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Rheological Properties of Living Materials.
From Cells to Tissues
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In this paper, we review the role of the rheological properties at the cellular and macroscopic scale. At
the cellular scale, the different components of the cell are described, and comparisons with other similar
systems are made in order to state what kind of rheological properties and what constitutive equations
can be expected. This is based on expertise collected over many years, dealing with components such as
polymers, suspensions, colloids and gels. Various references are considered. Then we review the various
methods available in the literature, which can allow one to go from the microscopic to the macroscopic
properties of an ensemble of cells, in other words a tissue. One of the questions raised is: can we find
different properties at the macroscopic level than the ones that we start with at the cellular level? Finally,
we consider different biological materials which have been used and characterized, in order to classify
them. Constitutive laws are also proposed and criticized. The most difficult part of modeling is taking
into account the active part of cells, which are not just plain materials, but are living objects.
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INTRODUCTION

For many years, people have devoted their attention to the

study of animal tissues (Fung, 1993a), and important issues

have been raised. Finding constitutive relations for such

media is not simple, because tissues can behave as elastic,

plastic, viscoelastic or viscoplastic materials. One of the

most important conclusion is that relating the microstruc-

ture (Larson, 1999) with its macroscopic nature is a

fundamental problem which forms the basis of any

continuum mechanics problem. The relevant sciences

studying such aspects are rheology (Bird et al., 1987;

Macosko, 1994; Larson, 1999), biomechanics (Fung,

1993a) or biorheology (journal with the same name).

These three fields are actually very close to each other when

it comes to dealing with biomaterials, and defining their

minor differences here is not the purpose. One may say that

generally we are interested in finding relationships between

the applied forces and the relevant deformations or flows

involved in problems dealing with living materials.

Classical models (1D), which can be used and can depict

the cytoplasm of a cell, are usually viscoelastic or

viscoplastic ones. 3D-viscoelastic models can exhibit

differential forms, or integral formulations (sometimes

equivalent). Other models like viscoplastic ones can also be

interesting because they allow us to deal with systems with

cross-links, somehow close to gels; in particular, polymers

and networks play a role inside the cytoplasm. So, at a

certain level, we may consider that the size of the system

studied (Ls) is large enough Ls @ Le (where Le is the size of

an element at the microscopic level) so that the system can

behave in a macroscopic way and can obey a constitutive

equation. We are precisely discussing here the possibility to

go from a microrheological to a macrorheological

measurement. This will be an important part of the second

chapter, where we will review the different methods

available to investigate the local microrheology of a

biological system. Indeed, recent advances in this field now

allow a wide range of data to be obtained using

sophisticated techniques coming from physics. Of course,

before going deeper into this sort of analysis, a careful

definition of the different elements present inside the cell

will be needed. Comparisons with the different classical

systems studied in rheology (polymers, suspensions, gels,

etc.) will be made. We will also see that problems involving

interfaces between domains are also relevant here due to
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the presence of membranes, which play a particular

(if not major) role in the interactions between cells

through the presence of proteins. Such topics about

membranes are well discussed (Lipowsky and Sackmann,

1995) and can account for the diffusivity of proteins along

membranes as well as their stability.

In the third part, methods for going from the cell to the

tissue will be reviewed. The common methods from

mechanics, like homogenization (Sanchez-Palencia, 1980),

discrete homogenization (Caillerie et al., 2003), tensegrity

(Ingber et al., 1981), effective medium theories (Choy,

1999), and ensemble average theories (Batchelor, 1970) will

be discussed. All of these methods have been used in the

frame of standard materials (composites, porous media, etc.)

but, unfortunately, are seldom used in the field of biological

systems, although they would provide a better understanding

of the systems. The tensegrity method seems to be quite

suitable to cells, and has been the method studied most

extensively. It has the advantage of exhibiting simple

equivalents to the cell microstructure in terms of sticks and

elastic strings, looking very much like a network of actin

filaments and microtubules, with intermediate filaments

linked to each other.

Finally, tissues will be considered; in particular, the

viscoelastic (viscoplastic) relations, which have been

proposed in the literature, will be reviewed. The difficulty

in the determination of constitutive equations is that, to be

able to have access to the 3D law, one needs to perform

various simple tests, in particular, in shear and elongation,

which are not so simple on actual biological tissues. In some

cases, human tissues can be used, but sometimes it is not

possible to carry out experiments, and so there are few data

available. Nevertheless, an attempt will be made to classify

examples, which have been known for some time (Fung,

1993a), but recent data will also be presented.

The aim of the present work is not to cover this field in

an exhaustive manner, but rather to give access to data,

references, constitutive equations of living materials and

the interrelationship between microrheology and macro-

rheology for those who use biological systems.

RHEOLOGICAL MODELS

Rheology is defined as the science of flowing materials, or

what are the stresses that one needs to apply to achieve a

certain rate of deformation in a given material. This concept

relies on continuum mechanics theories, where references

are quite numerous (see, for example, Sedov, 1975; Fung,

1993b). After introducing these concepts, one has to treat

the case of the linear elastic solid and the viscous fluid. The

combination of these models leads to the concept of

viscoelasticity, and this is where we will start, considering

the Maxwell fluid in one dimension. Then we will show

how to construct more sophisticated models. The concept

of viscoplasticity, which is also seen to be very important

(Schmidt et al., 2000a), will also be described.

Simple One-dimensional Model

As a starting point, we introduce the concept of the one-

dimensional viscoelastic Maxwell element. Although it is

a simple example, it can be very useful to understand a lot

of the concepts, which will be presented next, and it will

also be used to introduce definitions. It consists of a spring

and a dashpot in series (Fig. 1).

The constitutive equation associated with such a model is

derived when considering strains encountered by the

different elements, the spring (rigidity G, strain 11, stress

s ¼ G 11) and the dashpot (viscosity h, strain 12, stress

s ¼ h _12). The sum of the strains in the two elements

1 ¼ 11 þ 12 is related to the total stresss. By differentiation

of the previous equation, we find the following constitutive

equation:

sþ l _s ¼ h _1 ð1Þ

where l ¼ h=G is the relaxation time. This expression is the

differential form of the model and defines already a first class

of models of this kind. On the contrary, integral models,

when they exist, can be quite useful. In the case of the

Maxwell model, by simple integration of Eq. (1), one can

derive the integral formulation giving the stress explicitly in

terms of the strain 1(t):

sðtÞ ¼

ðt

21

G expð2ðt 2 t 0ÞÞ _1ðt 0Þ dt 0: ð2Þ

The advantage of this form is that stresses are related to the

strain history. Indeed elasticity requires the material to

recover its initial shape or at least some shape close to it.

Therefore, the kernel function GðtÞ ¼ G expð2t=lÞ is the

relaxation function and measures how much memory is

retained by the material.† For recent past times, it remembers

a lot, whereas for old times, it does not recall much. This

function is also the solution of Eq. (1) with no right-hand side.

When 1̇ is a constant, the right-hand side is also a constant

and the solution is simply sðtÞ ¼ h _1ð1 2 expð2t=lÞÞ:

FIGURE 1 The Maxwell element.

†Note: we could also discuss the model where a spring and dashpot are in parallel (Kelvin–Voigt model, viscoelastic solid). In such a case, the 1D
equation simply becomes s ¼ G1þ h _1; which gives an explicit formula for the stress s. Conversely, the deformation 1(t) can then be calculated in
terms of s(t) similarly to Eq. (2). The kernel is called the compliance and is named J(t), to be compared with the relaxation function G(t).
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The steady state solution sp ¼ h _1 defines the viscosity as

h ¼ sp= _1 which is a constant in this case.

The function G(s) has been presented in this case where

only one relaxation time is given, but there might be cases

where more than one relaxation time is needed, as in the

case of the dynamics of polymeric materials (Larson,

1988; Macosko, 1994). The simplest way to generalize

this formulation is through the introduction of a sum of

exponentials:

GðtÞ ¼
Xn

i¼1

Gi expð2t=liÞ: ð3Þ

We will see now how these assumptions can help to obtain

accurate data, in particular when spectra are obtained over

decades in time or frequency. In particular, it can be

observed that time or frequency information is equivalent

or complementary. So far we only paid interest to time-

dependent behavior through relation (2). So let us now

look at frequency-dependent data.

Another typical experiment which one can easily

perform on common rheometers (Walters, 1975) is

dynamic testing. This principle is very important when

considering small deformation theory. Indeed,

when a material is sheared (but it might also be elongated)

by imposing a sinusoidal deformation g ¼ g0 sinðvtÞ;
such that g0 ! 1; we may assume that the resulting

stress t is also a sinusoidal function t ¼ t0 sinðvt þ dÞ ¼

t0 cosðdÞ sinðvtÞ þ t0 sinðdÞ cosðvtÞ: This gives rise to a

modulus G0 ¼ t0 cosðdÞ; in phase with the deformation,

and another part G00 ¼ t0 sinðdÞ in phase with the rate of

deformation. These two moduli are therefore called the

elastic modulus (G0) and the loss or viscous modulus (G00)

because the latter is related to viscous dissipation in the

sample tested. Quite often this information is very useful

because it enables one to see how much elasticity exists

compared to viscous losses. The angle d contains this

information through the ratio of the two moduli: tanðdÞ ¼

G00=G0: These expressions are often described in the

complex domain, and G* ¼ G0 þ iG00 is defined as the

complex modulus whereas h* ¼ h0 2 ih00 ¼ G00=v2

i G0=v is the complex viscosity. The complex viscosity

is related to the previous relaxation modulus G(t) and to

G*(v) through:

h* ðvÞ ¼ G* ðvÞ=iv ¼

ð1
0

GðtÞ expð2ivtÞ dt: ð4Þ

Let us go back to the Maxwell model, and see

the predictions using GðtÞ ¼ G expð2t=lÞ: This gives

the following relation for the complex modulus G*(v) and

dynamic G0, G00:

G* ðvÞ ¼ G
ilv

1 þ ilv
; G0ðvÞ ¼ G

l2v2

1 þ l2v2
;

G00ðvÞ ¼ G
lv

1 þ l2v2
:

ð5Þ

These behaviors are easily seen in Fig. 2 for the real

moduli G0 and G00:

In reality, most systems, such as polymeric ones or

suspensions do not behave like this, as previously

described, and exhibit multiple relaxation effects. A

discrete sum of relaxation modes can then be proposed, as

in Eq. (3), for which the corresponding formulation in

terms of G*(v) is, for n relaxation modes:

G* ðvÞ ¼
Xn

i¼1

Gi

iliv

1 þ iliv
: ð6Þ

In general, the typical curves found for polymeric

materials are as shown in Fig. 3. There are four regimes

to be analyzed as follows. The low-frequency regime

corresponds to typical slopes of 2 and 1 for G0 and G00,

respectively, which is the Newtonian (fluid-like) behavior.

As the frequency increases, the rubbery plateau is

observed corresponding to a plateau modulus ðG0
NÞ for

G0. Again we increase the frequency, and the two curves

are close to each other with similar slopes (typically 0.6),

which is a characteristic of the glass transition, until we

arrive at the solid-like state at very high frequencies. In

Fig. 3, we also show the behavior of a viscoplastic fluid,

but this feature could also be observed for viscoelastic

solids (cross-linked polymers for example). These

materials cannot flow even at very low shears, either

because strong links exist within the microstructure or

simply because weak links exist (i.e. physical gels) which

would mean breaking the system to make them flow.

FIGURE 2 Dynamic moduli (G0, G00) in the case of the Maxwell model.

FIGURE 3 Typical curves (G0, G00) for a complex fluid and a
viscoplastic material (different low frequency regime: dotted lines, solid-
like behavior).
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These ideas related to the microstructure will be discussed

later.

