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In this paper we analyze the vibrational spectra of the 2,“ ground state of CS, , the 
experimental results of which have been described in a forth coming paper. We show that, up 
to 12 000 cm - I, CS, can be described by a system of two degrees of freedom strongly coupled 
by a 1:2 type Fermi resonance. The corresponding vibrational spectra are refitted with the aid 
of only seven parameters. Analysis of the spectra by the statistical Fourier transform technique 
reveals stroboscopic effects between the symmetric stretching mode-and the bending mode. 
The distinction between the “stroboscopic hole” due to these effects and the “correlation hole” 
due to nonintegrable terms in the Hamiltonian is discussed in detail. The study of the topology 
of the phase space of CS, in the regular and chaotic cases is carried out in the basis described 
by a vibrational angular momentum which includes the Fermi resonance. We show the 
analogy between the localization of the wave packets of the eigenstates and the trajectories. We 
also show the destabilization of the trajectories due to a term in the Hamiltonian which couples 
neighboring polyads and which is a second Fermi resonance. We show that only two 
resonances are enough to induce a chaotic situation. 

I. INTRODUCTION 
The manifestation of classically chaotic phenomena in 

quantum systems (“quantum chaos”) has been studied in 
detail theoretically to the semiclassical limit.’ For real sys- 
tems such as molecules, the challenge is to understand the 
consequences of such situations especially during chemical 
reactions. In molecules, chaos generally appears at very high 
vibrational energies. It is important to know if spectroscopy 
can shed any light on the problem. The difficulty of accessing 
high energies explains the relative small number of experi- 
mental data in existence up to the present. Some experiments 
have already provided some partial answers. In the stimulat- 
ed emission pumping (SEP) spectra of the ground state of 
the C, H, molecule at an energy of 28 000 cm - ‘, Abramson 
et aI.’ have, for the first time, discovered a situation compar- 
able to that observed in nuclear physics.3 The molecular 
dynamics of C,H, has subsequently been studied in detail 
over a wide energy range by the statistical Fourier trans- 
form4 (SFT) technique which reveals vibrational energy re- 
distribution on several time scales and a new mode which 
may be a promoter of chemical reactions.5 Haller, Koppel, 
and Cederbaum6 are the first to have analyzed the statistical 
properties of the NO, molecule around 15 000 cm- ’ and 
have found a repulsion between levels which implies chaos. 

a) To whom correspondence should be addressed. 
” Associated to CNRS (LAOI). 

An extensive experimental study has recently been carried 
out by Jost et al.’ Levandier et aZ.’ have shown that, for 
themethylglyoxal molecule, the Fourier transform of the 
intense magnetic field level anticrossing spectrum contains a 
hole which is still unexplained because its width is a twenti- 
eth of the time corresponding to the density of states. Broyer 
et al9 have shown that the chaotic character of the Nai 
molecule seems to be linked with a very soft mode of its 
linear configuration. In contrast, Bentley et al. lo have shown 
that the HCN molecule is not chaotic at the energies predict- 
ed by theory. This disagreement is probably due to the fact 
that quantum mechanics integrates irregularities in the po- 
tential which are smaller than the wavelength, whereas clas- 
sical mechanics is very sensitive to irregularities which can 
easily destabilize the classical trajectories. Lastly, Yamanou- 
chi et al.” have shown that the SO2 molecule remains very 
regular and even very harmonic until at least 18 000 cm - ‘. 

In general, the loss of good vibrational quantum 
numbers in molecules which are excited in regions where 
they show chaotic motion, and the breaking of the selection 
rules which follows from this, make the spectra complex and 
unassignable. Using methods based on the study of spectral 
correlations and, in particular, the SFT technique,*,” it is 
possible (at least in the region of maximum chaos) to extract 
information about the molecular dynamics, as long as the 
density of states is large enough so that the total number of 
states in the energy interval under investigation is statistical- 
ly significant (several hundred levels). However, small 
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molecules of three atoms are theoretically tractable. The re- 
lative simplicity of their spectra and, thus, of their Fourier 
transform, render possible, both the study of the transition 
to chaos and the modelling of the molecule. The understand- 
ing of the physic origin of ch.aos will be of great interest. The 
Fourier transform, which is a powerful toll in the semi-clas- 
sical limit, i3-15 becomes calculable. 
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the levels observed experimentally on excitation in the 15 V 
band and 100% of those observed by excitation in the 10 V 
band belong to this block. This group of levels corresponds 
tol” =Oandevenv;. In this paper we will study the dyna- 
mics of CS, in a two-dimensional subspace. 

