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For a polynomial potential with resonant fundamental frequencies~1:2 and 1:3 resonances!,
quantum avoided crossings can occur when quantum eigenvalues are plotted versus a parameter in
the Hamiltonian. In the present paper, primitive~EBK! semiclassical behavior at the quantum
avoided crossing is reinvestigated, using the exact analytical calculation of the action integrals,
which was devised recently@Chem. Phys.185, 263 ~1994!# for an approximate resonance
Hamiltonian that can be deduced from the exact polynomial Hamiltonian by low order perturbation
theory. The previously reported behavior, that is semiclassical levels passing through the
intersection instead of avoiding each other, is shown to happen if there exist two superimposed
branches in the plot of the second action integralI 2 as a function of the energy. These results are
interpreted in terms of semiclassical diabatic basis and of quantum dynamical tunneling. In contrast,
if the semiclassical system enters the~anti!crossing region with semiclassical quantum numbersI 2
which do not lie on superimposed branches of the plot, it is shown that at least one, and possibly
two, level~s! must cross the separatrix, that is pass from the inside to the outside of the resonance
region ~or conversely! in order to adapt to the quantum avoided crossing. This causes~i!
corresponding semiclassical quantum numberI 2 to change~ii ! the close correspondence between
quantum and semiclassical mechanics to break down. ©1995 American Institute of Physics.
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I. INTRODUCTION

In the context of the quantum study of coupled anh
monic vibrations described by a polynomial Hamiltonia
avoided crossings~or ‘‘anticrossings’’! occur in the plot of
energy levels versus the value of one of the coupling para
eters in the polynomial expansion. Two levels are said
anticross if a naive linear extrapolation of their energies o
served outside the anticrossing region predicts that th
should cross, whereas they actually approach each o
more or less closely without intersecting. Avoided crossin
produce local changes in the spectrum, which becomes m
rigid since levels repel each other, and dramatic change
the wave functions of participating levels.

The interesting question of the classical and semiclas
cal behavior of two anharmonically coupled oscillators at
avoided crossing has been addressed some years ago1–3 for a
fourth order polynomial Hamiltonian in the regular~noncha-
otic! region. From the semiclassical point of view, it wa
found that semiclassical eigenvalue plots passed through
intersection instead of avoiding each other,1 which in turn
lead to the conclusion that the splitting is due to a classica
forbidden process. A ‘‘uniform’’ semiclassical quantizatio
procedure was therefore proposed2,3 to override this discrep-
ancy and was claimed to give anticrossing semiclassical l
els.

This paper is devoted to the reinvestigation of th
‘‘primitive’’ ~EBK! semiclassical behavior at a quantu
avoided crossing, the study of which appears not to be co
plete in Refs. 1–3, using the exact analytical calculation
the action integrals of an approximate resonance Ham
tonian, which was devised recently.4 The outline of the paper
is as follows. Section II deals with the reduction of the fu
polynomial Hamiltonian to the approximate resonan
Hamiltonian and with the calculation of quantum and sem
2816 J. Chem. Phys. 102 (7), 15 February 1995 0021-960
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classical levels. Restrictions due to the use of the appro
mate resonance Hamiltonian are pointed out. Semiclassi
behavior at the quantum avoided crossing is then discuss
in Sec. III. Finally, the Appendix deals with the calculation
of the energy of the singular points in the plot of the secon
action integral, which play a central role in Sec. III.

II. QUANTUM AND SEMICLASSICAL ENERGY LEVELS

A. Reduction to the resonance Hamiltonian

The avoided crossing problem studied in Refs. 1 and
deals with the polynomial Hamiltonian

H~px ,py ,x,y!5 1
2 ~px

21py
21vx

02x21vy
02y2!

2a~x31y3!1lx2y22bxyn, ~2.1!

wherevx
0'nvy

0. In Refs. 1 and 2, the casen53 was actually
studied, but extension to the 1:2 resonance is straightfo
ward. Semiclassical quantization of the Hamiltonian in Eq
~2.1! is quite cumbersome and requires calculation of are
in well-chosen Poincare´ surfaces of section. In order to avoid
this lengthy procedure, a simpler Hamiltonian~simpler in the
sense that its semiclassical quantization is known analy
cally! can be derived, which exhibits the main features of th
Hamiltonian in Eq.~2.1!—and particularly avoided cross-
ings. This is achieved by application of fourth orde
Birkhoff–Gustavson perturbation theory~BGPT!2,5–7 fol-
lowed by a canonical transformation to action anglelike co
ordinates (I i ,w i)

x5A2I 1
vx
0 cosw1 , px52A2vx

0I 1 sin w1 ~2.2!
6/95/102(7)/2816/9/$6.00 © 1995 American Institute of Physics
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2817Marc Joyeux: Quantum avoided crossing
and similar relations fory, py , w2, andI 2. BGPT consists of
successive canonical transformations of increasing ord
which retain at a given order only those terms, which eith
do not depend onw1 andw2 or depend on the slow-varying
anglew12nw2. One obtains

