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Periodic orbits are those classical trajectories, which exactly loop after a finite time called
precisely the period of the periodic orbit. Semiclassical trace formulae connect classical dynamics to
quantum spectra, by showing that the peaks, which appear in the Fourier transform of a spectrum,
correspond to the periods of the periodic orbits of the underlying classical system. At short times, where
peaks are still well separated in the Fourier transform of the spectrum, one is then able, at least
theoretically, to assign a classical periodic orbit to each peak. This article deals with the assignment of the
Fourier transform of the vibrational spectrum of CO, up to 300 femtoseconds, using Berry and Tabor's
trace formula for integrable (non chaotic) systems. Since analytical expressions are known for the action
integrals and classical frequencies of two vibrational modes in Fermi interaction, one gets a clear picture
of what happens. In particular, the similarities and the differences, which are observed between the
Fourier transforms of the 2D and 3D spectra of CO,, the former one being obtained by freezing the-
antisymmetric stretching degree of freedom, can be analysed in some detail.

Introduction

The Fourier transform (FT) of a quantum spectrum may reveal the chaotic
behaviour of the underlying classical system through the appearance of the so-called
correlation hole [1-2]. Since the correlation hole fills up at a time corresponding to
the average density of states, this information must generally be sought for at rather
large time values for the vibrations of a triatomic molecule (an average density of
states of 0.1 level/cm™! is associated with a time of 3 ps).

Nonetheless, some information concerning the dynamics of the underlying
classical system is also contained in the FT of the spectrum at time scales much
shorter than the average density of states. The key result is that peaks appear in the
FT at those values of time, which correspond to the periods of the classical periodic
orbits (POs). At short times, peaks are well separated in the FT, and one is a priori

1217-8969 /97/ $ 5.00 © 1997 Akadémiai Kiadd, Budapest



574 JOYEUX, MICHAILLE: Fourier transform of molecular spectra vs. classical periodic orbits

able to assign a classical PO to each peak. In this paper, we propose to assign the FT
of the vibrational spectrum of CO, for times up to about 300 femtoseconds.

The connection between quantum and classical mechanics consists of the so-
called trace formulae, which express the semiclassical density of states (that is, the
spectrum with peak intensity normalised to 1), as a function of the properties of the
classical POs. There exist at least three trace formulae, each one applying to a
particular type of system. Berry and Tabor's trace formula [3], applies to regular
(non chaotic) systems [3, 4]. At the opposite, Gutzwiller's trace formula [5-7] is
valid for completely chaotic systems [8-14]. The gap between these two formulae is
in part filled by the trace formula for mixed systems, which has been worked out by
Ozorio de Almeida [15] and Tomsovic, Grinberg and Ullmo [16].

The limiting step when looking forward to apply a trace formula consists
precisely in finding the classical POs. This usually requires a large amount of
numerical calculations. An exception occurs for integrable systems, that is for Berry
and Tabor's trace formula, whenever one is able to calculate analytically the classical
frequencies of the system. Unfortunately, Berry and Tabor's trace formula only
marginally applies to the most widely used, regular and analyticaily soluble molecular
Hamiltonian, that is the polynomial Dunham expansion, because of the almost
complete lack of curvature of the energy surface [3]. In contrast, it correctly applies
to the Hamiltonian, which describes two vibrational modes in Fermi resonance, like
the bending and symmetric stretching modes of CO,, because of the strong curvature
of the energy surface which is induced by the separatrix [17]. In addition, analytical
expressions have recently been given for the classical frequencies and action integrals
of this Hamiltonian [18, 19], so that all the tools, which are needed to connect the
classical POs of CO, to the FT of its vibrational spectrum and to have a clear
understanding of what happens are at one's disposal.

Other recent articles dealing with the connection between classical POs and
molecular spectra include the very complete review article of Gaspard et al., entitled
New ways of understanding semiclassical quantization [20], two papers of Ezra [21]
and Rouben and Ezra [22], who study the same type of resonance Hamiltonian as we
do, an article of Hirai et al. [23], who discuss several examples available from
experimental spectra, and a more theoretical article of Baranger et al. [24], where the
results obtained for further model Hamiltonians are presented.
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Action integrals, classical frequencies and POs

The classical Hamiltonian H describing a system with N degrees of freedom is
expressed as a function of N generalised coordinates g; and their N conjugate
momenta p;. If the system is regular (non chaotic), then each trajectory is
characterised by N constants of the motion J;, which are called action integrals and
are calculated according to [25]:

S .
~i :E%fk%pk dgy . (1

The paths C; in Eq. (1) are N closed loops, which are topologically equivalent to the
N principal circles of the torus supporting the trajectory. The energy of the system
can be rewritten as a function of the N action integrals:

EEH(Plvql,--',PNqu)EH(:’l,--ij)‘ )
Associated with each action integral is a classical frequency W;, defined according to:
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Each classical observable defined on the trajectory, like for instance individual
coordinates g; or p;, can then be Fourier expanded in terms of the sole combinations
and overtones of the N classical frequencies W,. On the other hand, periodic orbits
(POs) are those trajectories that exactly loop after a finite time T, called the period of
the PO. A trajectory, such that the N classical frequencies are rationally related, i.e.,
such that:

