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For a polynomial potential with resonant fundamental frequen¢le® and 1:3 resonances
quantum avoided crossings can occur when quantum eigenvalues are plotted versus a parameter in
the Hamiltonian. In the present paper, primitil€BK) semiclassical behavior at the quantum
avoided crossing is reinvestigated, using the exact analytical calculation of the action integrals,
which was devised recentlyChem. Phys.185 263 (1994] for an approximate resonance
Hamiltonian that can be deduced from the exact polynomial Hamiltonian by low order perturbation
theory. The previously reported behavior, that is semiclassical levels passing through the
intersection instead of avoiding each other, is shown to happen if there exist two superimposed
branches in the plot of the second action integralas a function of the energy. These results are
interpreted in terms of semiclassical diabatic basis and of quantum dynamical tunneling. In contrast,
if the semiclassical system enters tlaaticrossing region with semiclassical quantum numbgss

which do not lie on superimposed branches of the plot, it is shown that at least one, and possibly
two, levels) must cross the separatrix, that is pass from the inside to the outside of the resonance
region (or conversely in order to adapt to the quantum avoided crossing. This cadsges
corresponding semiclassical quantum numbetto change(ii) the close correspondence between
quantum and semiclassical mechanics to break dowrL9@5 American Institute of Physics.

I. INTRODUCTION classical levels. Restrictions due to the use of the approxi-
In the context of the quantum study of coupled anhar_mate resonance Hamiltonian are pointed out. Semiclassical

monic vibrations described by a polynomial Hamiltonian,.behawor at the quantum avoided crossing is then discussed

) . o L . in Sec. lll. Finally, the Appendix deals with the calculation
avoided crossinggor “anticrossings’) occur in the plot of : S
. of the energy of the singular points in the plot of the second
energy levels versus the value of one of the coupling param- . ~ - : .
4 : : ., action integral, which play a central role in Sec. Ill.
eters in the polynomial expansion. Two levels are said to
anticross if a naive linear extrapolation of their energies ob-
served outside the anticrossing region predicts that they
should cross, whereas they actually approach each othdr QUANTUM AND SEMICLASSICAL ENERGY LEVELS
more or less closely WIFhOUt intersecting. A_v0|ded Crossingsy Reduction to the resonance Hamiltonian
produce local changes in the spectrum, which becomes more _ _ o
rigid since levels repel each other, and dramatic changes in The avoided crossing problem studied in Refs. 1 and 2
the wave functions of participating levels. deals with the polynomial Hamiltonian
The interesting question of the classical and semiclassi- L 2 2. 022 022
cal behavior of two anharmonically coupled oscillators at an ~ H(Px.Py . X,Y) = 2 (Px+ Py + @ X"+ w;y?)
avoided crossing has been addressed some years’égoa 3. .3 2 2
fourth order polynomial Hamiltonian in the regularoncha- ~a(CHY?) FAXY = bxy, 2.1
otic) region. From the semiclassical point of view, it was wherewgwnwg. In Refs. 1 and 2, the case-=3 was actually

found thgt sgmmlassmal e|gepvalue plots pas.sed.through ths(:t‘udied, but extension to the 1:2 resonance is straightfor-
intersection instead of avoiding each othawhich in turn

lead to the conclusion that the splitting is due to a classicall yard. Semiclassical quantization of the Hamiltonian in Eg.

W . i . .
forbidden process. A “uniform” semiclassical quantization .(2'1) Is quite cumbersome and requires calculation of areas

rr . R in well-chosen Poincarsurfaces of section. In order to avoid
procedure was therefore proposedb override this discrep- this lengthy procedure, a simpler Hamiltoni@impler in the

ancy and was claimed to give anticrossing semiclassical lev- ; . ; A .
sense that its semiclassical quantization is known analyti-
els. . . L ;
. . . N cally) can be derived, which exhibits the main features of the
This paper is devoted to the reinvestigation of the LT ) .
Hamiltonian in Eq.(2.1)—and particularly avoided cross-

primitive” (EBK) semiclassical behavior at a quantum ings. This is achieved by application of fourth order

avoided crossing, the study of which appears not to be COZFirkhoﬁ—Gustavson perturbation theoBGPT25 fol-

plete in Refs. 1-3, using the exact analytical calculation . . . )
LT . -lowed by a canonical transformation to action anglelike co-
the action integrals of an approximate resonance Hamil-

tonian, which was devised recenfifhe outline of the paper ordinates ;. ¢i)
is as follows. Section Il deals with the reduction of the full

. o : 2l
polynom@l Hamlltpnlan to the. approximate resonance = _01 CoS@, Py=— 2wl sin ¢; (2.2
Hamiltonian and with the calculation of quantum and semi- Wy
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and similar relations foy, py, ¢,, andl,. BGPT consists of