H~ I 1 ,I 2 ,w1 ,w2!5v1I 11v2I 21x11I 1
21x22I 2

21x12I 1I 2

12kmnI 1
1/2I 2

n/2 cos~w12nw2! ~2.3!

with

v15vx
0, v25vy

0, x1152
15a2

4vx
04,

~2.4!
kmn52

b

A2n11vx
0vy

0n
.

and, if n52

x125
l

vx
0vy

02
b2

2vx
0vy

02~vx
012vy

0!
2

3ab

vx
03vy

0 ,

x2252
15a2

4vy
042

b2~5vx
018vy

0!

8vx
02vy

02~vx
012vy

0!
,

or, if n53

x125
l

vx
0vy

0 , x2252
15a2

4vy
04 .

It is worth noting that the Hamiltonian in Eq.~2.3! is that one
used by spectroscopists to fit vibrational spectra of molecu
with two modes in near 1:n resonance.8–10

B. Quantum levels

The full and approximate Hamiltonians in Eqs.~2.1! and
~2.3! are rewritten in terms of the dimensionless coordina

p15
px

Avx
0
, q15Avx

0x, p25
py

Avy
0
, q25Avy

0y

~2.5!

and of the raising and lowering operators

ai
15

1

&
~qi2 jpi !, ai5

1

&
~qi1 jpi !. ~2.6!

The calculation for the full polynomial Hamiltonian in Eq
~2.1! is straightforward. For the approximate Hamiltonian
Eq. ~2.3!, one obtains

H5v1d11v2d21x11d1
21x22d2

21x12d1d2

1kmn~a1
1a2

n1a1a2
1n!, ~2.7!

where

di5
1
2 ~pi

21qi
2! ~2.8!

is a diagonal operator. The quantum energy levels for the
and approximate Hamiltonians are then obtained by dia
nalization of the Hamiltonian matrix in the
uv1 ,v2&5uv1& ^ uv2& basis set of the harmonic oscillator, us
ing the well-known matrix elements forpi , qi , di , ai , and
ai

1.
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For the approximate resonance Hamiltonian in Eqs.~2.3!
and ~2.7!, there is a single off-diagonal coupling term:
uv1 ,v2& is coupled only touv161,v27n&. Stated in other
words, the approximate Hamiltonian only couples basis le
els which share the same ‘‘polyad’’ numberi5nv11v2 , and
levels belonging to the same polyad are obtained by diag
nalization of a tridiagonal finite-size matrix with size 11E( i /
n). The polyad numberi remains a good quantum number
whereas neitherv1 nor v2 do.

For the full polynomial Hamiltonian, the number of off-
diagonal elements is much higher than for the approxima
Hamiltonian. There are 10 off-diagonal terms forn52 and
12 terms forn53. These terms couple basis levels belongin
to the same polyad, but also levels with different polya
numbers. Therefore, the polyad number is no longer a go
quantum number for this Hamiltonian. A further conse
quence is that calculation of energy levels theoretically re
quires diagonalization of an infinite-size matrix. For numeri
cal calculation purposes, it was, however, found tha
increasingv1 from 0 to 6 ~respectively, from 0 to 5! andv2
from 0 to 12 ~respectively, from 0 to 15! for the 1:2 reso-
nance~respectively, the 1:3 resonance! leads to absolute er-
rors lower than 1025 for the low-lying energy levels reported
in this paper. The corresponding sizes of the Hamiltonia
matrices are only 91391 for the 1:2 resonance and 96396
for the 1:3 resonance.

In Fig. 1, the exact and approximate~BGPT! quantum
energy levels are drawn for increasing values ofl for the
three examples that are going to be discussed in this pape
is seen that Eq.~2.3! is a particularly close approximation of
Eq. ~2.1! for the last two examples, which correspond to low
values of the anharmonicities~parametera! and of the reso-
nance coupling~parameterb!, and for which the avoided
crossing occurs at low values of the parameterl. The exact
energy values of the levels do not agree that well for the fir
example, but the position and the width of the avoided cros
ing are nevertheless correctly reproduced, which is the on
really important point.