A T

Iy, ..., e NN,
(Hys oon N) W Wy 2 4)

is associated with a so-called rational torus and is obviously a PO with period Tﬂ.
Hereafter, these POs will also be called N-dimensional POs (or ND POs), because
particles actually experience motion along the N angles of the rational torus. In
contrast, there exist other POs, which will be described as (N-n)-dimensional POs (or
(N-n)D POs) and are characterised by n vanishing amplitudes of motion along the
frequencies W,,...,W, and N-n-1 proportionality relations similar to Eq. (4) along
the frequencies W, {,...,Wy.
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Berry and Tabor's trace formula

For integrable systems, Berry and Tabor's trace formula [3] connects the
density of states, that is the spectrum with peaks normalised to 1, to a sum involving
the rational tori of the classical system. To be exact, the density of states n(E), which
appears in the trace formula is the semiclassical density of states resulting from
Einstein-Brillouin-Keller (EBK) quantization. However, for the Hamiltonian, which
describes vibrational modes in near 1:n resonance (see Egs (16) and (28)), the
quantum and semiclassical energy levels are very close together even for low-lying
levels [17-19, 26, 27]. This is the reason, why the trace formula can be viewed as
the connection between the quantum spectrum and the dynamics of the underlying
classical Hamiltonian.

In the case of an Hamiltonian with N degrees of freedom, the simplest trace
formula given in Eq. (21) of [3] is:

n T

nE)~ Y A,cosQruI, ~—pa+—p4), s
rational " Ho2 4"H (&)
tori(u)atE

where p=(uy, ..., uy), 5#= (31, ..., Jy) computed at the rational tori, a = (ag,...,
ay) is the vector of the Maslov indexes and ,Bﬂ is the signature computed at the
rational tori of a matrix resulting from the stationary phase approximation. In the
present work, « and ﬂ# will remain largely irrelevant. The amplitude term A#
depends only on the classical properties (action integrals, classical frequencies, and
derivatives of these quantities) of the rational tori at energy E. 4, ..., 4y need not be
relatively prime, in order to allow for multiple repetitions of the POs. Also, at a
given energy E, there might exist several POs with the same value of z but different
values of the amplitude A4 . A completely worked-out, straightforward application of
the trace formula in Eq. (5) to a 2D model of CS, can be found in [17]. A closer
relation of Eq. (5) with rational tori is achieved by recalling, that for a PO:

N y
ZE) =Tor ST Lrde,. ©)
PO k=1

Moreover, for a rational torus 4, the action function S is just:
S=2nus e )

So that, to first order in the energy E, Eq. (5) can be rewritten in the form:
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nE) ~ ZAﬂcos(TﬂE—zzi,ua +%ﬁ#)- ®)

rational

tori(u)atE
It is important to emphasise again, that Eqs (5) and (8) involve only rational tori, that
is ND POs, and completely neglect POs with lower dimension. An alternative
approximation of the semiclassical density of states, which is more accurate than
Eq. (5), is given in Eq. (24) of [3] for systems with N=2 degrees of freedom. This
uniform trace formula is written in the form:

-~ T
n(E) ~ Z(aﬂcos(Zn,uJ#—-z—,uath#)+

rational

tori(u)atE
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left right

In Eq. (9), the subscripts “border left” and “border right” refer to the limits of the
classically accessible phase space, which are usually 1D POs. The amplitudes a ” b p
and c,, and the additional phase A now depend on the classical properties not only of
the rational tori, but also of these 1D POs. More important for the purpose of this
article, however, is the fact that Eq. (9) explicitly contains circular functions of the
action integrals of the 1D POs. In the case, where these 1D POs correspond to a
vanishing amplitude along the frequency W, and where the action integral J, always
assumes the same value at the limits of the phase space, regardless of the value of the
energy E, as is the case for the Hamiltonian in Eq. (16) [18, 19], one has:

7N}
S=2n3 2 =0.
1 ( T Jb (10)
order

Using Eqs (6) and (10), the uniform trace formula in Eq. (9) can then be rewritten to
first order in energy in the most useful form:

T
nE)~ Y (aﬂcos(TuE—Eya+Aﬂ)+

rational

tori(z)atE
. T . T
+ b“ sin(y T oo E — Eya) +C, sin(y I g E— E;za)) . (1D
left right
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FT of the quantum and semiclassical density of states

The Fourier transform (FT) of a spectrum extending from Ey-AE/2 to
Ew+ AE/2 is taken in the form:

Ey +AE[2
F(x,Ey)=—= [e7/2"*Eg(E ,Ey) n(E) dE
V21 g agn
E-E,V
EE,)=1-4 LA
&(E.Ey) ( E ] (12)

where g(E, Ey) is the Welch windowing function, which is used to reduce the leakage
at large time offsets. Other windowing functions, like Hanning, Parzen or Gaussian
windows, could have been used as well. When dealing with the quantum spectrum,
n(E) in Eq. (12) is replaced by ;5(E—Ek), where (E, E,,...) is the set of quantum
eigenvalues. One simply gets:

1 .
F(x,Ey) = ——Y 8(E, ,E,)e /2™ E |

(x.Ey) = = %g( v Ew) (13)

E being expressed in reciprocal centimetres (cm™!) and x being proportional to 1/E, x

is in centimetre units, and the abscissa is actually slightly modified, according to:

x[cm]  10%x (14)

t[fs]zc[cmfs‘]]~ 3’

in order to return to more usual femtosecond units for the abscissa.

