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Gustavson’s procedure and the dynamics of highly excited
vibrational states
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The well-known Birkhoff–Gustavson canonical perturbation theory has been used so far to obtain
a reasonable approximation of model systems near the bottom of the well. It is argued in the present
work that Gustavson’s calculation procedure is also a powerful tool for the study of the dynamics
of highly excited vibrational states, as soon as the requirement that the transformed Hamiltonians be
in Birkhoff’s normal form is dropped. Mathematically, this amounts to modifying the content of
Gustavson’s null space. Physically, the transformed Hamiltonians are of the single or
multiresonance type instead of just trivial Dunham expansions, even though no exact resonance
condition is fulfilled. This idea is checked against 361 recently calculated levels of HCP up to
22 000 cm21 above the bottom of the well and involving up to 30 quanta in the bending degree of
freedom. Convergence up to 13th order of perturbation theory and an average absolute error as low
as 2.2 cm21 are reported for a two-resonance Hamiltonian, whereas the Dunham expansion
converges only up to 4th order at an average error of 215 cm21. The principal advantages of the
resonance Hamiltonians compared to the exact one rely on its remaining good quantum numbers and
classical action integrals. Discussions of the limitations of the method and of the connections to
other canonical perturbation theories, like Van Vleck or Lie transforms, are also presented.
© 1998 American Institute of Physics.@S0021-9606~98!01730-9#
n

re
a
t
n
n

in
g
ie
e
io
e
al
n

s
r

al
l-
ig
la

pa
lt
a

ol-
asic
od

eral
his

he
the
th-
si-

s

d-
eir

a
en-

of
that
able
fol-
S
at

ca-

o
re-

he
ic
l-
I. INTRODUCTION

The experimentalist’s first step for deriving informatio
from vibrational spectra usually consists of developing
simple Hamiltonian, which is able to reproduce the measu
spectrum. Examples for such Hamiltonians are the Dunh
expansion1–4 and the single resonance Hamiltonian used
model molecules with Fermi or Darling–Denniso
resonances.5–12 Obviously, the broader the energy range e
compassed by the spectrum, the more terms are needed
Hamiltonian to take into account those effects, the stren
of which increase with energy, like diagonal anharmonicit
and off-diagonal couplings between zero order mod
Gradually, the fit of these terms to the observed transit
frequencies becomes more and more tedious. This is du
part to their very rapidly increasing number, but most of
to the very strong correlations which exist among them a
cause the problem to become numerically unstable.

Accordingly, the problem must be approached from
completely different viewpoint at sufficiently high energie
That is, one must first compute an accurate potential ene
surface~PES! and then solve exactly the multidimension
Schrödinger equation. Though still limited to small mo
ecules, principally triatomic ones and a few tetratomics, s
nificant advances have been registered in this field in the
few years.13–16 In addition to the difficulties inherent to
quantum mechanical variational calculations, the princi
drawback of this approach lies in the working of the resu
coming out from the computer codes. Indeed, essentially

a!Electronic mail: Marc.JOYEUX@ujf-grenoble.fr
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the zero order levels are coupled for highly excited m
ecules studied along these lines, and even the very b
information, like the assignment to sets of approximate go
quantum numbers, requires the visual inspection of sev
hundred or even thousands of quantum wave functions. T
is both time and patience consuming. Similarly, from t
classical point of view, problems as fundamental as
search for periodic orbits require complex numerical me
ods like multiple shooting algorithms or damped and qua
Newton iterative methods17—not to speak of action integral
or classical frequencies!

An interesting question is: Is it possible to keep the a
vantages of the two approaches while getting rid of th
respective drawbacks? That is: Is it possible to obtain
Hamiltonian expression, which is precise enough at high
ergies and the interesting, physically meaningful features
which are nevertheless easily grabbed? Keeping in mind
the computation of a precise PES seems to be an unavoid
prerequisite, the question can again be formulated in the
lowing way: Is it possible to derive from the computed PE
this simple Hamiltonian expression, which is both precise
high energy and easy to analyze?

A possible answer to this question comes from the
nonical perturbation theory derived by Birkhoff18 and later
extended by Gustavson19 to take resonances properly int
account. Gustavson’s procedure explicitly enables one to
write a polynomial Hamiltonian in ‘‘Birkhoff’s normal
form,’’ that is, in a form such that the Poisson bracket of t
second degree term~that is the sum of uncoupled harmon
oscillators! with any term of higher degree vanishes. As a
1 © 1998 American Institute of Physics
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ready shown on several examples—two coupled harmo
oscillators,20,21 the Henon–Heiles surface,22,23 or the qua-
dratic Zeeman effect in hydrogen,24 Birkhoff–Gustavson
perturbation theory~BGPT! enables one to obtain a reaso
able approximation of these systems near the bottom of
well. Now, the interesting point is, that Birkhoff’s norma
forms happen to be just the simple Hamiltonians mentio
at the beginning of this section. More precisely, Birkhof
normal form for a nonresonant system is the Dunham exp
sion, whereas for a resonant system~i.e., a system with ra-
tionally related fundamental frequencies! it is a single reso-
nance Hamiltonian.