As a final sophistication of the model, it is easy to see

that the relaxation function proposed in Eq. (3) containing

elements (Gi,li) can be extended (Baumgaertel and

Winter, 1989) to a continuous function or so-called

continuous relaxation spectrum H(l) through the follow-

ing formula:

GðtÞ ¼

ð1
0

HðlÞ

l
expð2t=lÞ dl: ð7Þ

Examples of the use of such models have been treated in

particular in the case of molten polymers (Baumgaertel

and Winter, 1989; Jackson and Winter, 1996; Verdier

et al., 1998). With these models, it is possible to

investigate, as an inverse problem, the chain length

distribution of polymeric systems, and provide a valuable

tool for understanding the microstructure of the system.

Three-dimensional Models

Going from 1D to 3D Models

When formulating three-dimensional constitutive

equations, special attention needs to be paid to the

principle of frame indifference or objectivity principle:

operators or tensors need to satisfy rules so that

constitutive equations remain valid in any reference

frame. In particular, generalization of Eq. (1) could be

thought of by just replacing the quantities s and _1 by their

counterparts, i.e. the tensors s and D, where D is the

symmetric part of the velocity gradient tensor

grad v ¼ fv; and v is the velocity vector. This is not

possible because we are interested in frame-indifferent

constitutive equations. So the derivative of s needs more

attention. In fact this is all we need to look at to generalize

Eq. (1) because in fact s and D are already objective

tensors. One of the possibilities for an objective time

derivative of s is the so-called upper-convected

derivative, denoted by
7
s :

7
s ¼

›s

›t
þ v·7s2 ð7vÞT ·s2 s·7v ð8Þ

where fv has components ›vi/›xj in a usual Cartesian

coordinate system. Other derivatives such as the lower-

convected derivative and the corotational derivatives, or

combinations of these also exist but will not be discussed

here. Nevertheless they can be found in appropriate

textbooks (Bird et al., 1987; Larson, 1988; Macosko,

1994). Now we let s ¼ 2p I þ s0; which enables the

definition of an isotropic pressure term ( p). Usually, terms

involving isotropic components will be included in this

part, but we will concentrate only on the extra-stress term

s0, and we will now drop the primes for simplicity. In

shear motions, the interesting components will include

only shear terms and so p has no effect. In elongation,

the attention will be focused on stress differences, thus

eliminating the pressure term.

The final 3D constitutive equation for viscoelastic

medium now reads:

sþ l
7
s ¼ 2hD: ð9Þ

It is a frame-indifferent constitutive equation, which

globally retains the physical basis of the viscoelastic fluid,

i.e. at small times t ! l; the material behaves elastically,

and at the longer times t @ l; it behaves as a liquid and is

able to flow.

An equivalent integral formulation of Eq. (9)

exists (to within the addition of a pressure p), and is

given by:

s ¼

ðt

21

G=l expð2ðt 2 t0Þ=lÞBðt; t0Þ dt0 ð10Þ

where the modulus G and relaxation time l have been

defined previously, while the Finger tensor B(t, t0) is

introduced as a strain measurement from a previous

configuration x0 (at time t0) to a new position x ¼ x(x0, t, t0)

at time t. The relative deformation gradient is Fðt; t0Þ ¼

›x=›x0 and B ¼ F FT :

The General Elastic Solid

Formulation (10) is actually just a generalization of the

elasticity of a material (such as rubber) when large

deformations are involved. In particular, if we go back to

elasticity theory for a moment, we have precisely:

s ¼ 2p I þ G B ð11Þ

where G is the shear modulus, and p a general term which

is needed for generality.

This relationship works well for rubbers and is

generalized by adding extra powers of B, including the

invariants: s ¼ a0 I þ a1 B þ a2 B2 þ . . . These power

terms are reduced by making use of the Cayley–Hamilton

theorem, which leads to:

s ¼ b0 I þ b1 B þ b2 B21 ð12Þ

where the bi’s are functions of the first and second

invariants of B, IB ¼ tr ðBÞ and IIB ¼ 1=2{ðtr BÞ2 2

tr ðB2Þ}: This formulation is also known as the

Mooney–Rivlin form and is interesting for going beyond

the first viscoelastic relations such as Eq. (10). It can also

be generalized again in the context of strain-energy

functions. Again, another formulation for the investigation

of general elastic solids is:

s ¼ 2p I þ 2 ›W=›IB B 2 2 ›W=›IIB B21 ð13Þ

where W(IB, IIB) is the strain-energy function and has been

used extensively (Humphrey, 2003) for the study of

biological materials.
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The Generalized Newtonian Fluid

One can recall the relationship for an incompressible

Newtonian fluid, which is simply:

s ¼ 2p I þ 2hD: ð14Þ

Again, it has been shown that this relationship can give

rise to a more general form, which is still frame-invariant,

because of the objectivity of the tensor D:

s ¼ 2p I þ h1 2D þ h2ð2DÞ2: ð15Þ

This has been called the Reiner–Rivlin fluid. The

coefficient h1 is a viscosity and h2 is another coefficient,

both depending on the second (IID) and third (IIID)

invariants of D. This generalized fluid is very important

because it is the first law to be able to predict a non-zero

stress difference s22 2 s33; although the first stress

difference s11 2 s22 is zero in simple shear flows.

Finally, people usually assume that h2 ¼ 0; and the

dependence of h1 as a function of IID can be chosen so

that a good description of most polymeric systems and

suspensions is obtained in shear, as will be discussed

later. Typical behaviors observed are the shear-thinning

fluids (see Fig. 4 below), or in some cases shear

thickening effects such as those observed in suspensions.

Shear-thinning fluids are well described by power-law

models,

h1 ¼ mjIIDj
ðn21Þ=2

and h2 ¼ 0 ð16Þ

or by the Yasuda–Carreau model:

h12h1

h02h1

¼
1

1þ l
ffiffiffiffiffiffiffiffiffiffiffi
jII2Dj

p� �a� �h ið12nÞ=a
and h2¼0: ð17Þ

This model has a zero-shear viscosity h0, a limiting

viscosity h1 at high shear rates, a relaxation time l, a

power-law behavior in the intermediate regime, and

another adjustable parameter a. It is well adapted for

polymers and polymer solutions.

The Viscoplastic Fluid

After defining the Reiner–Rivlin fluid, it is simple to

introduce a relationship for the viscoplastic fluid. This

material can flow only when stresses are higher than a

certain threshold, called the Yield stress (sy). Below this

value, the material will behave in an elastic manner. The

proposed constitutive equation (known as Bingham

model) is as follows:

† jIIsj , s2
y s ¼ G B or D ¼ 0 ð18aÞ

† jIIsj . s2
y s ¼ hþ

syffiffiffiffiffiffiffiffiffiffiffi
jII2Dj

p
 !

2D: ð18bÞ

In this relation, IIs is the second invariant of the stress

tensor, where the isotropic pressure term is omitted. II2D is

also the second invariant of the tensor 2D. In a classical

simple shearing test, at constant strain rate _g; these

relations would simply give s12 , sy; s12 ¼ Gg (or

_g ¼ 0); and for s12 , sy; s12 ¼ sy þ h _g:
Finally, let us note that a few other models of this kind

exist (Macosko, 1994), for example, the widely used

Herschel–Bulkley model:

† jIIsj , s2
y s ¼ G B or D ¼ 0 ð19aÞ

† jIIsj . s2
y

s ¼ mjII2Dj
ðn21Þ=2

þ
syffiffiffiffiffiffiffiffiffiffiffi
jII2Dj

p
 !

2D:
ð19bÞ

In this formula, m is a constant with the proper unit, and

n is a dimensionless parameter related to the slope of the

shear stress vs. shear rate curve (Fig. 4).

More Complex Viscoelastic Laws

Let us now go back to more general forms of Eqs. (9) and

(10) representing viscoelastic materials. The integral form

of Eq. (10) can be extended to any memory function G(t),

as given for instance by Eq. (3) as a sum of exponentials.

The only conditions are that this function G(t) should be

finite for t ¼ 0; decreasing G0ðtÞ , 0 and convex G00ðtÞ .

0: The second extension is the use of a strain-energy

function. These two extensions give rise to the so-called

K-BKZ model (Larson, 1988), in its factorized version:

s ¼

ðt

21

2 Gðt 2 t0Þ

�
›U

›IB

Bðt; t0Þ2
›U

›IIB

B21ðt; t0Þ

� �
dt0 ð20Þ

where uðIB; IIBÞ ¼ Gðt 2 t0Þ UðIB; IIBÞ is the kernel

energy function. One may also use more general functions

instead of the derivatives of U in front of the tensors B and

B21 (see, for example, Bird et al., 1987). These relations

have been shown to be quite efficient for describing
FIGURE 4 Typical curves s12ð _gÞ for shear thinning fluids and
viscoplastic ones.
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the nonlinear properties of complex systems in particular

in elongation experiments (Wagner, 1990).

Finally, the extension of the constitutive equations of

the differential type (9) is also possible and provides a

good description of some complex fluids. The generalized

forms of Eq. (9) can be written as:

sþ fðs;DÞ þ l
7
sþ gðsÞ ¼ 2hD ð21Þ

where f(s, D) and g(s) are nonlinear functions, provided

in Macosko (1994), which correspond to various models,

in particular, the Johnson and Segalman (1977), White and

Metzner (1963), Giesekus (1966), Leonov (1976) and

Phan-Thien and Tanner (1977) models.

To conclude, we summarize the results by noticing that

the complexity of all these models is clear, but all the

parameters used can be found using separate experiments

(shear and elongation) and they finally provide a good

comparison with experimental data including complex

flows. The next part will now give examples of complex

materials and their related microstructure, and the laws

that describe them.

Anisotropic Materials

Most of the relations above have assumed that the systems

are isotropic, i.e. that the relationships do not depend on

the orientation of the sample tested. Nevertheless, many

materials (composites, suspensions of rod-like particles,

liquid crystals, tissues, etc.) can be anisotropic, even at

rest. We will not enter too much into this discussion

because there are adequate references in the literature

(Boehler, 1983; Smith, 1994). For example, in elasticity

theory, the stress–strain relationship which leads to

Eq. (11) in small deformations s ¼ G 1 (neglecting p, and

where 1 is the small deformation strain tensor) can be

generalized to the anisotropic case by letting G be a

fourth-order tensor. In such a case there is not only one

elastic (Young) modulus E, but most likely there should be

one in every direction, and similarly for the Poisson’s

coefficient n. For fluids, similar relationships can also be

provided, when the fluid has preferred directions (e.g.

liquid crystals), thus ruling out the previously mentioned

relations.

Some Typical Rheological Properties of Complex

Materials

There are a few complex systems, which are relevant to

the study of animal or human cell, which need to be

investigated further since we are interested in a complex

system made of polymers, suspensions, gels, micellar

systems. The microstructure of these systems is very

important for the elaboration of constitutive equations,

such as those described previously. Let us first review the

rheological properties of a few of these systems, as

summarized in Table I.

Polymers and Polymer Solutions

A few properties have already been proposed. Polymers

are viscoelastic or may become viscoplastic in some cases

(polymer gels). They are present inside the cell and are

named proteins. They play a fundamental role for many

cell functions and are crucial in cell–cell interactions.

Their main features are as follows:

. Zero shear viscosity is a function of the molecular

weight (length of the chains).

. Time-temperature superposition principle: curves at

different temperatures can be shifted and superposed

onto similar ones to cover larger decades in

frequencies.

. Shear thinning behaviors, Eqs. (16) and (17), with

exponents n ¼ 0:3–0:8 typically.

. (G0, G00) spectra can be best fitted using Eqs. (6) and (7)

like that in Fig. 3.

. Non-zero first normal stress difference ðN1 ¼ s11 2

s22 . 0Þ and negative second normal stress difference

ðN2 ¼ s22 2 s33 , 0Þ.

. Elongational properties are often predicted using

integral laws such as Eq. (20). A typical elongational

curve is shown in Fig. 5 below, where hþ
E ðtÞ ¼

ðs11 2 s22Þ= _1:

There are also other physical models which have been

used in the past, like the theory of reptation (de Gennes,

1979) or the tube model (Doi and Edwards, 1986), arising

from considerations based on local friction coefficients.

These theories have the advantage that they arise from

microscopic considerations. Their predictions are useful,

in particular, in dynamic testing.