The fact that the approximate Hamiltonian only couple
levels belonging to the same polyad, whereas the full Ham
tonian contains much more coupling terms, restricts the v
lidity of this study to almost exact 1:2 or 1:3 resonances, th
is to fundamental frequencies such thatvx

0 andnvy
0 are al-

most equal, and to levels lying at relatively low energy, in
the region where different polyads do not overlap. Indee
these two conditions are needed to ensure that all the avoid
crossings observed for the full Hamiltonian occur for level
belonging to the same polyad of the approximate Hami
tonian and therefore also anticross for this Hamiltonian.

C. Semiclassical levels

Exact analytical semiclassical quantization of the ap
proximate Hamiltonian in Eq.~2.3! was studied at length in a
recent paper.4 For the sake of being complete, the final resu
is reproduced below. The two action integralsI 1 andI 2 of
the approximate Hamiltonian in Eq.~2.3! are
No. 7, 15 February 1995
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2818 Marc Joyeux: Quantum avoided crossing
I 15I ,

I 25 j 01
a2b

4pl H j 1PS h1 ;
2pl

v* Um D
1 j 3PS h3 ;

2pl

v* Um D
1 j 4E

0

2pl/v* du

~12h1sn
2~uum!!2 J , ~2.9!

whereP(h i ;uum) is the elliptic integral of the third kind

P~h i ;uum!5E
0

u du

12h isn
2~uum!

~2.10!

~a,b,g,d! are the four roots ande the prefactor of the poly-
nomial equation

FIG. 1. Plot of exact@Eq. ~2.1!# and approximate@Eq. ~2.7!# quantum levels
as a function of the parameterl for three different sets of parameters.~top!:
n52, vx

052, vy
051, a50.024,b50.03, and polyad numberi54. ~middle!:

n52, vx
052, vy

051, a50.003,b50.01, and polyad numberi54. ~bottom!:
n53,vx

053,vy
051, a50.017,b50.005, and polyad numberi56. The num-

ber of the level counted from the ground state is indicated for each ex
quantum level. The approximate resonance Hamiltonian is obtained from
exact polynomial one using Birkhoff–Gustavson perturbation theo
~BGPT!.
J. Chem. Phys., Vol. 102,
05n2K2Jm~ I2J!n2n2~vI1eJ1x I I
21xJJ

21x IJIJ2E!2

5e~J2a!~J2b!~J2g!~J2d! ~2.11!

for n52: e524xJ
2 and forn53: e529(xJ

21K2).
The four roots are ordered in one of the following ways:

~1! e.0, ~a,b,g,d!PR4, g<d<a<b,

0<d<a<I ,

~2! e,0, ~a,b,g,d!PR4, d<a<b<g,

0<d<a<I ,

~3! e,0, ~a,b,g,d!PR4, b<g<d<a,

0<d<a<I ,

~4! e,0, ~a,d!PR2, ~b,g!PC2 , 0<d<a<I .
~2.12!

Case~1! was mentioned in Eq.~2.12! to be consistent with
Ref. 4. However, it can occur neither for the 1:2 nor for the
1:3 resonance, and therefore needs not be considered in t
present paper. The other parameters are expressed as

v5v2 , e5
m

n
v12v2 , x I5x22,

xJ5
m2

n2
x112

m

n
x121x22, x IJ5

m

n
x1222x22,

K52Smn Dm/2kmn ,

h15
a2d

b2d
, h35h1

I2b

I2a
, m5h1

b2g

a2g
,

l5 1
2 Ae~a2g!~b2d!

5
v*

2p
~2rK ~m!12s jK8~m!! ~r ,s!PZ2,

j 05
b

v* F22m2n

2
~e1x IJI !2

n

2
xJI1

42m2n

2
xJb

1
m

2b
~E2vI2x I I

2!2
n

2~ I2b!
~E2~v1e!I

2~x I1xJ1x IJ!I
2!G ,

j 15~22m2n!~e1x IJI !2nxJI12~42m2n!xJb,

j 352
nI~E2~v1e!I2~x I1xJ1x IJ!I

2!

~ I2a!~ I2b!
,

j 45~42m2n!~a2b!xJ . ~2.13!