It is therefore tempting to use BGPT to simplify th
analysis of highly excited vibrational systems. When do
so, one is, however, soon confronted with a well-kno
shortcoming of canonical perturbation theories, namely
divergence of the perturbative series. Let us be more pre
about what divergence means in this context: Gustavs
procedure uses only well chosen canonical transformati
that is transformations of the phase space variables w
preserve the form of Hamilton’s equations. It operates o
polynomial Hamiltonian, and at each degrees of the theory,
a canonical transformation is performed, which leaves
terms with degree lower thans unchanged, while the term
with degrees are put in Birkhoff’s normal form. Usually
after the procedure has been applied up to a chosen de
the terms with higher degree are simply dropped: this deg
will be called the ‘‘order’’ of the procedure. For example, th
xi j spectroscopic parameters are obtained at fourth orde
Gustavson’s procedure, while theyi jk parameters result from
sixth order calculations. A naive conclusion is then that
higher the order of the perturbation calculations, the m
precise the obtained approximation. This conclusion is,
fortunately, wrong: For a given set of levels, an increase
the order will most certainly first result in an increase in t
precision of the frequencies calculated according to the
proximate Hamiltonian, but at a given order the precis
will start decreasing again and the divergence is then o
very rapid~numerical examples will be given in the follow
ing sections of this paper!. Moreover, it is not possible to
predict at which order the precision will start to diverge, n
to guess what the optimal precision will be. The question
what if the series diverges before the needed accuracy go
achieved?

The aim of this paper is to show that a slight modific
tion in BGPT can help going beyond the first divergenc
That is, the divergence of the series is repelled to hig
orders, while the accuracy of the approximate energy lev
is further improved. This modification consists of usin
Gustavson’s procedure, while dropping the requirement
the transformed Hamiltonian be in Birkhoff’s normal form
Actually, the only point which needs to be modified is t
definition of Gustavson’s ‘‘null space,’’ whereas explicit ca
culations proceed along unaltered lines. Physically,
amounts to accepting that the approximate Hamilton
might be a multiresonance one, instead of just a Dunh
expansion or a single resonance Hamiltonian. The rec
work of Becket al.,25 who were able to calculate variation
ally the energy values and the wave functions for about 1
ic
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rotationless levels of phosphaethyne~HCP! from anab initio
potential energy surface~PES! at the multireference configu
ration interaction-complete active space self-consistent fi
~MRCI-CASSCF! level, will serve as a reference to illustra
this idea.

The remainder of this article is organized as follows: t
principles of BGPT are outlined in Sec. II, paying spec
attention to dissociating Birkhoff’s normal form from
Gustavson’s calculation procedure. The possibility of inclu
ing more terms in the null space is put in evidence, th
leading to multiresonance Hamiltonians. Starting from t
exact expression of kinetic energy in curvilinear internal c
ordinates and theab initio PES of Becket al.,25 361 levels of
several transformed resonance Hamiltonians derived from
to 14th order perturbation calculations are then compare
Sec. III to the exact ones. The studied energy range exte
up to more than half the dissociation energy value and
volves up to 30 quanta in the bending motion. Converge
up to 13th order and an average absolute error as low
2.2 cm21 are reported for a two-resonance Hamiltonia
whereas the Dunham expansion converges only up to
order at an average error of 215 cm21. Section IV is next
devoted to a discussion of the limitations of this modifi
version of Gustavson’s procedure. At last, the connection
other canonical perturbation theories, like Van Vleck or L
transforms, are presented in Sec. V.

II. GUSTAVSON’S PROCEDURE AND BIRKHOFF’S
NORMAL FORM

Let us first outline Gustavson’s procedure,19 while drop-
ping every reference to Birkhoff’s normal form.18 To begin
with, let us assume that the original polynomial Hamiltoni
H(p,q), wherep is expressed in units of\, has already been
transformed up to degrees21, wheres>3, and let us de-
scribe how it is transformed up to degrees according to
Gustavson’s procedure. In other terms,s23 canonical trans-
formations have already been performed, leading from
(p,q)5(p(2),q(2)) to the (p(s21),q(s21)) set of coordinates,
such that

H~p,q!5 (
n52

s21

G~n!~p~s21!,q~s21!!

1(
n>s

H ~s21,n!~p~s21!,q~s21!!, ~2.1!

and one now looks for the next step, that is for the canon
transformation from (p(s21),q(s21)) to (p(s),q(s)), such that,

H~p,q!5 (
n52

s

G~n!~p~s!,q~s!!1 (
n>s11

H ~s,n!~p~s!,q~s!!,

~2.2!

the goal being thatG (s) contains only some given, chose
partN(s) of H (s21,s), that is, of the term with degrees in the
Hamiltonian transformed up to degrees21:

H ~s21,s!5N~s!1R~s!,
~2.3!

G~s!5N~s!.

In Eqs. ~2.1! to ~2.3!, G (n), H (s21,n), H (s,n), N(n), andR(n)

are all homogeneous polynomes of degreen. We shall come
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back later to the respective contents of the null spaceN(s)

and the remainderR(s). Simple calculations19–21 show that,
whatever these contents are, the canonical transformatio
obtained in the form of a generating functionW(s)

qi
~s!5qi

~s21!1
]W~s!~p~s!,q~s21!!