The basic microstructure of a polymer network

consists of chains intermingled with each other

(entanglements) with a few weak reticulation points, as

well as loops or dangling ends (de Gennes, 1979). If one

wants to relate the microstructure of the polymer chains

under flow or deformation, it is quite difficult to do

since it involves very small scales (nanometers).

Therefore few techniques exist, but recently fluorescence

images using markers have been shown to be useful

tools for investigating the dynamics of polymeric chains,

for example, when stretching DNA molecules (Perkins

et al., 1995).

Elastomers are slightly different and may be considered

as viscoelastic solids, in particular, because they cannot

flow at very low rates (Fig. 3). Therefore, they can be

considered to be viscoplastic fluids and obey Eqs. (18) and

(19). This is mainly due to strong links (covalent

sometimes) associating polymer chains thus creating a

network which behaves elastically over a wide range of

rates. Their microstructure looks something like a regular

net, at very small scales again (nanometers). As the

frequency is increased, they undergo a glassy transition

where moduli G0 and G00 behave as v n, where n is an

exponent whose value is close to 0.6. This behavior has
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been observed in gel-like systems also (Winter and

Chambon, 1986) for cross-linking polymers close to the

gel point.

Polymer solutions are solutions containing polymers in

a solvent and do not exhibit entanglements in this regime.

They may be considered to have two components, one

being the solvent (which is viscous with constant viscosity

hs) and the other one being the polymer with viscoelastic

properties like in 3D Maxwell’s equation (9). The

resulting equation (Table I) is called the Olroyd-B fluid,

which has another characteristic time, called the

retardation time u. Sometimes, the intrinsic viscosity

½h 
 ¼ ðh2 hsÞ=hsc (as c ! 0) is used to separate

the effect of the viscosity of the polymer (volume

concentration c) as compared to that of the solvent. The

addition of a few percent of polymer to a solvent is

particularly interesting for example for changing the

breakup properties of jets, for reducing drag, for

increasing tackiness (Verdier and Piau, 2003), etc.

Suspensions

The field of suspensions is quite large, because it can

describe particulate suspensions, but can also lead to

fluid–fluid suspensions called emulsions, and all kinds of

systems including deformable objects in a fluid. For

example, blood is a mixture of white and red blood cells,

platelets and other constituents included in the plasma. We

will discuss binary fluids later. In the case of low

concentrated suspensions, that we will briefly describe

here (indeed the higher concentration case is dealt with in

the next section on particulate gels), the main character-

istics are:

. Zero-shear viscosity determined by Einstein (1906,

1911) and improved by Batchelor (1977) after

including the effect of Brownian motion in the case

of spherical particles: h ¼ hs ð1 þ 2:5fþ 6:2f2Þ

where hs is the solvent’s viscosity and f the volume

concentration of particles.

. Shear-thinning effect: viscosity decreasing with shear

rate, more pronounced as f increases. Sometimes

shear-thickening effect (viscosity increasing with

shear rate).

. Yield stress at higher particle concentration (see next

part on particulate gels).

. Non-vanishing normal stress differences.

. Effect of shapes and sizes of particles (aspect ratio p).

When particles are not spherical, p, the aspect ratio, is

defined to be the ratio of the length over width

perpendicular to the axis. p can be greater than 1

(prolate spheroids) or smaller than 1 (oblate spheroids).

One can show that the unit vector u parallel to the axis of

symmetry of the particle is the solution of Jeffery’s orbit

(Jeffery, 1922):

_u ¼ u·vþ lðu·D 2 uuu : DÞ ð22Þ

where l ¼ ð p2 2 1Þ=ð p2 þ 1Þ and D is the usual

symmetric part of the velocity gradient tensor.

This equation has solutions which give rise to the well-

known tumbling motion (encountered with red blood cells

for instance), i.e. the particle (except an infinitely long

ellipsoid) keeps rotating continuously in a shear flow with

given periodicity.

In general, after solving Eq. (22), one can then construct

a stress field, which contains averages of the directions u

over the whole space. The most complete expression is

given by Hinch and Leal (1972). Three contributions

are proposed, the one from the solvent ss ¼ 2hsD;
the one that accounts for Brownian motion

sb ¼ 3ð p2 2 1Þ=ð p2 þ 1Þn kBTkuul; and finally the one

computed from the contribution of the ellipsoidal particles

sv, also called viscous stress:

sv ¼ 2hsf{Akuuuul : D

þ Bðkuul·D þ D·kuulÞ þ C D}
ð23Þ

where A, B and C are constants depending on p, the

particle aspect ratio. The double dot sign means the

product of a fourth order tensor operating on a second

order tensor, and the brackets k l mean averaging over all

possible directions of u.

There are also studies concerned with the study of rigid

rods in a solvent, which show strong anisotropic effects.

Doi and Edwards (1986) studied the effect of such rods

using their model and proposed solving a Smoluchowski

equation for the probability of finding a rod with

orientation u, in the semi-dilute case. Finally they come

up with different constitutive equations which retain the

right feature for these suspensions.

Gels

There are different kinds of gels, and different classes of

gel materials. These systems are interesting, as we will

FIGURE 5 Elongational viscosity as a function of time ð _1 ¼ constantÞ:
The two curves at the lowest _1 show a plateau, therefore the steady state
exits. In the other cases ( _1 . 1=2l), there is strain hardening, i.e. the
viscosity increases exponentially.
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see, because the cell cytoplasm may be regarded as a gel.

Among gels, one finds polymer gels and particulate gels

(Larson, 1999). A gel is a system, which is such that there

are links between the micro-domains, which are present

throughout the sample. These links may be weak or strong,

depending on the kind of interactions involved. One may

call gels physical or chemical gels. In a physical gel, the

microstructure can be changed or released and the system

can flow above some critical stress (Yield stress); then it

can reform physical links when at rest. In a chemical gel,

bonds are stronger, and they need to be broken so that the

system can flow. The difference is that they will not form

again afterwards.

Polymer Gels

These are made of polymers included in a solvent,

which can be added and account for gel swelling. These

polymers form bonds or links between them. As the

concentration of bonds ( p) is increased, it reaches a

critical one ( pc), which corresponds to percolation. After

this concentration has been reached, the gel will behave

more like an elastic material, as illustrated in Eqs. (18) and

(19). When studying dynamic properties of such gels

(Winter and Chambon, 1986), it was found that, near the

critical transition ð p < pcÞ; special properties with special

exponents are obtained. If one defines a shear elastic

modulus it can be shown to vary as G < G0 ð p 2 pcÞ
t: The

dynamic moduli G0 and G00 behave roughly in the same

way with a typical exponent n, so that G0 < Avn; where n

is close to 0.6 (Winter and Chambon, 1986; Schmidt et al.,

2000a). Depending on the type of polymers used

(polydimethylsiloxane, polybutadiene, telechelic poly-

mers, etc.), gels can undergo phase transitions, governed

by the changes in the microstructure of the systems. In

some cases, they might even give rise to some shear

thickening. But in general, the Yield stress is a typical

important parameter and it can be related to the

self-similar structure or fractal of the system, i.e. some

typical power of the concentration p (de Gennes, 1979;

Guenet, 1992).

Particulate Gels

These gels are formed when the concentration in a

suspension of particles becomes large. At the level of

concentrations used, the particles interacting with each

other tend to form spatial structures; these structures are

responsible for the formation of a network, associated with

a Yield stress. Figure 6 displays the flow curves of a

typical suspension of poly(styrene-ethylacrylate) particles

in water at different concentrations (Laun, 1984). As the

concentration is increased, the system shows evidence of

a Yield stress (where t ¼ s12 is the shear stress) because

the shear stress goes towards a limit sy in a log–log scale

plot. Also, one can notice the shear thickening at the

higher shear rates or shear stresses. The Yield stress is an

increasing function of the concentration (Pignon et al.,

1997), because the higher the concentration, the more

closely packed the particles, and therefore the harder it is

to shear the suspension (see respective positions of sy1 and

sy2 as a function of the concentration f). Equations for

describing such systems are more sophisticated than

Eq. (15). They include a yield stress condition, as in

Eqs. (18) and (19). When dealing with models related to

suspensions, special attention is needed regarding

the particle–particle interacting potential, which forms

the basis of the interactions, models, and relevant

microstructures obtained. Dynamic measurements have

also revealed plateaux for the G0 and G00 moduli at the low

frequencies, because in such cases, the system does

not flow, as was shown in Fig. 3. This means that these

suspensions behave as viscoplastic materials.

Binary Systems

Binary systems vary and can range from a fluid–fluid

system to more concentrated ones where phases can

coexist in a complex manner or architecture. Their

names are emulsions, foams, blends, self-assembling

fluids, etc. There are various theories which cannot all be

listed here but can be referred to when dealing with such

systems:

. small concentrations: laws for semi-dilute suspensions

can apply;

. semi-dilute: Oldroyd model for Newtonian emulsions

(Oldroyd, 1953, 1955), model for viscoelastic emul-

sions (Palierne, 1990);

. nonlinear transient behavior of concentrated polymer

emulsions (Doi and Ohta, 1991).

In the case of two-phase fluid systems, the phenomena

governing the dynamics of the system are coalescence

(Verdier, 2001) and breakup (Grace, 1982) of droplets,

which govern the rheology of the mixture. As the

concentration is increased, the microstructure becomes

more interesting and can go from droplets to cylinders or

even to sheets (see for example polymer–polymer systems

including copolymers). But the most interesting case is the

one where one phase is present in small amounts but

manages to form smart structures with poles and rods, as

in the case of some polymeric systems or dry foams

(Weaire and Hutzler, 1999). Such systems can flow but
FIGURE 6 Viscosity (Pa.s) vs. shear stress t (Pa) for a suspension of
volume concentration f, redrawn from Laun (1984).
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also exhibit yield stresses. They can be considered

to exhibit a cellular architecture, from a geometrical and

mechanical point of view.

Finally another important case is that concerning

micellar solutions where hydrophilic and hydrophobic

components are present. Such systems lead to segregation

of the hydrophilic parts on one side, and the hydrophobic

on the other. The structures, which are formed, are very

important; they include spherical micelles, cylinders,

bilayers (membranes), planar bilayers and finally inverted

micelles (Israelachvili, 1992). These systems can be

investigated using theories based on chemical potentials,

i.e. free energies (Safran, 1994; Lipowsky and Sackmann,

1995). In fact, these theories are also valid in general for

the study of two-phase systems. Micellar solutions such as

surfactants are important in everyday life. However,

bilayers such as membranes are the major constituent of

vesicles and cells (phospholipid membranes) and have

been studied extensively. Their rheological properties are

not so well known.

RHEOLOGY OF THE CELL

In order to understand how the rheological properties can

be associated with the elements contained within the cell,

we first describe what a cell is, what it is made of, and how

the different elements can be compared to the materials

previously described.

Biological Description of the Cell

Let us start first with a sketch of the components inside a

cell. Figure 7 shows a typical eucaryote cell; such a

picture can be found in the literature (Alberts et al., 1994;

Humphrey, 2003) and therefore we refer to these

more accurate books on cell biochemistry for a precise

definition or more complete understanding of such

systems.

We will now discuss the different elements contained

inside the cell, as well as the membrane, the extra-cellular

matrix (ECM), to see what kind of model, if any exists, can

best describe an individual cell.

Cell Cytoplasm—Nucleus

The cytoplasm is a very complex system involving various

objects present on different scales. The nucleus contains

the genetic information and is composed of long DNA

chains. These form two helicoidal chains wrapped around

each other and can be very long. The nucleus is rather

dense and behaves in an elastic manner. It is depicted as an

ellipsoid in Fig. 7. An important biochemical aspect is the

transduction of signals, which come from the membrane

or other parts of the cell and arrive at the nucleus. This

information is then recognized, and the machinery can

start. The DNA is duplicated into RNA and then new kinds

of polymers (i.e. proteins) are synthesized which will stay

inside the cytoplasm or migrate to the surface of the cell,

i.e. the membrane.

From the nucleus starts a network of filaments

(cytoskeleton) which continues towards the membrane.

