Tutorats de Mécanique Quantique Fascicule d'exercices n° 3

Exercice I : Etats stationnaires d'un électron confiné dans l'espace.

Pour confiner un électron dans l'espace, on doit utiliser simultanément un champ électrostatique et un champ magnétique car le champ électrostatique, qui obéit à l'équation de Laplace, ne peut pas avoir d'extrémum. Une méthode consiste à utiliser un potentiel quadrupolaire

$$V(x, y, z) = C(x^2 + y^2 - 2z^2)$$

(où C est une constante positive) qui tend à confiner la particule selon z. Le confinement latéral est obtenu en ajoutant un champ magnétique uniforme $\overrightarrow{B_0}$ parallèle à Oz.

1) Vérifier que le champ $\overrightarrow{B_0}$ peut être obtenu à partir du potentiel vecteur

$$\overrightarrow{A} = \frac{1}{2} \overrightarrow{B_0} \wedge \overrightarrow{r} .$$

2) Si l'on ne tient pas compte du spin de l'électron (qui conduirait à un dédoublement des états stationnaires que nous allons obtenir), l'hamiltonien de l'électron est

$$\widehat{H} = \frac{1}{2m} \left(\widehat{\overrightarrow{P}} + e \overrightarrow{A}(\widehat{X}, \widehat{Y}, \widehat{Z}) \right)^2 - eV(\widehat{X}, \widehat{Y}, \widehat{Z})$$

en désignant par m la masse de l'électron et -e sa charge.

Montrer que cet hamiltonien peut s'écrire comme la somme de deux opérateurs

$$\widehat{H} = \widehat{H}_z + \widehat{H}_{xy}$$

avec

$$\widehat{H}_z = \frac{1}{2m}\widehat{P}_z^2 + \alpha \widehat{Z}^2$$

$$\widehat{H}_{xy} = \frac{1}{2m}\left(\widehat{P}_x^2 + \widehat{P}_y^2\right) + \frac{1}{2}m\Omega^2(\widehat{X}^2 + \widehat{Y}^2) + \frac{1}{2}\omega_c\left(\widehat{X}\widehat{P}_y - \widehat{Y}\widehat{P}_x\right) , \qquad (1)$$

où α , Ω , ω_c sont des constantes que l'on déterminera.

- 3) En travaillant en base $|\overrightarrow{r}\rangle$ (fonctions d'ondes) montrer que l'on peut étudier séparément les hamiltoniens \widehat{H}_z et \widehat{H}_{xy} et que les énergies des états stationnaires de \widehat{H} s'obtiennent sous la forme $E=E_z+E_{xy}$, somme d'une valeur propre de \widehat{H}_z et d'une valeur propre de \widehat{H}_{xy} .
- 4) Donner les valeurs possibles pour E_z et leur dégénérescence.

5) Etude de l'hamiltonien \widehat{H}_{xy} .

On introduit des opérateurs \widehat{a}_d et \widehat{a}_g (dits opérateurs annihilation de quanta circulaires définis par

$$\widehat{a}_{d} = \frac{1}{2} \left\{ \beta(\widehat{X} - i\widehat{Y}) + \frac{i}{\beta\hbar} (\widehat{P}_{x} - i\widehat{P}_{y}) \right\}$$

$$\widehat{a}_{g} = \frac{1}{2} \left\{ \beta(\widehat{X} + i\widehat{Y}) + \frac{i}{\beta\hbar} (\widehat{P}_{x} + i\widehat{P}_{y}) \right\}$$
(2)

où β est une constante réelle.

- 5.1) Donner l'expression de leurs adjoints \hat{a}_d^{\dagger} , \hat{a}_g^{\dagger} et des opérateurs nombre de quanta circulaires $\hat{N}_d = \hat{a}_d^{\dagger} \hat{a}_d$ et $\hat{N}_g = \hat{a}_g^{\dagger} \hat{a}_g$.
- 5.2) Montrer que l'observable \widehat{L}_z associée à la composante z du moment cinétique de la particule s'exprime simplement en fonction de \widehat{N}_d et \widehat{N}_g .
- 5.3) Montrer que, en l'absence de potentiel quadrupolaire (C=0), l'hamiltonien \widehat{H}_{xy} s'écrit

$$\widehat{H}_{xy} = \hbar \omega_c \left(\widehat{N}_d + \frac{1}{2} \right) \,,$$

si l'on choisit convenablement β .

5.4) Calculer le commutateur $\left[\hat{a}_d, \hat{a}_d^{\dagger}\right]$ et en déduire (sans faire de calculs) que, dans ce cas particulier où C = 0, les valeurs propres de \hat{H}_{xy} sont de la forme

$$E_{xy} = \hbar\omega_c(n_d + \frac{1}{2}) ,$$

où n_d entier $(n_d \ge 0)$.