]pi
~s! ,

~2.4!

pi
~s21!5pi

~s!1
]W~s!~p~s!,q~s21!!

]qi
~s21! ,

computed as follows:R(s) is rewritten in terms of the classi
cal analogs of the quantum ladder operators

ai5
1

&

~qi1 jpi !,

~2.5!

ai
15

1

&

~qi2 jpi !.

The (s21) superscripts are omitted in Eq.~2.5!. Each mo-
nomial Pkak

l k(ak
1)mk of the result is next divided by

j(
k

vk~ l k2mk!. ~2.6!

The result is then expressed back in the (p(s21),q(s21)) co-
ordinates, andp(s21) is finally replaced byp(s). Once this
function W(s) has been computed, the homogeneous po
nomes H (s,n) where n.s, that is the terms with degre
higher thans in the Hamiltonian transformed up to degrees,
are obtained according to

H ~s,n!~p,q!

5H ~s21,n!~p,q!1 (
~ i 1 ,i 2 ,¯ !

S ] iH ~s21,m!

Pk]pk
i k )

k
S ]W~s!

]qk
D i k

2
] iH ~s21,m!

Pk]qk
i k )

k
S ]W~s!

]pk
D i kD Y )

k
~ i k! !, ~2.7!

where i 5(ki k and m5n2 i (s22). The sum in Eq.~2.7!
runs over all those values of (i 1 ,i 2 ,¯) such that: 1< i
<(n22)/(s22). (s) superscripts are again omitted in E
~2.7!. Up to that point, the procedure involves no approxim
tion: It is just a sequence of canonical transformations. T
approximation eventually consists, after having transform
the original Hamiltonian up to a given degree, in neglect
all the terms with higher degree, thus retaining only t
G (s)’s.

Let us now come back to the contents of the null sp
N(s) and the remainderR(s). The result obtained by
Birkhoff18 is that the original Hamiltonian can be tran
formed into a Hamiltonian, which is a power series in on
dimensional uncoupled harmonic oscillators. For doing
one just needs to require that the null spaceN(s) is obtained
from H (s21,s) expressed in terms of ladder operators by
taining only the monomials of the formPkak

mk(ak
1)mk. Using

the canonical transformation to action-angle-like coordina
(I k ,wk),
is

-

-
e
d
g
e

e

-
,

-

s

I k5
1

2
~pk

21qk
2!5

1

2
~akak

11ak
1ak!,

~2.8!

tan wk52
pk

qk
,

where the superscripts (s) are again omitted, one sees th
the truncation at a given order leads precisely to the Dunh
polynomial expansion in terms of theI k’s, which in this case
are actually the action integrals of the motion. The fact t
this series at best does not always converge26 is easily
grabbed by realizing that unconditional convergence wo
imply that all the systems are integrable and that chaos d
not exist.

As worked out by Gustavson,19 a further difficulty arises
whenever the fundamental frequencies of the system sa
an exact resonance condition, because of the division
the term in Eq.~2.6!. For example, if modes 1 and 2 are
exact Fermi resonance, such thatv152v2 , then each mo-
nomial ofR(s) in the forma1

ma2
12mPkak

mk(ak
1)mk ~or its com-

plex conjugate! would lead to a division by zero, whateve
the values ofm and themk’s. The same conclusion hold
for the Darling–Dennison resonancev15v2 and the
a1

ma2
1mPkak

mk(ak
1)mk monomials. These monomials, ther

fore, ought to be put in the null spaceN(s), in order for the
above procedure to work, leading, respectively, to amw1

22mw2 and amw12mw2 angle dependence of the tran
formed Hamiltonian.

For these two possible definitions of the null space, c
responding to the nonresonant and resonant cases, the t
formed Hamiltonians are said to be in Birkhoff’s norm
form, which just means that the Poisson bracket of eachG (s)

with the quadratic part of the Hamiltonian~that is, with the
sum of the uncoupled harmonic oscillators! vanishes. This
insures that eachG (s) remains approximately a constant
the motion—or at least does not vary too much—as long
the quadratic part of the Hamiltonian dominates. While pro
ably interesting in the context of the derivation of form
mathematical theories, this property is, however, of no h
from a practical, physical point of view. More interesting
the fact that the transformed Hamiltonians remain integra
as long as no more than one resonance condition is satis
this point has been used to assign approximate constan
the motion for classically chaotic vibrational dynamics.22,23

It is hoped that the presentation above clearly puts
evidence that the calculation procedure developed
Gustavson and the question of Birkhoff’s normal form c
be totally dissociated. In particular, it is stressed thateach
different choice of N(s) (s>3) leads to a different approxi-
mation of the original Hamiltonian. Of great importance is
also the fact thatthe convergence properties of these a
proximations are different. For example, one can conside
that in the extreme limit whereN(s) is taken to beH (s21,s),
then the transformed Hamiltonian is just the original one a
the procedure is convergent. Intuitively, the more terms
added in the null space, the closer the transformed Ha
tonian from the original one, and the better the converge
properties. But simultaneously, the more terms in the n
space, the more complex and the less interesting the tr
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formed Hamiltonian. One can, however, try to play with t
actual content ofN(s), in order to get a precise yet simple
description of the original Hamiltonian. It should be noted
but this is of no practical consequence—that most of the t
the transformed Hamiltonian is no longer in Birkhoff’s no
mal form.