Alternately, n(E) in Eq. (12) can be replaced by one of the expressions in
Eqgs (8) or (11). Assuming that A ” and T# remain mostly constant within each energy
window Ey-AE/2<E<Ey+AE/2, Fourier transformation of Eq. (8) leads to the
conclusion that the squared modulus of the FT of the spectrum mainly displays peaks
centred around values of x, such that:

Tlem] 4 y

e = Wiem T Wofem 1]

(15)

When using the modified abscissa scale in Eq. (14), peaks more simply appear
around the periods T, (in femtoseconds) of the rational tori. Moreover, a single
rational torus contributes to each peak, and the maximum intensity is just
A #AE)?-/(ISn). An exception occurs whenever the periods of two rational tori are
too close together: in that case, some deviations might arise in the position and in the
intensity of the peaks.
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For a system with two degrees of freedom (N=2), Fourier transformation of
the more accurate expression in Eq. (11) leads to a somewhat more complex picture:
indeed, in addition to the peaks centred around the periods Tﬂ of rational tori, the
squared modulus of the FT of the spectrum is seen to display other peaks centred
around the periods Tyorqeriere a0 Thyorgerrighe Of the 1D POs at the limits of the
classically accessible phase space and around the multiples of these periods. Again, a
single trajectory contributes to each peak for rational tori, with a maximum intensity
being just (a !,AE)2/ (18n). In contrast, all the rational tori with the same value of s
contribute to the g th repetition of the 1D POs, leading to a more complex intensity
behaviour of these peaks. Also, deviations might arise in the expected position and
intensity of the peaks whenever the periods of two POs, either 1D or 2D, are too
close together (in the figures plotted in this article, the width of the peaks is about
4 fs).

The model Hamiltonian for CO,

Suzuki 28] has shown that the vibrational levels of CO, can be correctly fitted
up to about 10000 cm~! above the ground level (about 13000 cm~! above the bottom
of the well) by diagonalising an effective Hamiltonian built according to:

3 d. 33 d. da.:
J
<vl,z»§,v3 |H’v1,v§,v3> = > wi(v[ +~2—’-) + Zx,-j[vl- +;‘J{vi +7J +x,4(][2

i=1 i=1j=i
<v1,v5,u3 |Hlv1 - 1,1;2” +2,v3> = 4‘121/”1«”2 +2)2 =02y, (16)

where dy =d; =1 and d, =2. ( is the vibrational angular momentum resulting from
the twofold degeneracy of the bending mode 2, and 1 and 3 label respectively the
symmetric and antisymmetric stretching motions. If », is odd (respectively, even)
then ¢ is odd (respectively, even). For the purpose of not complicating the discussion
with arguments outside the scope of this paper (like the non-integrability of the exact
Hamiltonian, or the influence of missing levels) and also of enabling the use of
previous calculations, the quantum spectra, which will be considered in the next two
sections, are obtained from the diagonalisation of the matrix in Eq. (16). In addition,
the off-diagonal spectroscopic constants 4;, 4, and A, which were fitted by Suzuki
[28], are discarded here for the sake of simplicity, whereas they could just be handled
perturbatively along the same lines as y;5, in [27]. The study of the complications
arising from the study of a real experimental spectrum will be the aim of a
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forthcoming paper [29]. Numerical values of the spectroscopic parameters given by
Suzuki are the following (in cm™1):

o) = 1349.97 ) = 674.85 w3 =2395.89
X =-2.38 Xy =-0.23 X33 =-12.40 (17)
Xpy =-12.61 X3 =-18.50 x5=1.01

ki, =24.70 Xpp=-0.38 .

Using the correspondence relation between quantum and classical mechanics, the
classical analogue of the quantum Hamiltonian in Eq. (16) is, for £ =0 [27]:

3 33
E = H(l, b, I,0.00,03) = 20,1+ X 33, L + 2k 12 cos(oy ~ 2¢)
i isij=i

g = /21[ cosg; , pi= —‘/215 sing;, , (18)

where the (f;,¢,) are conjugate, action-angle like coordinates. As in [27], all the
classical calculations are done for a semiclassical quantum number associated with the
vibrational angular momentum equal to L=/¢=0, thus neglecting the quantum
selection rule dealing with the parity of ¢, and ¢. Since the expression of the energy
in Eq. (18) does not depend on ¢3, J; =I5 is an action integral of the system, which
is associated with a Maslov index a; =2:

- 1
Jy3=L=u; +E. (19)

The Hamiltonian is next rewritten in the form:

2 2 2
E'= Y ol + 3. Y x; ;L1 + 2k 121 cos(py - 20,)
i=1 i=1j=i

E'=E-wl; - x50, w; = @; + X3l . (20)

One is thus led to the expression of a 2D resonance Hamiltonian, the classical
mechanics of which has been studied recently in some details [18, 19]. The
calculations will not be reproduced here. Let us just mention some key results: the
first action integral of the Hamiltonians in Eqs (18) and (20) is J=1=21+1,,
which is associated with a Maslov index «; = 8 [27]:

31=I=211+12=21;1+02+2. (21)

The last action integral J, can be expressed as a function of E' and I, that is of E, 5
and J; {18, 19]. It is associated with a Maslov index ay =2, but has no quantum
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counterpart like Eqs (19) or (21). The classical frequencies associated with J; = I and
3, are W;=v+ and W, =w*, whose expressions are given in [18, 19]. The
expression of the third classical frequency is obtained along the same lines as v,
leading to:

T
X
W =v3 =y +2x331 +x231+%(%3—x23) [J()dr
0

[1(m|u)
= Wy +2x33L +x231+[7—x j [ﬂ +(a-p) K?ll)l J (22)

Symbols have the same meaning as in [18, 19].