We believe that the experimental and theoretical study 
of a triatomic molecule like CS, can be useful to study pure 
vibrational chaos. A molecule with heavy atoms has the ad- 
vantage of having vibrational modes that are relatively soft 
(Y, = 673 cm-‘, vZ = 398 cm- ‘, v3 = 1559 cm-‘) 
and, therefore, provides a large density of states at a given 
energy. Furthermore, CS, is subject to very strong anhar- 
monicities and Fermi resonances, which are necessary con- 
ditions for the rapid establishment of chaos. We will see that, 
because the antisymmetric stretching mode does not easily 
couple to other modes, it is possible to study the dynamics of 
CS, in a subspace of two degrees of freedom up to relatively 
high energies. In contrast with the theoretical work of 
Kato,‘6 this subspace is not the symmetric and antisymme- 
tric stretching space but a space where the bending and sym- 
metric stretching modes, which belong to the same vibra- 
tional symmetry, are strongly coupled. Finally, because the 
ground electronic state 8: of CS, is well isolated, it is possi- 
ble to carry out a study of pure vibrational chaos. In the 
linear ground electronic state, there is no overlap with and 
no perturbation due to other electronic states up to 26 187 
cm - ’ where the first excited state appears (referred to as the 
R state by Kleman” ). It would seem, then, that CS, is a 
good candidate for a study of the transition towards vibra- 
tional chaos. 

We have once again &ted the levels corresponding to 
this subspace with the aid of a two-dimensional Hamilton- 
ian. It describes two coupled anharmonic oscillators. The 
diagonal part is written as 

Ho = 4 (~1 + 1) 

+&(v, + 1) fX,l(U, +~)‘+&(vz + II2 

-t&,(Vl +:>cuz + 1) + y,,,(v, + l13. (1) 
The lowest-order Fermi term which mixes states of the same 
polyad (the number of which is defined by N = U, + uJ2) 
is 

HF = - (l/fi)k,,,~;‘~(v, + 2). (2) 
The higher-order 1:2 resonance terms described by the pa- 
rameters A, and& do not significantly improve the fit to our 
experimental data. Table I shows the result obtained using 
only seven parameters. This reduction to two dimensions 
modifies the values of w1 and w, in w: and o; since the 
vibrational quantum defects arising from the terms in u3 + 1 
are carried over into the harmonic parameters, 

In Ref. 18 we present resolved fluorescence spectra for 
the 2: state of CS, up to 18 000 cm ’ and discussed the fit 
of the levels up to 12 000 cm ’ with the aid of an integrable 
Hamiltonian. In this paper we will first discuss the reduction 
of the vibrational Hamiltonian of CS, to a system of two 
degrees of freedom. Then we will describe the effect of an- 
harmonicities and integrable and nonintegrable Fermi re- 
sonances couplings using Fourier transform analysis. Final- 
ly, by using a theory developed by Kellman,” we will 
construct a semiclassical Hamiltonian for CS, from the ex- 
perimental results and analyze the topology of the phase 
space. We will establish the clear link that exists between the 
classical and the quantum object. 

4 =w1 f@l,, 

w; =a2 +tx,,. (3) 

It is important to note that at very high vibrational energies, 
the antisymmetric stretching mode y3 will become coupled 
to the others and the simplification that we have just made 
will no longer be valid. Taking account of the strong cou- 
pling between the y1 and vZ modes which occurs from very 
low energies, we believe that, in CS,, the transition to chaos 
will appear initially in a two-dimensional subspace rather 
than arising from couplings which mix equally all three 
modes of the molecule (as in a random matrix). 

We also consider a term which couples adjacent polyads 
for which AN = f 1 (N = Y, -I- lrJ2) is given by 

TABLE I. Vibrational parameters of the two-dimensional Hamiltonian 
of CS, (see text). /1, fixed to Bernath’s values (see Ref. 18) or fixed to zero. 

II. THE EFFECTIVE HAMILTONIAN FOR CS, IN TWO 
DIMENSIONS 

In Ref. 18 we presented the fit of the dispersed fluores- 
cence spectrum of CS, with the aid of a Hamiltonian which 
describes the vibrational spectrum of the 2: ground state of 
CS,upto12000cm-‘. In the normal basis, the absence of 
coupling between the antisymmetric stretching mode and 
the other two modes makes the Hamiltonian block diagonal. 
The block which corresponds to v3 = 0 describes the strong 
1:2 Fermi resonance between the symmetric stretching 
mode and the bending mode. In this block, the couplings 
between adjacent polyads can be easily introduced. 70% of 

Parameters /2, fixed 

WI 668.60 f 0.69 
w2 395.13 * 0.34 
X11 - 1.001 f 0.024 
X22 1.190 * 0.044 
x12 - 3.103 f 0.028 
Y222 - 0.006 f. 0.001 
k 122 41.71 + 1.62 
4 0.491 
4 0.459 
eqm (cm ‘) 0.26 