2817

For the approximate resonance Hamiltonian in E3<)

successive canonical transformations of increasing ordergnd (2.7), there is a single off-diagonal coupling term:
which retain at a given order only those terms, which eithetv,,v,) is coupled only tojv;*=1,v,5n). Stated in other

do not depend o, and ¢, or depend on the slow-varying
angle¢;—ng,. One obtains

2 2
H(l1,12,01,02) = 01l 1+ 0l 3+ X111 T+ X0l 5+ X100 415

+ 2kl 12152 cog 1Ny (2.3
with
0 o 15a°
WIT 0y, WT Oy, X1T m
— L (2.9
and, ifn=2
A b2 3ab
X12= wgwg_ 2w2w32(w2+ 2w3) w§3w§’
1522 b*(5w +8w))
X22=— 4w§4 8w22w82(w2+2w8) '
or, if n=3
R _15a°
Xlz—g_g- X22=— W-

It is worth noting that the Hamiltonian in E.3J) is that one

words, the approximate Hamiltonian only couples basis lev-
els which share the same “polyad” numbernv,+v,, and
levels belonging to the same polyad are obtained by diago-
nalization of a tridiagonal finite-size matrix with size-E(i/

n). The polyad number remains a good quantum number,
whereas neithes, nor v, do.

For the full polynomial Hamiltonian, the number of off-
diagonal elements is much higher than for the approximate
Hamiltonian. There are 10 off-diagonal terms fo=2 and
12 terms fom=3. These terms couple basis levels belonging
to the same polyad, but also levels with different polyad
numbers. Therefore, the polyad number is no longer a good
quantum number for this Hamiltonian. A further conse-
quence is that calculation of energy levels theoretically re-
quires diagonalization of an infinite-size matrix. For numeri-
cal calculation purposes, it was, however, found that
increasingu, from 0 to 6 (respectively, from 0 to bandv,
from O to 12(respectively, from O to 15for the 1:2 reso-
nance(respectively, the 1:3 resonandeads to absolute er-
rors lower than 10° for the low-lying energy levels reported
in this paper. The corresponding sizes of the Hamiltonian
matrices are only 9491 for the 1:2 resonance and 966
for the 1:3 resonance.

In Fig. 1, the exact and approximatBGPT) quantum
energy levels are drawn for increasing valueshdfor the
three examples that are going to be discussed in this paper. It

used by spectroscopists to fit vibrational spectra of moleculeg seen that Eq2.3) is a particularly close approximation of

with two modes in near h:resonanc&°
B. Quantum levels

The full and approximate Hamiltonians in E¢2.1) and

Eq. (2.1 for the last two examples, which correspond to low
values of the anharmoniciti¢parametern) and of the reso-
nance coupling(parameterb), and for which the avoided
crossing occurs at low values of the paramateThe exact

(2.3 are rewritten in terms of the dimensionless coordinate%nergy values of the levels do not agree that well for the first

_ Px

s

X

p
p2:_yl

0
Wy

q:1= \/w—gxl

P1

q2= Jw—Sy

and of the raising and lowering operators

+:

1 1
q ﬁ(qi_jpi)i ai:E(Qi'Hpi)- (2.9

The calculation for the full polynomial Hamiltonian in Eq.
(2.1 is straightforward. For the approximate Hamiltonian in
Eq. (2.3), one obtains

H= wldl+ (1)2d2+ Xlld§+X22d§+ X12d1d2
+kmn(@] @3+ a3, "), (2.7
where

di=3 (p{+ap) 2.8

is a diagonal operator. The quantum energy levels for the ful
and approximate Hamiltonians are then obtained by diago-

nalization of the Hamiltonian matrix in the
lvy,v0)=|v1)®]|v,) basis set of the harmonic oscillator, us-
ing the well-known matrix elements fqr,, q;, d;, a;, and

+
a; .

example, but the position and the width of the avoided cross-
ing are nevertheless correctly reproduced, which is the only
really important point.

The fact that the approximate Hamiltonian only couples
levels belonging to the same polyad, whereas the full Hamil-
tonian contains much more coupling terms, restricts the va-
lidity of this study to almost exact 1:2 or 1:3 resonances, that
is to fundamental frequencies such thgtand nw are al-
most equal, and to levels lying at relatively low energy, in
the region where different polyads do not overlap. Indeed,
these two conditions are needed to ensure that all the avoided
crossings observed for the full Hamiltonian occur for levels
belonging to the same polyad of the approximate Hamil-
tonian and therefore also anticross for this Hamiltonian.