Several types of filaments can coexist: microtubules, actin

filaments, and intermediate filaments (Alberts et al.,

1994). All these filaments are quite important and give the

cell a rigid structure, even at equilibrium. This structure

exhibits pre-stresses and will change its internal

organization as the cell moves. During cell migration,

for example, it is well known that the actin complex (in

association with myosin) reorganizes itself to form

a more rigid pattern of closely aligned actin filaments

(20 nm) at the front of the cell. Then the cell can pull onto

cell adhesion molecules (integrins for example), which are

anchored to the cytoskeleton on one side and to the ECM

on the other side (exterior of the cell membrane). In the

middle of the cell (region of the cytoplasm located

between the nucleus and the membrane), loose bundles of

actin filaments, and regions similar to gels, have been

observed. Therefore, the actin filaments are located in the

various parts of the cytoplasm; they have a constant

concentration and are more concentrated close to the

membranes, where they form the cortical structure

FIGURE 7 Sketch of a eucaryote cell.
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(see Fig. 7). They need to reorganize fast enough when

cell migration is initiated. Their organization has been

studied and seems to be well understood now, thanks to

the new fluorescence techniques available nowadays. In

the case of microtubules and intermediate filaments, the

organization is far more mysterious and has not been

studied so intensively. Basically, microtubules form long

poles, which can be attached close to the nucleus and also

at the membrane. All these filaments are quite important

and form the basic idea of tensegrity models (Ingber and

Jamieson, 1982; Ingber, 1993) which will be described in

the next part.

The cytoplasm also contains other biological structures,

in particular, mitochondria (energy exchange), vesicles

(transport of proteins), and other large structures

(endoplasmic reticulum, ribosomes and the Golgi

apparatus) which can be deformable entities. These

entities do not have a very active role in terms of cell

deformation, but they do have a very fundamental

biological action during the cell cycle.

To summarize, we may say, if we ignore the small

scales involved due to the presence of small components,

that the cytoplasm basically resembles a gel filled with

more or less rigid particles (micron size). Its rheology

should be associated with the general gel properties

described before.

The Cell Membrane

The cell membrane plays a fundamental role in the cell

life. Let us summarize its main functions. It needs to allow

or prevent diffusion (water, solutions and ions). Also it is a

very flexible structure ( ¼ lipid bilayer, typical thickness

10 nm) with a defined curvature, allowing for cell

deformations, such as:

. formation of protrusions during migration (Condeelis,

1993);

. cell transmigration (diapedesis, metastasis) (Chotard-

Ghodsnia et al., 2003);

. cell division (He and Dembo, 1997).

In all these situations, the cell and the membrane need

to be highly elastic, deformable objects but also are in

close association with the cytoskeleton (in particular the

underlying actin network), so it is hard to define what is

the actual responsibility of each one. Basically, a lipid

bilayer has been shown to exhibit an elastic free energy of

the form (Helfrich, 1973; Safran, 1994):

f ¼ 2kðc 2 c0Þ
2 þ k0cg ð24Þ

where k and k0 are two constants related to the elasticity of

the membrane, and c and cg are the main curvatures, that is

to say the mean curvature c ¼ 1=2ðR21
1 þ R21

2 Þ and the

Gaussian curvature cg ¼ ðR1R2Þ
21: In particular, the

constant k is equal to Eh3=12=ð1 2 n2Þ (Landau and

Lifshitz, 1959), where h is the membrane thickness,

E the Young modulus and n the Poisson ratio. With this in

mind, it is possible, in a given situation, to determine the

shape of a membrane in equilibrium (or during motion). It

is also possible to determine changes in the effective

elasticity moduli when one introduces proteins at a certain

concentration (Divet et al., 2002).

Therefore, membranes are considered to be elastic

(Landau and Lifshitz, 1959), but at higher levels of

stresses, they will behave as nonlinear elastic sheets. Other

models have been proposed (Skalak, 1973; Skalak et al.,

1973; Evans and Skalak, 1980) using strain energy

functions such as those in Eq. (13), but where the

moduli and stresses are two-dimensional, like line

tensions (N/m). These models work relatively well for

describing the nonlinear properties of a red blood cell

(Skalak, 1973).

The other main function of the membrane is to regulate

the interactions of the cell with its environment, that is the

neighboring cells and the ECM (see Fig. 7). This role is of

major importance when a cell starts its motion and needs

to show the correct affinity with the ECM (Palecek et al.,

1997), in other words, not too strong and not too small.

Also cell–cell interactions are essential for maintaining

the correct adhesiveness between cells so that tissue

integrity is preserved. Through all these interactions, the

connection between the binding proteins (called CAMs,

Cell Adhesion Molecules) with the ECM or the cell

cytoskeleton (actin network) is sometimes needed, as

depicted in Fig. 7. Some CAMs are indeed transmem-

brane proteins and can attach the cytoskeleton in a rigid

manner. On the other end, they form, like the integrins, a

“binding pocket” into which other molecules or ECM

constituents (collagen, elastin, polysaccharides, laminin,

fibronectin, etc.) can fit and bind efficiently.

Finally, cells sense their environment by precisely using

adhesion molecules or other small molecules (Leyrat et al.,

2003) to determine in what direction they want to go.

Then such molecules are able to generate signaling

cascades, which end at the nucleus, and to the possible

creation of new CAMs, or to other events. This can give

rise to reinforcement of the attachment of the cell with

another one (or with the ECM, see below), or conversely

to the breaking of bonds, thus allowing migration.

The Extra-Cellular Matrix (ECM)

Extra-cellular components are generally needed for the

connection between cells. The main ones are collagen,

elastin, polysaccharides, fibronectin, laminin, etc. They

are generally made of polymer chains or long filaments,

which are interconnected with each other and have

structures close to gels. Enzymes can degrade these gels

when cells are migrating and produce such entities to

degrade this filamentous structure. There is a possibility

nowadays to construct model tissues using collagen gels,

where real cells are embedded.

The components of the ECM are important

because they form the basis of the ground where cells
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adhere and through which they migrate. When a cell is

simply put onto a glass plate, if there is no adherence or

ECM components, then the cell will make them on its

own. For example, a human umbilical vascular endothelial

cell (HUVEC), which is a cell constituting the vascular

walls in a vessel, is able to make its own fibronectin, which

is useful for it to adhere firmly onto glass. Fibronectin is

indeed a ligand of the integrins (ab structure) which can

form binding pockets (Alberts et al., 1994), such as that

depicted in Fig. 7. The two branches of the integrin (a and

b) can change their conformation to allow a specific

ligand to enter and adhere through the presence of

multiple weak interactions. This mechanism is also

possible in the case of the adhesion of integrins with

other adhesion molecules (heterophilic bonds), such as the

immunoglobulin family. Due to the gel structure of

the ECM, the cell can pull strongly on these bonds

(e.g. integrin-fibronectin) and is able to migrate.

The Cellular Object

Finally, to summarize the description of a cell, we may

possibly depict it as a “bag” containing a complex fluid.

This complex fluid may be modeled as a viscoplastic

material, as long as we can ignore the nucleus. Indeed,

measurements of F-actin solutions, for example

(Schmidt et al., 2000a), have revealed that the low

frequency behavior of the dynamic moduli G0 and G00 is

as shown in Fig. 3, in other words close to a plateau.

This has also been observed on human airway smooth

muscle (HASM) cells (Fabry et al., 2001), where the

moduli dependence is similar. Such examples will

follow in the next part. In general, it is also necessary,

when possible, to include a rigid elastic nucleus, as in

the modeling of leukocytes during flow (Tran-Son-Tay

et al., 1998) or even better, to add a viscoelastic nucleus

(Verdier et al., 2003). With the latter method, it is

possible to follow the cell deformation when a cell is

adhering and then is spreading onto a surface.

A cell is then depicted as a complex object (viscoplastic

fluid) containing a viscoelastic nucleus, the whole

composite medium being surrounded by a membrane.

Of course, this description does not take into account any

biochemistry or signaling. Indeed, one would need to add

a “live” parameter (or more) which could monitor changes

in the organization of the fluid’s elements. Such a

description is rare, but one can refer to Dembo’s work (He

and Dembo, 1997), which predicted cell division, using a

non-constant (or non homogeneous) viscosity: this

viscosity is defined as a function of the actin

concentration. The actin concentration rules the viscosity

similarly to a sol–gel transition and allows for a time- and

space dependent-viscosity through the evolution equation

of this parameter. Such models are often found in the

literature when dealing with thixotropic systems, which

are materials with the ability to change their structure

when applying different stresses or forces, like in flow

situations, for example.

In any case, this is just an attempt to describe best how

the cell could be modeled, because it is such a complex

object that there is no ideal law to describe it.

Microrheology at the Cell Level

Let us try to describe now how experiments can be carried

out at the cell level. We will call this subject

microrheology, because it is the name given nowadays,

by contrast with the conventional rheometrical techniques

developed in the past. In fact, the best name to be used

should be microrheometry. During the past decade, recent

advances have been made thanks to the efforts achieved by

biophysicists and due to the combination of techniques

coming both from physics and biology. The first important

idea to be developed is what do we want to measure, and

what can we really measure at the cell level?

Length Scales

Most of the techniques used nowadays are interested in

testing the cell on a small scale, say the subcellular level.

In theory, this sounds like a nice idea, but in practice it is

sometimes not possible. Classical continuum mechanics

theory (Sedov, 1975; Fung, 1993b) claims that, for

measuring a certain macroscopic parameter, the size of the

sample considered for the test should be much larger than

the size of a typical subunit in the system (Batchelor,

1967), say fifty times larger. Referring to Fig. 7, we can

foresee that parts of the cellular cytoplasm may be tested

as a whole, but that some parts might not, because the

present are the objects too large. This of course depends on

the size of the probe used. We will see in the next part

that probes are usually microspheres, microneedles,

micronic objects. Considering this aspect, we may

conclude that probing the nucleus with a micron-size

sphere is something possible in terms of size, as well as

regions of the cytoplasm containing networks of actin

solutions, and also the membrane. One must remember

that in the latter case, the membrane can be tested but its

response will be significant in terms of what is also lying

underneath, including the cytoplasm. A nice piece of work

is the one by the group of Sackmann (Schmidt et al.,

2000a), where both microrheological properties (using

magnetic tweezers) and macrorheological ones are carried

out. They found that microrheology underestimates the G0

and G00 moduli measurements, in the case of F-actin

solutions representing the cytoskeleton. In a second paper

(Schmidt et al., 2000b), the same group showed that by

using the same techniques, they were able to obtain

some agreement between micro and macro data. This is

because the probe (4.5mm) is large compared to

the subunits studied, unlike in the previous case

(Schmidt et al., 2000a).

The last problem to test the cell is still to find a way to

insert a probe into the cell. Indeed the cell will always

attempt to engulf the object or probe. In active

microrheology methods, this needs to be achieved first.
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Other methods, based on the direct observation of the

Brownian motion of an object (vesicle for instance) sound

more promising. Finally methods attempting to investigate

the cell membrane may be simpler, because the probe does

not need to be inserted; indeed the probe needs to be

attached to the cell membrane, which is more common.

But in such cases, one measures the response of the

membrane and the underlying cytoskeleton (actin here), so

the interpretation is more intricate. Let us now review the

different possible ways to determine the microrheological

properties of an individual cell.

Physical Methods to Investigate Cell Microrheology

The methods proposed here are not exhaustive, but we

present those which have led to significant advances in

the field of microrheology. Note that these techniques

are all based on theories, which use various assumptions

that will also be explained. Assumptions rely on a

cell model, but are also based on a certain way to analyze

the data.

Micropipettes

Micropipettes have been developed both theoretically

(Yeung and Evans, 1989) and experimentally (Evans,

1973; Evans and Yeung, 1989). The basic idea is to draw

cells (blood granulocytes in their case) into a small-

calibrated micropipette (diameter around 2–8mm) at

different suction pressures (0.1–105 Pa), corresponding

to a wide range of forces (10 pN–10mN). Cell areas can

be extended to twice their initial value. The model

(Yeung and Evans, 1989) assumes that the cell is made

of a cortical layer surrounding a viscous fluid, and

calculates numerically the flow induced by a constant

pressure onto the model cell. Therefore, the apparent

viscosity and the cortical tension may be deduced.