The two following sections of this work are aimed
showing that Gustavson’s procedure with the modified d
nition of N(s) might be a powerful tool in the field of vibra
tional dynamics, and particularly in the study of highly e
cited vibrational states.

III. APPLICATION TO THE HIGHLY EXCITED
VIBRATIONAL STATES OF HCP

A. Preliminary calculations

As stated in the Introduction, the recent work of Be
et al.,25 who were able to calculate variationally the ener
values and the wave functions for about 1000 rotationl
levels of HCP from anab initio potential energy surface
~PES! at the MRCI-CASSCF level, will serve as a referen
to illustrate this idea. However, since the canonical pertur
tion theory described in Sec. II applies only to polynom
with no first degree terms and with no second degree c
terms, one must first expand both the PES and the kin
energy in Taylor series near an extremum. Then, Wilso
GF matrix formalism,27 which is nothing but a first canonica
transformation, has to be applied, in order to eliminate
second degree cross terms. These calculations are outlin
the present subsection.

The PES derived by Becket al.25 is expressed as a func
tion V of the three coordinatesR1 , R2 , andR3 , which stand,
respectively, for the HC, CP, and HP separations. These
ordinates are, however, not convenient for the Taylor exp
sion, since the minimum ofV in theRi coordinates is located
at 252 547 cm21 relative to the minimum of H1CP, that is
10 316 cm21 below the bottom of the well in Jacobi or i
internal coordinates. Moreover, the values of the three b
lengths at the minimum are respectivelyR151.0173, R2

51.5026, andR353.5183 Å, which is physically meaning
less, sinceR3 is necessarily smaller than the sum ofR1 and
R2 . Jacobi or internal coordinates, which consist of tw
bond lengths and one angle, automatically take this condi
into account, but theRi coordinates do not.

One can also think of expandingV as a function of the
deviations from equilibrium of the Jacobi coordinatesr, R,
andg used by Becket al. to diagonalize the quantum Hami
tonian matrix and to plot their figures.r is the CP bond
length,R is the length from H to the center of massG of the
CP bond, andg is the angle between HG and CP.g is equal
to zero in the linear equilibrium configuration HCP. TheRi ’s
are expressed as

R15Ar2r 21R222rRr cosg,

R25r , ~3.1!

R35A~12r!2r 21R212~12r!Rr cosg,

r being the ratiomP /(mC1mP) andmP andmC the masses
of the phosphor and carbon atoms. Of course, one has to
e

-

s

-
s
ss
tic
’s

e
in

o-
n-

d

n

ke

care that all the values remain inside the convergence ra
of each function when expandingV in Taylor series. In par-
ticular, the convergence radius ofAx is 0,x,2, and it hap-
pens that forR1 the expression below the square root som
times becomes greater than 2 starting from ab
15 000 cm21 above the bottom of the well. Since the goal
to take into account the levels up to 22 000 cm21 above the
bottom, these coordinates are again not convenient.

In contrast, the usual curvilinear internal coordinat
r 1 ,r 2 anda, wherer 1 and r 2 are again just the HC and C
bond lengths anda is the HCP angle (a5p at equilibrium!,
are found to be a good set of coordinates. TheRi ’s are ex-
pressed in the form

R15r 1 ,

R25r 2 , ~3.2!

R35Ar 1
21r 2

222r 1r 2 cosa,

and all the values are found to remain inside the converge
radii of the square root, exponential and hyperbolic tang
functions up to 22 000 cm21 above the bottom of the well.V
is thus expanded around the equilibrium valuesr 151.0768,
r 251.5581 Å, anda5p at E5242 231 cm21 relative to
H1CP. The vibrational part of the exact kinetic energyT

T5
1

2 S 1

mH
1

1

mC
D pr 1

2 1
1

2 S 1

mC
1

1

mP
D pr 2

2

1
cosa

mC
pr 1

pr 2
2

sin a

mC
H pr 1

r 2
1

pr 2

r 1
J pa

1
1

2 H S 1

mH
1

1

mC
D 1

r 1
2 1S 1

mP
1

1

mC
D 1

r 2
22

2 cosa

mCr 1r 2
J pa

2,

~3.3!

where pr1 , pr2 and pa are the momenta conjugate to th
coordinatesr 1 , r 2 anda, is next expanded around the sam
equilibrium values. Since only the rotationless levels a
considered in the work of Becket al.,25 the term dealing with
the kinetic energy of the molecule rotating around the v
ishing moment of inertia, which is called the vibrational a
gular momentum, is omitted in Eq.~3.3!. Nonetheless, the
double degeneracy of the bending motion is taken into
account in what follows. One is then left with two poly
nomes forV and T, the second degree terms of which a
written in the form

T~2!~P!1V~2!~Q!5 1
2 P1

•G•P1 1
2 Q1

•F•Q, ~3.4!