Semiclassical levels are those values of the energyE, which
satisfy

I 15I5 i1
m1n

2m
,

I 25 i 21
1
2 , i 2PZ, ~2.14!

act
the
ry
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2819Marc Joyeux: Quantum avoided crossing
wherei is the polyad number defined in Sec. II B. For a 1:
and a 1:3 resonance,m is equal to 1 in Eqs.~2.11! to ~2.14!.

Since this study is restricted to quantum anticrossing le
els which belong to the same polyadi , as explained a few
lines above, Eq.~2.14! connectingI 15I to i demonstrates
that it is also restricted to corresponding semiclassical lev
which share the same principal quantum numberI 1.

It is to be noted, that in Refs. 1 and 2, quantizing traje
tories are said to be those trajectories, which satisfy~using
the notations of the present paper!

1

2p R
y50

I 1 dw15n11
1

2
n1PZ,

~2.15!
1

2p R
x50

I 2 dw25n21
1

2
n2PZ.

However, Eq.~2.15! is quite far from the correct EBK quan-
tization rule which has been used to obtain Eq.~2.9!

1

2p R
Ci

I 1 dw11I 2 dw25ni1
a i

4
niPZ. ~2.16!

In Eq. ~2.16!, Ci is a closed curve, which is topologically
equivalent to one of the minimal circles of the 2D toru
supporting the trajectory, andai is the associated Maslov
index. In Refs. 1 and 2, the quantization conditions in E
~2.15! were actually applied to the full polynomial Hamil-
tonian. In order to check their validity, these conditions ca
however, be applied to the approximate resonance Ham
tonian and then compared to Eq.~2.9!. Using the coordinates
~I ,J,u,c! defined in Ref. 4 and the expressions of these c
ordinates as a function of time, the first phase integral in E
~2.15! is found to be equal toI 2. In contrast, for the second
phase integral one obtains againnI 2 for class I and II tra-
jectories~that is, trajectories for which the coordinatec is a
periodic function of time with angular frequencyv* !4,
nI 22I for class III trajectories~wherenc increases by 2p
during a period 2p/v* !4 andnI 21I for class IV trajectories
~wherenc decreases by 2p during a period 2p/v* !4. This
second phase integral is anyway never equal to the act
I 15I , and its use is particularly to avoid for class I and I
trajectories. This is perhaps the reason, why in Ref. 1 t
so-called ‘‘trajectory closure method’’ seems to have bee
sometimes used instead of the quantization condition deal
with the second phase integral. No comparative study w
attempted concerning this method. Anyway, this unorthod
way of calculating action integrals is perhaps the reason w
previous investigations1–3 were not complete.

III. SEMICLASSICAL BEHAVIOR AT A QUANTUM
AVOIDED CROSSING

A. Crossing semiclassical levels

In Refs. 1 and 2, semiclassical levels were reported
cross. An example where such a case occurs is given in F
2. For this 1:2 resonance, it is seen that the quantum avoid
crossing between levels]7 and]8 ~counted from the ground
state! at l'0.100 actually corresponds to crossing semicla
sical levels~I 1,I 2!5~11/2,1/2! and~11/2,25/2!. However, a
much better insight in the semiclassical behavior is gain
J. Chem. Phys., Vol. 102,
2
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when plotting the second action integralI 2 as a function of
energyE at a given value of the first action integralI 15I ,
that is for a given polyad. Such a plot forI511/2 is given in
Fig. 3 for three increasing values of the coupling parameter
l. In these plots, the two levelsI 251/2 and I 2525/2,
which anticross quantum mechanically, are represented by
filled circles, while the third, mostly noninteracting level
I 2521/2 is represented by an open circle. It is seen that as
l increases from 0.050 to 0.150, the relative positions of the
two levels evolve smoothly: atl50.050,I 251/2 lies lower
in energy thanI 2525/2. At l50.098, both levels share the
same energy. Atl50.150,I 251/2 now lies higher in energy
than I 2525/2. As can be checked from the plot of the
p25p2(q2) Poincare´ surfaces of section in Fig. 4, corre-
sponding trajectories vary very little over this range ofl.

Most important in this case is the fact that the two levels
lie on separate and superimposed branches of the plot ofI 2.
Superimposed branches were already evoked in Sec. 4 o
Ref. 4. They exist whenevere,0 and the four roots of Eq.
~2.11! are all real and comprised between 0 andI . The two
branches are obtained by ordering the four roots according
respectively to cases~2! and ~3! in Eq. ~2.12!. Clearly, the
existence of these two branches is needed in order that sem
classical levels can cross in spite of the fact that levels nec
essarily correspond to half-integral values ofI 2.