Typical values of the suction pressures are 102 to

104 dyn/cm2. The associated viscosities range between

103 and 104 P, depending on the temperature. Finally,

cortical tensions are around 0.03 dyn/cm, and do not

affect the results so much. The results depend on the

pipette-to-cell-size ratio and on the ratio of viscous

effects divided by cortical stresses. Other interpretations

of such experiments can also provide access to shear

rigidity moduli (Evans, 1973), around 6mN/m.

This method has been modified to determine adhesion

energies (Hochmuth and Marcus, 2002) between the lipid

bilayer and the underlying skeleton in the case of

neutrophils and RBCs, and they also measure effective

viscosities. In a review paper (Hochmuth, 2000), it is

shown that the viscosity of neutrophils is in the range of

100 Pa s, and their cortical tension is about 30 pN/mm,

whereas chondrocytes and endothelial cells behave as

viscoelastic solids with an elastic modulus around 500 Pa.

Also the method can be used as a force-measuring system,

using RBCs as springs, combining the use of two

micropipettes, and has been adapted for the measurements

of interaction forces.

AFM

The AFM apparatus is based on the scanning tunneling

microscope and has been improved to become what it is

nowadays (Binnig et al., 1986). It is based on the following

principle: a cantilever with a sharp edge is brought into

close contact with a surface or object, and forces can be

exerted onto it. The cantilever deflection provides access to

the force (10 pN–100 nN) by use of a laser falling onto the

cantilever. The angle change is related to the deflection and,

therefore, to the force, once the system is calibrated. Micro

or nanodisplacements are usually possible through the use

of piezotransducers, which allow very good position

accuracy. Usually the sample is lowered to come into

contact with (or close to) the cantilever. AFMs are

particularly well adapted for measuring adhesion forces

and microrheological properties of soft biological

objects, like cells. Different techniques can be used to

measure forces, (a) contact mode, (b) non-contact mode,

and (c) tapping mode. The latter two are interesting because

they allow samples to be tested without contact. The

contact mode is also interesting because it allows cell to be

indented or stretched (Canetta et al., 2003). Force dynamic

spectroscopy (FDS) is made possible and allows

measurement of time-dependent forces, in the case of

adhesion forces (Canetta, 2004). Different cone tips can be

used with different angles and shapes; usually the size of

the radius of curvature is about 20 nm.

The first application of AFM for cellular systems has

been to establish elastic mappings of living cells. Using

Hertz elastic theory (Hertz, 1896) of indentation, and a

scanning probe AFM, it was possible to draw elastic

mappings of canine kidney cells (A-Hassan et al., 1998).

This method has been improved recently (Canetta et al.,

2003) to determine both the local elastic modulus (E) and

adhesion energy (g) of Chinese Hamster Ovary cells

(CHO), using the JKR test (Johnson et al., 1971). The

latter uses the following relation:

a3 ¼
R

K
F þ 3pRgþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6pRgF þ ð3pRgÞ2

q� �
ð25Þ

where a is the cell-microsphere contact radius,

R ¼ R1R2=ðR1 þ R2Þ; with R1 being the cell radius of

curvature, and R2 the radius of the bead (typically 15mm),

F is the applied force and K ¼ 16E=9 for incompressible

systems. A typical indentation test is shown in Fig. 8a, with

a view from the side. Typical values for the moduli are

0.2–0.8 kPa and adhesion energies 0.4–4.1025 dyn/cm,

depending on the proteins present on the cell and bead.

Further tests have been carried out in which a cell is

stretched (Fig. 8b), thus enabling the nonlinear time-

dependent response of a cell (with adhesion peaks

superposed) to be determined, and this can be predicted

using Eqs. (11–13), for example. These experiments have

also been carried out by other authors (Wojcikiewicz et al.,

2003) using leukocytes, who show that the adhesion

interactions can also affect the mechanical properties, as

also shown by our group (Canetta, 2004).
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Another interesting experiment based on a generalized

Hertz model (Mahaffy et al., 2000) gives frequency-

dependent moduli of polymer gels and biological cells.

This demonstrates that cells have a behavior close to gels

and exhibit plateau moduli, which are almost frequency-

independent.

Microplates

We now describe a recent technique (Thoumine and Ott,

1997) derived from the study of the AFM, except that the

cantilever is a microplate, which is set perpendicular to

the microscope. In this set-up, one can visualize (from the

side) a cell which is located in between two microplates,

one of them being the cantilever, or force transducer. The

cell can be compressed or pulled. It is the deflection,

which gives access to the force, after calibrating.

Interesting videos from the side exhibit the cell as time

moves on. Typical forces are in the nN range (around

1028 N usually according to Thoumine and Ott (1997)).

Nonlinear deformation of the cell is obtained (strain

of about 2) until the cell is detached from the plates.

1D-viscoelastic constitutive equations have been used to

predict the cell deformation, but actually a nonlinear

model such as those for nonlinear elastic materials would

be more convenient.

A similar approach (Caille et al., 2002) has been used in

the case of endothelial cells. Particular attention is paid to

the role of the nucleus during deformation. The nucleus

and the cytoplasm have been described as hyperelastic

materials, Eq. (12), and compression tests were carried

out. Simulations give access to the elastic moduli of the

cytoplasm (500 Pa) and of the nucleus (5000 Pa) and

constitute an interesting way to have access to such

properties.

Optical Tweezers

Optical tweezers have been discovered about fifteen

years ago (Ashkin and Dziedzic, 1989; Sheetz, 1998), and

they use the principle of the power of a laser source

(around 300 mW) focused into the objective of a

microscope so that a particle or cell submitted to the

light intensity becomes trapped. Once the particle moves

out of the trap, a restoring known force can be measured

(in the pN range, say from 0 to 200 pN) after calibration.

Such systems are now quite common and have been used

for applying forces to cells while measuring their

deformation. The technique can be improved when adding

systems capable of moving the laser beam fast, such as

acousto-optic modulators (Helfer et al., 2001). With this

technique, it is possible to catch several objects (beads

or cells) one after the other, or to move two beads inside a

cell quite rapidly. Such beads (micron size) need to be

inserted using well-adapted protocols. As an example,

small controlled forces can be applied to erythrocytes

(RBCs, Hénon et al., 1999) to measure their

membrane elastic modulus, which is about 2.5mN/m.

This is slightly smaller than that calculated in micropipette

experiments (Evans, 1973), i.e. around 6mN/m. These

discrepancies will be discussed in the final part of this

section.

More recently, optical tweezers have been combined

with Particle Tracking experiments (Helfer et al., 2001) to

lead to the analysis of the back-scattered field by the

trapped bead. This intensity can be used to gain access to

the complex dynamic modulus of the system, and has been

used with polymer solutions (F-actin biopolymer solu-

tions, polyacrylamide gels) within which beads are

embedded (Gittes et al., 1997). This made it possible to

analyze the properties of actin-coated membranes after

attaching beads to them. The presence of the actin network

seems to modify the membrane dynamics as expected.

A 2D-membrane shear modulus (around 5mN/m) has also

been reported, and a viscoelastic character is finally found

for the membrane. Finally, a recent book on the subject

(Sheetz, 1998) is now available and contains more

detailed information about optical (or laser) tweezers.

Magnetic Tweezers

This microrheology technique implies imbedding

magnetic particles inside a sample to be tested and

applying a magnetic field. These beads can also be located

on the cell surface, if one wants to investigate the coupled

properties of the membrane with the underlying

cytoskeleton. Using videomicroscopy, one can determine

the position and motion of the particles. The resulting

displacements provide access to the microrheological

response of the surrounding medium. In fact, the

torque is measured through the applied magnetic field,

FIGURE 8 (a) Indentation of a CHO cell, seen from the side (with reflection), R2 ¼ 15mm: (b) Stretching test with tether formation (CHO cell),
v ¼ 1mm=s (Canetta, 2004).
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and the displacement gives the angle, associated with

shear deformation. The magnetic fields required are not so

large, because particles are rather small (typically 1mm),

even though a large number of them can be required.

Such a technique has been proved to be efficient for

measuring the properties of actin networks (Schmidt et al.,

1996; 2000a) and filamentous bacteriophage fg (Schmidt

et al., 2000b), but also in real cells such as macrophages

(Bausch et al., 1999), using creep data. This allowed the

authors to determine the viscosities and elastic moduli, as

modeled by a Kelvin model. The moduli are about 350 Pa

whereas the viscosity of the cytoplasm is 210 Pa s. These

values are somewhat different from those from the

literature. Another study (Fabry et al., 2001) using larger

beads (4.5mm) shows that there is a scaling law, which

governs the elasticity and viscosity coefficients. This

means that soft biological systems can behave like glassy

materials, close to the glass transition (Sollich et al., 1997;

Sollich, 1998).

Particle Tracking Microrheology

So far the methods described were all active techniques.

We will now describe another technique, which is

a passive one, since it allows one to the motion of a

particle or micronic system due to Brownian motion only,

without applying any force or displacement. This

technique leads to the measurements of the dynamic

moduli in the range of a few hundred Pa. The time-

dependent position correlation function or mean square

distance (MSD) is:

Dx2ðtÞ
� �

¼ jxðt þ tÞ2 xðtÞj
2

D E
t

ð26Þ

where the brackets mean averaging over all times t, and x

is the position of the center of mass. In the case of simple

diffusion in a liquid, we have kDx2ðtÞl ¼ 2dDt (d is

dimensionality), and the diffusion constant D is related to

the viscosity by D ¼ kBT=6pha (Stokes – Einstein

equation), where a is the particle radius. In the case of

viscoelastic materials, the formula can be generalized

(Mason and Weitz, 1995; Gittes et al., 1997; Mason et al.,

1997; Schnurr et al., 1997):

~r 2ðsÞ ¼
kBT

pas ~GðsÞ
ð27Þ

where s is the Laplace frequency, and tildes denote the

Laplace transform (of the MSD or relaxation function).

The information on both elasticity and viscosity is,

therefore, contained in Eq. (27) and allows for the

measurements of the microrheological properties, after

transforming G(s) into the Fourier domain, to obtain G0

and G00. The only techniques required are to insert the bead

into the system, and to visualize the bead movements. This

is done usually using the light scattered by the particle.

Two methods are commonly used, diffusing wave

spectrometry (DWS) (Pine et al., 1988), which allows

higher frequencies, or quasi-elastic light scattering

(QELS) (Berne and Pecora, 1976), to be measured.

In the end, the frequency range covered is usually 10 Hz–

100 kHz (Dasgupta et al., 2002).

Measurements on uncross-linked flexible polymers

(polyethylene oxide solutions) show that all methods

(DWS, QELS and even conventional rheometry) agree

(Dasgupta et al., 2002). The F-actin solutions have also

been investigated (Gittes et al., 1997; McGrath et al.,

2000; Tseng and Wirtz, 2001) but also living cells

(Yamada et al., 2000).

Finally, we mention a new technique based on two-

point microrheology (Crocker et al., 2000), which has

been developed because a particle may damage its

surrounding medium, so if one wants to determine bulk

properties, the use of two particles is better. By measuring

the cross-correlated motion of two tracer particles

(distance 10–100mm), the local effects can be eliminated.

Note that this technique will be difficult to apply to cells,

since typical rheological properties might change within a

few microns.

DISCUSSION

All the methods presented here are very attractive but one

needs to be cautious. Most have been tested first using

model polymer solutions or polymer gels. It might become

difficult to look at a cellular system. Indeed the size of the

elements is such that changes can occur very locally.

Another related problem is the insertion of beads (since

beads are used quite often) or other micronic objects

inside the cell. This operation is difficult because the cell

will encapsulate beads by forming a new lipid bilayer

(phagocytosis). Then we are not sure what properties are

actually measured. There is still some work to do

regarding cells.