Assignment of the FT of the 2D spectrum of CO,

All the tools, which are needed to connect the classical POs of CO, to the FT
of its spectrum, are now at one's disposal. In this section, the FT of the 2D spectrum
will be investigated, whereas the FT of the 3D spectrum will be handled in the
following section. By “2D spectrum”, we mean the spectrum obtained by freezing
two quantum numbers in Eq. (16). More precisely, in the following of this article the
2D spectrum will consist of those levels with 23 =0 and #=0 or /=1, according to
the parity of u,. Eq. (19) shows that the classical Hamiltonian corresponding to the
2D spectrum is obtained by replacing /3 by 1/2 in Eq. (20). In the “3D spectrum”, ¢4
is left free to vary, whereas the condition /=0 or /=1 is maintained.

The squared modulus of ten FTs of the 2D quantum spectrum of CO, is drawn
in Fig. 1 for times lower than 300 fs. In this figure, the centre Ey, of the energy
window increases from 4000 cm~! to 8500 cm~! with increments of 500 cm-!, the
width of each window being AE = 8000 cm~!. Each peak appearing in this figure will
be associated with a classical PO. The discussion will essentially deal with the
abscissa of the peaks (that is, the period of the PO), whereas their intensity will only
be discussed qualitatively.

The typical behaviour of the classical frequencies Wy = v« and W, = w* at a
given energy E is illustrated in Fig. 2 (top). The classical frequencies are drawn as a
function of the first action integral J; =1. For 2D CO,, each set (E,I) defines a
single torus. Without entering into details, it is to be noted that this point was not
obvious a priori and results from the fact that CO, can assume the phase space
structures labelled II/III and II/A in [19], but not the II/III/A phase space structure.
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( FT of the spectrum of COz (2D : v3=0)

3Y,b 4X.c d
I

T T T T T Al Y \I T 1
25 50 75 100 125 150 175 200 225 250 275 300
time (fs)

Fig. 1. Squared modulus of 10 Fourier transforms of the 2D quantum spectrum of CO, for times up to
300 fs. The quantum spectrum is obtained by diagonalisation of the Hamiltonian matrix in Eq. (16). Each
Fourier transform is calculated according to Eq. (13), with an energy E,, at the center of the window
increasing from 4000 cm™! to 8500 cm™! (increments of 500 cm™!) and a window width AE=8000 cm™.
Abscissas are rescaled according to Eq. (14). Each peak in the FT is associated with a PO, either the
repetition of a 1D PO (X=1D([_ ), Y=1D(I__)) or a rational torus (a=1:3%, ..., g=1:6Y)

min max

In addition, the phase space structure II/III appears only marginally (for low values of
I), so that the vast majority of the plots of the classical frequencies versus I look like
that one at E =8000 cm™!, which is given in Fig. 2. These plots are characterised by:
(i) a finite range of permitted values of /. The minimum and maximum values / can
reach, I, (E,Iy) and I, (E, I3), can be calculated by finding the roots of a polynome
and are known to be associated with elliptic fixed points [19] both in the (p;,q;) and
(py.q,) Poincaré surfaces of section. These elliptic fixed points correspond to a
vanishing amplitude of motion along the frequency @w* and, since N=2, are 1D POs,
which we label 1D(/ ;) and 1D(Z,.).
(i) a cusp-like decrease to zero of w* and a vertical tangent in the plot of v* on both
sides of a value I1(E, L) of I, which can be determined according to:
@y +x1313 It +h1+2 ) (23)
2 4
I'™ appears as an hyperbolic fixed point separatrix in the (p;,q;) surfaces of section
and is a 1D PO. Unless using another uniform trace formula, which would properly
take into account the coalescence of rational tori at the separatrix and would therefore
be still more accurate and complex than the trace formula in Eq. (9), this kind of PO,
however, plays no role in Berry and Tabor's trace formula for integrable systems.

E-wyly - x330§ =
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1 (a) FREQUENCIES OF 0z AT B0OO crm~=! (2D : 13=1/2) |
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(b) WINDING NUMBER OF COz AT 8000 cm~! (2D : Is=1/2)
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ACTION INTEGRAL 1
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I+ Y:1D(Imax)
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P VI AU NS S U NI SN

WINDING NUMBER p

f|||,||1]||||-|-|:

Fig. 2. Plot, as a function of the first action integral J,=1, of the classical frequencies W,=v* and

W, =w* (top) and of the winding number p=w*/v* (bottom) of CO, at energy E=8000 cm L, I is equal

to 1/2, because these plots are used to find the POs which appear in the FT of the 2D spectrum of Co,.
The 1D POs and the rational tori with period shorter than 300 fs are indicated in the bottom plot

Rational tori are then easily found by seeking for the rational values s,/ 4, of
the winding number p= w*/v*, which is plotted in Fig. 2 (bottom) at energy
E=8000 cm™1. Due to the cusp at the I* separatrix, there often exist two rational
tori with the same value of p= g,/ 4, one for values of I smaller than I* and one
for values of I larger than I*. These rational tori are labelled respectively s, : #y& and
Hy: ,ulR. The six rational tori having a period T U shorter than 300 fs at £ = 8000 cm~!
are indicated in Fig. 2 (bottom).
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584 JOYEUX, MICHAILLE: Fourier transform of molecular spectra vs. classical periodic orbits