where Q5(Dr 2 ,Da,Dr 1) and P5(pr2 ,pa ,pr1), Dr 1 ,
Dr 2 , and Da being the deviations ofr 1 , r 2 , and a from
equilibrium. G andF are symmetric but nondiagonal matr
ces. The point is, that Gustavson’s procedure applies to p
nomial Hamiltonians, the second degree of which is a sum
uncoupled harmonic oscillators, which can be written as
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G~2!~p,q!5T~2!~p!1V~2!~q!5
1

2\2 p1
•V•p1

1

2
q1

•V•q

5(
i 51

3
v i

2 S pi
2

\2 1qi
2D , ~3.5!

whereV is the diagonal matrix of the fundamental freque
cies v i . The linear coordinate transformation from th
(P,Q) to the (p,q) sets of conjugate coordinates is obtain
according to Wilson’s GF matrix formalism,27 as follows:
Let us callL the eigenvectors of the product matrix G.F. T
products,

f 5L1
•F•L,

~3.6!
g5L21

•G•~L1!21,

are again diagonal, with eigenvaluesf i andgi . Define nowl
as the diagonal matrix with elementsl i , such that

l i5S \2gi

f i
D 1/4

. ~3.7!

The first canonical transformation, which is the link betwe
Eqs.~3.4! and ~3.5!, is obtained as

Q5L•l•q,
~3.8!

P5~~L•l!1!21
•p,

and the fundamental frequenciesv i are just

v i5 f il i
25\2gil i

225\Af igi . ~3.9!

It is worth noting that the (p,q) coordinates defined by Eq
~3.8! are ‘‘normal coordinates,’’ in the sense that they dia
onalize the second degree terms of the vibrational Ham
tonian. However, they are not exactly the usual ‘‘normal c
ordinates,’’ since they are not linear combinations
Cartesian coordinates, but rather of true curvilinear inter
coordinates. Also, it is interesting to notice that the init
choice of ther 1 , r 2 , and a set of coordinates leads to
transformation matrixL, which is close to unity. Indeed, th
numerical value forL is

L5S 0.996 0 0.136

0 1 0

20.091 0 0.991
D , ~3.10!

which means that the normal mode 1 is almost exactly
C–P stretching motion, the normal mode 2 is exactly
bending motion, and the normal mode 3 is essentially
C–H stretching motion.

B. The Dunham expansion

Calculation of the fundamental frequencies of HCP
cording to Eq.~3.9! leads to:v1'1256 ~C–P stretch!, v2

'650 ~bend!, and v3'3479 cm21 ~C–H stretch!. No low
order exact resonance condition is therefore fulfilled a
according to the original prescription by Birkhoff an
Gustavson, the sole diagonal termsPkak

l k(ak
1) l k ought to be

put in the null space at each even order. The Hamiltonia
then obtained in the normal form
-

n

-
l-
-
f
al
l

e
e
e

-

,

is

HD5(
i

v i I i1(
i< j

xi j I i I j1 (
i< j <k

yi jk I i I j I k1¯ .

~3.11!

Each term with total degreen in the I k coordinates is ob-
tained at the degrees52n of BGPT. One is also reminded
that if the Hamiltonian has been put in normal form up
degrees, then the coordinatesp andq in Eq. ~3.8!, as well as
the corresponding ladder operators and the action integ
I k , arise froms22 canonical transformations. The supe
scripts (s) are simply dropped. The elements of the diago
quantum Hamiltonian matrix in the harmonic oscillator ba
are just

^v1 ,v2 ,v3uHDuv1 ,v2 ,v3&5(
i

v ini1(
i< j

xi j ninj

1 (
i< j <k

yi jkninjnk1¯ ,

~3.12!

n15v11 1
2 n25v211 n35v31 1

2 ,

which is the usual, well-known Dunham expansion. The
brational angular momentum is assumed to be zero in E
~3.11! and~3.12!, as well as in the following expressions.
this were not the case, then only very slightly more comp
expressions should be used.28,29 The explicit numerical val-
ues for the parameters appearing in the expressions of
transformed Hamiltonians are not given in this article, b
cause there are too many of them: 119 for the Dunham
pansion at 14th order and 296 forHD1HF

(1)1HF
(2)1HC

(1) at
the same order~see Sec. III D!. Instead, the results will be
presented as error tables. These tables give, for each Ha
tonian and each order of perturbation, the average abso
error, the root mean square~rms! error, and the maximum
absolute error between the exact quantum levels relativ
the ground state calculated by Becket al.25 and the levels of
the transformed Hamiltonians, calculated using the ma
elements displayed throughout the text. The calculation
these errors further implies that one is able to associate e
level of the exact Hamiltonian with one level of the tran
formed Hamiltonians. For this purpose, the assignments
Beck et al.25 have been used. However, due to the stro
Fermi resonance between the C–P stretch~mode 1! and the
bend~mode 2!, which will be put in evidence in this and th
next subsections, the assignment according to only two qu
tum numbers plus one ordering integer has been chosen.
two quantum numbers are the number of quanta in the C
stretch (v3 in our notation,v1 in Beck et al.’s notation! and
the polyad numberi. i is defined as

i 52v11v2 ~3.13!