These results can be interpreted in terms of semiclassica
diabatic basis and of quantum dynamical tunneling. Indeed
it is found that avoiding quantum levels can be obtained with
excellent accuracy from semiclassical ones by diagonaliza
tion of the matrix

S E1/2~l!
D

2
D

2
E25/2~l!

D , ~3.1!

FIG. 2. Plot as a function ofl of the semiclassical and quantum levels for
the BGPT resonance Hamiltonian in Eqs.~2.3! and ~2.7! for the first set of
parameters in Fig. 1:n52, vx

052, vy
051, a50.024,b50.03, and polyad

numberi54, corresponding toI 15I511/2. The second semiclassical quan-
tum numberI 2 is indicated for each branch of the plot.
No. 7, 15 February 1995
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2820 Marc Joyeux: Quantum avoided crossing
whereE1/2~l! andE25/2~l! stand for the energy of the semi-
classicalI 251/2 andI 2525/2 levels. Assuming the nu-
merical valueD50.0067 leads to levels which cannot be
distinguished from the quantum ones in Fig. 2 for the who
range ofl. Semiclassical levels can therefore be consider
as the diabatic basis~crossing levels basis!, in terms of which
the adiabatic~anticrossing! quantum levels are expressed. A
this point, it is worth introducing the concept of quantum
dynamical tunneling suggested by Davis and Heller.11 Quot-
ing Ref. 11, ‘‘tunneling involves an allowed quantum even
which fails to take place classically. Dynamical tunneling i
the subset of such events which do not involve a classica
insurmountable potential barrier.’’ This is exactly what i
happening here: There exists no energy barrier separating
two classical trajectories~tori! but, nevertheless, a trajectory
starting on theI 251/2 torus will never end on theI 2525/2
torus. In contrast, Eq.~3.1! shows that the quantum system
flops forth and back between the two tori and that the fr
quency of the flops is preciselyD/2. A further interesting
point is that in Ref. 11 quantum dynamical tunneling wa
demonstrated for those cases, where the symmetry with
spect toq2 is only slightly broken, whereas this symmetry is
here completely broken, due to the fact that the three para
etersa, b, andl are all large. Nonetheless, it is seen tha
tunneling tori can still be found.

FIG. 3. Plot of the second action integralI 2 as a function of energyE for
a given value of the first action integral~I 15I511/2! and three increasing
values of the parameterl. Other parameters are the same as in Fig. 2. Fille
circles represent those semiclassical levels, whose quantum counterpart
ticross, and the open circle the third, mostly noninteracting level.
J. Chem. Phys., Vol. 102, N
e
d

t

t
s
lly

the

-

s
re-

m-
t

B. One trajectory crossing the separatrix

As stated in the previous subsection, the simple descr
tion of anticrossing quantum states in terms of dynamic
tunneling between semiclassical tori is possible because
two levels lie on separate and superimposed branches of
plot of I 2. In the present and in the next subsections, cas
where this condition is not satisfied are going to be studie

A first example is shown in Figs. 5–7. Compared to th
example in Figs. 2–4, only the values ofa and b are
changed, but this results in the semiclassical system enter
the ~anti!crossing region with quantum numbersI 251/2 and
I 2523/2, which lie on separate but not superimpose
branches of the plot ofI 2 ~Fig. 6, top!. These two branches
are separated by a discontinuity, which corresponds to
separatrix, and levelsI 251/2 andI 2523/2 therefore can-
not cross. The separatrix is a trajectory reduced to a fix
point in one of Poincare´ surfaces of section@the ~J,c! plane
in Ref. 4# with vanishing corresponding frequencyv*50,
and separates resonant trajectories~i.e., trajectories inside the
resonant islands in phase space! from nonresonant trajecto-
ries ~i.e., trajectories outside the resonant islands!. In addi-
tion, considering that the semiclassical level spacing mig
be small at the quantum avoided crossing because class
frequencies are small near the separatrix@see Eq.~25! of Ref.
12, or the work by Caryet al.13# is not sufficient, since the

d
an-

FIG. 4. Poincare´ surfaces of sectionp25p2(q2) at q150 for the quantizing
trajectories plotted in Figs. 2 and 3. Parameters are the same as in Fig
and 3. The first semiclassical quantum numberI 15I is equal to 11/2 for all
the trajectories. The second semiclassical quantum numberI 2 is indicated
for each quantizing trajectory. Resonant trajectories contain two sepa
islands.
o. 7, 15 February 1995
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2821Marc Joyeux: Quantum avoided crossing
energy of semiclassical levels is far from being a simp
linear function ofv* : the energy of the levels varies slowl
near the separatrix, whereas the frequencyv* drops sharply
to 0 ~see Fig. 2 of Ref. 12!.