F. Semiclassical levels

Exact analytical semiclassical quantization of the ap-
proximate Hamiltonian in Eq2.3) was studied at length in a
recent papet.For the sake of being complete, the final result
is reproduced below. The two action integrafg and.7, of

the approximate Hamiltonian in ER.3) are
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0=n%K2IM(1 = I)"—n?(wl + €J+ x; 12+ x33%+ x131d —E)?
1:2 i=4 (I=11/2) a=0.024 b=0.03

se2fT — T T =e(J—a)(I-B)I-—y)J—-9) (2.1
560 . -
% ; for n=2: e= —4x2 and forn=3: e= —9(x3+K?).
&5 >0 ] The four roots are ordered in one of the following ways:
& 5.56 _
2 L ] 4
E 554l ] (1) e>0, (a,B,v,0)eR", y=dé<sasp,
= [ ---- BGPT t ]
5.52 - v —_— Exact%li;r;]tl:.g:x 1 0=d==a=l| s
i - ]
5.50 - IS T IS SRR RN 4
005 007 009 011 013 0.15 (2) e<0, (a,B,7v.80)eR* dsasp=y,
COUPLING PARAMETER A
1:2 i=4 (1=11/2) a=0.003 b=0.01 O<é<as<l,
ssa ngl 7 o A (3) e<0, (a,B,7,0)eR* pB=y=é<a,
g 553 ] 0sé<asl,
E 552
3 ] (4) e<0, (a@,8)eR? (B,y)eC? Osé<easl.
B 551} -
7 i 1 (2.12
5.50 ---- BGPT Quantum . . . .
- — Exact Quantum Case(1) was mentioned in Eq2.12 to be consistent with
549 ¢" | . . 1 : :
B T R Ry X T Ref. 4. However, it can occur neither for the 1:2 nor for the
COUPLING PARAMETER A 1:3 resonance, and therefore needs not be considered in the
1:3 i=6 (1=8) a=0.017 b=0.005 present paper. The other parameters are expressed as
BOIFTTTTI ™I T T T TP I T TopT 1Y m
. 02 T R Bantam . W=y, €= 017wy, X1=Xp2,
E 8.01 —
& 8.00 L ~ 2 m m
g8 =— X311~ — X12F+X =— X12—2X
2] X377 XuT X2 X2z, Xy Ty X2 “Xez,
E 7.99 - -
7.98 . - m/2
i n.10 .= 7 m
797..l.l.l.un.n.l.l.ln.hhu%.h K=2 F) Kimns

'-0.010 -0002 0.008 0.014 0.022
COUPLING PARAMETER A

a—6 -8B B—vy
7]1:_5: 3= 71 I—a’ M= 71 ,
_ —a a—

FIG. 1. Plot of exacfEg. (2.1)] and approximatéEq. (2.7)] quantum levels B Y
as a function of the parameterfor three different sets of parameteftp): A= 1 e(a—)(B—90)
n=2, »9=2, wd=1, a=0.024,b=0.03, and polyad numbér4. (middle): 2 ay
n=2, 00=2, wd=1, a=0.003,b=0.01, and polyad numbeér=4. (bottom: N
n=3, w?=3, wy=1,a=0.017,b=0.005, and polyad numbér6. The num- o Ly 2
ber of the level counted from the ground state is indicated for each exact ~ ~ o (2rK(p)+2sjK'(n))  (r,5)eZ%

quantum level. The approximate resonance Hamiltonian is obtained from the

exact polynomial one using Birkhoff-Gustavson perturbation theory B [2—m—n n —m—
(BGP. jo:E[T(éﬂLXUU_EXJ'WLTXJB
+m(E I—x1?) n (E—(w+e)l
7i=1, 2p - M o= TS
. a—pB|. 27\ _ 2
‘72210+m:]11_[( 7]1,(0_*#) (X|+XJ+XIJ)I )}
2N j1=(2=m=n)(e+ x;31) —nx;l +2(4=m—=n)x,5,
+jsll| 73 ——
T R “) [ ME= (0 9=t
 [2met du : (I=a)(I-B) '
Hia | T e, @9
0 (1= msnf(ulp)) ja=(4—m=n)(a—B)x;- (2.13
wherell(7; ;u|u) is the elliptic integral of the third kind Semiclassical levels are those values of the en&rgyhich
satisfy
o ulp= [ g (210
Kt o 1—ns (ulﬂ) . y:|:i+m+n
1 2m ’
(a,B,7,0) are the four roots and the prefactor of the poly-
nomial equation To=is+ 3, i,eZ, (2.19
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wherei is the polyad number defined in Sec. Il B. For a 1:2
and a 1:3 resonanca is equal to 1 in Egs(2.11) to (2.14).
Since this study is restricted to quantum anticrossing lev-
els which belong to the same polyadas explained a few
lines above, Eq(2.14) connecting”7;=I to i demonstrates
that it is also restricted to corresponding semiclassical levels
which share the same principal quantum numizer
It is to be noted, that in Refs. 1 and 2, quantizing trajec-
tories are said to be those trajectories, which satigging
the notations of the present paper

LEVEL ENERGY

5.62
5.60
5.58
5.56

5.54

1.2 i=4 (I=11/2) a=0.024 b=0.03
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BGPT Quantum -