in our notation, andi 52P52v212v3 in Becket al.’s nota-
tion. The last good quantum number is destroyed by
Fermi resonance and is replaced by the order of the le
within a given (v3 ,i ) polyad. At last, the levels of all the
polyads with no level beyond 22 000 cm21 above the bottom
of the well (i<30 for v350, i<24 for v351, i<20 for v3
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TABLE I. Accuracy of the levels of the Dunham expansion and the Fermi resonance Hamiltonians with
three angles, obtained at perturbation orders increasing from 2 to 14. In each column, the sequence:
absolute/root mean square/maximum error~in cm21) between the exact quantum levels of HCP~Ref. 25!
relative to the ground state and those of the transformed Hamiltonians is given. The 361 levels belongin
complete polyads up to 22 000 cm21 above the bottom of the well are included in the calculations. ‘‘nc’’ mea
‘‘not calculated,’’ and ‘‘idem’’ that the result is identical to that in the previous column.

H→
Order↓ HD HD1HF

(1) HD1HF
(1)1HF

(2)
HD1HF

(1)

1HF
(2)1HF

(3)

2 987/1122/2852 idem idem idem
3 987/1122/2852 987/1124/2852 idem idem
4 215/441/2701 173/287/1341 idem idem
5 215/441/2701 169/256/1011 idem idem
6 706/1694/14433 21.0/40.0/235 20.9/40.3/245 idem
7 706/1694/14433 20.9/35.2/152 20.9/36.1/178 idem
8 7625/22262/226120 35.6/76.2/571 35.7/76.2/586 idem
9 7625/22262/226120 35.5/72.6/592 35.5/72.6/561 35.5/72.6/560

10 nc 10.8/36.7/395 10.6/33.2/350 10.6/33.2/350
11 nc 14.6/36.5/404 10.6/29.6/317 10.6/29.7/317
12 nc 20.7/47.8/397 19.8/52.2/564 19.8/52.1/561
13 nc 30.4/97.5/1161 19.7/51.3/563 19.7/51.2/559
14 nc 29.9/136/1870 13.1/58.0/749 13.1/58.0/749
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52, i<14 for v353, i<10 for v354, i<6 for v355, and
i 50 for v356) have been included in the calculation
errors, that is 361 out of the first 395 levels.

The results of error calculations for the Dunham exp
sion obtained from 3rd to 9th order BGPT are given in t
second column of Table I. The line at order 2 correspond
just the uncoupled harmonic oscillators. Orders 4 and 5 c
sist of the expansion up to thexi j parameters, and orders
and 9 of the expansion up to theyi jkl parameters. It is see
that the convergence of this model is very poor, being li
ited to 4th or 5th orders and an average absolute erro
215 cm21. At 8th order, the average absolute error has
ready diverged up to 7625 cm21 ~with a maximum error of
226 120 cm21!). It is therefore concluded that the Dunha
expansion is very far from being sufficient for whatev
quantitative purpose, despite there being no exact reson
in the HCP molecule.

C. The Fermi resonance Hamiltonian

The rapid divergence, which is observed for the Dunh
expansion, can be traced back to the division by the sm
v122v2'244 cm21 factor, which occurs at third order in
BGPT and leads to crudely overestimated values for so
anharmonic parameters. For example,y122 and y123 are cal-
culated, respectively, at 4.009 and26.628 cm21 for the
Dunham expansion, whereas more probable values, obta
for the best two-resonance HamiltonianHD1HF

(1)1HF
(2)

1HC
(1) in Sec. III D, are close to20.073 and 0.167 cm21,

and no 6th order parameter has an absolute value larger
0.424 cm21! So the criterion of the normal form has to b
abandoned, and the Fermi resonance must be taken int
count despite its not being exact: this point is well known
the spectroscopists who need to fit spectra.5–12 This involves
a modification in the definition of the null spaces and leads
a non-normal form~according to the definition of Birkhoff!
of the transformed Hamiltonian. As noted in Sec. II, Gusta
son’s procedure prescribes that all the monom
-
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a1
ma2

12mPkak
mk(ak

1)mk ~and their conjugate complexes! are
included in the null spaceN(s) at orders53m12Skmk in
the case of an exact 1:2 resonance, because of the divisio
the term in Eq.~2.6!. However, one can try to add the res
nance terms one at the time for an approximate resonanc
order to check their influence and to get as simple a Ham
tonian as possible. The classical Hamiltonian is therefore
tained in the form

H5HD1 (
m>1

HF
~m! ,

~3.14!
HF

~m!52I 1
m/2I 2

m cos~mw122mw2!

3S k~m!1(
i

ki
~m!I i1(

i< j
ki j

~m!I i I j1¯ D ,

and the additional nonzero matrix elements are

^v1 ,v2 ,v3uHF
~m!uv12m,v212m,v3&

5~21!mS k~m!1(
i

ki
~m!ni1(

i< j
ki j

~m!ninj1¯ D
3)

k51

m

$Av12k11~v212k!%,

~3.15!

n15v12
m21

2
n25v21m11 n35v31

1

2
.