FIG. 5. Plot as a function ofl of the semiclassical and quantum levels fo
the BGPT resonance Hamiltonian in Eqs.~2.3! and ~2.7! for the second set
of parameters in Fig. 1:n52, vx

052, vy
051, a50.003,b50.01 and polyad

numberi54, corresponding toI 15I511/2. The second semiclassical quan
tum numberI 2 is indicated for each branch of the plot.

FIG. 6. Plot of the second action integralI 2 as a function of energyE for
a given value of the first action integral~I 15I511/2! and three increasing
values of the parameterl. Other parameters are the same as in Fig. 5. Fill
circles represent those semiclassical levels, whose quantum counterpar
ticross, and the empty circle the third, mostly noninteracting level.
J. Chem. Phys., Vol. 102,
le

Loosely speaking, the semiclassical system must the
find a trick to adapt to the quantum avoided crossing. Thi
trick consists here in one level passing from the inside of th
resonance zone, where it satisfies one quantization conditi
~I 2523/2! to the outside, where it satisfies a different quan
tization condition~I 2525/2!: As l is increased, semiclassi-
cal levels try to ‘‘follow’’ quantum levels and their energy
therefore increases, while the gap between the two leve
diminishes. Consequently, both levels approach the sepa
trix asl increases. When they are too close to the separatri
somewhat unusual features might arise~Fig. 5 to 7, middle!,
which will be described below. As the energy of the separa
trix does not increase at the same rate as the average ene
of both levels~see Fig. 5!, one semiclassical level disappears
at a given value ofl ~here about 0.020!, because the branch
of I 2 is interrupted by the discontinuity before it reaches the
requisite value ofI 2 ~Fig. 6, bottom!. According to the gen-
eral correspondence, that one quantum level is associat
with one semiclassical trajectory, it is expected that anothe
semiclassical level replaces that one which has disappear
Indeed, it is seen in Figs. 5 and 6~middle and bottom!, that
the level withI 2525/2 has appeared~it actually appeared at
aboutl50.010!. LevelsI 2525/2 andI 251/2 ~this latest
level simply crosses the quantum avoided crossing! lie on
superimposed branches of the plot ofI 2 and therefore cross

r

-

d
s an-

FIG. 7. Poincare´ surfaces of sectionp25p2(q2) at q150 for the quantizing
trajectories plotted in Figs. 5 and 6. Parameters are the same as in Figs
and 6. The first semiclassical quantum numberI 15I is equal to 11/2 for all
the trajectories. The second semiclassical quantum numberI 2 is indicated
for each quantizing trajectory. Resonant trajectories contain two separa
islands.
No. 7, 15 February 1995
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2822 Marc Joyeux: Quantum avoided crossing
near the center of the quantum avoided crossing.
So, when going out of the~anti!crossing region, the two

quantum levels are associated with two semiclassical lev
with respective values of the second quantum number eq
to I 251/2 andI 2525/2, whereas these quantum numbe
are equal toI 251/2 andI 2523/2 before entering it.

Figure 7 shows that, in contrast with the first example
Sec. III A and Fig. 4, the Poincare´ surfaces of section—and
therefore the trajectories—change drastically from one si
of the avoided crossing to the other side, except for the n
interacting I 2521/2 level which remains mostly un-
changed. On the one hand, the resonantI 2523/2 trajectory
is replaced by the nonresonantI 2525/2 trajectory as de-
scribed above. Both trajectories coexist betweenl50.010
andl50.020. On the other hand, the trajectory with consta
value of I 251/2 is also seen to be resonant before th
avoided crossing and nonresonant after it. This is explain
by the fact that aroundl50.007 this trajectory crosses wha
in Refs. 4 and 12 was called theE2 separatrix@see Eq.~A2!
in the Appendix for the expression of the energy of theE2

separatrix#. This E2 separatrix is somewhat special: It is a
separatrix in the sense that it separates resonant from n
resonant trajectories, but not a ‘‘true’’ one, since it does n
correspond to any kind of vanishing frequency nor to an
discontinuity in the values of the frequencies of the torus
of the action integrals.