1 552 —_ SC . _
= l.do=n:+~- nez. _r o~ T eparatrix -
2w Jyo P TAT S TS 5.50 |- L i

(2 13 0.05 0.07 0.09 0.11 0.13 0.15
1 .
COUPLING PARAMETER A
— | =N,+ = nyel.
o 3[7X:0 2 des 2T 5 2€

However, Eq(2.15 is quite far from the correct EBK quan- FiG. 2. Piot as a function of of the semiclassical and quantum levels for

tization rule which has been used to obtain Ej9) the BGPT resonance Hamiltonian in E42.3) and(2.7) for the first set of
parameters in Fig. In=2, 0?=2, w9=1, a=0.024,b=0.03, and polyad
numberi =4, corresponding to;=1=11/2. The second semiclassical quan-

i
e tum number7, is indicated for each branch of the plot.

|1 d(Pl"‘IZ d<,02=ni+
[ 4
In Eq. (2.16), C; is a closed curve, which is topologically
equivalent to one of the minimal circles of the 2D torus

supporting the trajectory, and, is the associated Maslov , L i
index. In Refs. 1 and 2, the quantization conditions in EqWhen Plotting the second action integra} as a function of
energyE at a given value of the first action integrah =1,

(2.15 were actually applied to the full polynomial Hamil- : : 2 .
tonian. In order to check their validity, these conditions can hat is for a given polyad. Such a plot fbr=11/2 is given in
however, be applied to the approximate resonance HamiFF19: 3 for three increasing values of the coupling parameter
tonian and then compared to Eg.9). Using the coordinates A. In these plots, the o levels,=1/2 and.7,=—5/2,

(1,3,6,4) defined in Ref. 4 and the expressions of these COyvhich anticross quantum mechanically, are represented by

ordinates as a function of time, the first phase integral in Eqfil€d circles, while the third, mostly noninteracting level
7,=—1/2 is represented by an open circle. It is seen that as

(2.15 is found to be equal to,. In contrast, for the second '7?: : >
phase integral one obtains agairy, for class | and Il tra- \ increases from 0.050 to 0.150, the relative positions of the

jectories(that is, trajectories for which the coordinages a WO levels evolve smoothly: at=0.050,7,=1/2 lies lower
periodic function of time with angular frequency*)?, N €nergy than’,=—5/2. At A=0.098, poth I.evels'share the
n.7,—1 for class Il trajectorieswhereny increases by 2 ~ Same energy. At=0.150,7,=1/2 now lies higher in energy

during a period &/w*)* andn.7,+1 for class IV trajectories han-72=-5/2. As can be checked from the plot of the
(whereny decreases by during a period 2/w*)*. This p,=p,(g,) Poincaresurfaces of section in Fig. 4, corre-

second phase integral is anyway never equal to the actiorP°nding trajectories vary very little over this rangenof
7,=I, and its use is particularly to avoid for class I and Ii Most important in this case is the fact that the two levels

trajectories. This is perhaps the reason, why in Ref. 1 thge on separate and superimposed branches of the plg of

so-called “trajectory closure method” seems to have bee@u?erimp;]osed prancr1hes were alreadr?/ ?V‘)ked in Sfec. 4 of
sometimes used instead of the quantization condition dealinée 4.1 eﬁ ex'ft whenever<0 and the four rootrs] of Eq.
with the second phase integral. No comparative study wat-1? are all real and comprised between 0 dnd'he two
attempted concerning this method. Anyway, this unorthodoPranChes are obtained by ordering the four roots according

way of calculating action integrals is perhaps the reason wh{SPectively to case) and (3) in Eq. (2.19. Clearly, the
previous investigatioﬁ§3 were not complete. existence of these two branches is needed in order that semi-

classical levels can cross in spite of the fact that levels nec-
essarily correspond to half-integral valuesf.

These results can be interpreted in terms of semiclassical
diabatic basis and of quantum dynamical tunneling. Indeed,
it is found that avoiding quantum levels can be obtained with
&xcellent accuracy from semiclassical ones by diagonaliza-

niEZ.

(2.19

2m

Ill. SEMICLASSICAL BEHAVIOR AT A QUANTUM
AVOIDED CROSSING

A. Crossing semiclassical levels

In Refs. 1 and 2, semiclassical levels were reported to ¢
cross. An example where such a case occurs is given in Figion of the matrix
2. For this 1:2 resonance, it is seen that the quantum avoided

crossing between levels7 and#8 (counted from the ground Eip(N\) =

statg at A\~0.100 actually corresponds to crossing semiclas- 2 3.1)
sical levels(.7;,7,)=(11/2,1/2 and(11/2,-5/2). However, a S B0 ’

