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Abstract
Contractile biopolymer networks, such as the actomyosin meshwork of animal cells, are
ubiquitous in living organisms. The active gel theory, which provides a thermodynamic
framework for these materials, has been mostly used in conjunction with the assumption
that the microstructure of the biopolymer network is based on rigid rods. However, exper-
imentally, crosslinked actin networks exhibit entropic elasticity. Here we combine an en-
tropic elasticity kinetic theory, in the spirit of the Green and Tobolsky model of transiently
crosslinked networks, with an active flux modelling biological activity. We determine this
active flux by applying Onsager reciprocal relations to the corresponding microscopic dy-
namics. We derive the macroscopic active stress that arises from the resulting dynamics and
obtain a closed-form model of the macroscopic mechanical behaviour. We show how this
model can be rewritten using the framework of multiplicative deformation gradient decom-
position, which is convenient for the resolution of such problems.

Keywords Actin · Myosin · Cytoskeleton · Active matter · Deformation gradient
decomposition

Mathematics Subject Classification 92C10 · 74A60 · 76A10

1 Introduction

Active matter comprises a wide range of structures of mechanical relevance and features nu-
merous means to perform mechanical work with and within them [1]. Among those, within
the animal kingdom, biopolymer networks endowed with the ability to self-contract are ar-
guably the most pervasive, both inside the cells and outside of them. Muscle contraction
constitutes a classical example of this. It can be idealised as the relative sliding of parallelly-
organised filaments of actin and myosin, actuated by the conformation change of the myosin,
which itself is powered by the energy released by ATP hydrolysis [2, 3]. Actin and myosin
are also essential players of the cytoskeleton. They are involved in an extensive range of
active mechanical behaviours of cells [4–6], where they form a thin crosslinked network ap-
posed to the plasma membrane [7], called the actomyosin cortex. The very rich repertoire of
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contractile networks has also been explored in vitro using purified gels of biological proteins
[8–10]. While in vitro gels have properties that are distinct from those of cytoskeletal acto-
myosin, the geometry of the microstructure and the origins of active stress bear interesting
similarities.

Continuum modelling approaches have been able to reproduce a number of the be-
haviours of the actomyosin cytoskeleton by the introduction of an active stress as a driv-
ing force within a liquid-like material modelling the network [11]. This active stress can
be interpreted as a dynamic prestress [12], allowing to draw analogies with the residual
stress which is observed in solid-like tissue [13, 14]. The theory of active gels [15, 16],
drawing from the hydrodynamics of suspensions of orientable objects endowed with active
stresses [17], has provided a sound thermodynamic framework for the generation of this ac-
tive stress by molecular motors. A link has been done with materials whose microstructure
relies on rigid filaments [18–20]. Actin filaments are semiflexible, however, to the difference
of lamellipodium-like networks [21], the elasticity of crosslinked networks has been shown
to be of entropic nature [22]. It is thus interesting to consider in what measure the entropic
elasticity of the microstructure modifies the constitutive relations of active biopolymer net-
works.

Here, we consider a microstructure of freely-jointed chains, exhibiting entropic elasticity,
which form a percolating network through high-affinity but reversible binding. In addition to
affine deformations, we allow for motion due to the action of active crosslinks, which model
molecular motors. The thermodynamics of this system is then written within the constraints
of this particular microstructure, which allows us to propose microscopic interpretations of
the Onsager relations.

Section 2 presents the kinetic model, its thermodynamics and is concluded with a closed
mechanical model. Section 3 introduces a multiplicative decomposition that allows to re-
cover this model and is convenient for its resolution and for numerical approaches. Section 4
concludes the paper with two simple examples demonstrating the method.

2 A Kinetic Theory of Contractile Biopolymer Networks

2.1 Kinetics of Active Temporary Networks

In this section, we follow the approach of transiently crosslinked networks [23, 24] and
combine it explicitly with an elastic dumbbell model [25–27] to describe the dynamics of
unbound chains. This will make possible the interpretation of the dissipation in the next sec-
tion. The other novelty here is the presence of an additional flux, which represents the active
dynamics of the network. It is not specified in this section how this flux depends on other
fields, this will be done in view of the thermodynamics of the system in Sect. 2.3, allow-
ing us to reconcile phenomenological kinetic approaches [28] with generic thermodynamic
considerations [15].

We consider the biopolymer network as an assembly of polymer molecules of idealised
elastic freely-jointed chains in a viscous liquid (e.g. the cytosol). Each chains can be rep-
resented by an elastic dumbbell [27], that is, a spring joining two beads which can bind to
beads of neighbouring molecules. For each chain, the end-to-end vector ∼R(t) ∈ R

3, called
strand, connects each of the dumbbell beads, see Fig. 1.

We assume a high affinity between the chains and that consequently, a large connected
component of chains forms a macroscopic network. Within this percolated component, each
“bound” strand ∼Rb is assumed to deform affinely with the network. Thus, if the macroscopic
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Fig. 1 Network model.
A, Chains made of a finite
number of freely-jointed
segments. Each is described by
an end-to-end vector ∼R and can
be modelled as a spring. They
can connect to other chains at
their ends. B, If a global
deformation ∼∇∼v exists, bound
chains are affinely deformed,
Eq. (1). The additional active flux

∼ja is described in Sect. 2.3.

C, Unbound end of a chain is
submitted to spring force ∼F s and
to a Brownian force ∼F b .
Unbound chains relax extremely
fast to a configuration where
those forces balance. Bound ends
(configuration 1) unbind at rate
ku and the chain thus relaxes
(configuration 2). They will then
quickly rebind at rate kb
(configuration 3) but do so in
their relaxed state

velocity gradient ≈�
T varies over distances much greater than the typical length of ∼Rb, the

dynamic of ∼Rb is given by:

∼̇Rb
= ≈� · ∼Rb +

∼
ja. (1)

Here
∼
ja represents some active process that remodels the network, yet unspecified, the case

of passive transiently crosslinked networks being
∼
ja = ∼0.

However, transiently, one of the beads in a dumbbell can disconnect from this network,
undergo different dynamics, and then reconnect to it. The rate constants governing connec-
tion and disconnection will be set such that these transients are of short duration, one conse-
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quence being that we do not need to consider the quadratically rare cases where both beads
disconnect. When one of the beads is disconnected, it is subjected to the internal spring force

∼F s exerted by the chain, which remains bound to the network by the other bead, and to the
Brownian force ∼F b due to the thermal fluctuations in the liquid. This can be expressed in a
stochastic differential equation, called a Langevin equation, which governs the dynamics of
the “unbound” strand ∼Ru:

ζ( ∼̇Ru
− ≈� · ∼Ru) = ∼F s + ∼F b, (2)

where ζ is the drag coefficient of the bead in the fluid. The liquid is considered to have the
same velocity locally as the network, thus the viscous drag force on the free end of the chain
is proportional to its velocity relative to ≈� · ∼Ru, where we have again considered that the
variations of ≈� are on a larger spatial scale than the typical | ∼Ru|.