The expression in the right-hand side of Eq.~3.15! is not
unique, and depends on the way the quantum operators
arranged during the quantization process. We shall co
back to that point in Sec. IV C. Equation~3.15! shows that
theHF

(m) terms only couple levels with the same values ofv3

and the polyad numberi @Eq. ~3.13!#, which therefore remain
good quantum numbers. The assignment to the levels ca
lated by Becket al.25 is thus again trivial. Concerning th
classical picture of the molecule, it is worth noting that, d
spite the non-normal form,I 3 and I 52I 11I 2 remain con-
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stants of the motion, so that the system is integrable~non-
chaotic!: the last action integral is a function of the energyI
and I 3 .

Error calculations are reported in the last three colum
of Table I for the Fermi resonance Hamiltonians with one
three angles, that is explicitly forHD1HF

(1) , HD1HF
(1)

1HF
(2) and HD1HF

(1)1HF
(2)1HF

(3) . It is seen that for the
three of them the convergence is much better than for
Dunham expansion: at 7th order of Gustavson’s proced
the average absolute error is about 21 cm21 and the maxi-
mum absolute error less than 180 cm21. Accuracy seems to
diverge at 8th and 9th order, with an average absolute e
of about 36 cm21, but it improves again somewhat unexpe
edly at 10th order, with an average absolute error less t
11 cm21. A closer examination reveals that a majority
levels is calculated with a significantly smaller error at 10
order, but that the largest errors are also much larger at
order ~about 600 cm21) than at 7th order, leading to clos
rms errors of about 36 cm21. Moreover, the Hamiltonian
with two angles remains very close to the Hamiltonian w
a single angle up to 10th order, whereas its divergenc
slower at higher orders. Also, the differences between
two and three~or higher! angle Hamiltonians remain ver
small up to 14th order.

D. Two-resonance Hamiltonians

Now, what if average absolute errors of 21 or 11 cm21

are still too large? Owing to the reduction of the avera
error by a factor of 10 or 20 upon addition of a single res
nance in the definition of the null spaces, it is most proba
that the error can be further reduced upon inclusion of ot
terms. However, this second step is far from being as o
ous as the first one. Indeed the small offsetv122v2'
244 cm21, together with the low 3rd order of Fermi reso
nance, made the choice of the first resonance unambigu
The choice of the second resonance is not so clear. One
first think of a second small divisor problem, and look
small offsets appearing at low order, typically less than
order, in order to cancel the divergence observed at 8th o
for the Fermi resonance Hamiltonians. There are only five
them below 450 cm21: 4v122v22v3'246 ~7th order!,
3v12v3'290 ~4th order!, 2v112v22v3'334 ~5th or-
der!, v114v22v3'379 ~6th order!, and 6v22v3

'423 cm21 ~7th order!. Among them, the most probable
by far the 1:3 close resonance between the C–P stretch
the C–H stretch, which is a 4th order coupling. The calcu
tions are nevertheless not reported here, because it was f
that this term changes the computed eigenvalues only
little. For example, the average/rms/maximum errors at
order and a single angle for the Fermi resonance
36.0/76.5/572 cm21: this is even very slightly worse than i
the third column of Table I, where the 1:3 resonance betw
the stretching motions is not taken into account. The ot
small offsets listed above were not checked, because a
ferent approach proved to be much more efficient.
This approach relies on the observation that, for the Fe
resonance Hamiltonian with a single angle, the largest er
observed at 10th order of the theory are all associated
s

e
e,

or
-
an

th

is
e

e
-
le
r

i-

us.
an

t
h
er
f

nd
-
nd
ry
h
re

n
r
if-

i
rs
th

the lowest states of the highest polyads, like, for examp
(v3 ,i )5(0,30), ~0,28!, ~0,26!, or ~1,24!. In each case, the
level of the Fermi resonance Hamiltonian is computed a
lower energy than the level of the exact Hamiltonian. Fu
thermore, these badly converged eigenvalues are extrem
sensitive to the value of the 10th order parametery22222, so
that the average/rms/maximum errors are reduced f
10.8/36.7/395 to 6.0/10.7/44.5 cm21 as y22222 is increased
from its original value (25.68 1025) to 24.20 1025 cm21

~126%!. These eigenvalues are also quite sensitive to the
order parametery2222, while being much less sensitive to th
values of all the other parameters. The conclusion one arr
at is that the badly converged levels are associated with
most pure bending motions and that the additional resona
one is looking for must principally result in an increase
the values of they2222, y22222,¯ parameters. It is to be
noted that the bending character of the lowest lying state
high energy polyads was not obviousa priori and is a result
of anharmonicities, since the negative offsetv122v2

'244 cm21 shows that the levels with prominent bendin
character are the highest ones in low energy polyads.

The lowest order coupling with the strongest effect
y2222 ~and so on! one can think of is obtained upon inclusio
of the a2

2mPkak
mk(ak

1)mk monomials ~and their conjugate
complexes! in the null spaces. If the Fermi coupling is mea
to be a ‘‘v1'2v2’’ resonance, then this additional couplin
might be described as a ‘‘2v2'0’’ resonance, despite the
rather large value 2v2'1301 cm21! More precisely, the
classical Hamiltonian is obtained in the form

H5HD1 (
m>1

HF
~m!1 (

m>1
HC

~m! ,

~3.16!