R, =o 

661.83 f 0.11 
396.79 * 0.46 
- 0.181 kO.042 

0.719 * 0.116 
- 1.206 k 0.317 
- 0.0112 f 0.0011 

41.114k4.38 
0 
0 
0.33 
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H, = -&t,,zzu;‘z(dl - l)“‘(u, + 2) 

(AU, = +2, Au, = &2). (4) 
As we will see later, couplings of this type may be responsible 
for the onset of chaos in CS, and could be responsible for 
accidental perturbations observed” in the fluorescence 
spectrum of CS, below 12 000 cm _. ‘. H, is just an example 
among several terms which couple adjacent polyades, but, 
for the purpose of this paper, it is not necessary to consider 
all of them since they give the same kind of results that we 
will discuss now. 

The order of magnitude of the coupling parameters in 
CS, (see Table I) shows clearly that, from low energies 
(E < 5000 cm - ’ ) , the normal basis set is far from being a 
good one. A crucial problem for the study of vibrational 
chaos in molecules is to define the best basis for the integra- 
ble part of the Hamiltonian. Since, in molecules, resonances 
are the rule rather than the exception, it is clear that this 
basis must include the relevant integrable resonances. Before 
tackling this problem in detail in Sec. IV, we are going to 
show, taking the example of CS,, how the anharmonicities, 
the Fermi resonances, and the nonintegrable couplings man- 
ifest themselves in the Fourier transform of the molecular 
spectra. 

III. FOURIER TRANSFORM SPECTRUM OF THE X; 
STATE OF CS, 

The Fourier transform (FT) of a spectrum is not only a 
mathematical operation which transforms the energy do- 
main into the time domain but, in fact, the square of the ET 
reveals information which is obscured in the complicated 
direct spectrum: it shows up interferences between energy 
levels which are weighted by Franck-Condon factors. 
8~12 In the next paragraph we will show, by the analysis of 
1 FT12, the effects of spectral regularities, anharmonicities, 
and spectral correlations on the complete set of levels gener- 
ated by the Hamiltonian of CS, fitted earlier. 

It is always theoretically possible under these conditions 
to use a Dirac spectrum, 

I(E) = 2 &E - -fLv, 1, 
n,m 

where 
II = vi + 4 (symmetric stretching 
m  = u2 + 1 (bending). 

(5) 

1, 

(6) 
If we lim it ourselves initially to the diagonal part of the Ha- 
m iltonian we have 

E,, =o;n+w~m+X,,n2+X22m2+X,2nm+ Y222m3. 
(7) 

The FT of the spectrum is given by 

C(f) = c p+L. 
nm 

The modulus squared of the FT which may also be viewed as 
the survival probability of the wave packet [described by Eq. 
(5) I, is 

lC(f>7=2 z cos2a-45 
AIS-0 

where 

(9) 

AE sdn(w, + n + Xl, -t Jm + Xl2 1 

+Am(w, +m+X, +$n+X,,>, (10) 

n+ = rt + n’, An = n - n’, 

m-h = m  + m ’, Am =m - mr, 

and Yzz2 has been neglected. 
Equation (9) (equivalent to the expression for a Lyot 

filter) clearly shows that multiple interferences between en- 
ergy levels determine the temporal evolution of /C(t) I? 

The discrete sum of the energy gaps can be replaced by a 
continuous sum where the distribution of the energy gaps 
can be introduced. The theory of random matrices20787*2 then 
allows us to calculate the evolutioqof the ensemble average 
of I C(t) I* and to extract the statistical properties. In the first 
instance, we will not proceed with the study of this ensemble 
average since this procedure masks important effects and the 
molecular Hamiltonian is far from being a random matrix. 
In order to gain a good understanding of what we observe in 
the ET spectrum, we will progress from a single oscillator to 
two oscillators and from the harmonic case to the anhar- 
manic case. 

Figure 1 represents 1 C(t) I2 for the bending oscillation of 
CS, . We clearly see that the etfect of the anharmonicities is 
to widen the peaks of the harmonic oscillator in a direction 
which depends on the sign of the anharmonicity. The edges 
of a packet correspond to the timesp T _ andp T + , wherep 
is the number of the peak observed in the FT and 

AT=T- -T+ o( Xz2 

h 

ii p I Lj----L..” _.-......... L-L- 
O l/na .Ol '2 

l/cm- 1 

FIG. 1. Square of the FT 1 C(t) I2 of the spectrum of the bending mode of 
CS2 from 0 to 12 000 cm-‘. (a) Harmonic oscillator (E = w,m); (b) 
anharmonic oscillator (E = w1 m  + X, m2 + Y,,, m ’) . No unfolding has 
been performed on the spectrum before taking the FT in order that the char- 
acteristic t imes of the molecule should not be lost. We note the widening of 
the peaks due to the anharmonicities. The width of the peak p is 
AT~p(h/w:)m+,,,X,. This width measures the degree of anhaxmon- 
icity which is large in CS,. 
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T- =k, 
*2 