Up to a factor two on the drag coefficient ζ (due to the bound state of one of the beads),
this is the same Langevin equation as the one used to derive dumbbell models [25–27], and
the expressions of the forces are the same:

∼F b = √
2ζkBT

∼
η(t), (3)

∼F s = −κ ∼Ru. (4)

The form of ∼F b , with kB the Boltzmann constant, T the temperature and
∼
η an isotropic white

noise is chosen to guarantee the equipartition of energy in the permanent regime [26] for the
(passive) unbound phase. The strand stiffness κ = 2kBTβ2 is normalized with the thermal
energy where β−1 is a length proportional to the square root of the number of segments in
the chain.

We now introduce the probability densities for a strand to be bound (resp. unbound) and
of a certain length ψb,u(∼r, t)dr = Prob{b,u} · Prob(ri < ∼R(t) · ∼ei < ri + dri). The Fokker-
Planck dynamics associated to the Langevin process (1)-(2) are described by a conservation
equation for each of these probability densities, taking into account the ‘probability cur-
rent’ defined by the Langevin process and the exchanges between the two states, bound and
unbound. They take the form:

∂ψb

∂t
+ ∼∇r ·

(
ψb(≈� · ∼r +

∼
ja)

)
= −kuKu(ψu,ψb), (5a)

∂ψu

∂t
+ ∼∇r ·

(
ψu

(
≈� · ∼r − (κ/ζ )∼r

) − (kBT /ζ ) ∼∇rψu

)
= kuKu(ψu,ψb), (5b)

where the left hand sides are obtained in the absence of exchange terms between the bound
and unbound states [29] and a reaction term kuKu appears on the right hand side in order
to model binding and unbinding. The characteristic time for this process is the unbinding
rate ku. In the sequel we will take the simplest possible reaction term, Ku = ψb − (kb/ku)ψu,
with kb a constant binding rate. Note that the total probability distribution of the two popu-
lations, ψ = ψu + ψb, is such that

∫
R3 ψ dr = 1.

We now consider the limit of low drag resistance to the motion of unbound chains: this
corresponds to a fast relaxation to equilibrium, happening before a chain rebinds to the net-
work, and thus ζkb/κ � 1. As already stated, the unbinding process is assumed to be slower
than the binding one, ku � kb, which is necessary to obtain a large connected component
forming the network. We additionally restrict ourselves to rates of flow which cannot ex-
ceed the binding rate, |≈�| � kb , to prevent mechanical rupture. Under these conditions, we
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can then expand ψu as ψu = auψ0 + O(ζkb/κ) where ψ0(∼r) is time-independent and solves
Eq. (5b) to the first order, see Appendix A. The fraction of bound chains au is found to
tend to a permanent regime value characterised by

∫
R3 Ku(ψu,ψb) dr = 0. For our choice

of Ku, this results in au = ku/(kb + ku). We will often consider the case ku � kb, since this
simplifies some of the expressions.

The time dependent part of ψ is thus reduced to ψb, and from Eq. (5a) we have:

∂ψb

∂t
+ ∼∇r ·

(
ψb(≈� · ∼r +

∼
ja)

)
= −kuK0(ψb) + O

(
ζkbku

κ

)
. (6)

For
∼
ja = ∼0 and since the first order approximation is kuK0(ψb) = kuψb − kbauψ0, Eq. (6)

is the same Smoluchowski equation as found by [24] for ψb, this is known to lead to the
upper-convected Maxwell constitutive equation for stress–strain relation [26, p. 168], with a
relaxation time equal to k−1

u . Note that the upper-convected Maxwell stress–strain relation,
with relaxation time equal to ζ/κ , is also the result for unbound chains only, i.e. Eqs. (5b),
with Ku = 0 but finite ζ .

2.2 The Stress Tensor

Elastic forces in stretched polymer chains result in a stress in the network, which can be de-
scribed using the distribution ψ and the spring force ∼F s . The classical derivation of the stress
tensor uses the procedure of integrating the forces exerted by this distribution of springs on
an elementary volume, but the same result can be obtained using the virtual work principle
[26, p. 33]. As will be seen below, this is useful in the context of active systems.

For our isothermal system, the total dissipation can be written as:

D = δW

δt
− dF

dt
≥ 0

where the terms are respectively the rate of work and the Gibbs free energy variations. The
system is actually open, since an energy input from the outside maintains out of equilibrium
a chemical reaction feeding the power strokes of molecular motors [30], which are modelled
with the term

∼
ja. When this reaction is maintained at a fixed distance from equilibrium, we

include the energy exchange term with the environment in F , as classically done in the
active gel theory [15]. This will be specified in Sect. 2.3.

We now proceed to determine the rate of work. Let �(t) be the domain occupied by the
material at time t . The trajectory of material points of the network is denoted ∼x =

∼
χ( ∼X, t) ∈

�(t) where ∼X ∈ �(0) is the initial position at time t = 0. We define the deformation gradient
as ≈F( ∼X, t) = ∼∇X ∼

χ( ∼X, t)T, with the convention ∼∇X ∼U = ∑
i,j ∂Uj/∂Xi∼ei∼ej . We follow the

conventions of [27] among others, notably the outer (dyadic) product is implied between
vectors, ∼U ∼V = ∑

i,j UiVj ∼ei∼ej while · denotes the scalar product of vectors, the tensor–
vector product and the contracted product of second order tensors ≈T · ≈S = ∑

i,j,k Ti,kSk,j ∼ei∼ej .
Finally, : is the doubly contracted product, ≈T : ≈S = ∑

i,j Ti,j Sj,i .
The velocity is

∼v =
∂

∼
χ

∂t
(

∼
χ−1(∼x, t), t),

and we identify ≈� = ∼∇x ∼v
T. To remain in the conditions above, it is assumed that ≈F( ∼X, t)

varies in space over distances much longer than the typical length of a strand ∼R. We assume
that inertia and body forces acting on the system are negligible, leading to the momentum
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balance equations:

∼∇x · ≈τ = ∼0 in �(t) (7a)

≈τ · ∼n =
∼
f ext on ∂�(t) (7b)

where
∼
f ext are the external forces applied on the system’s boundaries and ≈τ the Cauchy

stress tensor.
Let us denote ν(∼x) the number of chains per unit volume within �(t). Mass conservation

gives

∂ν

∂t
+ ∼∇x · (ν∼v) = 0 in �(t) (8a)

ν(∼v − ∼vb) · ∼n = 0 on ∂�(t) (8b)

ν(t = 0) = ν0 in �0 = �(0) (8c)

where ∼vb(t) is the velocity of ∂�(t), which from the above has its normal component equal
to ∼v.

The rate of work is equal to the work performed on the system’s boundary, and from
Eqs. (7a) and (7b) and using the symmetry of ≈τ ,

δW

δt
=

∫

∂�(t)
∼
f ext · ∼vb ds =

∫

�(t)
≈τ : ≈d dx (9)

with ≈d = 1
2 (≈� + ≈�

T).
We now write the Gibbs free energy of the whole system:

F =
∫

�(t)

νϕ dx.