Now, let us come back to what happens near the cen
of the avoided crossing, that is in the region, where at lea
one semiclassical level is very close to the separatrix. N
merically, one observes that the ‘‘error’’EQ2ESC between
the energy of quantum and semiclassical levels grows s
nificantly when approaching the separatrix~see for instance,
the numerical results in Ref. 4!. Although this phenomenon
has not been thoroughly analyzed, it is probably connected
the fact that trajectories whose energy is close to the sepa
trix spend most of the time accelerating and decelerati
exponentially,12 which in turn plausibly invalidates the semi-
classical approximation. Therefore, near the separatrix pro
lems might occur, which break the usual one-to-one corr
spondence between quantum and semiclassical levels.
Figs. 5–7~middle! it is seen, for instance, that two semiclas
sical levels can be associated with a single quantum lev
However, the opposite can also be true, and it happens t
some quantum levels remain without any associated se
classical trajectory for some range ofl ~see for instance the
plots aroundl50 in Figs. 5 and 8!.

Most important points concerning the example in Fig
5–7 are therefore~i! the separatrix is absolutely necessar
because semiclassical levels would otherwise be unable b
to cross and to anticross;~ii ! due to the vicinity of the sepa-
ratrix, the close correspondence between quantum and se
classical mechanics is broken near the center of the avoid
crossing;~iii ! the validity of the description of quantum lev-
els in terms of semiclassical ones is no longer so clear. Kee
ing with the concept of tunneling between the vectors of th
semiclassical diabatic basis, it is seen that the definition
the basis must be adapted as follows: Below, say,l50.015
the basis contains the tori withI 251/2 andI 2523/2 and
abovel50.015 the tori withI 251/2 andI 2525/2. Even
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with this change, the result is far from being as satisfying a
in Sec. III A.

C. Both trajectories crossing the separatrix

A still more complex case is represented in Figs. 8–10
which can nevertheless easily be understood using the d
cussion in the previous subsection. For this 1:3 resonanc
the semiclassical system enters the~anti!crossing region with
semiclassical quantum numbers~I 1,I 2!5~8,3/2! and ~8,5/
2!. It is seen in Fig. 9~top! that both levels lie on the same
branch of the plot ofI 2. Both levels must then cross the
separatrix in order to adapt to the quantum avoided crossin
The levelI 255/2 crosses the separatrix aroundl520.001
and is replaced aroundl50.008 by the levelI 2525/2.
Similarly, the levelI 253/2 disappears atl50.011 but the
level by which it is replaced,I 2521/2, already exists for
values ofl higher than 0.002. LevelsI 253/2 andI 2525/2
lie on superimposed branches of the plot ofI 2 and cross at
l50.0097. Therefore, the semiclassical system goes out
the ~anti!crossing region with quantum numbersI 2521/2
andI 2525/2, whereas it entered the region with quantum
numbersI 253/2 andI 255/2. Furthermore, the definition of
the semiclassical diabatic basis is here mostly meaningles
since it would require some interpolation between the tor
I 255/2 andI 2525/2 in the rangel50.001 to 0.008, where
none of these levels exists.

Somewhat surprisingly, it is seen in Fig. 10 that corre
sponding Poincare´ surfaces of section are less complex than
for the previous case in Fig. 7. This is mostly due to the fac
that theI 255/2 trajectory is replaced by theI 2525/2 tra-
jectory, which occupies the same region of phase space a
is principally characterized by the opposite direction o
propagation. The greatest change is due to the other lev
which passes from the outside of the resonance regio

FIG. 8. Plot as a function ofl of the semiclassical and quantum levels for
the BGPT resonance Hamiltonian in Eqs.~2.3! and~2.7! for the third set of
parameters in Fig. 1:n53, vx

053, vy
051, a50.017,b50.005 and polyad

numberi56, corresponding toI 15I58. The second semiclassical quantum
numberI 2 is indicated for each branch of the plot.
o. 7, 15 February 1995
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2823Marc Joyeux: Quantum avoided crossing
~I 253/2! to the inside of the resonance region~I 2521/2!.
As previously, the noninteractingI 251/2 level remains
mostly unchanged.

APPENDIX: SINGULAR POINTS IN THE PLOT OF I 2

The fact that semiclassical levels cross or do not cro
only depends on plots ofI 2 like those in Figs. 3, 6, and 9
The expression ofI 2 as a function ofE andI was derived in
Ref. 4 and is reproduced in Eqs.~2.9!–~2.13!. However, up
to now no method has been given to obtain the first and
point of each branch, and particularly the position of t
separatrix. It takes quite a lot of time to obtain these poi
with good precision when using only Eq.~2.9!. In order to
enable quicker and more accurate calculations, a simple
precise way to calculate the abscissae of these points is g
in this appendix.