The discrepancies between measurements of the same

parameters by different methods, operators, conditions or

cells are of course a natural consequence. Indeed the

rigidity of a fibroblast membrane will never be a universal

parameter! To this we need to add the different

assumptions made when interpreting the data, using

models. Finally a single cell is always unique, and it is

ruled by its own life cycle, which changes its properties

sometimes drastically.

Finally, we may observe that the frequency dependence

of the dynamic moduli G0 and G00—as measured using

particle tracking microrheology—is interesting, but is far

from being satisfactory to conclude on a 3D model.

Indeed, separate experiments are needed to provide access

to all the parameters in the different models presented in

the first part of this work. This is frequently done in

conventional rheology. The techniques for measuring

large deformations are of particular interest, but remain

unexplored, except in a few cases. Finally, some

experimental models already use a certain constitutive

law, which is in fact to be determined. Actually, we are

more interested in solving an inverse problem rather than
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finding a few simple parameters corresponding to a simple

1D-model. Therefore, the use of combined techniques to

measure different parameters (shear, elongation) under

different combined situations (transients, steady state) is

really the best way to determine the correct constitutive

equation, if it exists.

FROM THE CELL TO THE TISSUE

Are Tissues just a Macroscopic Generalization of the

Cell Microscopic Properties?

The previous part gave some hints about how to determine

microscopic properties, such as dynamic moduli, adhesion

energies, cortical tensions, elastic moduli, yield stresses

and other such parameters used in the models presented

before. Now the question is whether these properties

can simply be generalized to obtain the general

constitutive equation of a tissue (muscle, vascular walls,

epithelium, etc.) or a biological fluid (blood, synovial

fluid, etc.). In other words, can the material be elastic if the

cell is elastic? And if so, what will its elastic modulus or

Poisson’s ratio be? Part of the question needs to be

answered after looking at the scales involved. Usually,

when one wants to look at the final tissue, we need to

forget about what can be seen locally. There is a scale

separation, as long as the size of the sample (Ls) is large

enough compared to the size of a cell-element Lc

(Sanchez-Palencia, 1980), and there are good chances of

finding an equivalent medium. The idea is slightly

different from that mentioned in the introduction, because

we are now looking at a typical cell-element, which can be

larger than the basic cell unit (size Le). This cell-element

should be chosen to contain all the information that we

have from microrheology, in particular, for a cellular

system, the cell type, shape, cytoplasm, nucleus,

constituents, cell cycle, membrane, proteins in presence,

ECM, cell–cell, cell–ECM interactions, etc. Of course all

this information will not be available! In practice,

hypotheses need to be made so that something

computable can be obtained.

The main difficulty is that the cell is a composite

system, made of a membrane surrounding a complex fluid.

There are different methods available in the literature,

which will now be reviewed. They have not been applied

to many cases of biomaterials. Viscoelastic effects are in

fact difficult to include. But we will see that they can

provide interesting tools for the investigation of complex

biological systems.

Mathematical Methods

Mathematical models are usually necessary to go from

the microstructure to the constitutive equations. Perhaps

the simplest case to start with is the method considered by

Fung (1988), when looking at the properties of the lung

tissue. The lung tissue (or lung parenchyma) is showing

a periodic alveolar structure, where each sub-element is

a tetrakaidekahedron. All these geometric sub-elements

are periodically assembled. Each edge becomes the edge of

the alveolar mouth, and the alveolar mouth forms alveolar

ducts (ventilation). The alveolar mouths and ducts are

made of collagen fibers and elastin. The microrheological

properties of these fibers are supposed to be well known.

The edge is called a cable, and the interstitial matter

a membrane, which has a two-dimensional behavior.

To determine the constitutive equation (with and

without ducts), or to obtain the elastic macroscopic

parameters, we consider:

. the equilibrium of three membranes at a vertex—no

bending moments in the cables;

. the principle of virtual work is applied to a polyhedron.

This gives access to the bulk modulus K, when a

uniform transpulmonary pressure P is applied. The bulk

modulus, when ducts are present, is given by:

K ¼
2

3
F1 2

1

2
þ 0:3 ðF2 2 F1Þ

� �
P ð28Þ

where F1 and F2 are, respectively, the coefficients of

membrane extension ( _T=T ¼ F _A=A; T stress, A area) in

the hexagonal and rectangular faces. When fibers are

collagen or elastin, the stress is, respectively, given for

these fibers by Eqs. (29a,b)

T ¼ ðT* þ bÞeaðl2l* Þ 2 b ð29aÞ

T ¼ Eðl2 1Þ ð29bÞ

where l is the stretch ratio relative to zero-state, l*
another stretch value, E is the Young modulus of elastin,

and T*, a, b are constants. By looking at a statistical

system, one can derive the total stress exerted on the side

of a unit square of fiber-embedded membrane (including

different orientations) and have access to F1 and F2.

Finally K can be computed and is found to be of the order

of 2 £ 104 dyn/cm2, similarly to that obtained for middle-

aged humans. Equation (28) has the advantage of being

simple, and other methods are usually more sophisticated

but retain these basic ideas.

Homogenization

Homogenization was introduced over twenty years ago

(Sanchez-Palencia, 1980) and is based on the following

formalism. Considering a typical sub-element of a system,

one may take advantage of the separation of scales to

introduce a small parameter 1 ¼ Le=Ls which can be used

to expand the solution (stresses, strains, velocity fields) in

powers of 1. The solution depends on the equations of

the problem considered, but it is known that such methods

have been used successfully for understanding flow

through porous medium, conductivity problems, etc.

In some cases, the periodicity of the domain may be used
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so that simplifications can be obtained. The method does not

always lead to satisfactory results, and may be ill posed.

Then the system cannot be homogenized. We present here a

few examples of the application of such techniques to the

study of tissues.

The first one deals with syncytial tissues (Neu and

Krassowska, 1993). These tissues include the myocardium,

muscle fibers, gastric epithelial cells, and the eye lens, but

the method may be adapted to nonsyncytial tissues such as

the skeletal muscle or nerve bundles. The periodicity of the

tissue is used in this case. These tissues are multicellular

systems, made of cells surrounded by a membrane,

interacting with each other, and the smallest structural

element that is considered is a small number of cells, which

will be called the unit cell. The particular problem here is to

solve for the electric field inside and outside cells. These

fields are solutions of the Laplace equation, together with

boundary conditions. A small parameter 1 is introduced,

based on physical microscopic and macroscopic lengths,

arising from the problem. Asymptotic representations

(Bensoussan et al., 1978) of the problem can be written.

Then by integration and use of the divergence theorem

equations for intra- and extra-cellular domains can be

obtained. These are the macroscopic equations. Finally,

partial differential equations (reaction – diffusion

equations) for the averaged intra- and extra-cellular

potentials can be obtained to derive the macroscopic

conductivity tensors. This method is also compared with

the bidomain model (Clerc, 1976) and this reveals the

limitations of the homogenization technique in the case of

surface problems, proximity of external sources or finally

with strong, nonuniform or fast changing external fields.

This method is interesting, but does not provide

information about homogenized mechanical properties.

Another problem is the homogenization of honeycomb

structures (Lee et al., 1996), which are important when

looking at structures, but can also provide a model for

describing metallic foams. These materials are supposed

to be made of regularly organized cells, and might also

give a good description of human tissues. Two types are

considered: honeycomb structures with regular hexagonal

cells and re-entrant honeycomb structures. The basic unit

is either a rectangle or a square. The elements are beams,

which are supposed to be elastic, and a good description

can be found elsewhere (Gibson and Ashby, 1988),

thanks to a beam analysis of a unit cell. The technique

used here is the homogenization finite element method

(FEM) technique. A weak form of the elasticity problem

is written, combined with asymptotic expansions in terms

of a small parameter. A homogenized elasticity tensor

appears when solving the problem and gives access to

the effective elastic modulus Ee and Poisson’s ratio ne.

The influence of the volume fraction of the elastic

structure can then be analyzed, and this is in rather good

agreement with the model of Gibson and Ashby (1988).

The regular structure has increasing elastic moduli and

decreasing Poisson’s ratio when the volume fraction

increases. The re-entrant structure exhibits a decreasing

Poisson’s ratio with increasing volume fraction and

shows negative values depending on the angles of the

structure. Note that a similar technique is used for the

optimization of the design of periodic linear elastic

microstructures (Neves et al., 2000). The problem is to

find the optimal representative microstructural element

which maximizes the equivalent strain energy density

function or a linear combination of the equivalent

mechanical properties.

We may conclude, therefore, that this model may be

adapted to the study of tissues containing regularly spaced

cells, with a given shape, but the influence of the

cytoplasm and membrane would need to be included.

The final method presented here is a different one,

called the discrete homogenization method (Tollenaere

and Caillerie, 1998; Caillerie et al., 2003). It has been

successfully applied to the homogenization of the

myocardium. Cardiomyocites can be assumed to form a

quasiperiodic discrete lattice, made of bars linked with

each other’s. They are supposed to be elastic and interact

at nodes where moments are accounted for as an

improvement of the work of Fung (1988) presented

above. Balances of forces and moments are written out at

the nodes, but a weak formulation (virtual power

formulation) is preferred. The elasticity of the bars is

introduced and can give rise to large deformations. Then

the node’s positions are expanded in terms of a small

parameter (ratio of microscopic to macroscopic lengths),

as well as forces and moments. Finally, an equivalent

continuous medium is obtained, and a formula for the

equivalent Cauchy stress tensor is found, when the

number of elementary cells is large. Frame-invariant

constitutive laws are found to be nonlinear. The

equivalent medium is hyperelastic. Finally the method

could be improved to include the effect of the ECM.

Comparisons with actual experiments are unfortunately

not presented, but the trends seem to be in agreement,

because hyperelasticity of soft tissues is often found, as

will be seen in the final part.

Tensegrity

The tensegrity concept (Fuller, 1961) is an idea for

describing deformable structures made of sticks and

strings under tension or compression. This model has been

shown to be particularly well adapted for the description

of the cell (Ingber et al., 1981; Ingber and Jamieson,

1982). But it has also been used in different domains like

civil engineering in particular. The basic rules (Ingber,

1993) for this structure can be defined as follows:

. It is made of struts and strings that have a certain initial

shape thus enabling pre-stressed states. Indeed

a suspended cell has a usually spherical shape and is

pre-stressed.

. When it is pressed onto a substrate, it flattens and

spreads onto it.
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. If the pressure is removed, it spontaneously jumps

back, revealing elasticity.

Ingber et al. (1981) consider that cells, at first sight,

might behave as tensegrity structures. The elements are

able to sustain tension or compression forces. To

determine global reactions, like stresses, or elastic

responses of the tensegrity structure, one needs to apply

the usual equilibrium equations on the number of elements

and finally solve this numerically, because usually the

number of elements can be large. Different sophisticated

assumptions can be made for the sticks or cables, like

nonlinear elastic elements (Wendling et al., 1999; 2000),

or even viscoelastic cables (Canadas et al., 2002).

A typical tensegrity structure representing a cell with its

nucleus is shown in Fig. 9.

The elements are mainly large sticks and are connected

by elastic wires. In the middle of the figure, the cell

nucleus has also been represented using the same elements

but they could also be different thin sticks linked with

other types of wires. The physical nature of these sticks is

closely associated with the cytoskeleton, in particular the

different types of filaments present inside the cells, as

mentioned previously, actomyosin complexes which form

rigid polymer rods, microtubules, and intermediate

filaments. By saying that, we understand that the model

will show how the cell spreads, for example. It is not just

one part of the cell cytoplasm which is responsible for

deformations, but it is the cell as a whole structure which

is set in motion. These arguments have raised an

interesting debate, which is still being discussed (Ingber

et al., 2000), as it seems difficult to understand that local

phenomena cannot have stronger effects. The mechanical

stresses which are applied to a cell need to be modeled in

terms of mechanotransduction, i.e. how stresses generate

other types of reaction within the cell, through signaling.