The specific free energy density ϕ can be decomposed as ϕ = ϕe + ϕa, where ϕa represents
anelastic contributions, which we will relate to active processes in Sect. 2.3, and ϕe is the
specific elastic free energy density. Following [26, p. 33], it is:

νϕe :=1

2
νκ

∫

R3
ψ(∼r)r2 dr,

where r2 = ∼r · ∼r .
The free energy variations are:

dF
dt

=
∫

�(t)

(
∂ν

∂t
ϕ + ν

∂ϕ

∂t

)
dx =

∫

�(t)

ν
dϕ

dt
dx (10)

where we have used Eq. (8a) and one integration by parts.
Since in the limit ζkb/κ → 0, ψu is time-independent, the elastic contributions to free

energy density variations can be deduced from the Smoluchowski Eq. (6):

ν
dϕe

dt
= 1

2
νκ

∫

R3

∂ψb

∂t
r2 dr

IbP= 1

2
νκ

∫

R3
ψb(∼r · ∼∇x ∼v +

∼
ja) · ∼∇rr

2 dr − 1

2
νκku

∫

R3
K0(ψb)r

2 dr

= νκ

(
〈∼r∼r〉b : ≈d + 〈

∼
ja · ∼r〉b − 1

2
ku

∫

R3
K0(ψb)r

2 dr

)
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where 〈 · 〉b = ∫
R3 ψb · dr . It is thus the second moment of the distribution of bound strands,

≈A = 〈∼r∼r〉b, which is conjugated with the rate of strain ≈d . This tensor ≈A is called the mi-
crostructure (or texture) tensor [31] of the network.

We are now in a position to identify the different terms in the dissipation,

D = Dw +Dr +Da,

where the first term is a dissipation induced by the deformation rate:

Dw =
∫

�(t)

(

≈τ − νκ ≈A
)

: ≈d dx,

the second term is a dissipation associated with the relaxation of chains via the unbinding–
rebinding dynamics:

Dr = 1

2

∫

�(t)

νκku

∫

R3
K0(ψb)r

2 dr dx

and the third is the power balance of active processes:

Da = −
∫

�(t)

ν

(
dϕa

dt
+ κ〈

∼
ja · ∼r〉b

)
dx.

One can further decompose the stress term into deviatoric and isotropic components,

Dw =
∫

�(t)

(
dev(≈τ − νκ ≈A) : ≈d + 1

3
tr(≈τ − νκ ≈A)≈I : ≈d

)
dx.

In what follows we choose to treat the case of an incompressible material only, which yields

≈I : ≈d = ∼∇ · ∼v = 0 and cancels the second term of the integrand. This is enforced by a pres-
sure p as a Lagrange multiplier. Following e.g. [27], we decompose the stress ≈τ = −p≈I + ≈σ
where ≈σ is the so-called extra stress tensor. In order to guarantee Dw ≥ 0, the extra stress
tensor can then be chosen as ≈σ = νκ( ≈A − ≈A0) + 2μ≈d , where μ introduces an additional
dissipation not related with the microstructure, typically ascribed to a shear viscosity of the
liquid bath. Incompressibility implies that isotropic terms in the stress are not contributing
to the dissipation. We have thus introduced an arbitrary isotropic tensor ≈A0 = a0β

−2
≈I, and

we will see in the next section that the relaxed state of the chains prescribes a nonzero a0.
We obtain

Dw =
∫

�(t)

2μ≈d : ≈d dx ≥ 0,

thus only the liquid bath may contribute to a dissipation induced by the rate of deformation.

2.3 Active Terms: Molecular Motors as Crosslinks

We now turn to the modelling of the molecular motors. We have assumed that their effect
was felt through a flux

∼
ja in the dynamics of bound chains, Eq. (1), since indeed myosin

minifilaments are a crosslinking type of molecular motors which can actively displace their
binding position along either of the actin filaments they are bound to during events called
power-strokes [32]. We now investigate what form of

∼
ja is admissible from a close-to-

equilibrium thermodynamics point of view.
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The power-stroke process is driven by a chemical reaction in which ATP hydrolysis into
ADP releases mechanical energy in myosin motor heads. The internal energy that fuels this
reaction can be written as the product of the average advancement of the reaction 〈ξa〉b

and an affinity �μ, ϕa = −�μ〈ξa〉b. Following [15], we consider that �μ is maintained a
constant throughout the process.

We now resort to an Onsager approach to determine the active flux
∼
ja specifying the

power balance of the molecular motors,

Da =
∫

�(t)

ν
(
�μ〈ξ̇a〉b − κ〈

∼
ja · ∼r〉b

)
dx.

Since ∼F s = −κ∼r ,

�μ〈ξ̇a〉b − κ〈
∼
ja · ∼r〉b =

∫

R3

(
�μξ̇a + ∼F s ·

∼
ja

)
ψb dr,

making apparent the pairs of conjugate fluxes and forces (ξ̇a, �μ) and (
∼
ja, ∼F s). In the same

way as [33], we thus expand linearly the fluxes as:

∼
ja = λ11 ∼F s + ∼λ12�μ, (11a)

ξ̇a = ∼λ21 · ∼F s + λ22�μ. (11b)

The coefficient λ11 ≥ 0 describes a slippage friction of the bound crosslinkers with re-
spect to the polymer strand, which may constitute an additional source of relaxation of the
network along with the unbinding–rebinding process. We can characterise it with a rate
1
2ks and a typical energy of the strands κβ−2, yielding λ11 = ks/(2κ). The other dissipa-
tive coefficient λ22 ≥ 0 corresponds to the dissipation in the chemical reaction itself. As the
dissipation Da is positive,

λ22λ11 ≥ ∼λ21 · ∼λ12. (12)

Following Onsager symmetry relations [34], we take equal reactive coefficients ∼λ12 = ∼λ21.
Since they are vectorial, a vector quantity has to be constructed at the microscale. One
possibility is to use the strand vector ∼r itself, which corresponds to the assumption that
the orientation of ∼r has a microscopic relevance. This is true for actin filaments, which are
oriented, and myosin molecular motors which are able to sense this orientation. We call
this the processive flux, use again κβ−2 as the typical strand elastic energy to normalise the
coefficients,

∼λ12 = vaβ
3

κ
θ(r)∼r,

∼
ja =

(
vaβ

3�μ

κ
θ(r) − 1

2
ks

)

∼r,

ξ̇a = −vaβ
3θ(r)r2 + λ22�μ,

where θ is some nondimensional function of ∼r and we have introduced the velocity of pro-
cessivity of motors va, which, in the absence of slippage, can be related to the rate of detach-
ment ku by the distance ℓa that motors travel along a strand before detaching, ℓa = va/ku.
If there is a nonzero slippage rate ks, we can interpret a distance ℓa = va/(ku + ks) in a
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similar way. The specific energetic contribution of the flux
∼
ja can then be characterised as

proportional to:

〈∼r ·
∼
ja〉b = ku + ks

2 ≈Aa : ≈I − ks

2 ≈A : ≈I with ≈Aa = 2ℓaβ
3�μ

κ
〈θ(r)∼r∼r〉b. (13)

The slippage introduced by ks thus results in a dissipation, whereas the first term is the trace
of what we define as a contractility tensor ≈Aa. We already define an associated active stress
tensor ≈σ a = νκ ≈Aa, which will be useful in Sect. 2.4.