5.5) En présence du potentiel quadrupolaire $(C \neq 0)$, montrer que l'on peut écrire \widehat{H}_{xy} sous la forme

$$\widehat{H}_{xy} = \hbar \omega_c' \left(\widehat{N}_d + \frac{1}{2} \right) - \hbar \omega_m' \left(\widehat{N}_g + \frac{1}{2} \right)$$

en donnant au paramètre β une nouvelle valeur, et où ω_c' et ω_m' sont des constantes à déterminer.

En déduire l'expression des valeurs propres de \widehat{H}_{xy} .

- 6) On donne $\hbar\omega_c = 10^{-5} \text{ eV}, \, \hbar\sqrt{4eC/m} = 10^{-6} \text{ eV}.$
- 6.1) Représenter qualitativement le spectre d'énergie de l'électron, en indiquant pour chaque niveau d'énergie les nombres quantiques qui le caractérisent.
- 6.2) Dans quelle mesure les résultats obtenus pour l'énergie des états stationnaires de l'électron traduisent-ils le fait que l'électron est confiné dans l'espace?

Exercice II : Formalisme de Schwinger pour le moment cinétique.

On considère un système de deux oscillateurs harmoniques repérés par les indices 1 et 2. On note $\widehat{a_1}^{\dagger}$, $\widehat{a_1}$, $\widehat{a_2}^{\dagger}$, $\widehat{a_2}$, leurs opérateurs création annihilation, $\widehat{N_1}$, $\widehat{N_2}$ leurs opérateurs "nombre". Pour un oscillateur donné ces opérateurs obéissent aux relations de commutation standard, et tout opérateur relatif à l'oscillateur 1 commute avec tout opérateur de l'oscillateur 2 (oscillateurs indépendants).

On note $|n_1, n_2\rangle$ un ket propre commun aux opérateurs $\widehat{N_1}$ et $\widehat{N_2}$ $(\widehat{N_1}|n_1, n_2\rangle = n_1 |n_1, n_2\rangle$). Comment sait-on qu'un tel ensemble de kets propres communs existe?

On forme les opérateurs

$$\widehat{G}_{+} = \hbar \widehat{a}_{1}^{\dagger} \widehat{a}_{2} \quad \widehat{G}_{-} = \hbar \widehat{a}_{2}^{\dagger} \widehat{a}_{1} \quad \text{et} \quad \widehat{G}_{z} = \frac{\hbar}{2} (\widehat{a}_{1}^{\dagger} \widehat{a}_{1} - \widehat{a}_{2}^{\dagger} \widehat{a}_{2})$$
 (3)

- 1) Montrer que les opérateurs \widehat{G}_+ , \widehat{G}_- , \widehat{G}_z obéissent aux mêmes règles de commutation que les opérateurs de moment cinétique \widehat{J}_+ , \widehat{J}_- , \widehat{J}_z .
- 2) En déduire que $\widehat{G}_x = (\widehat{G}_+ + \widehat{G}_-)/2$, $\widehat{G}_y = (\widehat{G}_+ \widehat{G}_-)/2i$ et \widehat{G}_z sont des opérateurs de moment cinétique.
- 3) On définit $\widehat{N} = \widehat{N_1} + \widehat{N_2}$. Calculer $\widehat{G}^2 = G_x^2 + G_y^2 + G_z^2$ en fonction de \widehat{N}
- 4) Supposons que l'on associe une valeur $+\hbar/2$ à la composante z du moment cinétique pour chaque quantum d'excitation de l'oscillateur 1 et une valeur $-\hbar/2$ à cette composante pour chaque quantum d'excitation de l'oscillateur 2.
- 4.1) Montrer que cette association donne bien à \widehat{G}_+ et \widehat{G}_- le même rôle que les opérateurs \widehat{J}_+ , \widehat{J}_- dans l'étude du moment cinétique.
- 4.2) Utiliser cette modélisation du moment cinétique en termes d'oscillateurs harmoniques pour retrouver les résultats du cours sur le moment cinétique, en particulier les spectres des opérateurs \widehat{J}^2 et \widehat{J}_z .

On utilisera également cette méthode pour montrer que, pour j fixé les états propres de \widehat{J}_z ne sont pas dégénérés.

Exercice III: Un système a pour fonction d'onde:

$$\psi(x, y, z) = N(x + y + z) \exp(-r^2/a^2)$$

où a, réel, est donné et N est une constante de normalisation.

1) On mesure sur ce système les observables L_z et L^2 . Quelle probabilité a-t-on de trouver 0 et $2\hbar^2$? On rappelle que :

$$Y_1^0(\theta,\phi) = \left(\frac{3}{4\pi}\right)^{1/2} \cos\theta$$

2) En utilisant également le fait que :

$$Y_1^{\pm 1}(\theta, \phi) = \pm \left(\frac{3}{8\pi}\right)^{1/2} (-\sin \theta) \exp(\pm i\phi) ,$$

peut-on prévoir directement les probabilités de tous les résultats possibles des mesures de L^2 et L_z sur le système de fonction d'onde $\psi(x, y, z)$?