much better insight in the semiclassical behavior is gained 2 —s5/2

J. Chem. Phys., Vol. 102, No. 7, 15 February 1995
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1.2 [=11/2 a=0.024 b=0.03 1:2 I=11/2 a=0.024 b=0.03
4 RN DL UL L B DL S SN I
a o0 ]
o 2F ]
= 1 -
£ 1r ]
Z or -
g-ip ]
0—2? 7
8-3_— 7
il it PO R BN SO B SRR O B
% -3 -2 -1 0 1 2 3 4
COORDINATE gz
o I ! ' T T T T T T T T T
= I i AC ]
3 H d N h
0.5 1 ! E Q ok 1
I U U B C .
5.45 550 5.55 560 565 570 E 1 ]
-0.5:— ! ! 2 of 3
E ! i g-ir =
-15 | | 8'Zj ]
- 'L/o/ °3E E
-5 i i O EP HE HAVNN EVU R B
h ! A=0.098 -4 -3 -2 -1 0 1 2 3 4
[ [ COORDINATE gz
n%: - i : 4T T T T T T T T T
05F I i E af-
3 — i Ly E‘ 2f
3 55 5.6 5.7 B r
s ,/@/5/ £af
L i i E 0_—
s a-1F
-15F | i g_;;
[ i 3
L L e S-af
_25; . i A0 b
[ ¢ 53 2 - 2 3 4
. | A20.150 | 4 -3 -2 -1 0 1

COORDINATE q2

FIG. 3. Plot of the second action integra} as a function of energiZ for  FIG, 4. Poincareurfaces of sectiop,=p,(qy) atq;=0 for the quantizing

a given value of the first action integré¥;=1=11/2) and three increasing  trajectories plotted in Figs. 2 and 3. Parameters are the same as in Figs. 2

values of the parametar Other parameters are the same as in Fig. 2. Filledand 3. The first semiclassical quantum numberI is equal to 11/2 for all

circles represent those semiclassical levels, whose quantum counterparts gRe trajectories. The second semiclassical quantum numipés indicated

ticross, and the open circle the third, mostly noninteracting level. for each quantizing trajectory. Resonant trajectories contain two separate
islands.

whereE;»(\) andE _g;(\) stand for the energy of the semi- B. One trajectory crossing the separatrix

classical.7,=1/2 and.7,=—5/2 levels. Assuming the nu- As stated in the previous subsection, the simple descrip-
merical valueA=0.0067 leads to levels which cannot be tion of anticrossing quantum states in terms of dynamical
distinguished from the quantum ones in Fig. 2 for the wholetunneling between semiclassical tori is possible because the
range of\. Semiclassical levels can therefore be consideredwo levels lie on separate and superimposed branches of the
as the diabatic basisrossing levels basisin terms of which  plot of .7,. In the present and in the next subsections, cases
the adiabatidanticrossingquantum levels are expressed. At where this condition is not satisfied are going to be studied.
this point, it is worth introducing the concept of quantum A first example is shown in Figs. 5—7. Compared to the
dynamical tunneling suggested by Davis and Hefl@@uot-  example in Figs. 2—4, only the values af and b are

ing Ref. 11, “tunneling involves an allowed quantum eventchanged, but this results in the semiclassical system entering
which fails to take place classically. Dynamical tunneling isthe (antcrossing region with quantum numbers=1/2 and

the subset of such events which do not involve a classically,=—3/2, which lie on separate but not superimposed
insurmountable potential barrier.” This is exactly what is branches of the plot of, (Fig. 6, top. These two branches
happening here: There exists no energy barrier separating tla@e separated by a discontinuity, which corresponds to the
two classical trajectoriegori) but, nevertheless, a trajectory separatrix, and levels,=1/2 and.7,=—3/2 therefore can-
starting on the7,=1/2 torus will never end on th&,=—5/2  not cross. The separatrix is a trajectory reduced to a fixed
torus. In contrast, Eq(3.1) shows that the quantum system point in one of Poincarsurfaces of sectiofthe (J,i) plane
flops forth and back between the two tori and that the frein Ref. 4] with vanishing corresponding frequeney =0,
quency of the flops is precisel/2. A further interesting and separates resonant trajectoties, trajectories inside the
point is that in Ref. 11 quantum dynamical tunneling wasresonant islands in phase spa@®m nonresonant trajecto-
demonstrated for those cases, where the symmetry with reies (i.e., trajectories outside the resonant islandis addi-
spect tog, is only slightly broken, whereas this symmetry is tion, considering that the semiclassical level spacing might
here completely broken, due to the fact that the three paranbe small at the quantum avoided crossing because classical
etersa, b, and\ are all large. Nonetheless, it is seen thatfrequencies are small near the separdsee Eq(25) of Ref.
tunneling tori can still be found. 12, or the work by Canet al'®] is not sufficient, since the

J. Chem. Phys., Vol. 102, No. 7, 15 February 1995
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1:2 i=4 (I=11/2) a=0.003 b=0.01
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FIG. 5. Plot as a function of of the semiclassical and quantum levels for
the BGPT resonance Hamiltonian in E¢8.3) and (2.7) for the second set
of parameters in Fig. In=2, ?=2, w=1, a=0.003,b=0.01 and polyad
numberi =4, corresponding to’;=1=11/2. The second semiclassical quan-
tum number”; is indicated for each branch of the plot.

