis, i.e.
min(σ ′

x, σ ′
y). θ is also chosen such that when the ratio σ ′

x/σ
′
y is minimal, the corresponding angle θ

indicates the buckling direction, called θb hereafter. An example of the fitting is shown in figure 2
where we show the initial raw and fitted image of the same shell in spherical and buckled states,
respectively.

For comparison with known deformation processes of buckling elastic shells [61], we also
defined the (optical) width w and height h of the shell, relative to the buckling angle θb (as defined
below), as the widths of the one-dimensional Gaussian profiles in the θb and θb + π/2 direction,
respectively. For a purely axisymmetric, non-noisy, process, these values are equal to σ ′

x and σ ′
y,

respectively.

6. Results
We first considered slow variations of pressure, which varied from the atmospheric pressure
Patm = 101.3 kPa to a maximum value Pmax and back to Patm within 40 s. We systematically
observed that when the maximal pressure Pmax was set to be slightly above a given value Pb,
shells would lose their spherical symmetry at threshold Pb and collapse into a bowl-like shape,
which had most of the time a threefold symmetry, as shown in figure 3. This deformation was
reversible and could be repeated several times through slow pressure cycles between Patm and
Pmax with no apparent damage. These points are clear signatures of an elastic behaviour, since
shapes of shells driven only by surface tension effects would be non-specific when surface tension
vanishes. Threshold Pb is determined from the rapid change of the apparent aspect ratio λ = σ ′

x/σ
′
y,

and will be called ‘buckling pressure’ in the following, due to similarity between shapes observed
on UCAs and typical buckled shapes of elastic shells [42,54,62,63].
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Figure 2. Light intensity distribution of (a) raw image for ‘spherical’ shape, (b) raw image for ‘buckled’ shape, (c) fitted image
for ‘spherical’ shape and (d) fitted image for ‘buckled’ shape. In the spherical phase:σ ′

x = 5.11µmandσ ′
y = 5.38µm; in the

buckled phase:σ ′
x = 4.87µm andσ ′

y = 5.30µm. (Online version in colour.)

(a)

(b)

Figure 3. (a) Zoology of shapes of home-made UCAs of dynamic modulus 2 N m−1 after buckling. The threefold geometry is
dominant. The scale bar represents 6µm. (b) Buckled shapes of two Sonovue shells of similar radius, also characterized by a
threefold geometry.

(a) Position of the buckling spot
A perfectly spherical and homogeneous shell will a priori buckle everywhere and simultaneously.
In practice, buckling instability develops around a preferred location corresponding to a ‘weaker’
point, i.e. a thinner or a smoother part of the shell, as demonstrated theoretically or on
macroscopic shells designed on purpose [61,64,67]. For lipidic UCAs that do not a priori exhibit
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Figure4. Examples of timeevolutionof aspect ratioλ (left axis) andangleθ (right axis, in degrees) for twodifferent SonoVue�

microshells of initial radius: (a) 2.5µm and (b) 2µm. External pressure is varied at a frequency of 2 Hz. Pictures in insert show
spherical and buckled configuration, right after buckling, when buckling angle θb is determined. (Online version in colour.)

well-defined defects, the question of the location of the buckling spot is open. To answer this
question, we observed sequences of buckling events on several shells, which were let free to move
far from the chamber walls. Due to buoyancy, they could be observed for around 20 s without
moving the microscope stage. In the absence of markers on the shell membrane, we measured
for each pressure cycle the angle θb of the buckling direction as defined by the Gaussian shape
characterization. To keep a precise and reliable measurement of the buckling spot position, we
opted for not moving the microscope stage along the process, but rather went for a f = 2 or 1 Hz
pressure cycle to obtain around 20 successive measurements of the buckling angle along one
trajectory.

In figure 4, we plot an example of the aspect ratio λ and the fitting angle θ during pressure
cycles. We can clearly see that λ varies from a value close to 1 in the spherical shape2 and suddenly
drops. The drop of λ corresponds to the buckling, as shown on the inserted snapshot and is thus
used to define the buckling angle θb.