In Fig. 3 are drawn, on the same diagram, the time values corresponding to the
maxima of the peaks in the FT of the quantum spectrum (open circles), the repetitions
of the periods of the 1D POs (dashed lines) and the periods of the rational tori (solid
lines) up to 300 fs. It is seen that all the quantum open circles fall on one of the
classical lines, so that the period of a PO can be assigned to each peak in the FT of
the spectrum. A small deviation occurs for the peaks around 275 fs, which is due to
the crossing (as a function of energy) of the periods of two 1D POs. The upper time
limit of 300 fs was precisely chosen, in order not to have to deal with too many
crossing periods, which complicate the interpretation of the FT of the semiclassical

density of states. As energy increases, the limiting values of p at [, and I, also

max
increase, and rational tori successively enter the classically accessible region

LinS< IS Of course, the higher the value of s/, the higher the value of the

m ImaX'
energy where the rational torus becomes real. Anyway, a rational torus always enters

the classically accessible region as the corresponding value of p crosses I, or I ...

POs OF COz (2D : va=0, Is=1/2)

11000 T T I v I I 1 'I T I T I T ! T i T r T T‘T
10000 [ 1 [] [} ] a bl IC C1 . e f ] ] g_
L i o 1 1 EE
9000 | ) 1 1) ] 1 1 n )
- 4 b 6 ¢ b P o ¢ 3 bo| -
8000 |- 4 6 é ¢ b ! To ¢ dlod -
T 000 I L X ] ? @ ® \ :o:) oyg§)~
- - 1 1} —
g : 8 8% 3 g 3i4se
~ 6000 09 o o () ] Y ) 1N @ —
_ ' [ R g
= 5000 =] 828 8 3 16 [y
o - lol K 6 g g 13 AT I
2 3000 | ¥ L S N T
= - H 1! V] v vl
<000 - XUY 2Xir2y 3x\/3y 4x\ Jfavy sx\ f5v6x\ ]
v \! |_.I \v \\/ '
1000 e
0 50 100 150 200 250 300
TIME (fs)
a; 1:3L b: 1:3R ¢: 1:4L d: 1:4R e: 1:5L f: 1:5R g: 1:6L
X: 1D(Imin) Y: 1D{Imax)

Fig. 3. Plot, for increasing values of the energy E, of the time values shorter than 300 fs corresponding to

(i) the maxima of the peaks in the FTs of the 2D quantum spectrum of CO, (energy window centred at

E=E) (open cirgles), (ii) the repetitions of the periods of the 1D POs (dashed lines), (iii) the periods of

the rational tori (solid lines). This figure shows that each peak in the FT of the quantum spectrum
corresponds to the period of a classical PO
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This is the reason, why the solid lines associated with rational tori in Fig. 3 always
start on the dashed lines associated with the repetitions of the 1D POs. Also, one can
observe in Fig. 3, that the periods of 2D POs (rational tori) vary much more slowly
with energy than the periods of 1D POs. Further studies are needed to better
understand this point.

Actually, complex rational tori can be included in the uniform trace formula in
Egs (9) and (11) [3]. Complex rational tori are complex solutions of Hamilton's
equations with real values of the action integrals and of the classical frequencies.
Their expressions are given in [17] for the 1:2 resonance Hamiltonian. Accordingly,
a rational torus does contribute to the FT of the spectrum even before entering the
classically allowed region. However, due to the exponential decrease of a P when
going from the classically authorised to the classically forbidden region [3], the
contribution of a complex rational torus to the FT of the spectrum is negligible far
from the energy where the rational torus becomes real. Near to the value of E where
the complex rational torus becomes real, the contribution of the complex rational
torus might in turn wipe out that of the repetition of the 1D PO, but one is then no
longer able to distinguish between the two periods, which are very close together.
The exponential growth of a,, is clearly seen in Fig. 1, for instance for the peaks
labelled a, b, ¢ and d, which are associated with the 1:3L, 1:3R 1:4L and 1:4R
rational tori. After this exponential growth, the intensity of each peak remains almost
constant, as long as the rational torus remains sufficiently far both from the limits
I, and I, and from the separatrix I*. This can be checked in Fig. 1 for the peaks
labelled e and f, which are associated respectively with the rational tori 1:5% and
1:5R. In contrast, the expression of a ,, in [3] shows that a, again diminishes as the
rational torus approaches too closely the separatrix, because of the curvature of the
second action integral 3, as a function of /. This is what happens to the 1 :6L rational
torus, which is labelled g in Fig. 1. As already stated above, the intensity of peaks
associated with 1D POs is much more complex to analyse, since all the rational tori
with the same value of g, contribute to the g th repetition of the 1D PO. One
however observes in Fig. 1, that the intensity of 1D POs varies slowly and is not at-
all negligible compared to the intensity of 2D POs, except for the rational tori with
the lowest values of y, like 1:3 and 1:4.