Magnetic twisting devices have been used (Wang et al.,

1993) to show that focal adhesion changes were induced

as a result of these applied forces. This induced a force

stiffening process, i.e. the cytoskeletal stiffness was found

to increase linearly with stress (stress hardening). This was

verified using tensegrity models, which were able to show

this behavior, due to the use of interdependent struts.

This helped to understand the way mechanotransduction

acts through rearrangements of the tensionally linked

cytoskeleton. Finally, a more refined analysis (Wang et al.,

2001), including microscopic observations revealed

recently that cells behave like discrete structures

composed of an interconnected network of actin filaments

and microtubules. Microtubules seem to be responsible for

the compression forces and determine cell-shape stability,

i.e. initial stresses (102 to 103 Pa). Dynamic and static tests

seem to confirm the ability of the tensegrity model to

predict the cell mechanical response.

To conclude, this model has the advantage that it starts

from basic measurable elements and is in reasonable

agreement with experiments.

Cell Sorting: The Surface Tension Effect

The concept of cell sorting has been proposed by

Steinberg (1993) and is not necessarily a model which

has its place here. Nevertheless, it is important to mention

it as it forms the basis for future modeling where

interfacial effects are present. In his early work, Steinberg

compares the behavior of immiscible liquids to that of

embryonic tissues. He remarks that the motions of

spreading and rearranging of droplets in a surrounding

medium are comparable to those of different cells put

together, which are being sorted out, as in the case of

morphogenesis. This could be explained by tissue

interfacial tension (g) arising from cell adhesion. The

only remaining problem is to prove the existence of an

interfacial tension for cells. This idea has been confirmed

later (Foty et al., 1994) in a paper where they explain how

to design an apparatus for doing compression tests.

Tissue-culture medium is used in the experiment, is

compressed at a given force, and is finally allowed to

relax. During this process, the final relaxed force can be

used for measuring the interfacial tension, thanks to video

analysis of the shape of the compressed tissue. The values

found, 8.3 and 4.3 dyn/cm, respectively, from chick heart

ventricle and liver verify gheart . gliver: This explains

previous results where embryonic heart tissue was

engulfed by liver cells (Steinberg, 1993). Another

example of the differential adhesion explanation is given

FIGURE 9 Tensegrity structure similar to a cell with nucleus (redrawn from Ingber, 1993).
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(Beysens et al., 2000) using the same experiment. A better

model for the force relaxation signal is found using a

Kelvin model (Forgacs et al., 1998). Cells indeed relax

like elastic materials in short times, but like liquids in

longer times. The microscopic explanation of tissue

compression is also outlined in their paper to explain how

interfacial tension can rule important structural changes

within the cellular structure. Rapid deformation of the

cells (comparable to foams) first leads to affine elastic

deformations, followed by reorganization of the cells,

which relax in a liquid-like manner to their approximate

initial shapes. Finally embryonic chick epithelial and

neural cells are separated under reduced gravity, the same

interfacial tension relationship being verified. This

analysis of compression has recently been reconsidered

(Palsson and Othmer, 2000) using a theoretical model,

including both viscoelastic effects and signal transduction,

adapted to the case of a dictyostelium discoideum

population. This analysis explains how cells can

reorganize themselves, and can also form star-shaped

aggregates with no applied stress.

Tissue interfacial tensions thus arise from the

interactions between the different cells and might also

be important for explaining cell migration and sorting in

phenomena like embryogenesis and angiogenesis. Their

effect needs to be included to make tissue macroscopic

models more accurate.

Effective Medium Theory (EMT)

The effective medium theory has been used mostly in the

field of electrostatics (Choy, 1999) but is an interesting

tool for accessing macroscopic laws once the proper

assumptions are made at the microscopic level. Let us start

with a continuum where inclusions (spherical first)

are present. The basic idea is to say that the “field”

felt by an inclusion is the macroscopic one, plus

modifications, which arise from the rest of the

inclusions, with the precise inclusion excluded. Consider,

for example, the equation of motion of an isotropic

elastic body, where u is the displacement field, which

satisfies:

›2u

›t 2
¼ m72u þ K þ

m

3

� �
gradðdiv uÞ ð30Þ

where K and m are the compressibility and shear moduli,

and these equations give rise to the usual hyperbolic wave

equations with respective transverse and longitudinal

velocities
ffiffiffiffiffiffiffiffiffi
m=r

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK þ 4=3mÞ=r

p
: Waves are

solutions of the kind u ¼ u0 exp iðk·r 2 vtÞ; and there

is a dispersion relation between v and k. Two potentials,

f and c, related to u, can be introduced which satisfy the

Laplace equation 72f ¼ 0; 72c ¼ 0: Then we assume the

long wave approximation, and follow calculus from

Rayleigh, given scattering due to a sphere. This gives rise

to asymptotic developments for the incident, scattered,

and transmitted potentials. Following Yamakawa (1962),

we find the unknown coefficients in front of the different

potentials using the boundary conditions on the spherical

inclusion. This leads to the following formula (called

Maxwell–Garnett) for the moduli and density:

K2 2 K

3K þ 4m2

¼ c1

K2 2 K1

3K1 þ 4m2

;

m2 2 m

mþ F2

¼ c1

m2 2 m1

m1 þ F2

; r2 2 r1 ¼ c1ðr2 2 r1Þ

ð31Þ

where c1 is the volume fraction of the inclusions, and Ki,

mi and ri are the moduli and densities in the ith phase. The

modulus Fi is defined by:

Fi ¼
mi

6

9Ki þ 8mi

Ki þ 2mi

� �
: ð32Þ

Formula (31) is known as the Maxwell–Garnett

formula but has a drawback. It does not predict a

limiting regime, which is supposed to occur as

concentration increases; this critical concentration is

linked to the percolation threshold (Kirkpatrick, 1971).

This threshold might be very important in particular

when looking at a group of cells, which join each other

and may be described as a percolating system. Note that

Eq. (31) can be extended to the case where inclusions

are not spheres, but ellipsoids. There is another

formalism, know as the Bruggeman formalism, which

is based on a slightly different approach, and this leads

to the following results:

1

3K þ 4m
¼

c1

3K1 þ 4m
þ

1 2 c1

3K2 þ 4m
;

1

mþ F
¼

c1

m1 þ F
þ

1 2 c1

m2 þ F

r ¼ c1r1 þ ð1 2 c1Þr2:

ð33Þ

The advantage of this method is that it provides

access to a critical volume fraction, which could

correspond to a percolation threshold. Finally

Eqs. (31–33) can be generalized, assuming the material

is viscoelastic, the moduli being complex. This could

be particularly interesting when looking at the

dynamic response of viscoelastic tissues. No such

analyses to model tissues have been found so far in the

literature.

Ensemble Averaging Methods

The method of ensemble averaging has been introduced

by Hashin (1964) for predicting the mechanical behavior

of heterogeneous media but has led to interesting

results in the field of suspension rheology, which is

the example that we will analyze here. This has already

been discussed briefly in the previous part on

“suspensions”. Consider a medium where particles
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(spherical for instance) are imbedded in a fluid matrix,

as is usually the case for suspensions or emulsions. This

is the problem studied by Batchelor (1970). The point is

to determine the stress field in a system where particles

are assumed to be force-free. The basic idea is to write

the stress components as ensemble averages, where the

average is taken over the ensemble of realizations for the

suspension, i.e. the possible positions of particles. Other

averages may be taken, which can enable less tedious

calculations, but this method is usually the best for

finding the bulk properties. Batchelor (1970) follows this

argument, after writing the stress Sij as Sij ¼ sij 2 ru0
iu

0
j;

thus taking into account the momentum flux across

surfaces. Fluctuations correspond to the components of

the velocity u0. Using the previous relation, one can

average for the stress field Sij by integration over some

well-chosen volume surrounding a sufficiently large

number of particles. Then it is necessary to compute the

flow field around the particle (either spherical or

ellipsoidal) to put into the integral terms for stresses.

Different solutions have been obtained for rigid particles

or deformable particles (Taylor, 1932; 1934) so that the

final averaged stress can be obtained and used for

predicting different behaviors, like the viscosity of a

suspension of force-free particles (Batchelor, 1970) or a

suspension of spherical particles submitted to Brownian

motion (Batchelor, 1977; see previous part on

suspensions). Finally, the effect of Brownian motion

on suspensions of non-spherical particles (Hinch and

Leal, 1972) has also been determined similarly.

The viscous stress was given in Eq. (23).

Applications to the rheology of blood are, therefore,

possible. Deformable capsules in a Newtonian liquid have

been investigated (Barthès-Biesel and Rallison, 1981)

using two types of membranes (RBC or Mooney-Rivlin

type of membrane). Finally, comparisons with experi-

mental data (Drochon, 2003) have shown good agreement

but the conclusions are that also using a membrane

viscosity would improve the results.

Many applications of the method lie in the field of fluid

mechanics, in particular the understanding of emulsions

and suspensions.

Discussion: Open Problems

All the above theories are very interesting for modeling

soft biological tissues, but they are still under way; in

particular, people have tried to solve the easiest problems,

although they are already quite challenging. From what

has been said before, we may conclude this part by giving

a list of problems, which may be of interest:

. attempt to find a macroscopic description of visco-

elastic, viscoplastic systems;

. include the effect of interfacial tension to model cell

interactions;

. consider the case of the intermediate concentration

range (percolation);

. add a fluid or gel effect into a tensegrity or discrete

homogenization method;

. include geometry, type, ECM, membrane, proteins

characteristics, of the cell into the basic cell element for

homogenization methods.

MACROSCOPIC PROPERTIES: BIOLOGICAL

MATERIALS

Tissue Rheological Properties

Some of the most common biological tissues which have

been characterized are bones, the heart muscle (cardiac

muscle), and soft muscles, but discussions about other

types of tissues are also found in the literature.

Bone can be considered to be an anisotropic composite

material, made of collagen and hydroxyapatite. Its

properties in the longitudinal direction are mainly elastic,

and it can be said to be a common tissue. Its properties

depend on the degree of humidity; it is found to be elastic

when dry and exhibits a slightly plastic behavior when

humid (Evans, 1969). A typical Young modulus, when

subjected to uniaxial deformation, is around 18 GPa, and

bone usually fails around 150 MPa. But in fact, its

properties depend on the type (femur, tibia, humerus,

radius, etc.). Bone is not a passive tissue, because it is

constantly drained by blood, and cell remodeling is also to

be accounted for. Its anisotropic properties have also been

considered (see, for example, Lotz et al., 1991) and show

two different privileged directions with different elastic

moduli. Its viscoelastic nature has also been investigated,

although it is not a major effect, but wet bone for instance

may be considered as a viscoelastic material (Lakes et al.,

1979; Lakes and Katz, 1979a,b). It has also been shown to

exhibit a nonlinear regime before becoming an elastic

material as in the case of demineralized bovine cortical

bone (Bowman et al., 1996).

The heart muscle has also been investigated frequently

in the literature. It is made of cardiac muscle fibers (actin

and myosin filaments), organized in a branching

interconnecting network, and contains capillaries and

mitochondria, which produce oxygen and energy. Its

viscoelastic properties have been analyzed in relaxation

experiments (Pinto and Fung, 1973), where a normalized

function can be introduced after a step stretch. The

relaxation function is in fact a function of the stretch ratio,

the pH, the temperature and the chemical composition of

the environment fluid. These parameters can indeed all

have an effect on the reorganization of the actin and

myosin filaments. When subject to uniaxial stretch, the

force-extension curves exhibit the same behavior as that

mentioned before in Eq. (29a) (collagen type), i.e. an

exponential response (Fig. 10).

This equation is in fact typical of several tissues, but

only when discussing 1D tests. The same authors also

considered small-amplitude oscillatory experiments and

found that the dynamic response increased very slowly as
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a function of frequency (over more than three decades).

This may be considered to be similar to other viscoelastic

solids such as rubbers, as discussed in the first part.

Constitutive equations are then used, in particular the

quasi-linear viscoelastic model (Fung, 1993a).