T+ = 
h 

w,+m X . 
(11) 

+ max 22 

T- corresponds to the low-energy part of the spectrum 
(m+ -0) and, therefore, to the harmonic case; T, corre- 
sponds to the high-energy part ’ of the spectrum 
(m, =m + max ). The width AT of the packet is a direct 
measure of the anharmonicities 

AT=P --$ m  + maxzY22. 
f-32 

(12) 

Figure 2 represents the case of two harmonic oscillators 
(Fig. 2(a) : wl, w, #O) and two anharmonic oscillators 
(Fig. 2(b): 4, q, 3’11, X2, Xl2 #O). 

We clearly observe a stroboscopic peak which corre- 
sponds in the harmonic and anharmonic cases (the coupled 
anharmonic case being the most complex) to 

An 2% 6 - = ---=-E~ 
Am 

(harmonic case), (13) 
a1 

A?l co1 -f-n+-& -,L (anharmonic case), (14) 
XG”ti, +m+Xz2 4 

and to a stroboscopic time 

T,h=z- 6 m----=6 To, 
@I 2a2 

T:“&%&- = 5 To, (15) 
m l 2w-J 

where To is the shortest periodic orbit period [see Figs. 278)) 
2 (b) , and 2 (c) 1. The relative intensities between the stro- 
boscopic peaks and the other peaks depends on how close to 
an integer are An and Am. For exact integers the stroboscop- 
ic peaks are all equal to 1 and the others vanish. 

Classically, this stroboscopic peak corresponds to the 
fact that a particular trajectory turns An times in the stretch- 
ing direction and Am times in the bending direction before 
returning to the same point. On the average, the effect of this 
stroboscopy is to make a ‘“stroboscopic hole”2’ [see Fig. 
3 (a) ] appear at the origin of the FT. This hole exists for a 
perfectly deterministic system and has nothing to do with 
the “correlation hole” which occurs in the context of ran- 
dom matrices for a chaotic system. It is important to note 
that when we take account of the anharmonicities and the 
couplings, the-peaks and the stroboscopic hole are attenuat- 
ed and contract towards the time origin [Figs. 2 (a), 2 (b) , 
and 2(c)]. For CS, (E<12000 cm-‘) the width of the 
stroboscopic hole is of the order of Td/lO [see Fig. 3 (a) 1, 
where Td is the time corresponding to the mean density of 
states. The width of the correlation hole is Td. Therefore, in 
the case of a largely anharmonic molecule like CS, , this stro- 
boscopic hole is not a great problem. It is important to note 
that the stroboscopic hole doesnot correspond to the general 
observation of Berry that a spectrum is rigid for energy inter- 
vals beyond the inverse of the shortest closed orbit (that is to 
say, in the time domain, this effect is observable at time 

r----- 
Stroboscopic 

Peaks 

: d4 *-&AL .~ . _L --L--l 
I I--” -- 

.Ol 2 

1 /cm- 1 

~-----T-- -! 

,I .- 

-. L-l 

w 
.Ol -02 

l/Wl l/Wa 
l/cm-l 

rre, '- - 
-_I 

Stroboscopic 

Peak 

Stroboscopic peak 

J 

I I I I 
- .= y 
I , . .: VVI 

I[ ! I I I -I I 
I I I I 

,; I 1 I I- -I I I 1~ “ 

1 I .005 -01 .Oi5 .( 
I/Rl l/ne 

l/cm-l 

2 

FIG. 2. Square of the Fourier transform 1 C(t) I* of the spectrum generat- 
ed by the bending and symmetric stretching oscillations of CS, from 0 to 
12 000 cm - ‘. The regular peaks correspond to two harmonic oscillators 
which serve as markers. (a) ‘The case of two haimonic oscillators 
(E= nw, + mu,). For reasons of symmetry only an even number of 
quanta appear in the bending mode. Moreover, for this mode the observed 
frequency is 264. We can see a definite stroboscopic peak at t imes 
T, --5/o, - 6/2w, and recurrences at t imes 2T,. This peak corresponds 
to a constructive interference effect (see text). (b) The case of two anhar- 
manic oscillators (E = ma, + mw2 + n’X,, + m*X,, + nmX,, ). The 
stroboscopic peak decreases in intensity and move’s towards the time ori- 
gin. (c) The case of two anharmonic oscillators in Fermi resonance. The 
spectrum results from the diagonalization of the Hamiltonian described 
earlier: The stroboscopic peak is attenuated and moves to shorter times. The 
stroboscopic time Ts is small compared With the time cofresponding to the 
mean density of states Td ( T, -Td/lO). This results from the fact that CS, 
is very anharmonic. 
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(a) 