For the sake of being complete, the (p,q;) and (p,,q,) Poincaré surfaces of
section of all the POs which have been discussed in this section are represented in
Fig. 4 at energy E = 8000 cm™!. In contrast with the trajectories with irrational values
of the winding number p, which appear as continuous, non intersecting lines in the
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586 JOYEUX, MICHAILLE: Fourier transform of molecular spectra vs. classical periodic orbits

surfaces of section, rational tori appear as a finite number of points in each section.
Typically, a 1: 4 rational torus consists of 4, points in the (p;, q) surface of section
and 2y points in the (p,, g,) surface of section. In addition, as already stated above,
the 1D POs are the elliptic points at the centre of each island. The peaks in the FT of
the 2D spectrum centred at 8000 cm~! in Fig 1 are the periods of the trajectories
plotted in this figure.

| SECTION (q1,pt) AT gz=0 (E=8000 crn-1,I3=1/2) ]
f— "1
3l N
2k |
a ir .
@ i
& ofF— _—
E 4
[=}

_1 b —
57 ,
o -2+ 1

_3 - —

-4 : | L ! L | L ! L Il L | L I L ]

-4 -3 -2 -1 0 1 2 3 4
COORDINATE q1

SECTION (qz.p2) AT q1=0 (E=8000 cm-1,la=1/2)

COORDINATE p2

Ly da by b b b4 g b by |

-5 -4 -3 -2 -1 o0 i 2 3 4
COORDINATE q2

o

Fig. 4. Poincaré surfaces of section at energy E=8000 cm™! and for L,;=1/2 of the 1D and 2D POs of

CO, with period shorter than 300 fs. The elliptic fixed points I, and [ are the 1D POs discussed in

the text. In contrast, the hyperbolic fixed point I plays no role in the uniform trace formula used in this

article. The rational tori appear as a finite number of poinis in each section. For the sake of eye guidance,

a trajectory very close to the PO but with an irrational value of p is drawn for each rational torus. The

peaks, which appear in the FT of the 2D spectrum in Fig. 1 (energy window centred centred at 8000 cm™!),
correspond to the periods of the trajectories drawn in this figure
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Assignment of the FT of the 3D spectrum of CO,

The squared modulus of eleven FTs of the 3D quantum spectrum of CO, is
drawn in Fig. 5 for times lower than 300 fs. In this figure, the centre Ey; of the
energy window increases from 4000 cm™! to 9000 cm~! with increments of
500 cm~!, the width of each window being AE=8000 cm~!. This figure is quite
similar to the same drawing for the 2D quantum spectrum in Fig. 1, but with some
additional peaks. The aim of this section is to discuss the reasons for the similarities
and differences between the FTs of the 2D and 3D spectra.

The most obvious difference arises from the fact, that in the three dimensional
case there exist three classical frequencies, each one depending on three action
integrals, instead of only two frequencies depending on two action integrals. At a
given energy E, each frequency still depends on two action integrals, for instance
3, =1and 35 =I;. However, for given values of E and I3, the classically accessible
phase space just consists of a quite narrow band around / = I'*(E, I), so that the three
frequencies are more conveniently plotted as a function of /-1 (E, I;) and I, rather
than simply of 7 and /5. Such a plot of the three classical frequencies of CO, is shown
in Fig. 6 at E=9000 cm!. As a consequence of its expression in Eq. (22), it is

r FT of the spectrum of COz (3D) I

26 650 75 100 125 160 1786 200 2256 2WH0 275 300
time (fs)

Fig. 5. Squared modulus of 11 Fourier transforms of the 3D quantum spectrum of CO, for times up to
300 fs. The quantum spectrum is obtained by diagonalisation of the Hamiltonian matrix in Eq. (16). Each
Fourier transform is calculated according to Eq. (13), with an energy E, at the center of the window
increasing from 4000 cm™! to 9000 cm™! (increments of 500 cm™') and a window width AE=8000 cm™".
Abscissas are rescaled according to Eq. (14). Each peak in the FT is associated with a PO, which is one
of: (i) the repetition of a 1D PO (X=1D(_,, L,=0), Y=1D({__ , ,=0)), (ii) a 2D PO along the ;=0
edge (a=2D(I3=0,1:3L),...,g=2D(I3=0,1:6“)), (iii) a 2D PO along the two other edges of the classically
accessible phase space (A=2D([_; ,7:2),..., F=2D({ , ,20:6)) or (iv) a rational torus (I=3D(1 :3:11R) and
1=3D(1:4:15%))
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(CLASSICAL FREQUENCIES OF COz AT 9000 cm~1 (3D) |

v3t (cm‘l)
2250 2300

2200

vt (cm™!)

&* (em~i)

Fig. 6. Plot, as a function of I—I+(E,I3) and 13, of the classical frequencies W, =v*, W,=w™* and W,=v,*
of CO, at energy E=9000 cm™!

clearly seen in this figure that the plot of the additional frequency V5*, like those of
w* and v*, displays a vertical tangent at I=I%(E, I;). Moreover, the width of the
classically accessible phase space in the I direction diminishes as the value of I
increases, leading to an almost triangular shape of the accessible phase space.

3D rational tori are then characterised not only by a rational value of the
winding number p= @*/v*, but also by a rational value of the additional winding
number p'=v*/v*. These two winding numbers are plotted in Fig.7 at
E =9000cm-!. Looking for 3D rational tori amounts to finding the points where both
surfaces are rational. The key point, however, consists in noticing that a 3D rational
torus defined by two winding numbers p= 1,/ and p' =r/s is associated with the
vector u = (syi ,Sih, Tin) whenever s and g, are prime together, and therefore has a
period Ty which is equal to s times the period of the 2D torus with the same value of p.
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Since the rational value with the lowest value of s, which is observed for p', is
p'=7/2 close to the separatrix and p'=10/3 somewhat further from the separatrix, it
follows from the observation above and from the study of the 2D spectrum in the
previous section, that almost no 3D rational tori have a period shorter than 300 fs for
CO». In contrast with the 2D case, almost none of the peaks observed below 300 fs
in the FTs of the 3D spectrum of CO, is associated with a rational torus. Only two
rational tori are actually computed, with classical frequencies w:v*:13* in the
respective ratios 1:3:11 and 1:4: 15 and periods around 164 fs and 220 fs.