One interesting case is to take θ(∼r) = 1/(βr)2. Indeed, we then have

∼
j 0

a = (ku + ks)ℓa
β�μ

κ|∼r|
∼r

|∼r|
where the motors follow the filament direction ∼r/|∼r| but proceed with a velocity that de-
creases hyperbolically with increasing strand tension κ|∼r|. The microstructure contractility
tensor and active stress that arise can then be explicited as:

≈Aa = 2ℓaβ�μ

κ
〈

≈
Q〉b, ≈σ a = 2νℓaβ�μ〈

≈
Q〉b.

with 〈
≈
Q〉b = 〈∼r∼r/r2〉b the orientation tensor of the network, and is seen, for this particular

choice of θ , to be independent of how much the network is stretched. Note that the ‘stalling’
behaviour of the motors in

∼
j 0

a does not explicitly appear at the macroscopic scale, and con-
versely we have shown previously that macroscopic stalling can be a collective effect which
is only modulated by molecular-scale stalling [28]. At the microscopic level, the thermody-
namic inequality (12) on λ22 implies that this choice of θ(r) is only valid if the network can
be shown not to collapse, |r| ≥ r0 > 0.

The total contribution of active terms to dissipation is:

Da =
∫

�(t)

ν(ks ≈A : ≈I−2vaβ
3�μ + λ22�μ2) dx

and is positive under the condition that:

λ22 ≥ 2(ku + ks)
2ℓ2

a

kskBT
(2πβ−1‖ψb‖∞ + β2) ≥ 2(ku + ks)

2ℓ2
a

kskBT

〈
1

r2

〉

b

. (14)

In what follows, we occasionally take the limit ks � ku whereas ku is close to the charac-
teristic time of the processes of interest, implying that (ℓaβ)2 is small, limiting in turn the
magnitude of ≈σ a. Note however that this is only for comparison with passive systems, since
it simplifies the expression of factors, but it is in no way necessary.

Other choices are possible for the reactive coefficient ∼λ12, see Appendix B. In particular,
a model of “diffusive” flux along the filaments leads to the same form of the contractility
tensor and active stress but a different prefactor. The orientation tensor 〈

≈
Q〉b = 〈∼r∼r/r2〉b can

be seen as a generalisation of the nematic tensor, in that it allows e.g. isotropy in a plane
tangential to a surface.

Note that the velocity va and corresponding length ℓa can depend on the position
in physical space, e.g. they may depend on the local concentration of some catalytic
species.
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2.4 Constitutive Equation of Active Networks

Having defined the stress tensor in Sect. 2.2, we can proceed with the usual procedure of
bead–spring models in order to determine the constitutive equation that relates stress and
strain, and which consists in multiplying the Smoluchowski Eq. (6) by the tensor ∼r∼r and
integrating over the phase space. This yields:

d ≈A

dt
− ≈� · ≈A − ≈A · ≈�

T = −ku

∫

R3
K0(ψb)∼r∼r dr + 〈∼r ∼

ja +
∼
ja∼r〉b, (15)

where the tensor 〈∼r∼
ja +

∼
ja∼r〉b is the only new term compared to [26, p. 44]. From (13), we

have 〈∼r∼
ja +

∼
ja∼r〉b = (ku + ks) ≈Aa − ks ≈A.

We denote the upper-convected derivative of a tensor ≈T by

�
≈T = d ≈T

dt
− ≈� · ≈T − ≈T · ≈�

T, (16)

The fact that this particular objective derivative arises is due to the contra-variant nature
of the vector ∼R which represents the fibrous microstructure [35]. It is thus not an arbitrary
choice but an intrinsic property of materials formed of a network of entropic chains. Note
also that the nonlinearity in Eq. (16) is not likely to be eliminated by an order of magnitude
analysis: indeed, if the shear rate is of order 1/T , then both the partial derivative in time and
the velocity gradient ≈�

T are of order 1/T . The legitimate linearisation of such a viscoelastic
constitutive equation is thus a purely viscous constitutive equation.

Since we have chosen to assume constant rates of binding and unbinding, K0 = ψb −
au(kb/ku)ψ0, we obtain that

−ku

∫

R3
K0(ψb)∼r∼r dr = −ku ≈A + aukbβ

−2
≈I.

Altogether, this leads to:

τ
�
≈A = ≈A0 − ≈A + ≈Aa, (17)

where we have identified ≈A0= aukb/(ku + ks)
〈
∼r∼r

〉
0

as the long-time limit of ≈A in the absence
of flow and activity, thus corresponding to relaxed chains. Comparing with Sect. 2.2 and

since 〈∼r∼r〉0 = β−2

2 ≈I, we set a0 = aukb/(2ku + 2ks) � 1
2 for ks � ku � kb. We have defined

the relaxation time of the network as τ = (ku + ks)
−1, thus based on the average rate of the

unbinding-rebinding process and of the internal slippage process.
We can also rewrite the specific free energy as the sum of the entropic energy of bound

and unbound chains,

ϕe = κ

2

∫

R3
(ψb + ψu)r

2 dr = κ

2
tr ≈A + 3

2
aukBT .

Using the definition of ≈σ , and observing that
�
≈I = −2≈d , we find:

τ
�
≈σ + ≈σ = 2τG≈d + ≈σ a (18)

in the case when μ = 0, which is the upper-convected Maxwell constitutive equation with
relaxation time τ and short-time elastic modulus G = kb

ku
auνkBT �νkBT for ku � kb. The
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Oldroyd-B model can be obtained with a nonzero liquid bath viscosity μ. There is a sin-
gle relaxation time that appears in this model, which combines two relaxation processes
of different nature (unbinding/rebinding ku and internal slippage ks). One could consider
extensions to multiple relaxation modes in the spirit of the Lodge model [25, 36] or other
models involving multiple crosslinks per chain [37]. If

∼
ja is nonzero, there is an additional

term, ≈σ a = νκ ≈Aa that can be interpreted as a dynamic prestress [12] and can be identified
with the active stress of the active gel theory [15].

2.5 Dissipation and Viscoelastic Relaxation

Using the definition of ≈A and ≈A0, we evaluate the part of the dissipation which is due to the
unbinding–rebinding dynamics:

Dr = 1

2

∫

�(t)

kuνκ( ≈A − ≈A0) : ≈I dx.

The term − νκ
2 ≈A0 : ≈I = − 3

2 νkBT for ks � ku � kb, corresponds to the thermal energy due to
the equipartition of the unbound chains with the bath. It is thus a lower bound for the elastic
energy νκ ≈A. See [38] and Appendix C for a proof that this is the case with ≈A obeying (17)
as long as the initial condition is admissible, det( ≈A(t = 0)) ≥ det( ≈A0), and only if the active
stress is contractile, that is ≈Aa positive semi-definite.

Note that as seen in Sect. 2.3, the active crosslinkers are thermodynamically required to
have a ‘slippage’ rate which has a dissipative trace of the form 1

2ksνκ ≈A : ≈I similar to the
relaxation via unbinding, 1

2kuνκ ≈A : ≈I. This combination gives the final relaxation time of the
network τ = (ku + ks)

−1 in (17).
We can make use of the relaxation Eq. (17) to justify that Dr corresponds to viscoelastic

relaxation:

Dr = 1

2

∫

�(t)

νκku(−τ
�
≈A + ≈Aa) : ≈I dx.