energy of semiclassical levels is far from being a simple

linear function ofw*: the energy of the levels varies slowly
near the separatrix, whereas the frequeatydrops sharply
to 0 (see Fig. 2 of Ref. 12

1:2 1=11/2 a=0.003 b=0.01

o
=
0.5

|
1
|
I B
[ 549 5.50
-0.5 |
)
I

-1.5

—2.5

A=0.0025

[ ]
% L ! |
1

o
=
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i
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IO T IUL

FIG. 6. Plot of the second action integré}, as a function of energi for

a given value of the first action integral;=1=11/2 and three increasing
values of the parametar. Other parameters are the same as in Fig. 5. Filled
circles represent those semiclassical levels, whose quantum counterparts
ticross, and the empty circle the third, mostly noninteracting level.
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FIG. 7. Poincaresurfaces of sectiop,=p,(q,) atq,=0 for the quantizing
trajectories plotted in Figs. 5 and 6. Parameters are the same as in Figs. 5
and 6. The first semiclassical quantum numbes=| is equal to 11/2 for all

the trajectories. The second semiclassical quantum numbés indicated

for each quantizing trajectory. Resonant trajectories contain two separate
islands.

Loosely speaking, the semiclassical system must then
find a trick to adapt to the quantum avoided crossing. This
trick consists here in one level passing from the inside of the
resonance zone, where it satisfies one quantization condition
(7,=—3/2) to the outside, where it satisfies a different quan-
tization condition(.7,=—5/2): As \ is increased, semiclassi-
cal levels try to “follow” quantum levels and their energy
therefore increases, while the gap between the two levels
diminishes. Consequently, both levels approach the separa-
trix as\ increases. When they are too close to the separatrix,
somewhat unusual features might ariBeg. 5 to 7, middle,
which will be described below. As the energy of the separa-
trix does not increase at the same rate as the average energy
of both levels(see Fig. 5, one semiclassical level disappears
at a given value ok (here about 0.020 because the branch
of .7, is interrupted by the discontinuity before it reaches the
requisite value of7, (Fig. 6, botton). According to the gen-
eral correspondence, that one quantum level is associated
with one semiclassical trajectory, it is expected that another
semiclassical level replaces that one which has disappeared.
Indeed, it is seen in Figs. 5 and(éiddle and bottory) that
the level with.7,=—5/2 has appeard actually appeared at
aboutA=0.010. Levels.7,=—5/2 and.7,=1/2 (this latest

dgvel simply crosses the quantum avoided crossiiggon

superimposed branches of the plot®f and therefore cross
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near the center of the quantum avoided crossing.
So, when going out of théanti)crossing region, the two 1:3 i=6 (I=8) a=0.017 b=0.005
guantum levels are associated with two semiclassical levels

with respective values of the second quantum number equal > __Il ll | ]|3'G|F;q|1 Qlu;n,lmlml N "‘/',,»'»*' "—_
to .7,=1/2 and.7,=—5/2, whereas these quantum numbers 8.02 - —— SC —1/2 P
are equal ta7,=1/2 and.7,=—3/2 before entering it. % Lo Separatrix 7 _
Figure 7 shows that, in contrast with the first example in £ 8.01 - . ]
Sec. lll A and Fig. 4, the Poincamsurfaces of section—and % i e A T
therefore the trajectories—change drastically from one side = 8.00 B T ) N
of the avoided crossing to the other side, except for the non = ;o9 -
interacting .7,=—1/2 level which remains mostly un- = - .
changed. On the one hand, the resonant —3/2 trajectory 7.98 — 1/2 -
is replaced by the nonresonant,=—5/2 trajectory as de- AN .m L
scribed above. Both trajectories coexist betwaen0.010 "9 5010 —0.002 0006 0.014 0.022
and\=0.020. On the other hand, the trajectory with constant COUPLING PARAMETER A

value of .7,=1/2 is also seen to be resonant before the

avoided crossing and nonresonant after it. This is explained

by the fact that around=0.007 this trajectory crosses what FIG. 8. Plot as a function of of the semiclassical and quantum levels for

. — . the BGPT resonance Hamiltonian in E¢®.3) and(2.7) for the third set of

n Refs. 4 and.12 was called t& separatri{see Eq(AZ_) parameters in Fig. In=3, 0?=3, wj=1, a=0.017,b=0.005 and polyad

in the Appendix for the expression of the energy of Bi¢  numberi =6, corresponding to7,=1 =8. The second semiclassical quantum

separatri This E~ separatrix is somewhat special: It is a number.7, is indicated for each branch of the plot.