The trace formula in Eqs (5) and (8) is therefore of little help, and drawing a
parallel between the FT of the 3D quantum spectrum and the periods of the classical

[ WINDING NUMBERS OF COz AT 9000 cm-1 (3D) |

-

wfv
045 030

p

¥

Fig. 7. Plot, as a function of I—I*(E,I3) and I, of the two winding numbers p=*/v* and p'=v;*/v* of
CO, at energy E=9000 cm™!. The POs with period shorter than 300 fs are indicated. The fact that there
exist only two 3D rational tori having a period shorter than 300 fs results in almost all the dots, which
symbolise the POs, lying along the borders of the classically accessible phase space
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590 JOYEUX, MICHAILLE: Fourier transform of molecular spectra vs. classical periodic orbits

POs with lower dimension (2D and 1D POs) requires the extension of the uniform
trace formula in Eqs (9) and (11) to the 3D case. This will not be done here.
However, it will be shown in the remaining of this section, that almost all the peaks
in the FT can indeed be associated with the periods of 2D and 1D POs. 2D POs are
those trajectories located on the edges of the almost triangular accessible phase space,
that is those trajectories, which satisfy either I;=0, or I= I..(E L), or
I=1,(E,L). If I;=0, then the motion along the frequency v;* vanishes and there
only remains to seek for a rational value of p. Similarly, if I=1_,(E,I) or
I=1,,,(E, L), the motion along the frequency w* vanishes and there only remains to
seek for a rational value of p'. These 2D POs are labelled respectively 2D (I3=0,
120" R) and 2D (i, OF Ly, #5: 44). Two of the corners of the triangular shape,

that is the trajectories with ; =0 and /=1, or I . (E,I3=0), are 1D POs, since the
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10000 |- A a B bl cC dibek f glr
L i i) % L I\ I L\ il
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sl b BEP RS Hig iy de
— J g
| b d ' lat 1
<" 7000 - 5B 288 B ! i pig By |
£ = ob XX by ! ld ! b Vo B
8 8ooor SIS+ SNF z x Ao
5000 |- 00 odo id g i \ nop-
=2 | b 'd 1 [} i
> 4000 58 1831 q d o IV p
9 i ' bl Vo P Y
& 8000 ¥ I N R
Zeoool- ii i 7 AT
1000 |- ! ! v V) A
ol by 2x J,lzy ax\/3ay 4x\_ Jay sx\_/5Y 68X\ _]
P S SO S NN EU EEPU SRV RN NE STE A
0 28 50 75 100 125 150 175 200 225 250 275 300
TIME (fs)
1:3D(1:3:11R) 11:3D(1:4:15R)
A:2D(Imin,752) BIZD(Imin,l(J:S) C:ZD(Imin,13:4) D:2D(Imin,16:5) E:2D(Imin,17i5)
F:2D(Imin,20:8) a:2D(13=0,1:3L) b:2D(I3=0,1:3R) c:2D(1a=0,1:4L) d:2D(I3=0,1:4R)
e:2D(1a=0,1:5L) £:2D(I3=0,1:5R) g:2D(13=0,1:6L) X:1D(Imin,[3=0) Y:1D(Imax,13=0)

Fig. 8. Plot, for increasing values of the energy E, of the time values shorter than 300 fs corresponding to

(i) the maxima of the peaks in the FTs of the 3D quantum spectrum of CO, (energy window centred at

E\,=E) (open circles), (ii) the repetitions of the periods of the 1D POs (alternate dashed lines), (iii) the

periods of the 2D POs lying on the 1,=0 edge (solid lines), (iv) the periods of the 2D POs lying on the

I=I . (EL,) and I=1__ (E,L;) edges (long dashed lines), (v) the periods of the rational tori (broad solid

lines). This figure shows that each peak in the FT of the quantum spectrum corresponds to the period of a
classical PO.
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motion vanishes both along the ®»* and the w;* frequencies. These 1D POs are
labelled 1D(/;, or Ii,y, I3=0). It is to be noted, that the 2D POs along the I3 =0
border have periods close to the periods of the rational tori in the 2D case, since there
only exists a small difference in the value of I3 (0 against 1/2). For the same reason,
the 1D POs have very similar periods for both the 2D and 3D spectra. Therefore, it is
concluded that the additional peaks, which are observed in Fig. 5 compared to Fig. 1
and were not assigned to rational tori, are most likely due to the 2D POs lying along
the two other edges of the triangle, that is those labelled 2D i OF Lipays 37 1),
This is actually what is observed in Fig. 8, where the periods of the classical 2D and
1D POs are drawn on the same diagram as the time values associated with the
maxima of the peaks in the FTs of the 3D spectrum of CO,. In particular, the very
clear additional peaks that appear around 100, 145 and 245 fs in Fig. 5 are seen to be
due to the 2D(/,;;,,7: 2), 2D(1;,,10: 3) and 2D(/;;,,17:5) POs.

in’ in’ in»
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COMMENTS

MARTIN GRUEBELE:

It is very interesting to us that JM should concentrate explicitly on
contributions of low-D vs. N-D periodic orbits. These appear to be the semiclassical
analogs of edge and interior states defined in Bigwood and Gruebele ref. [23].