Thus, in the passive viscoelastic case ≈Aa = ≈0, the relaxation term is indeed proportional to

the (negative) trace of
�
≈A corresponding to the microstructure dissipating elastic energy. In

the active case where ≈Aa = ≈0 and is positive semi-definite, we still have Dr ≥ 0, however the
active strain is superimposed to the relaxation dynamics.

2.6 Summary

Here we take the limit ks � ku � kb, and hence τ = 1/ku, and summarise the equations to
obtain a closed model. The flow rate has to be such that | ∼∇∼v| � kb. The total specific free
energy is then

ϕ = ϕe + ϕa = κ

2
tr ≈A(x, t) − �μ〈ξa〉b(x, t), (19)

where κ = 2kBTβ2. The thermodynamics of the system constrains the time evolution of the
microstructure tensor ≈A, which relaxes towards a state that can be prestrained by molecular
motors with the dynamics given in Eq. (17),

τ
�
≈A = − ≈A + ≈A0 + ≈Aa,
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where the microstructure passive equilibrium tensor is ≈A0 = β−2

2 ≈I. The contractility is

≈Aa = a2
a 〈 ≈

Q〉b, where a2
a = 2ℓaβ�μ/κ characterises the motor activity. The orientation ten-

sor 〈
≈
Q〉b = 〈∼r∼r/r2〉b is not equal to the microstructure tensor ≈A = 〈∼r∼r〉b. It can in some

cases be deduced from the symmetries of the flow, see Sect. 4 and e.g. [39]. It is also some-
times assumed to be isotropic. It could also be approximated to ≈A/( ≈A : ≈I), or finally could
be calculated using a multiscale model that would solve Eq. (6) explicitely [40].

The density of chains evolves with

∂ν

∂t
+ ∼∇ · (ν∼v) = 0. (20)

The total stress tensor is −p≈I + ≈σ , where the extra stress ≈σ originates from the network
configuration and from possible viscous contributions,

≈σ = νκ( ≈A − ≈A0) + 2μ≈d, (21a)

and the pressure p is the Lagrange multiplier that ensures

∼∇ · ∼v = 0. (21b)

Initial conditions are required for ν and ≈A. The momentum balance and associated boundary
conditions are given in Eqs. (7a) and (7b), which allows to solve for the velocity ∼v.

The present model Eqs. (17), (21a)–(21b), (7a)–(7b), (20) can thus be solved for the time
evolution of the microstructure tensor ≈A and extra stress tensor ≈σ and pressure p, network
velocity ∼v and density ν. Note that Eqs. (17), (21a)–(21b) can be combined to eliminate the
microstructure tensor ≈A and solve directly in terms of the extra stress ≈σ , giving Eq. (18).

When the characteristic time of the flow is very long compared to the relaxation time τ ,
a viscous limit of Eq. (18) eliminating τ

�
≈σ but retaining the anisotropic active stress ≈σ a

can be taken, this is the model used e.g. in [39]. Otherwise, the nonlinear objective deriva-
tive

�
≈σ = d ≈σ/dt − ( ∼∇∼v)T ≈σ − ≈σ ∼∇∼v is required in order to account for the entropic nature

of the microstructure. This is the case even when the problem can be reduced to a one-
dimensional case ( ≈σ = σxx∼ex∼ex , ∼v = vx∼ex ) [28, 41] since, contrarily to the co-rotational
objective derivative [42], a nonlinear coupling remains in the longitudinal component
(
�
≈σ )xx = dσxx/dt − 2(∂xvx)σxx . Taking values from e.g. recoil after laser ablation of ac-

tomyosin experiments [43], one can estimate that the order of magnitude of this nonlinear
term is similar or larger than the viscous one. This could provide an alternative way to test
experimentally whether a biopolymer network exhibits entropic or enthalpic elasticity.

3 Multiplicative Strain Decomposition Framework

Multiplicative decomposition of the deformation gradient is commonly used for thermoelas-
ticity and elastoplasticity applications [44]. It has also proven very useful in biomechanics,
where the main applications have been the understanding of residual stress originating from
growth in soft tissue [1, 45] but also plants or hard tissue [46]. In these contexts, growth is
then considered as a prestrain. Prestrain can also be used to model contractility, as e.g. in
[47], and indeed there exist formal analogies [12].

For liquid-like systems, an additional phenomenon is the microstructure relaxation. Many
numerical models that aim at reproducing the phenomenology of microstructure relaxation
use an algorithm that can formally be likened to morphoelasticity: at each time step, solve
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Fig. 2 Multiplicative
decomposition of the
deformation gradient for
viscoelastic active fluids

for the elastic deformation relative to some intermediate configuration, this configuration
being the equilibrium configuration of the previous time step. Formally, this corresponds
to a morphoelastic model where the anelastic defomations are the viscous-like deformations
cumulated through time. This is extremely convenient for e.g. the dynamics of slender liquid
visco-elastic structures [48, 49]. However this approach is very crude in the sense that it
cannot describe any dynamics at a characteristic time close or smaller than the relaxation
time of the material, and of course that its thermodynamics are uncontrolled. Recently, a
multiplicative strain decomposition has been introduced [50] for viscoelatic liquid models.

Here, we make use of the multiplicative decomposition of the deformation gradient for-
malism and derive the evolution equation of the anelastic part of the deformation so that it
matches the active viscoelastic model developed in the previous section.

We choose the decomposition as ≈F = ≈Fe · ≈Fva, illustrated in Fig. 2, where ≈Fe corresponds
to elastic deformations of the microstructure, and ≈Fva corresponds to both viscous-like de-
formations due to the relaxation of the elastic microstructure and active deformation due to
a chemically-driven growth or contraction of the microstructure. Our objective is to obtain
a set of equations equivalent to the model of Sect. 2.6 in terms of (≈Fva, ≈Fe,p).

The tensor ≈A is by construction symmetric and positive semidefinite (and positive definite
as long as Suppψb has nonzero measure, which can be ensured by smooth initial conditions
and the affine or diffusive nature of the fluxes in Eq. (6)). Thus Cholesky factorisation guar-
antees the existence of an upper triangular tensor ≈U such that ≈A = ≈U

T · ≈U. Thus we can

define ≈Fe so that ≈A is either α ≈F
T
e · ≈Fe or α ≈Fe · ≈F

T
e , with α a constant, imposing that the upper

diagonal matrix in the QR-decomposition of ≈Fe is ≈U. Since in both choices, the invariants

≈F
T
e · ≈Fe : ≈I = ≈Fe · ≈F

T
e : ≈I = ≈Fe : ≈Fe are identical, we make our choice in order to be able to define

the corresponding ≈Fva conveniently. As in [51], we remark that the (Eulerian) left Cauchy–

Green tensor ≈B = ≈F · ≈F
T is such that ≈̇B = ≈� · ≈B + ≈B · ≈�

T and thus, that its upper convected

derivative is zero, which guides us to choose ≈Fe such that ≈Fe · ≈F
T
e = α ≈A.