E(t)1 

tcct 

(c) 

P 

I 

Stroboscopic hole 

I 

I 
T* .cil .di h .d3 .O 

l/cm--l 

Stroboscopic hole k llez =lOcm-1 

Correlation hole 

-- 

A .dl .I52 
6 

.da -0. 
, 

l/cm-l 

Stroboscopic hole k,rza =30cm-1 ) I 

I Correlation hole 
I 

~_ A 
km .Ol .02 .04 

l/cm- 1 

FIG. 3. Square of the Fourier transform IC(t) 1’ of the spectrum of two 
anharmonic oscillators in Fermi resonance and coupled by the nonintegra- 
ble coupling Hc described by the parameter k,,,, and which couples near- 
est-neighbor polyads. (a) Noncoupled case: k,,,, = 0. We note the 
stroboscopic hole whose width is about Td/lO. (b) and (c). Coupled 
case: k,,, = 10 cm ’ and k,,,, = 30 cm -‘. A correlation hole is su- 
perimposed on the stroboscopic hole. This hole enlarges as the coupling 
increases. Its maximum width is Td. 

shorter than the time To of the shortest periodic orbit). The 
effect of the stoboscopic hole begins after To and stops at a 
longer time depending on the anharmonicities [it is about 
lOT,, for the example in Fig. 3 (a) 1. The existence of this 

stroboscopic hole prevents a general study of the onset of the 
transition to chaos by analysis of ] C( f> 1’. In contrast, we will 
see later that it is possible, in the case of CS, , to carry out a 
detailed study of the phase space structure which is much 
more sensitive to the appearance of the first nucleation zones 
of chaos. 

Figure 3 shows the nonaveraged ] C(t) I* and 1 C(t) 1” 
averaged by means of the dichotomic convoluted windows 
(DCW) procedure described in Ref. 12 for both Ho + HF 
and H = Ho + HF + H, (which includes coupling between 
adjacent polyads) . Figure 3 (a) corresponds to the noncou- 
pled case (k,,,, = 0) and clearly shows the stroboscopic 
hole whose width is about Td/lO. As k,,, increases, the 
correlation hole widens and deepens [Figs. 3 (b) and 3 (c) ] 
in agreement with theory,8~12~20 which predicts that the en- 
semble average of the slowly varying component of 
(]C(t)]‘) isgivenby 

(ICWI’) =N[l -&(f)] 8 ZF;;; ) (16) 
max 

where QD represents a convolution product, Nis the number 
of levels in the spectrum, AE,, is the energy range of the 
spectrum, and b, (t) is the Fourier transform of the Mehta 
cluster function which describes the spectral correlations. If 
Hc were integrable, then k,,,, would play the same role as 
the anharmonicities which tend, as we have seen earlier, to 
reduce the width of the stroboscopic hole. The fact that the 
hole widens with increasing k,,,, and reaches a final value of 
Td, shows that H, renders the Hamiltonian of CS, noninte- 
grable and leads to a chaotic situation. Hc is one of the 
lowest-order terms that efficiently couples the nearest- 
neighbor polyads of CS, . This fact will be confirmed below 
by the phase-space analysis. 

IV. DY.NAMlCS OF THE CLASSlCAL OBJECT: 
STRUCTURE OF THE PHASE SPACE OF CS, 

We now pose the following question: How do we ex- 
tract the molecular dynamics from the spectroscopy of the 
molecule? The patterns contained in the spectrum have a 
shape which is often very relevant to the topology of the 
phase space of the corresponding classical object. Further- 
more, as we have just seen, in general, statistical methods do 
not allow us to study the onset of the transition to chaos. In 
contrast, the study of phase space is much more sensitive. 
The approach which would consist of working in the space of 
normal configurations (bi,qi}) is meaningless for CS,, 
partly because of the strong Fermi couplings which mix the 
normal modes and partly because a polynomial expansion of 
the potential in pi,di at a given order, introduces numerous 
additional parameters (not fitted) and couplings which have 
no physical meaning within the framework of perturbation 
theory. Instead we use a method developed by several auth- 
ors and, in particular, an extension of Kellman’s theory” 
which is well adapted to the case of CS2 since, firstly, at the 
energies that concern us in this paper, the problem reduces to 
a system of two dimensions and, secondly, CS, is subject to 
strong Fermi resonances. Our aim is to make an unequivocal 
correspondence between the effective Hamiltonian fitted to 
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the experimental data and the semiclassical Hamiltonian, 
and to define the best basis which includes the integrable 
resonances. Themethod is based on the Heisenberg corre- 
spondence principle and on the definition of a vibrational 
angular momentum operating in the Lie group SU( 2) .2z-25 