Exercice IV : Expérience de Stern et Gerlach.

On considère un système de N_0 particules de spin 1/2. On se place dans la base des états propres de S^2 et S_z que l'on note $|+\rangle$ et $|-\rangle$. On souhaite mesurer la projection S_u de leur spin sur une direction caractérisée par son vecteur unitaire \overrightarrow{u} , d'angles polaires θ et ϕ (où θ est l'angle que fait le vecteur \overrightarrow{u} avec l'axe Oz).

- 1) Exprimer l'observable $S_u = \overrightarrow{S} \cdot \overrightarrow{u}$ en fonction des angles θ et ϕ . Ecrire dans la représentation $|\pm\rangle$ la matrice correspondante.
- 2) Déterminer ses valeurs propres et ses vecteurs propres, que l'on notera $|\pm\rangle_u$.
- 3) Soit un système dans l'état $|+\rangle$. Quels sont les résultats possibles d'une mesure de S_u et avec quelles probabilités les obtient-on?
- 4) On suppose que, partant du système dans l'état $|+\rangle$, on effectue une mesure selon la direction \overrightarrow{u} qui donne $+\hbar/2$. On réalise alors une seconde mesure portant cette fois sur S_z . Quels sont les résultats possibles pour cette dernière mesure et avec quelle probabilité?
- 5) Le faisceau de particules passe par un premier appareil de Stern et Gerlach orienté selon la direction \overrightarrow{u} . On sélectionne à l'aide d'un écran les particules correspondant à la valeur propre $+\hbar/2$. A combien de particules s'attend-on dans le faisceau sélectionné? On fait passer le faisceau dans un second appareil dirigé suivant Ox. Quels sont les résultats possibles à la sortie de cet appareil?

Exercice V : Résonance Magnétique

1) Traitement Classique

On rappelle que le moment cinétique d'un système placé dans un champ magnétique $\vec{B_0} = B_0 \vec{e_z}$ évolue selon l'équation suivante :

$$\frac{\mathrm{d}\vec{J}}{\mathrm{d}t} = \vec{\mu} \times \vec{B_0} \qquad \text{avec} \qquad \vec{\mu} = \gamma \vec{J}$$

- 1.1) Montrer que, pour un champ magnétique fixe \vec{B}_0 , \vec{J} effectue un mouvement de précession autour de \vec{B}_0 avec une vitesse angulaire ω_0 que l'on déterminera.
- 1.2) On rajoute au champs magnétique fixe précédent \vec{B}_0 un nouveau champ faible \vec{B}_1 perpendiculaire à \vec{B}_0 et tournant à la vitesse ω .
 - 1.2.1) En se plaçant dans le référentiel tournant associé à \vec{B}_1 , montrer que le mouvement de \vec{J} est celui d'une précession autour d'un champ effectif \vec{B}_{eff} fixe avec une vitesse $\vec{\Omega}$ que l'on déterminera.
 - 1.2.2) On suppose qu'à l'instant $t_0 = 0$, le moment cinétique est $\vec{J} = J_0 \vec{e}_z$. Montrer qu'à un instant $t \geq 0$ sa composante suivant l'axe Oz peut s'écrire de la maniere suivante :

$$J_z = J_0 \left(\frac{(\omega_0 - \omega)^2}{\Omega^2} + \frac{\omega_1^2}{\Omega^2} \cos(\Omega t) \right)$$
 où $\omega_1 = -\gamma B_1$

2) Traitement Quantique

Soit un système de spin s = 1/2 placé dans champ magnétique :

$$\vec{B} = B_0 \vec{e}_z + B_1 \vec{u}(t)$$
 avec $\vec{u}(t) = \cos(\omega t) \vec{e}_x + \sin(\omega t) \vec{e}_y$

L'état du système est défini par un ket $|\psi(t)\rangle$. Afin d'étudier l'évolution du système avec le temps, nous introduisons l'opérateur :

$$R(t) = exp\left(i\frac{\omega t}{\hbar}S_z\right)$$
 et on définit $|\tilde{\psi}(t)\rangle = R(t)|\psi(t)\rangle$

2.1) Montrer que l'évolution de $|\tilde{\psi}(t)\rangle$ est régie par l'équation suivante :

$$i\hbar \frac{d|\tilde{\psi}(t)\rangle}{dt} = H_{eff}|\tilde{\psi}(t)\rangle$$
 avec $H_{eff} = (\omega_0 - \omega)S_z + \omega_1 S_x$

- 2.2) Déterminer les valeurs propres et les vecteurs propres de cet hamiltonien effectif.
- 2.3) En déduire l'évolution dans le temps du ket $|\tilde{\psi}(t)\rangle$.
- 2.4) Déterminer alors la probabilité de trouver le système à l'instant t dans l'état $|-\rangle_z$ lorsqu'à l'instant $t_0 = 0$, il est dans l'état $|\psi(t_0)\rangle = |+\rangle_z$.