As a result, ≈A = α−1
≈F · ≈C

−1
va · ≈F

T with ≈C
−1
va = ≈F

−1
va · ≈F

−T
va , and by derivation

�
≈A = ≈̇A − ≈� · ≈A − ≈A · ≈�

T = α−1
≈F · d ≈C

−1
va

dt
· ≈F

T
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which allows to use Eq. (17) to set the dynamics of ≈C
−1
va ,

τ ≈F · d ≈C
−1
va

dt
· ≈F

T = −≈F · ≈C
−1
va · ≈F

T + α ≈A0 + α ≈Aa

which yields, since ≈A0 = a0β
−2

≈I,

τ
d ≈C

−1
va

dt
= − ≈C

−1
va + αa0 ≈C

−1 + α ≈F
−1 · ≈Aa · ≈F

−T. (22)

where α remains to be determined. In the permanent regime and in the absence of activ-
ity ≈Aa, elastic strains relax and thus ≈C

−1
va tends to ≈C

−1. We thus set α = β2a−1
0 using this

limit behaviour. For kb � ku, this is thus α = 2β2. For convenience, we define the active
strain tensor ≈Ea = −α ≈Aa. Since our theory requires that ≈Aa is positive semi-definite (Ap-
pendix C), ≈Ea is negative. Thus, the active stress ≈σ a defined in Sect. 2.4 is ≈σ a = −G ≈Ea. Note
that our model of active crosslinkers leads to nonpositive eigenvalues of ≈Ea (interpreted as a
contractile, thus negative, prestrain) and hence nonnegative ones of ≈σ a.

In summary, the model of Sect. 2.6 can now be rewritten using the multiplicative decom-
position. Given ≈Ea, G, μ, τ , find ( ≈Cva, ∼u,p) such that:

τ
d ≈C

−1
va

dt
= − ≈C

−1
va + ≈F

−1 · (≈I − ≈Ea) · ≈F
−T, (23a)

∼∇ · ≈σ [ ≈C
−1
va , ∼u] − ∼∇p = ∼0, (23b)

det ≈F[∼u] = 1, (23c)

where

≈σ = G(≈Be[∼u] − ≈I) + μ(≈� + ≈�
T), (23d)

≈F = ≈I + ∼∇∼u
T, ≈Be = ≈F · ≈C

−1
va · ≈F

T, ≈� = ≈̇F · ≈F
−1, (23e)

subject to an initial condition on ≈Cva and boundary conditions on (≈σ − p≈I) · ∼n. As discussed
above, if ≈Fva and ≈Fe are needed, then it has to be noted that any local rotation ≈O(x) of the
intermediate configuration is permitted, since for ≈O an orthogonal matrix, ≈F

′
e = ≈Fe · ≈O and

≈F
′
va = ≈O

T · ≈Fva are also solutions of the problem with unchanged ≈F, ≈Be, ≈Cva. To fix this, one

can e.g. impose that ≈F
T
e is upper-triangular with positive diagonal coefficients.

4 Example Applications

We present here two examples in which the dynamics of an actively contractile structure
can be solved in a straightforward manner thanks to the multiplicative decomposition of the
deformation gradient. Anisotropic geometry and anisotropic contractility is present in both
examples, either in aligned or orthogonal configurations. In both examples we neglect the
liquid bath viscosity μ and take the orientation tensor 〈

≈
Q〉b as a given input.
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4.1 Actin Stress Fibres: An Active Viscoelastic Beam in an Elastic Environment

We model a slender active viscoelastic beam, which can for example represent a stress fibre
in a cell with adhesion at its ends only [52]. It initially spans the distance from (−L0,0,0)T

to (L0,0,0)T and has radius r0.
We assume that the chains within the beam are all oriented along the main axis x of

the beam, leading to 〈
≈
Q〉b = ∼ex∼ex and ≈Ea = −a2

∼ex∼ex . The external forces are supposed to
be zero along the beam itself (no friction), except for tractions ±F∼ex = ±ksL0(1 − λx)∼ex

applied at each end x = ±L0 of the beam and which correspond to the elastic resistance
to the deformation of the environment which behaves as a spring of stiffness ks . We define
Es = ksL0/(πr2

0 ).
With this geometry and restricting load to the longitudinal direction only, the deformation

gradient and stress tensors are diagonal tensors, ≈F = diag(λx, λr , λr) and G(≈Fe · ≈F
T
e − ≈I) =

diag(σxx, σrr , σrr ). Thus ≈Fe · ≈F
T
e is diagonal, and we can choose ≈Fe = diag(αx,αr , αr), ≈Fva =

diag(γx, γr , γr ). By definition, λi = αiγi , i ∈ {r, x}.
We have the equilibrium equations:

G(α2
x − 1) − p = Es(1 − λx)λ

−2
r (24)

G(α2
r − 1) − p = 0 (25)

λ2
r λx = 1 (26)

Thus, subtracting the r equation from the x one to eliminate pressure, and using the incom-
pressibility condition,

λ2
x − λx + G

Es

(α2
x − α2

r ) = 0.

From Eq. (23a), we have:

2τ γ̇x = (α2
x − 1 − a2)α−2

x γx (27)

2τ γ̇r = (α2
r − 1)α−2

r γr (28)

For a ≤ ac = √
Es/(4G), there is an admissible long times solution with α2

x = 1 + a2,
αr = 1, for which γi > 0 and leading to λx = 1

2 (1 + √
1 − 4Ga2/Es). See Fig. 3B,C for the

dynamics leading to that asymptotic state. For a > ac , the beam reaches length L0/2 in finite
time, which (provided that 〈

≈
Q〉b is unchanged) leads to a catastrophic collapse: indeed, the

broadening section of the beam then dominates over its shortening, and the external traction
(per unit surface of the section) then decreases with increasing deformation. The external
traction is thus unable to balance the internal contractile stress for any deformation and the
material flows towards a zero length of the “beam”.

The relevance of this model for actomyosin-based systems is discussed in [28], where
we also find that a viscoelastic liquid material with an internal active stress adapts in length
to the external stiffness Es . It may also be seen as a modelling framework for the so-called
actin ventral stress fibres [53, 54].

4.2 Apical Luminal Surface: Actively Contractile Spherical Shell

Next, we turn to a 3D case where contractility is tangential to the surface of the structure.
This can be inspired e.g. by the apical surfaces of cells organised as a spherical monolayer
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Fig. 3 Uniaxially contractile beam interacting with an elastic environment. A, The initial configuration �0
of the beam, before the active strain ≈Ea has been applied, is chosen here at equilibrium with the external
springs. The visco-active deformation ≈Fva(t) gives the intermediate virtual configuration �va(t), a config-
uration which is not compatible with the external forces and does not obey incompressibility. The elastic
deformation ≈Fe(t) restores both of these requirements in the current configuration �(t). The time evolution
of ≈Fva(t) is prescribed by the relaxation dynamics of the microstructure ≈A towards a state where the elastic
stress is equal to the active stress, ≈σ (teq) = νκ(≈A(teq)− ≈A0) = −G≈Ea. B-D, Dynamics for a contractile strain

≈Ea = −a2
∼ex∼ex for different values of a and G/Es = 1. In all cases, the contractile strain drives an initial

decreasing γx (active shortening) which is partly balanced by an increasing αx (elastic stretch), resulting in
a lesser shortening of the current configuration λx . Incompressibility imposes a swelling in the radial direc-
tion, λr > 1, which after a transient elastic stretch αr > 1 drives a viscoelastic relaxation towards γr = λr .
B, for a = 0.1, the contraction is 90% of the final contraction at t ≈ 17τ . C, for a equal to the critical value
ac ≈ 0.35, the contraction is 90% of the final contraction at t ≈ 195τ . D, for a contractility slightly above the
critical value, the contraction reaches the critical value 0.5 at t ≈ 229τ , the beam then collapses tending to 0
length while the radial stretch diverges

around a central lumen in a cyst [55], which can be represented by a thin, closed surface
in elastic interaction with a spherically shaped basement membrane that contains it. For
simplicity we will treat this surface as perfectly permeable, in reality the water flux itself is
under an active control.