separatrix in the sense that it separates resonant from non-

resonant trajectories, but not a “true” one, since it does not

cgrresponq t(.) any kind of vanishing freqpency nor to aMwith this change, the result is far from being as satisfying as

discontinuity in the values of the frequencies of the torus Ok Sec. I A

of the action integrals. ' '
Now, let us come back to what happens near the center

of the avoided crossing, that is in the region, where at least

one semiclassical level is very close to the separatrix. Nu¢: Both trajectories crossing the separatrix
merically, one observes that the “erroE,—Egc between A still more complex case is represented in Figs. 8—10,
the energy of quantum and semiclassical levels grows sigwhich can nevertheless easily be understood using the dis-
nificantly when approaching the separati$ee for instance, cussion in the previous subsection. For this 1:3 resonance,
the numerical results in Ref)4Although this phenomenon the semiclassical system enters thaticrossing region with
has not been thoroughly analyzed, it is probably connected tgemiclassical quantum numbets,,7,)=(8,3/2 and (8,5/
the fact that trajectories whose energy is close to the separg). It is seen in Fig. 9top) that both levels lie on the same
trix spend most of the time accelerating and deceleratingranch of the plot of7,. Both levels must then cross the
exponentially;? which in turn plausibly invalidates the semi- separatrix in order to adapt to the quantum avoided crossing:
classical approximation. Therefore, near the separatrix probFhe level.7,=5/2 crosses the separatrix arouxg —0.001
lems might occur, which break the usual one-to-one correand is replaced around=0.008 by the level7,=—5/2.
spondence between quantum and semiclassical levels. Bimilarly, the level.7,=3/2 disappears at=0.011 but the
Figs. 5-7(middle) it is seen, for instance, that two semiclas- level by which it is replaced/,=—1/2, already exists for
sical levels can be associated with a single quantum levelalues of\ higher than 0.002. Levelg,=3/2 and7,=—5/2
However, the opposite can also be true, and it happens théié on superimposed branches of the plot%f and cross at
some quantum levels remain without any associated semk=0.0097. Therefore, the semiclassical system goes out of
classical trajectory for some range of(see for instance the the (antcrossing region with quantum numbers,=—1/2
plots around\=0 in Figs. 5 and B and.7,=—5/2, whereas it entered the region with quantum
Most important points concerning the example in Figs.numbers7,=3/2 and7,=>5/2. Furthermore, the definition of
5-7 are thereforéi) the separatrix is absolutely necessary,the semiclassical diabatic basis is here mostly meaningless,
because semiclassical levels would otherwise be unable bo#fince it would require some interpolation between the tori
to cross and to anticros§j) due to the vicinity of the sepa- .7,=5/2 and7,=—5/2 in the rang&.=0.001 to 0.008, where
ratrix, the close correspondence between quantum and senmiene of these levels exists.
classical mechanics is broken near the center of the avoided Somewhat surprisingly, it is seen in Fig. 10 that corre-
crossings(iii ) the validity of the description of quantum lev- sponding Poincarsurfaces of section are less complex than
els in terms of semiclassical ones is no longer so clear. Keeger the previous case in Fig. 7. This is mostly due to the fact
ing with the concept of tunneling between the vectors of thehat the.7,=5/2 trajectory is replaced by th&,=—5/2 tra-
semiclassical diabatic basis, it is seen that the definition ofectory, which occupies the same region of phase space and
the basis must be adapted as follows: Below, 3ay0.015 is principally characterized by the opposite direction of
the basis contains the tori with,=1/2 and.7,=—3/2 and  propagation. The greatest change is due to the other level,
aboveA=0.015 the tori with.7,=1/2 and.7,=—5/2. Even which passes from the outside of the resonance region
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FIG. 9. Plot of the second action integrd}, as a function of energf for FIG. 10. Poincdrsurfaces of sectiop,=p,(d,) atq,=0 for the quantizing

a given value of the first action integraV;=1=8) and four increasing trajectories plotted in Figs. 8 and 9. Parameters are the same as in Figs. 8

values of the parametar Other parameters are the same as in Fig. 8. Filledand 9. The first semiclassical quantum numbe#| is equal to 8 for all the

circles represent those semiclassical levels, whose quantum counterparts drajectories. The second semiclassical quantum numbes indicated for

ticross, and the open circle the third, mostly noninteracting level. each quantizing trajectory. Resonant trajectories contain three separate is-
lands.