The first and last points of each branch in the plot of t
action integralI 2 vs the energyE are singular points of the
expression ofI 2 in Eq. ~2.9!, except~if s50! for the points

FIG. 9. Plot of the second action integralI 2 as a function of energyE for
a given value of the first action integral~I 15I58! and four increasing
values of the parameterl. Other parameters are the same as in Fig. 8. Fill
circles represent those semiclassical levels, whose quantum counterpar
ticross, and the open circle the third, mostly noninteracting level.
J. Chem. Phys., Vol. 102
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on theI 250 axis, which are only the limits of the region
allowed forE. Singular points can be encountered whenev

~1! a5b or g5d ~becausev*50!;

~2! ~b5g or a5d! and sÞ0 ~becausev*50!;

~3! I5a ~becauseh3 and j 3 are undefined!;

~4! I5b ~becausej 0 and j 3 are undefined!. ~A1!

Equation~A1! thus shows that singular points ofI 2 corre-
spond either to a double root of Eq.~2.11! or to J5I being a
root of this equation@in the cases listed in Eq.~A1!, triple
roots of Eq.~2.11!, like a5b5g or b5g5d, were neglected,
because they are highly unprobable!#. Let us defineE1 and
E2 as in Ref. 4

E15~v1e!I1~x I1xJ1x IJ!I
2,

E25vI1x I I
2. ~A2!

Examination of Eq.~3.6! of Ref. 4 immediately leads to
the conclusion that cases~3! and~4! in Eq. ~A1! are satisfied

ed
ts an-

FIG. 10. Poincare´ surfaces of sectionp25p2(q2) atq150 for the quantizing
trajectories plotted in Figs. 8 and 9. Parameters are the same as in Fig
and 9. The first semiclassical quantum numberI 15I is equal to 8 for all the
trajectories. The second semiclassical quantum numberI 2 is indicated for
each quantizing trajectory. Resonant trajectories contain three separate
lands.
, No. 7, 15 February 1995



2824 Marc Joyeux: Quantum avoided crossing
only if the energyE of the system is equal toE1. Determi-
nation of the energy values at which cases~1! and~2! in Eq.
~A1! occur is somewhat more complex. It is achieved
writing that a given value ofJ is a root of both Eq.~2.11! and
of its derivative with respect toJ. Two polynomial expres-
sions are obtained, one of degree four and one of de
three with respect toJ. Successive linear combinations
these two equations then enable to eliminateJ. One is left
J. Chem. Phys., Vol. 102
by
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of

with a polynomial equation involving onlyE, I and the pa-
rameters defined in Eq.~2.13!. This equation is most easily
expressed using the reduced coordinates

X5
E2E2

xJ
, A5

E12E2

xJI
, B52

K2

e
. ~A3!

One obtains, for the 1:2 resonance
05~X2AI !2* @2256X31X2$2128~A2I !213B~16I29B148A!%12X$28~A2I !413B2I ~3A22I !12B~A2I !

3~A2222AI215I 2!%1BI2$24~A2I !31B~A2220AI14BI28I 2!%# ~A4!

and for the 1:3 resonance

05~X2AI !3* @256~12B!X3132X2$4~A2I !214AB~~B11!I1~B22!A!1BI2~B25!%1X$16~A2I !4

116B~B22!A3~A24I !224A2I 2B~B13!132ABI3~B11!1BI4~13B256!%

1BI3$4~A2I !314B~ I 32A3!13ABI~4A15I !%#. ~A5!
.

n

o

Three remarks are worth doing concerning these equatio
First, X5AI ~that isE5E1! is solution of both equations
This means that, forE5E1, J5I is a double root of Eq.
~2.11!. This result was already mentioned in Ref. 12. Seco
not all the solutions of Eqs.~A4! and ~A5! are actually sin-
gular points ofI 2. For instance, the solutionE might be
complex, or correspond tog5I , which is not a singular
point, or to a double rootJ which is outside the allowed
range 0<J<I ,••• . Third, points on theI 250 axis, which are
not singular points in the cases50, but only the limits of the
allowed region forE, are nevertheless obtained when solvin
Eqs. ~A4! and ~A5!, since they correspond to a double ro
a5d. Therefore, the first and last points of each branch c
all be obtained numerically.
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