Figure 4 illustrates this spherical shell geometry, with initial outer radius ρ(t = 0) = ρ0

and finite thickness h(t = 0) = h0 � ρ0. We assume that it contracts tangentially in an
isotropic manner and consider only solutions retaining spherical symmetry. Their stability
will be studied elsewhere. Thus, ≈Ea = − 1

2a2(≈I − ∼er∼er ). The elastic interaction with a fixed
outer sphere of radius ρ0 is modelled by a Winkler elastic foundation characterised by a
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Fig. 4 Tangentially contractile sphere bound elastically to a fixed sphere. A, The initial, intermediate and
current configurations of the contractile sphere. In the current configuration, mechanical balance with the
Winkler foundation which binds it to a fixed sphere of radius ρ0 has to be verified. B,C, Dynamics for
ac = √

2/2 and an orthoradial contractile strain ≈Ea = − 1
2 a2(≈I − ∼er∼er ) with two different magnitudes of a,

respectively below and above the critical value ac . Transient behaviours similar to the case of the contractile
beam are observed, although the axes in which they appear differs due to the different geometry and active
stress orientation

spring stiffness ks and a density �0 on the outer sphere, and thus �s = �0(ρ0/ρ)2 on the
outer surface of the shell. The boundary conditions are thus,

≈τ (ρ) · ∼er = fext∼er = Es

ρ0(ρ0 − ρ)

ρ2 ∼er , ≈τ (ρ − h) · ∼er = ∼0,

with Es = �0ρ0ks . Spherical symmetry imposes that ≈τ and ≈F = diag(λr , λ⊥, λ⊥) are di-
agonal tensors. Hence, the current configuration is a spherical shell of outer surface area
4π(λ⊥ρ0)

2, and thus radius ρ = ρ0λ⊥ and thickness h = h0λr = h0/λ
2
⊥. From (23d) and

≈Fe being chosen upper diagonal, it must have the form ≈Fe = diag(αr , α⊥, α⊥) and hence

≈Fva = diag(γr , γ⊥, γ⊥).
For small h0, we expand τrr = fext(r − ρ + h)/h + O(h2

0) and the mechanical balance
along the radial direction gives:

0 = [ ∼∇ · ≈τ ]r = fext

h
− 2G

r
(α2

⊥ − 1)

which results in an algebraic equation linking α⊥ and λ⊥. As above, (23a) gives evolution
equations for (γr , γ⊥) which allow to solve the dynamics (see Fig. 4B) and find a nondegen-
erate steady state for a2 ≤ a2

c = 4h0G/(ρ0Es),

α⊥ =
√

1 + a2

2
, αr = 1, λ⊥ = 1

2

(

1 +
√

1 − a2

a2
c

)

, λr = 1/λ2
⊥.

For a > ac , the shell collapses (Fig. 4C). Qualitatively, we obtain analogous phenomena as
in the above case of the active beam, with a rich dynamical behaviour which can be solved
in a convenient way thanks to the deformation gradient decomposition.
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5 Conclusions

In this paper, we derive the specific shape and dependences on microscopic processes of
active terms that are present in linearisations of the active gel theory [15] while ensuring
that they are consistent with thermodynamical requirements. Rather than start from the free
energy of nematic liquid crystals [15, 56], where no stretching of the microstructure is pos-
sible, we start from the entropic elasticity of Gaussian chains that model the actin filaments
between two crosslinks. This possibility of stretching the filaments is at the origin of the spe-
cific shape of the objective derivative in the constitutive equation [35], whose nonlinearities
are negligible only in the purely viscous limit. Thus, whenever the timescale of the process
at play is comparable to the relaxation time, the correct form of the constitutive equation
is an upper-convected viscoelastic liquid material law. The model we derive here has a sin-
gle relaxation time, however similar extensions as those of the Lodge network model [27,
p. 120] can be relevant for biopolymers [37], and could allow to fit the fractional exponents
observed in experiments [57, 58]. The simplest of these laws, when only one relaxation
time is present—either due to the material itself or because the timescale of the process
is comparable but larger than the largest relaxation time—is the upper-convected Maxwell
equation.

A link is explicitely made between the microscopic scale behaviour of molecular motors
and the continuum scale active stress. Compared to a previous such attempt [28], we are
now able to define conditions for which microscopic scale kinetics are thermodynamically
admissible. When motors are assumed to walk randomly along actin filaments, we recapitu-
late the results from [28], reaching an anisotropic contractility which scales as the square of
the length of the typical step performed by a power-stroke of the myosin. We can also envi-
sion a case where motors walk processively along polar filaments. The resulting shape of the
anisotropic contractility remains similar as in the above case, but with a linear dependence
in the step size and thus a higher efficiency. We show that this active contribution appears
as an offset of the isotropic rest configuration of the microstructure to a new configuration
with prestrained microstucture configuration.

Active biopolymer networks encompass both subcellular structures such as the acto-
myosin and, at a larger scale, fibrous tissue [12]. Contractility of actomyosin is also felt
in cellularised tissue like epithelia [12, 59] which are often simulated with similar con-
tinuum models [39, 60]. For those it is not appropriate to use elastic chains as the mi-
crostructure, however when considering the kinetics of cell deformation and neighbour ex-
changes, models of the same shape as the present model are found, including the upper-
convected objective derivative [61–63]. A possible direction for these materials is to con-
sider a non-Hookean elasticity of the microstructure, e.g. with a finite extensibility approach
[27, p. 142].

Viscoelastic liquids lead to mathematical problems notoriously difficult to solve analyti-
cally or numerically, and the set of equations in Sect. 2.6 can prove challenging to solve for
complex geometries. In addition, biopolymer networks such as actomyosin often form thin
shell-like structures [12], which turns the problem into a moving domain partial differential
system. We propose to use the formalism of multiplicative strain decomposition, often used
for plasticity or morphoelastic descriptions of growth [44] but which has also proven useful
e.g. to model anisotropic solid viscoelastic tissues [64]. We show that this allows to define a
tractable resolution procedure for large deformations.
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Appendix A: Asymptotic Analysis of the Dynamics of the Unbound
Chains

We choose the characteristic time τb = k−1
b , and nondimensionalise with ≈� = ≈�/τb , and ∼r =

β−1
∼r . Then (5b) writes:

∂ψu

∂t
+ ∼∇r̄ ·

(
ψu≈� · ∼r − τbκ

ζ
ψu∼r − τbkBTβ2

ζ ∼∇r̄ψu

)
= τbkuKu(ψu,ψb)

noting that κ = kBTβ2, this can be rearranged as:

∼∇r̄ · (ψu∼r + ∼∇r̄ψu) = ζ

τbκ

(
∂ψu

∂t
+ ∼∇r̄ · (ψu≈� · ∼r) − τbkuKu(ψu,ψb)

)

Here the nondimensional number ζ/(τbκ) compares the rate of binding kb = 1/τb to the
rate of equilibration of spring and Brownian forces in unbound chains, κ/ζ . We assume that
this number is vanishingly small. We also assume that τbkuKu and ≈� are of order 1 at most,
we come back to these assumptions below. Then we can expand ψu(∼r, t) = au(t)ψ0(∼r) +
(ζ/(τbκ))ψ ′

u(∼r, t), where au = ∫
R3 ψu dr and the constant distribution ψ0(∼r) is such that

−κψ0∼r − kBT ∼∇rψ0 = ∼0, thus solving the left-hand side,

ψ0 = (κ/(2πkBT ))3/2 exp(−κr2/(2kBT )).