(7,=3/2) to the inside of the resonance regior,=—1/2).
As previously, the noninteractingZ,=1/2 level remains
mostly unchanged.

on the.7,=0 axis, which are only the limits of the region
allowed forE. Singular points can be encountered whenever

(1) a=p or y=4 (becausew* =0);
= = *: .
APPENDIX: SINGULAR POINTS IN THE PLOT OF .7, (2) (B=y or =) and s#0 (becausew™=0);

. . 3) I= becausen; and j; are undefine
The fact that semiclassical levels cross or do not cross (3) I=a( 3 I3 o

only depends on plots o, like those in Figs. 3, 6, and 9. (4) 1=pB (becausej, and j; are undefined (Al)
The expression o, as a function o andl was derived in
Ref. 4 and is reproduced in EgR.9—(2.13. However, up
to now no method has been given to obtain the first and la:

point of each branch, and particularly the position of therootS of Eq(2.11), like a= 8= or B=y= 0, were neglected,

separatrix. It takes quite a lot of time to obtain these point . S
with good precision when using only E¢.9). In order to Sbeczgsiﬁ g];}l Zre highly unprobafild.et us defineE™ and

enable quicker and more accurate calculations, a simple and
precise way to calculate the abscissae of these points is given E™=(w+e€)l +(x, + x5t xi)l3,
in this appendix. _ 2

The first and last points of each branch in the plot of the £ — @l Txil™ (A2)
action integral7, vs the energ\e are singular points of the Examination of Eq(3.6) of Ref. 4 immediately leads to
expression of7, in Eq. (2.9), except(if s=0) for the points  the conclusion that cas€3) and(4) in Eq. (A1) are satisfied

Equation(Al) thus shows that singular points 6f, corre-
S%pond either to a double root of EQ.11) or toJ=1 being a
root of this equatiorfin the cases listed in EqAL), triple
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only if the energyE of the system is equal t&*. Determi-  with a polynomial equation involving onl§, | and the pa-
nation of the energy values at which caggsand(2) in Eq.  rameters defined in Eq2.13. This equation is most easily
(A1) occur is somewhat more complex. It is achieved byexpressed using the reduced coordinates
writing that a given value dJ is a root of both Eq(2.11) and
of its derivative with respect td. Two polynomial expres- E-E~ E*-E” K?

) . X=—, A=——, B=—-——. (A3)
sions are obtained, one of degree four and one of degree X3 X! e
three with respect td. Successive linear combinations of

these two equations then enable to eliminkténe is left  One obtains, for the 1:2 resonance

0=(X—Al)?*[—256X3+X?{—128(A—1)2+3B(16l —9B+48A)} +2X{—8(A—1)*+3B?I(3A—21)+2B(A—1)
X(A2—22A1—1512)}+BI%[—4(A—1)3+B(A?—20Al1+4B1—812)}] (A4)
and for the 1:3 resonance
0=(X—AI)*>*[256(1—B)X3+32X?{4(A—1)2+4AB((B+1)I +(B—2)A) +BI?>(B—5)} + X{16(A—1)*
+16B(B—2)A3(A—41)—24A?%1°B(B+3)+32ABI3(B+1)+BI413B—56)}
+BI3{4(A—1)3+4B(13- A% + 3ABI(4A+5I1)}]. (A5)

Three remarks are worth doing concerning these equations.D. W. Noid, M. L. Koszykowski, and R. A. Marcus, J. Chem. Phy8,
First, X=Al (that isE=E™") is solution of both equations. 4018(1983.

. . 2T. Uzer, D. W. Noid, and R. A. Marcus, J. Chem. Phy8, 4412(1983.
_ =t _ ’ , , 3
This means that, foE=E", J=1 is a double root of EQ. sy e and R A, Marcus, J. Chem. Phgd, 5013 (1984,

(2.12). This result was already mentioned in Ref. 12. Second,*M. Joyeux, Chem. Phy<.85, 263 (1994
not all the solutions of EqSA4) and (A5) are actually sin-  °G. D. Birkhoff, Dynamical Systemol. 9 (AMS Colloguium, New York,
1

gular points of.7,. For instance, the solutiok might be 6F9€(536.Gustavson Astron. 71, 670(1966

complex, or correspond tey=I, which is not a singular 7R T. Swimm and J. B. Delos, J. Chem. Phys, 1706(1979.

point, or to a double rood which is outside the allowed °J.P.Pique, M. Joyeux, J. Manners, and G. Sitja, J. Chem. BBy8744
. . P : . (1993).

= LR = . . .
rangg G=J<I, . Thlrd’ points on the7,=0 aXIS,’ thCh are °P. F. Bernath, M. Dulick, R. W. Field, and J. L. Hardwick, J. Mol. Spec-
not singular points in the case=0, but only the limits of the  osc 86, 275 (1981,
allowed region folE, are nevertheless obtained when solving™J. E. Baggott, M. C. Chuang, R. N. Zare, H. R. Dubal, and M. Quack, J.
Egs.(A4) and (A5), since they correspond to a double root 113h3mb§\?slsa8§&1518?%9(3?2} 3. Chem. Phys, 246(1981
a=24. Therefore, the first and last points of each branch canz, Joyeux, Chem. Phyd.74, '157(1993. Y

all be obtained numerically. 133, R. Cary, P. Rusu, and R. T. Skodje, Phys. Rev. 58t292 (1987).
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