As we cannot track material points on the shell, we check the hypothesis of single buckling
location by comparing the time evolution of the buckling angle with that of a material point on
sphere in case of rotational thermal diffusion. The rotational diffusion coefficient Dr of a single
colloidal sphere with radius R0 suspended in a solvent with shear viscosity μ is given by the
familiar Stokes–Einstein–Debye relation [68,69]:

Dr
0 = kBT

8πμR3
0

, (6.1)

with kBT the thermal energy. The mean-square angular deviation varies linearly with time and
with 2Dr

0 as a coefficient of proportionality. If there is only one buckling spot, we then have:

〈θ2
b 〉 = 2Dr

0t. (6.2)

Considering a narrow size distribution in each case, we show the histograms of θb increment
after one cycle on figure 5. While on some rare occasions, the increments can reach quite high
values, most are centred around 0. Similar graphs can be obtained after n cycles. Due to the length
of the trajectories, we restrict our statistical analysis to n ≤ 8. In what follows, we exclude the data
where �θb exceeds ±40 degrees, and we fit the distribution with a Gaussian function.

2It is slightly smaller than 1 due to non-spherical distribution of the light intensity around the shell.
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Figure 5. Probability distribution P (�θ ) of the buckling angle variation �θ after one cycle. (a) SonoVue (f = 2 Hz,
R̄0 = 2.07 ± 0.41µm), (b) SonoVue (f = 1 Hz, R̄0 = 2.21 ± 0.38µm), (c) home-made shell (χdyn = 2 N m−1, f = 1 Hz,
R̄0 = 2.07 ± 0.26µm) and (d) squared widths of the Gaussian fits of the distributions of buckling angle variations after n
cycles as a function of the number n of cycles. The corresponding slopes D̃ are 11, 11.41 and 8.75, respectively. (Online version in
colour.)

The variances σ 2
θ of the Gaussian distributions are plotted as a function of cycle number in

figure 5d, for SonoVue shells excited at 2 or 1 Hz and for home-made shells (χdyn = 2 N m−1)
excited at 1 Hz. They all have a narrow size distribution centred on mean radius R̄0. Variances
increase linearly with time, indicating a diffusive behaviour. From the measured slopes D̃, we
find that the associated diffusion coefficient should be given by R̄3

0Dr
0 = R̄3

0(D̃/2) × (π/90)2f =
1.2 × 10−19, 0.8 × 10−19 and 0.5 × 10−19 m3 s−1, respectively. These values must be compared
with kBT/(8πμ) � 1.6 × 10−19 m3 s−1, where kBT � 4.1 × 10−21 J and μ = 1 mPa s. The proximity
between these values supports the hypothesis that shells mostly have a unique buckling spot.
Whether this unique spot is due to an intrinsic defect, or due to a dynamical process where not
all stresses have time to relax between two pressure increases, remains to be discussed.

(b) Buckling upon a quasi-static loading
Upon a slow increase (period of 40 s) of external pressure, a shell first shrinks isotropically
(figure 6a) and then its aspect ratio suddenly drops for a given pressure threshold (figure 6b),
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in colour.)
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Figure 7. (a) Buckling pressures Pb for three considered shells. (b) Variation of the shell size h with the applied pressure Pext,
for a shell with χdyn = 1.5 N m−1. The spherical part (where h is equal to the shell radius R, purple dots) is linear, and the
corresponding fit is indicated in full line. The buckling Pb corresponds to the change of slope, when the height h of the shell
decreases more abruptly (indicated with the dashed line). (Online version in colour.)

which is defined as the critical buckling pressure Pb. As shown in figure 7a, the buckling pressure
increases with the shell dynamic stiffness. As for purely elastic shells [61], an hysteresis in the
(h, w) space is visible; by contrast though, it is not associated with a marked hysteresis in the
(λ, Pext) space.
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The spherical deformation and the buckling process are now used to determine the mechanical
properties of the shell, according to the model built in §4.