The deviation ψ ′
u solves:

∼∇r̄ · (ψ ′
u∼r + ∼∇r̄ψ

′
u) = ∂au

∂t̄
ψ0 + ∼∇r̄ · (ψ0≈� · ∼r) − τbkuKu

(
ψ0 + ζ

τbκ
ψ ′

u,ψb

)

+ ζ

τbκ
∼∇r̄ · (ψ ′

u≈� · ∼r).

Integrating over R3, noting that ψ ′
u integrates to zero and using the divergence theorem,

∂au

∂t̄
= τbku

∫

R3
Ku(ψu,ψb) dr̄.

Since we have chosen Ku = ψb − (kb/ku)ψu, and
∫
R3 ψb dr̄ = 1 − au, we obtain

au(t) = ku

kb + ku
+ a0

u exp(−(ku + kb)t)

where a0
u = au(0) − ku/(kb + ku). Thus, after a transient, au is a constant and ψ ′

u is such that

∼∇r̄ · (ψ ′
u∼r + ∼∇r̄ψ

′
u) = ∼∇r̄ · (ψ0≈� · ∼r) − τbkuK0(ψb) + O

(
ζ

τbκ

)

with K0(ψb) = ψb − (kb/ku)ψ0 and is at most of order 1 if max{≈�, ku/kb} is. Finally, this
asymptotic development is valid for max{|≈�|, ku}� kb � κ/ζ . The transient is of duration at
most 1/kb, thus shorter than the flow characteristic time 1/|≈�|.
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Appendix B: Diffusive Molecular Motors

In Sect. 2.3 we assume that molecular motors can sense a directionality in the network and
follow the oriented vector ∼r . This corresponds to the behaviour of myosin minifilaments on
actin networks, however this may not be the case of all contractile biopolymer networks.
Starting again from Eqs. (11a)–(11b), it is possible to construct another vectorial reaction
coefficient based on the gradient of ψb, i.e. for any orientation tensor

≈
q, specify

∼
ja such that

it will yield a diffusion term in (6):

λdiff
12 = −kaθ

diff

κ ≈
q · ∼∇r logψb, ∼

j diff
a = −kaθ

diff�μ

κ ≈
q · ∼∇r logψb − 1

2
ks∼r,

ξ̇ diff
a = 2ka∼r ·

≈
q ∼∇r logψb + λdiff

22 �μ,

where ka is a typical rate of motor progression and θdiff a numeric constant. As in the case
of processive motors, we have taken λ11 = ks/(2κ). In [28], we argue that the resulting
diffusion term in Eq. (6) must scale with the square of the size of the steps ℓm that the
molecular motors perform on the strands, thus θdiff = ℓ2

mβ2. Additionally, we can identify
that va = ℓmka, where va was defined in Sect. 2.3 and found to be equal to ℓa(ku + ks).
Evaluating λdiff

22 is more difficult than λ22 in the processive case, however taking ψb to be a
small deviation from ψ0, we find λdiff

22 > 3((ku + ks)ℓaℓmβ2)2/(16πkskBT ).
If we choose

≈
q = ≈I, since 〈∼r ∼∇r logψb〉b = − kbau

ku ≈I, the contractility tensor is:

≈Aa = 2ℓaℓmβ2kbau�μ

kuκ ≈I.

However the lack of alignment of the velocity
∼
ja with the microstructure is difficult to in-

terpret. Following [28], it is also possible to take
≈
q =

≈
Q, which means that the diffusive-

like behaviour of the molecular motors takes place along the direction of the strands ∼r/|∼r|.
Thanks to the property 〈∼r ≈

Q ∼∇r logψb〉b = −〈
≈
Q〉b, as above, and to the fact that tr

≈
Q = 1, we

have

≈Aa = 2ℓaℓmβ2�μ

κ
〈

≈
Q〉b.

Thus we find that the “diffusive” and “processive” types of reactive flux
∼
ja lead to ex-

pressions of the active stress which are highly similar.

Appendix C: Lower Bound on the Trace of the Microstructure Tensor

We show here that for appropriate initial conditions, and in particular ≈A(t = 0) = ≈A0, the
trace of ≈A remains larger than the one of ≈A0. We use the fact that the material is incompress-
ible ( ∼∇x · ∼v = 0) and impose that ≈Aa is positive semi-definite, hence corresponds to a con-
tractile active term. As stated in the main text, we essentially follow the proof of Lemma 2.1
by [38] but take into account the additional active term.

The modified lemma claims: assume that det ≈B(t = 0) ≥ 1 and τ
�
≈B = −≈B+≈I+ ≈Ba(t) with

≈Ba(t) a symmetric semi-definite tensor. Then, ∀t > 0, det ≈B(t) ≥ 1. We apply this lemma

with τ = k−1
u , ≈B = β2a−1

0 ≈A and ≈Ba = β2a−1
0 ≈Aa, which matches the conditions of (17). Note
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that both are indeed symmetric semi-definite by construction, since ≈A = 〈∼r∼r〉b and ≈Aa =
2ℓaβ�μ

κ
〈∼r∼r

r2 〉b. The condition det(≈B(t = 0)) ≥ 1 is equivalent to det( ≈A(t = 0)) ≥ det( ≈A0).
Following [38], we observe that using Jacobi’s formula, and for incompressible flow

(tr ≈� = 0),

τ
∂ ln(det(≈B))

∂t
+ τ ∼v · ∼∇x ln(det(≈B)) = τ tr

(

≈� + ≈�
T
)

︸ ︷︷ ︸
=0

+ tr
(
−≈I + ≈B

−1 + ≈B
−1

≈Ba

)

We use the inequality of arithmetic and geometric means applied to the non-negative eigen-
values of ≈B

−1 and ≈B
−1

≈Ba ,

1

3
tr ≈M ≥ (det ≈M)1/3,

and, introducing the derivative d
dt

along flow characteristics, obtain

τ

3

d ln(det(≈B))

dt
≥ −1 + det(≈B)−1/3

(
1 + det(≈Ba)

1/3
)

≥ −1 + det(≈B)−1/3

Setting z = 1 − det(≈B)1/3, we find z(0) ≤ 0 and τ dz
dt

≤ −z, thus z(t) ≤ z(0)e−t/τ and
det(≈B(t)) ≥ 1.

Using the above upper bound of the determinant,

tr ≈A0 ≤ 3a0β
−2 det(β2a−1

0 ≈A)1/3 ≤ tr ≈A.
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