TðtÞ ¼

ðt

21

Gðt 2 t0Þ _T eðt0Þ dt0 ð34Þ

where T(t) is the engineering stress (referred to initial

surface area) and T e(t0) is called the elastic response

corresponding to a step-stretch (see first part), and plays

the role of the usual deformation, as in classical linear

viscoelasticity. Although this formulation may be adapted

to 3D cases, it is used more often with stretching or

compressing 1D-assays. More work exists on the effect of

Ca2þ on the capabilities of the heart muscle to retract; in

particular contractile (or shortening) velocities have been

measured relative to applied stress (Ross et al., 1966) and

compared with Hill’s theory (Hill, 1938). The latter theory

predicts a law for the velocity of contraction as a

decreasing function of the applied load in the muscle.

Finally three-dimensional laws for the myocardium have

been proposed, based on Eq. (13) and allowing for

transverse anisotropy (Humphrey et al., 1990). They

provide good agreement with the experiments.

Other types of soft muscles (intestine, vascular muscles,

arteries, etc.) exhibit common features, and depend on the

actin and myosin components, as well as ATP energy

exchanges. Exponential laws like Eq. (29a) often

approximate their stress–strain properties, although they

might undergo irreversibility. Indeed, differences in

loading and unloading regimes are observed in the case

of ureteral tissues (Yin and Fung, 1971) or taenia coli

muscles (Price et al., 1979). Similarly, Hill’s equation

(Hill, 1938) and relaxation data exhibit the same type of

behavior, as compared to the myocardium.

To summarize, except for a few cases, all types of

tissues are anisotropic and strain hardening Eq. (29a),

exhibit a hysteresis in stress-strain curves, and relax to

a non-zero equilibrium. Their microstructures are quite

important and are usually chemically dependent on salts or

ions (Ca2þ, Kþ, Naþ) and energy consumption is

important for sustaining large stresses. Their highly

resistant properties are due to the reinforcement by fibers

(actin, myosin and collagen) which are elastic or nonlinear

elastic components. Quasilinear theories like Eq. (34) are

usually appropriate for predicting most behaviors, and the

exponential dependence Eq. (29a) or the Mooney–Rivlin

formulation Eq. (12) seems to work well. Finally, this

concept is rather simple, but subtle differences may appear

due to a velocity-dependent moduli. In general, in common

oscillatory experiments, it is possible to check whether

velocity is important or not. If not, one can use more

general relations, such as the K–BKZ equation Eq. (20) or

the generalized integral model Eq. (21). Finally, pseudo-

strain-energy functions are also a good means to model

tissues, as shown in the case of skin (Tong and Fung,

1976). They indeed use a two-dimensional model adapted

to the case of a membrane-like material, submitted to

planar stresses. The model is in good agreement with the

biaxial experiments (Lanir and Fung, 1974).

Dynamic tissue testing (see previous comment) has

been carried out on a few occasions with special devices.

In the first case, a shear oscillating device has been built

(Arbogast et al., 1997) whereas conventional techniques

are used in the second case (Chan, 2001). The latter

example reveals that it might be possible to adapt the well-

known time-temperature superposition principle to some

soft biological tissues, to access a larger range of

frequencies. Therefore, one may be able to determine

G(t) from Eq. (34).

With regard to tissue growth, there are a number

of important studies in the literature. Recently, the concept

of growth has been analyzed rigorously in the framework

on continuum theories (Humphrey and Rajagopal, 2002;

Humphrey, 2003) by decomposition of the motion. This

idea may be interesting for including a “live” contribution

of the tissue (due to mechanotransduction, for example),

as compared to inert models. Other research papers have

investigated tumor growth, when the supply comes from

nutrients (Byrne and Chaplain, 1997), assuming the tumor

is a multicellular spheroid and using a continuum

mechanics approach. Another approach by the same

authors considers the influence of cell–cell interactions to

improve the concept of tumor growth (Byrne and

Chaplain, 1996). This idea is quite relevant to what was

said in the part on “mathematical methods”, because it

takes into account the influence of membranes and

interactions and may be a good way to model real tissues.

Rheology of Biological Fluids

Blood Rheology

Since the subject of blood rheology is wide, we will

present here its main properties and try to correlate them

with the models detailed in the first part. Blood is

FIGURE 10 Typical engineering stress T vs. stretch ratio l of a soft
tissue (muscle, vascular tissue, etc.) in a 1D test.
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a suspension of cells inside a Newtonian fluid called

plasma. Plasma is close to water with a viscosity slightly

higher (of the other of 1 cP). The cells present inside the

plasma are mainly erythrocytes (RBC), which have a

biconcave shape (between 8 and 10mm in diameter), but

there are also white cells (different types) and platelets.

Hematocrit is the volume concentration of cells and is a

very important quantity. Indeed, as the hematocrit

concentration varies from 0 to say 90% (which is possible

since cells are deformable), the properties of blood

become non-Newtonian. Blood typically is a shear

thinning fluid (Chien et al., 1966) but may be shown to

exhibit a yield stress at very small rates, which is an

increasing function of the hematocrit (Cokelet et al.,

1963). This yield stress is attributed to interactions

between the cells, which require strong forces necessary to

create a flow field. The data of Cokelet et al. (1963) have

been fitted successfully using a generalized viscous fluid

law Eq. (15) and work remarkably well. The equation used

for the 1D-shear stress is as follows:

ffiffiffiffiffiffiffi
s12

p
¼

ffiffiffiffiffi
sy

p
þ

ffiffiffiffiffiffi
h _g

p
: ð35Þ

This formula is called Casson’s law (Casson, 1959) and

was in fact derived for other types of suspensions. This

equation may be considered in the flow of blood through a

tube (representing a capillary). The exact solution reveals

that the usual Poiseuille parabola profile is changed, in

particular when the yield stress is increased. The flow

exhibits a higher shear rate near the wall, whereas the

central region shows an almost flat profile, in other words,

it is close to plug flow. This is of course just a theoretical

profile. In practice, due to the complex structure of blood,

particular microscopic phenomena need to be considered,

as that is the purpose of this article. When particles do not

form aggregates, one can describe the suspension

rheology (see parts on “suspensions” or “ensemble

averaging”) using models investigated by Batchelor

(1970), Hinch and Leal (1972), Barthès-Biesel and

Rallison (1981) and Drochon (2003). The formation of

rouleaux (Goldsmith, 1972) is a well-known phenomenon

which has been shown to affect the viscosity. Indeed,

common relations for describing the viscosity of

suspensions depend on the shape and concentration

of particles. When particles form certain structures

(rouleaux, for example), they may be responsible for

increases in viscosity. The rouleaux behave like rod-like

particles, whose motion has been shown to be described by

Eq. (22), and can lead to tumbling motions, increased

dissipations, and therefore higher viscosities.

Another important effect is the vessel dimension. Blood

travels through various vessels going from the arteries

(large diameter, order of biconcave) to microcapillaries

where the diameter is of the order of a few microns. As the

capillary size decreases, the apparent viscosity is shown to

decrease. This is known as the Fahraeus–Linqvist effect

(Fahraeus and Linqvist, 1931). Since we are not in

the continuum model approximation (Batchelor, 1967),

the argument of the increasing apparent shear rate

(since the tube dimension is small) leading to decreasing

viscosity of blood cannot be used. The explanation was

provided by Barbee and Cokelet (1971) after observing

that, when blood is made to flow through a narrow tube,

it changes its microscopic properties by reducing the

hematocrit. This means that fewer cells will travel

through the tube or vessel, thus creating a decrease in

viscosity.

Finally, the understanding of blood rheology is also

affected by interactions between the different particles

(or cells) which have been shown to form rouleaux, but

interactions are also present at the wall with the

endothelium lining and may affect blood flow through

capillaries. These effects are also influenced by the high

deformability of RBCs, which can actually go through

5-mm-diameter capillaries. Similarly, white cells or cancer

cells can be highly deformed and make their way through

inter-endothelial junctions of about the same size. Such

situations can only be analyzed in the context of

microscopic rheology, and the presence of various proteins

has a major influence on such interactions. Note that cell–

cell interactions can also lead to various pathological

situations due to the formation of cell aggregates (blood

clots, embolism).

Other Types of Biological Fluids

There are other types of fluids commonly encountered in

the human body. Let us analyze a few of them. Synovial

fluid, which appears in knee joints, has been analyzed

using common rheometrical experiments (shearing tests

mostly). The behavior is that of a non-Newtonian fluid,

and can described by power-law models (as with

polymers). The deviation from Newtonian fluids appears

at shear rates of the order of 1 Hz as measured in

oscillatory experiments (Balazs and Gibbs, 1970). Thus

synovial fluids, like hyaluronic acids, can become less

viscous at higher rates, allowing lubrication of knee joints.

Other types of fluids have also been characterized using

oscillatory shearing tests, such as saliva and mucus. In

these two cases, the measurements of the dynamic shear

moduli (G0 and G00) reveal that these two fluids are highly

viscoelastic, due to the presence of long polymer chains

(DNA in the case of mucus), as was demonstrated in the

first part. Considering rapid solicitations, the polymer

chains cannot be uncoiled. However, for slow application

of forces, the chains slide along each other, and the

fluid exhibits viscous effects. At room temperature, these

fluids show an almost constant elastic modulus (G0) and a

slowly decreasing loss modulus (G00) of the order of a few

Pascals for dog mucus (Lutz et al., 1973) or a few tenths of

a Pascal for saliva (Davis, 1973). This is typical of such

viscoplastic fluids. Probably it is difficult to measure yield

stresses for such fluids, but there is a tendency to believe in

this property here, due to the presence of weak

microscopic interactions.
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CONCLUSIONS

Modeling the rheological properties of biological tissues is

a very difficult subject and is strongly dependent on the

microscopic properties of individual cells. Without a

complete description of the microstructure, it is impossible

to build a constitutive equation. At present, there is a

strong background in the modeling of viscoelastic and

viscoplastic properties of polymers, suspensions and

gels, which might be very useful for studying biological

materials. In addition, the determination of local micro-

rheological properties and cell interactions is now possible

and should help produce a more detailed picture at the

cellular level, in terms of its constituents.

We have shown that there are a variety of techniques

to produce constitutive equations, when the cell

properties are known. These techniques are not

yet able to account for specific interactions between

cells, individual behaviors, or special local properties,

or to model the active response of a cell. This is a

real challenge, which needs to be investigated further,

for it would help to model the macroscopic behavior,

i.e. the viscoelastic (or viscoplastic) nature of such

biological materials.

Finally, the determination of macroscopic properties

remains a challenge, due to the lack of data. Indeed such

biological systems are hard to prepare and require the use

of techniques that are not so well adapted. It is necessary

to characterize them by combining different experiments

under different conditions, so that every parameter from a

given model can be obtained.
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tenségrité”, C. R. Acad. Sci. IIb. t328, 97–104.

White, J.L. and Metzner, A.B. (1963) “Development of constitutive
equations for polymeric melts and solutions”, J. Appl. Polym. Sci. 7,
1867–1889.

Winter, H.H. and Chambon, F. (1986) “Analysis of linear viscoelasticity
of a crosslinking polymer at the gel point”, J. Rheol. 30(2), 367–382.

Wojcikiewicz, E.P., Zhang, X., Chen, A. and Moy, V.T. (2003)
“Contributions of molecular binding events and cellular compliance
to the modulation of leukocyte adhesion”, J. Cell. Sci. 116(12),
2531–2539.

Yamada, S., Wirtz, D. and Kuo, S.C. (2000) “Mechanics of living cells
measured by laser tracking microrheology”, Biophys. J. 78, 1736–1747.

Yamakawa, N. (1962) “Scattering and attenuation of elastic waves”,
Geophys. Mag. (Tokyo) 31, 63–103.

Yeung, A. and Evans, E. (1989) “Cortical shell-liquid core model for
passive flow of liquid-like spherical cells into micropipets”, Biophys.
J. 56, 139–149.

Yin, F.C.P. and Fung, Y.C. (1971) “Mechanical properties of isolated
mammalian ureteral segments”, Am. J. Physiol. 221, 1484–1493.

RHEOLOGICAL PROPERTIES OF LIVING MATERIALS 91