According to equation (4.3), a linear fit R = A + BPext of the R(Pext) curve in the spherical
regime provides two equations among Pref, Rref, χ2D and γ . An example of such a fit is shown
in figure 7b.

Equation (4.13) provides an equation for Rref in which the radius Rb at buckling threshold is
introduced, as well as Poisson’s ration ν and the characteristic length deff. The buckling pressure
Pb is the pressure at which the aspect ratio drops (see figure 6b), but this rough determination can
be refined as the locus of the change of slope in the h(Pext) curve, as shown in figure 7b. One ends
up with three equations for six unknowns. In the following, we discuss general assumptions for
three of them: ν, γ and deff.

Poisson’s ratio: ν is, traditionally, difficult to measure with accuracy. We may nevertheless
remark that, for usual materials, ν > 0: auxeticity, or negative Poisson’s ratio, does not show
up by chance in materials and is usually the result of sophisticated strategies. This bounds the
prefactor

√
(1 − ν)/3(1 + ν) to 0–1.7. For lipidic UCAs, Terzi et al. recently proposed a value

ν = 0.5 [70]; however, this proposition emerges as the result of a calculation, which is highly
dependent on another parameter, the volume compressibility Kv , which is itself quite roughly
estimated. Following a determination that resulted from the quantification of hundreds of shapes
undertaken by comparable deformed thin spherical shells of lipid monolayers in the gel phase
[53], we will in this article assume ν = 0.8, a value which in addition is compatible with the
reputation of ‘incompressibility’ (in the two-dimensional sense) of lipid monolayers or bilayers.

Surface tension: The order of magnitude of such a value has to be at maximum the interfacial
energy between a polar and an apolar liquid, i.e. ≈30 mN m−1. We remind that in surface tension-
based models, this surface tension is assumed to be close to 0, and we shall evaluate the impact
of both these extreme values.

Characteristic length deff: In our experiments, shells mostly present three-folds after buckling
(figure 3). This sole observation discards the view of the shell leaving its spherical shape because
of vanishing surface tension: in this case that would imply the absence of characteristic length, a
wide zoology of multi-folded shapes would be observable. According to [54], we can then deduce
that deff/Rref = (0.940/3)2 � 10%. This is much larger than the thickness d of the shell (≈5 nm),
in a way comparable with what was observed on similar systems [53]; this difference reminds
the importance of taking into account the non-isotropic nature of the material constituting the
shells. Indeed, lipid layers behave differently in the direction parallel to the lipids and in the two
perpendicular directions, which are at any place parallel to the shell; such materials are called
‘transverse isotropic’ [27,71], and the shell’s properties ‘orthoradially isotropic’. In our analysis,
we will check the impact of this value for deff, with respect to the customary choice deff = d.

Table 1 synthesizes the parameters obtained from our analysis of the raw data, and the
mechanical parameters that are deduced from them, depending on the hypothesis that is made.
Shells with similar sizes were selected, and the dispersion in size is of order 0.1 µm. Mean values
are reported in Table 1. The quasi-linearity of the equations allows to run our analysis on these
data.

7. Discussion
The results obtained with our complete theoretical model are rich in lessons.

First, the different attempts summarized in table 1 show that the determination of χ2D is quite
robust: if deff and γ vary in the discussed range, χ2D varies by at most 10%. This can be understood
by looking at the relative weight of each term in the quasi-static elastic parameter −B−1: the
contribution from χ2D is indeed dominant, and hence, it is directly related to the measurement of
the slope in the Pext(R) curve.

This quasi-static elastic contribution is quite close to the dynamic elastic contribution when
the latter is equal to χdyn = 0.55 N m−1 or χdyn = 1.5 N m−1. However, for the χdyn = 4.5 N m−1

shell, the quasi-static elasticity does not match the dynamic one and is always three times smaller,
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Table 1. Table of extracted parameters A and B from the spherical deflation of three types of home-made UCAs, of external
buckling pressure Pb, and deduced buckling radius Rb = A + BPb and initial radius R0 = A + BPatm. From these data, shell
properties Pref, Rref andχ2D are deduced, as well as the inner pressure P0 in the initial state (Pext = Patm). Uncertainties on
the fitting parameters A (and radii) and B are 2 nm and 0.01 nm kPa−1, respectively. Pb is determined with an accuracy of 1 kPa.