We will briefly review the definitions that we adapt to 
the case of CS, while retaining the spectroscopists notation. 
The Hamiltonian described earlier can be rewritten in the 
second quantization as 

Ho = 4 (u, -t $1 

-t-w;(u, + 1) +x,,cv, +p+X&2 + II2 

+xl,(u, +j>tv, + 1) + Y222(u2 + 1j3, (17) 

HF = -I- (1/2&k,, (afa,~z, + a,a;a;), 

f& =k,*22(+fa,a, +w,4&, 
where af and ai are the vibrational creation and annihilation 
operators of the stretching and bending modes. Several 
terms ( 13 ) can, like H, , couple adjacent polyads. They come 
from cubic, quintic, and sixtic combinations of the ai. It is 
interesting to note that HF and the cubic term 

‘W2JZ~k;,,hz,af -tafa$l,), 
which couple adjacent polyads with the selection rules 
{Av, = f 1, Avz = } 0 , come from the same classical cubic 
term k,,, Q, Qz Q2 of the normal-mode representation. But it 
is important to separate them because below 12 000 cm-‘, 
HF is a strong coupling which leave the Hamiltonian separa- 
ble, while k ;22 which is experimentally nonobserved (ex- 
cepted, may be, for accidental levels anticrossings), render 
the CS, Hamiltonian nonintegrable. 

The Heisenberg correspondence principle allows us to 
make the correspondence between this effective (quantum) 
Hamiltonian and the semiclassical Hamiltonian. The cre- 
ation and annihilation operators can be substituted using 
two different forms, 

1 
“J=F (qi + ipi), 

where di is the degeneracy of the vibron, [n, + ( di/2) ] 1’2 is 
the action variable, and #i is the conjugate angle variable. 

The form given by Eqs. ( 18) allows us to express each 
term of H in the system of normal coordinates. Like Kell- 
man,” we prefer the form given in Eqs. (19) which allows 
an elegant treatment of the 1:2 Fermi resonance. The vibra- 
tional angular momentum of SU(2 ) is defined by 

I= ga;a, + &x,/2) = pz, + n,/2) = f, 

4 = + (4% - 4a,/2) = gn, - /Q/2) = !!jc, 

L = +- m,u, + u,u~u;)/(&2,)‘~, 

I, = -$ (utu2u2 -a,u$z,t)/(u,tu2)“2. 
Note that 21 is the number of the polyad and,2I, is the order 
number in the polyad. I, represents the Fermi coupling 
term HF. The components of the angular momentum can 
be represented semiclassically using the correspondence giv- 
en in Eqs. ( 19) (Table II). The conjugate angle variable 
B = 4, + 2& et $ = 4, - 24, correspond to the action 
variables Iand I,. The different terms of the effective Hamil- 
tonian can then be expressed as a function of these new vari- 
ables. Table III gives the result (even for the higher-order 
Fermi couplings introduced and described by the il, param- 
eters) . 

The enormous advantage of this representation is, on 
the one hand, to make a simple, unequivocal correspondence 
between the experimental spectrum and the semiclassical 
Hamiltonian, and, on the other hand, to define a constant of 
motion which includes the Fermi resonances. In effect, we 
see that, if we lim it ourselves to Ho, Iand I, are the constants 
of motion since 

dI JHo .= o 
z==x ’ 
dr, aH, 

- = 0, 
dt= a* (20) 

so Ho is integrable and I and I, are good quantum numbers. 
In contrast, for Ho + HF, we have only 

(19) 

dI_ ?‘Hoa; HF) = o(21). 
z- (21) 

However, for a system of two degrees of freedom, Ho + HF 

TABLE II. Quantum and semiclassical definition of the vibrational angular momentum II 

Quantum Semiclassical 

I &zIrz, + afaJ2) = N/2 ;(nl + n,/2 + 1) = (N+ 1)/2 
4 f(4la, a$a,/2) = M/2 @I,. - n,/2) = M/2 

T (P - I:)“%os ?) 

4 (P - Zf)“%in $ 
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TABLE III. Quantum and semiclassical correspondence ofthe different terms of the vibrational Hamiltonian of CS, using the vibrational angular momen- 
tum coordinates. 

HO 

HF 

HC 

Quantic 

w,c2l+l)+PI,+~Q(21+1)1,+a,[I(Z+l)+d]+a,Z: 
+Y222(21+ l-21,)’ 

+ km&~ 

fik,,,, (aTI+ + I- a, ) (I- Z,)“’ 

Semiclassic 

w,21+PI,+Qrr,+a,ZZ+a,Z:+y,,,[2(Z--1,)]’ 

+ k,,fl+ Z,(Z- Z&OS@ 

4 m , u+ zz,Ixt,Fc 
4 2JfA, (I- ZJZ,~ 

k:,, 2k;,U--lz)(n, +af, 

w, (I+ zy(1- Z*)cos~ 
41, (I + z, ) yz - z, )2cos$ 

4k ;zz (I- I,,~cos *+e 
( > 

2 

remain integrable and I remains a good quantum number. 
The second action variable is 

S = Izd$. (22) 

5’ does not have a simple analytical expression due to the 
strong Fermi resonance. 