In particular, 1D POs are related to the pure overtone transitions often
observed experimentally and commonly taken as the standard benchmark for IVR.
2D and 1D POs seem to enjoy enhanced stability even at higher energies in CO,,
given that they dominate the spectra in Fig. 7 of Joyeux and Michaille.

It would be very interesting to see an analysis of the motions that eventually
cause low-D POs to be unstable, compared to the highly resonant overlaps that
probably occur for high-D POs.

REPLY

Properly speaking, periodic orbits (POs), which appear in the Fourier
transform of the spectra and are the principal objects in trace formulae theories, are
not states. The semiclassical analogues of quantum states are the trajectories that obey
the so-called Einstein-Brillouin-Keller (EBK) quantization rules, which put
conditions on action integrals rather than classical frequencies. Nonetheless, there do
exists a link between the ‘edge’ states of Bigwood and Gruebele and the periods of
the low dimensional POs: intuitively, states located near the limits of the classically
accessible phase space (that is at one side of the quantum polyad) are likely to be also
‘edge’ states in the sense of Bigwood and Gruebele, since they probably strongly
couple to only half the number of levels to which a state at the center of the classical
region (or the quantum polyad) effectively couples - simply because the levels on its
other side do not exist. Now, energy can be expanded to first order in the form :

ExWL+Wh+..=vI+0"5,+..

and states located nearest to the limits of the classical region (that is to the 1D POs
for the 2D system, or to the 2D POs for the 3D system) are defined by the same
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values of J, (1/2 or -1/2, see Fig. C1) and integral values of I. Therefore, it follows
that two such neighboring states are separated by a gap which is approximately equal
to the frequency * for each state, and also - because of the limited curvature away
from the separatrix - to the frequency v* at the PO, that is precisely 2n divided by
the period of the 1D or 2D PO.

A last point worth noting on this topic, is that each level is coupled to very few
other ones at these relatively low energy values: polyad i=7 (centered at about
7200 cm™!) contains only 4 levels and polyad i =8 (centered at about 7700 cm1)
only 5 levels, so that the discrimination between edge and interior states is statistically
rather meaningless. In Table I below are given for example the eigenvectors for each
level of polyad i=8, v3=0and {=0 (I=10, I3=1/2, L=0). At higher energies
this discrimination however probably becomes more meaningfull.

Levels of COz for polyads i=7 (1=9) and i=8 (1=10) |
| ! | T T r il ' I ! | ' 1 !

3r V¥ = 27T/T(Emin) |

12
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—]
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=
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S -1
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_3 | L L { ! i | L | L | l | 1
6800 7200 7600 8000 8400
ENERGY E

Fig. C1. Plot of the last action integral &, as a function of energy E for the trajectories with

, L, 13)=(9,0, 1/2) and (10,0, 1/2). The black dots represent the quantum levels of the corresponding

polyads (i, ¢, #y) =(7,0,0) and (8, 0, 0), located at the matching half-integral values of J,. For each value

of 7, the minimum and maximum values of E are the elliptic fixed points 1D POs of the 2D problem.

Notice that semiclassical levels close to the limits of the classical region (for a given value of I) and to the

1D POs have values of 5, equal to 1/2 or -1/2. The gap between two such points is approximately the
frequency v* at the 1D PO
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Table 1

Eigenvectors of polyad (i, ¢, v;) = (8,0,0). Corresponding classical action integrals are
(L L, I,) = (10,0,1/2). The last action integral T, is indicated for each quantum level

Quantum level — 7556.20 7730.59  7861.61 8006.78 8198.46
3,— 172 312 -5/2 =312 -1/2

Y,
[0,8) 0.389 -0.485 0.471 -0.504 0.370
|1,6) -0.613 0.336 -0.014 -0.355 0.620
|2,4) 0.580 0.218 -0.443 0.260 0.594
[3,2) -0.350 -0.604 0.068 0.626 0.341
|4,0) 0.117 0.489 0.760 0.401 0.098

Let us now turn to the question of the stability of low dimensional periodic
orbits. The Hamiltonian used in our contribution is an integrable one, which implies a
very limited number of bifurcations and no chaos at all. The bifurcations actually
occur for the triple roots of (dJ/d#)? in Egs (2.5) and (2.6) of [19]. Using the
numerical values in Eq. (17) of our contribution, this means that, for r3=0
(I3=1/2), a first bifucation is observed at (E=1196.65 cm™!, I=0.0027), that is
well below the ground state at 2533.43 cm~!. At this tangent bifurcation, the
hyperbolic fixed point separatrix and one elliptic fixed point 1D PO are created, that
one with highest value of E and lowest value of /. Using the terminology of [19], the
phase space structure undergoes a transition from II/III to II/4. The next bifurcation
is found at E = 178926 cm~! and I = 426.8, which can be considered — with a not too
bad uncertainty - to be meaningless!

Concerning chaos, the Kolmogorov-Arnold-Moser (KAM) theorem states that
all rational tori are destroyed upon addition of the slightest non integrable
perturbation, but that almost all the other tori are preserved. In particular, low
dimensional POs are not automatically distroyed by the slightest perturbation, since
they are not rational tori. Moreover, macroscopic chaos, which is associated with
resonance islands overlaps, would primarily develop around the separatrix, because
of the derivative of the winding number, which appears in the expression for
resonance islands widths [1]. The regions around the elliptic fixed points POs appear
to the most stable ones with that respect. A recent study on CO, using a non
integrable Hamiltonian [2, 3] shows that for an energy close to 10000 cm~! there
only exists a very thin region of macroscopic chaos around the separatrix.
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