χdyn → 0.55 N m−1 1.5 N m−1 4.5 N m−1

from raw data→ A (µm) 1.927 1.655 1.489
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B (nm kPa−1) −1.304 −0.462 −0.372
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Pb (kPa) 113.07 130.58 151.56
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rb (µm) 1.780 1.595 1.433
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R0 (µm) 1.795 1.608 1.451
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

hypothesis↓
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

deff/Rref = 10% Rref (µm) 1.861 1.643 1.476
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and γ = 30 mN m−1 Pref (kPa) 82.4 63.1 76.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P0 (kPa) 91.8 67.4 80.2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

χ2D (N m−1) 0.56 1.40 1.39
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

deff/Rref = 10% Rref (µm) 1.814 1.625 1.460
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and γ = 0 mN m−1 Pref (kPa) 86.7 64.2 77.5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P0 (kPa) 89.5 66.2 78.9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

χ2D (N m−1) 0.51 1.35 1.35
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

deff = d = 5 nm Rref (µm) 1.833 1.614 1.450
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and γ = 30 mN m−1 Pref (kPa) 105.2 125.1 145.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P0 (kPa) 112.0 126.5 144.7
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

χ2D (N m−1) 0.51 1.27 1.27
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

deff = d = 5 nm Rref (µm) 1.780 1.596 1.434
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

and γ = 0 mN m−1 Pref (kPa) 112.2 128.5 149.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P0 (kPa) 109.6 125.5 143.6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

χ2D (N m−1) 0.46 1.22 1.22
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

whatever the hypothesis on the parameters is. The quasi-static elasticity is quite similar for χdyn =
1.5 N m−1 and χdyn = 4.5 N m−1 shells.

On the other hand, buckling pressures show a clear increase with dynamic stiffness (figure 7a).
It is clear from the previous discussion that this increase of buckling pressure can not only be
understood by an increase in stiffness χ2D. Here, it is necessary to consider the value taken by the
(reconstructed) inner pressure P0 at initial radius R0, whose determination strongly depends on
the hypothesis made for the parameters γ and, more importantly, deff.

The geometrical observation of threefold buckled shapes highlights the existence of a non-
zero characteristic lengthscale deff, which we estimated to be of the order 10% of the reference
radius. The associated buckling pressure difference across the shell (equation 4.11) implies that
the reference pressure and more importantly the pressure P0 in the initial state must be lower
than atmospheric pressure (with some variations depending on the choice of surface tension). It
also implies that, at initial state, the shell is already under elastic compression (Rref > R0). This is
not, a priori, incompatible with the mode of production of shells, which were first formed under
subatmospheric pressure, and then lost part of their gas. Yet, this finding is in contrast with the
usual output of surface tension-based models that leads to the conclusion of initial surface tension
of the order of 20–30 mN m−1 [11], then to P0 > Patm. Finally, these results show that difference in
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the buckling pressure between the χdyn = 1.5 N m−1 and χdyn = 4.5 N m−1 shells does not lie in
the difference in stiffness but rather in the difference in initial pressure, the latter being larger for
shells with higher dynamic stiffness.

Changing Poisson’s ratio from 0.8 to 0.5 does not impact much the conclusions: the
compression modulus is increased by some 5%, but it also implies a decrease of the initial pressure
in the shell: for the χdyn = 1.5 N m−1 shell, in the first hypothesis, P0 becomes 18 kPa, which may
appear as a too strong asset. This observation tends to validate the choice of ν = 0.8, which was
already suggested by a more extensive study on buckled shape of similar lipid-coated shells [53].