To make the Hamiltonian nonintegrable, it is necessary 
to introduce a coupling of the type H, between polyads. In 
effect, because H, is a function of 0 and $, we have, for 
H=Ho +H,+H,, 

(23) 

We will now discuss the structure of the phase space for the 
case where the Hamiltonian is most integrable, that is, for 
Ho + HF. The profile of the phase space can be obtained 
either by finding a numerical solution of Hamilton’s equa- 
tions, 

4 W-f, + HFj -= 
dt a@ ’ 
ds, CaH, t HF) 
dt = - ar, ’ (25) 

or by tracing the contour plot of H(Iz,$,Io ) for a given po- 
Iyad ( 210 = const) . The first method has the advantage that 
it allows us to measure the orbital periods which allows a 
link to be made with analysis of the spectra by FT. It has the 
further advantage that it allows the introduction of cou- 
plings such as H,. The topology of the phase space can be 
studied on the polyad phase sphere (PPS) of radius I, and 
coordinates I,, I,, I,, or in the space E, I,, $. Figures 4 and 
5 give the two representations for the polyad N = 18. 

A correspondence can be established between the perio- 
dic orbits and the eigenstates of H = H,, + HF. Each 
traced orbit corresponds to an energy taken to be equal to the 
experimentally measured energy of a level of the eighteenth 
polyad. In Fig. 4 the trajectories on the PPS correspond to 
the precession of the vibrational angular momentum I which 
varies gradually from the direction 1, to the direction IY. 

This is a typical motion for a strong Fermi resonance. For 
the non-Fermi-resonance Hamiltonian Ho the precession of 
I stays in the I, direction as I, is a good quantum number of 
Ho. The trajectories of Fig. 6(b) are level contours of 
H = Ho + HP for each experimental level of the polyad. The 
fixed points labeled + and - on Fig. 6 (b) , correspond to a 
maximum and m inimum of the energy. These fixed points 
give the stroboscopic effect noted in the FT analysis of the 
quantum spectra. They correspond to the fact that, in the 
space of normal coordinates, the corresponding trajectory 
turns An times in the stretching direction while turning A m  
times in the bending direction. We notice two types of trajec- 
tory: those (type I) which are localized close to the fixed 

5 

I *o 

-5 

FIG. 4. Representation of trajectories for each quantum level of polyad 
N= ZZ, = n, + n,/2 = 180n thepolyadspheredefinedin thespaceZ<, Z,, 
Z,, the radius being equal to the constant of motion Zc. The Z, direction 
represents the order numberofthe Hamiltonian Ho (see text) in the polyad, 
and the Z, direction represents the coupling term of the 1:2 Fermi resonance 
of cs, . 
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0 

FIG. 5. Energy surface of polyad 18 as a function of I; and its conjugate $ 
for the Hamiltonian H = Ho + HF. (see text). The maximum corresponds 
to those states which are mostly bending in character (Z, = - IO ) whilst the 
minimum corresponds to stretching states (Z, 11 + ZO ). 

points and which wind around them and those (type II) 
which avoid the fixed points and wind between the fixed 
points on a cylinder. Figure 6(a) shows the decomposition 
of the eigenstates of Ho + HF on the Ho basis for which 
I, = I, corresponds to a pure stretching state and I, = - I, 
corresponds to a pure bending state. We have shown three 
eigenstates of Ho + HF for which the energy corresponds 
exactly to the trajectories (labeled 1, 2, 3) in Fig. 6(b). 
These states can be written in the Ho basis as -t lo 

le) = _ c G,lL>. 
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FIG. 6. (a) Contour plot corresponding to the energy of the polyad as a 
function of the conjugate variables Z, and $. Each level curve or trajectory 
represents the energy of a quantum level of the N = 18 polyad. The fixed 
points correspond to the stroboscopic effect observed in the FT of the spec- 
tra. We note two types of trajectory: those which go around the fixed 
points (type I) and those which avoid the fixed points and wind around a 
cylinder (type II). The type I trajectories are more localized than type II. 
We note that there are two separatrices situated between the two types of 
trajectory. (b) Representation in the H,, basis of three wave packets cor- 
responding to three eigenstates of Ho + H, in polyad 18. The width along 
Z, of these wave packets corresponds exactly to the localization width of the 
periodic orbits. 