We finally remark that authors usually assume that the inner pressure P0 is equal to
atmospheric pressure, when spherical oscillations are analysed to determine shell mechanical
properties. This reduces the number of parameters to be calculated. Here, if we impose this
hypothesis and let γ as an unknown parameter to be determined, we find no acceptable solution:
for χdyn = 1.5 N m−1, with first hypothesis (deff/Rref = 10%): two solutions are found, γ = −0.15 or
0.2 N m−1, both being non-physical. With the third hypothesis (d = 5 nm), there is no solution for
γ . As discussed in recent more advanced modelling papers for spherical oscillation, the values of
initial pressure and of initial stress are key if one wishes to deduce correctly the other visco-elastic
parameters of the shell [27,28]. Buckling experiments may be a way to access these data.

8. Conclusion
Our results highlight the difficulty in assessing a coherent view of the mechanical properties of
lipidic microshells that would be relevant for all frequencies and amplitudes of loads, including
triggering of buckling, or buckling-like, events.

Surface tension-based models intrinsically assume that the shell is always overpressurized,
while buckling processes require, in the elastic shell framework, the inner pressure to be lower
than the outer pressure. Here, we explained the buckling process under quasi-static load in
the frame of the elastic theory and showed that the overall elastic response in the spherical
deformation under quasi-static load is similar to that obtained under pulsed, high amplitude,
excitation, using a surface tension-based model. However, we showed that coherence with known
buckling thresholds and the typology of deformation with a small number of folds in our case can
only be explained by considering that vanishing surface tension is not the key to understand non-
spherical deformations. Rather, an elastic contribution that includes an effective characteristic
lengthscale that would emerge from the transverse anisotropy of the shell is required to account
for the observed phenomena. The threefold typology of deformation is also observed in the
widely used and characterized Sonovue shells, which leads us to anticipate that our conclusions
would be valid for other types of lipid UCAs.

The existence of the intermediate lengthscale also implies larger buckling thresholds than
expected. This is similar to what was observed on millimetric armoured bubbles [72–74]. Pitois
et al. compared the threshold with what was expected from homogeneous material theory, with
elastic moduli measured independently on flat surfaces [72]. They found a buckling threshold
four to five times higher than the theoretical threshold. In [72,73], models are built to account
for the observed buckling threshold, which takes into account the possibility for particles to
rotate and do a kind of zigzag configuration, which allows to compress more the shells before
buckling. This may inspire further modelling for buckling of lipid shells which present somehow
a geometrically comparable configuration. It would be interesting to understand if these local
mechanisms could also explain the absence of hysteresis in pressure-shape diagram, which marks
a strong difference with usual buckling-unbuckling paths for usual elastic shells. A path towards
a thorough modelling of these lipidic shells through both elastic and surface tension contributions
may also have been opened by the recent work of Dash and Tamadapu, who introduced a
curvature-dependent surface tension to describe the spherical oscillations of UCAs, allowing for
an interesting analysis of existing experimental data for radial oscillations of UCAs.

Finally, how quasi-static and dynamic experiments will be described by the same framework
remains an open question. A hint may come from the study of Thomas et al., who observed
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an increase of the in-plane elasticity of lipid shells with the pressurization rate [75]. Viscous
phenomena must, in general, be taken into account [76,77]. A macroscopic experiment showed
recently that delay in buckling of visco-elastic shells is strongly related to the dynamics at the
level of the defect where buckling initially nucleated [66]. Delay in buckling may lead to apparent
perception of buckling threshold knock-up, by contrast with the usual knock-down observed in
the presence of defects [43,64,65,78,80].

In general, work is still needed to account for the buckling and/or rupture dynamics of lipid
shells, which have recently shown an intensified nonlinearity at high frequency and low excitation
pressure amplitudes [18]. In parallel, local speed of sound estimations in the buckled state have
revealed an effective ‘softening’ of the shells [81,82]. While surface tension models propose to
account for this softening by discarding the contribution of the shell (zero surface tension), a
model that includes an elastic contribution from the shell can also reproduce this fact [67]. Our
present work encourages to dig into this direction.
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