(26) 

dictions of the theory of chaos: the trajectories which de- 
stabilize first are situated near to the separatrix between 
type-1 and type-II trajectories and which correspond to the 
most delocalized states. The nucleation of the first chaotic 

At this point we can make a precise analogy between the 
position of the trajectories in classical phase space and the 
width of the quantum wave packets. Figure 6 shows that the 
width A1, of the three wave packets corresponding to the 
three eigenstates under consideration is approximately equal 
to the extent of the trajectory along 1,. The most localized 
states correspond to type-l trajectories and the most delo- 
calized states to type-II trajectories. This example shows 
that the description of the vibrational Hamiltonian of CS, in 
the basis described by the vibrational angular momentum I 
is well adapted to show the classical quantum correspon- 
dence because it includes the nonlinearities due to the Fermi 
resonances. It is therefore interesting to study the topology 
of phase space when there exists a nonintegrable nonlinear- 
ity of the type introduced by H, which couples neighboring 
polyads. Figure 7 represents the evolution of the trajector- 
ies of polyad 18 when the parameter k,,, is taken to be equal 
tolcm- ‘. The result is in agreement with the general pre- 
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FIG. 7. Trajectories for polyad 18 in the presence of a weak, nonintegra- 
ble coupling H, corresponding to k, ,*z = 1 cm ‘. Note the destabilization 
of the most delocalized periodic orbits near to the separatrices between the 
two types (I and II) of motion. 
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zones is clearly visible in Fig. 7. As one increases the value of 
k 1 ,22, the region of phase space which is taken over by chao- 
tic motion increases around these nucleation zones. The 
most stable tiajectories are located near the fixed points. 
Hence, even for small values of k,,, the onset of chaos is 
clearly visible in the phase-space analysis. 

In contrast, the Fourier transform analysis of the quan- 
tum spectra for k,,,, = 1 cm-’ has not allowed us to ob- 
serve the spectral correlations since they do not emerge 
above the statistical noise and also because of the existence of 
the stroboscopic hole. We have diagonalized the matrix cor- 
responding to Ho + HP + H, for the values of the para- 
meters given in Table I and for k, ,22 = 1 cm- I; we then have 
attempted to observe, the correlation hole in the spectrum 
thus obtained, and have also studied the statistical functions 
such as the nearest-neighbor distribution. In all cases the 
result is statistically indistinguishable from that obtained 
from the spectrum generated by the integrable Hamiltonian 
Ho -tHF. Thus, we see that the intrinsic noise in statistical 
methods is a significant lim itation in the study of the transi- 
tion to chaos. Furthermore, the physical significance of 
these methods is not always obvious in molecular physics. It 
seems to us that phase-space analysis is the most sensitive 
and often the most instructive. This method, however, re- 
quires us to extract from the experimental spectra the “most 
integrable basis” in order to obtain a simple phase-space to- 
pology with, in particular, -well-marked separatrices which 
do not constantly change as various parameters change. For 
CS,, the vibrational angular basis described by I is better 
adapted than the normal basis because 1 is a good quantum 
number of Ho f HF. 

V. CONCLUSION 
We have shown in this paper that, using high-quality 

vibrational spectra of CS,, it was possible to carry out an 
experimental and theoretical investigation of the transition 
to vibrational chaos. A description in terms of normal modes 
is not suitable for CS, due to the strong Fermi resonances. 
The enormous advantage of the vibrational angular momen- 
tum basis is that it includes the 1:2 Fermi resonance in the 
integrable zero-order Hamiltonian, and that it provides a 
simple phase space, the topology of which strongly resem- 
bles that of already well-studied theoretical models. The 
nonlinear and nonintegrable terms are described equally 
simply both classically and quantum mechanically in this 
basis. This allows us to set up a quantum classical analogy. 
We have shown in this paper that statistical methods do not 
allow the observation of the onset of the transition to chaos 
on account of the intrinsic noise of these methods. 

A possible scenario for CS, is the progressive appear- 
ance of nonlinearities such as the one described by the para- 
meter k, 122. This nonlinearity is simply a 2:2 resonance. In 
fact, even at low energy the corresponding nonintegrable 
coupling can be observed in the case of accidental energy 

level crossing. l8 In a system of two degrees of freedom, at 
least two resonances of different order are necessary to 
render the Hamiltonian nonintegrable. We check different 
forms for the coupling H, corresponding to different orders 
in the product of the operators ai. Every additional n:m type 
resonance (except the 1:2) leads to the same conclu- 
sion: the statistical properties and phase-space modifica- 
tions are similar. 

Our aim is to study the entire potential of the ground 
state of CS, from the bottom of the well to the first dissocia- 
tion lim it. We have measured the vibrational spectrum at 
high resolution up to 19 500 cm r *. The analysis of the re- 
sults between 12 000 and 19 500 cm-’ is in progress. 
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