HC
~m!52I 2

m cos~2mw2!S (
i

k i
~m!I i1(

i< j
k i j

~m!I i I j1¯ D ,

and the additional nonzero matrix elements are

^v1 ,v2 ,v3uHC
~m!uv1 ,v212m,v3&

5~21!mS (
i

k i
~m!ni1(

i< j
k i j

~m!ninj1¯ D
3)

k51

m

~v212k!,

~3.17!

n15v11
1

2
n25v21m11 n35v31

1

2
.

According to Eqs.~3.16! and ~3.17!, HC
(m) couples levels

with the same numberv3 of quanta in the C–H stretch, bu
with different valuesi and i 72m of the polyad number.
Consequently,v3 is the last good quantum number. From t
classical point of view, the system is no longer integrab
but chaos cannot be generalized, due toI 3 , which remains
the last action integral. The fact that the polyad numberi is
no longer a good quantum number causes the assignme
the levels of the two-resonance Hamiltonians in Eqs.~3.16!
and~3.17! to become somewhat less straightforward than
the Fermi resonance Hamiltonian in the previous subsect
Polyads are, however, not heavily mixed, and the followi
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TABLE II. Accuracy of the levels of two resonance Hamiltonians, obtained at perturbation orders incre
from 6 to 14. In each column, the sequence: average absolute/root mean square/maximum error~in cm21)
between the exact quantum levels of HCP~Ref. 25! relative to the ground state and those of the transform
Hamiltonians is given. The results for the two-resonance Hamiltonians are presented in the columns lab~1!
and~2!, whereas the results for the Fermi resonance Hamiltonians with one and two angles—but with th
parameters as, respectively, in columns~1! and ~2!—are presented in the last two columns. The 361 lev
belonging to the complete polyads up to 22 000 cm21 above the bottom of the well are included in th
calculations.

H→
Order↓

HD1HF
(1)1HC

(1)

~1!

HD1HF
(1)1

HF
(2)1HC

(1)

~2!
HD1HF

(1)

Parameters of~1!
HD1HF

(1)1HF
(2)

Parameters of~2!

6 30.4/60.9/608 30.9/61.0/601 35.1/63.4/611 35.4/63.5/605
7 28.7/55.5/524 29.4/56.2/532 33.5/58.2/529 34.1/58.9/537
8 11.0/33.1/397 11.5/32.9/388 15.5/33.8/372 15.9/33.6/364
9 9.0/19.8/195 8.1/21.8/282 14.5/23.0/179 13.8/24.6/263

10 5.9/11.0/46.0 4.4/8.0/48.6 9.5/13.8/54.6 8.3/11.0/47.8
11 8.1/20.3/191 4.4/9.3/76.5 10.8/22.5/207 8.1/11.1/84.8
12 9.3/26.2/304 2.6/11.5/197 11.3/25.8/215 6.9/12.5/133
13 29.8/129/1631 2.2/10.8/188 30.6/109/1415 6.6/11.4/120
14 29.4/108/1533 4.0/15.7/205 30.8/112/1481 7.7/16.8/203
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automatic assignment procedure was found to work v
well: For each normalized eigenvectorc (n,v3) associated
with the nth level with v3 quanta in the C–H stretch

c~n,v3!5 (
v1 ,v2

cv1 ,v2

~n,v3!uv1 ,v2 ,v3&, ~3.18!

a vector P(n,v3) of the contribution of each polyad to th
level is computed, according to

Pi
~n,v3!

5 (
2v11v25 i

cv1 ,v2

2 . ~3.19!

Afterward, polyadsi are filled one at a time, starting from th
lowest one (i 50), by arranging the so-far unassigned lev
in descending order of thei th component of theirP(n,v3)

vectors and in retaining for the polyadi the first Int(i /2
11) levels in the list@Int(x) is just the integral part ofx and
Int( i /211) is the number of levels in polyadi#.

Error calculations are reported in Table II for the tw
resonance HamiltoniansHD1HF

(1)1HC
(1) and HD1HF

(1)

1HF
(2)1HC

(1) . The 8th order divergence is canceled for bo
of them, and perturbation calculations converge at least u
10th order. At 10th order, the average/rms/maximum err
are 5.9/11.0/46.0 for the former, and 4.4/8.0/48.6 cm21

for the latter, very close to the optimal value
(6.0/10.7/44.5 cm21) obtained following the correction ‘‘by
hand’’ of y22222. However, y22222 is calculated at abou
28.6 1026 cm21 for the two-resonance Hamiltonian
against24.20 1025 cm21 for the value corrected by hand
This shows that, as was to be expected, the change in pa
eters due to the consideration of the ‘‘2v250’’ resonance is
more complex than the sole increasing of they22222 param-
eter. The Hamiltonian with a single angle for the Fermi re
nance then diverges again rather sharply starting from
11th order: at 13th order the average/rms/maximum er
are again as high as 29.8/129/1631 cm21. In contrast, the
Hamiltonian with two angles for the Fermi resonance go
on converging up to 13th order, with an average abso
error of about 2.2 cm21, that is about five times better tha
y
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for the better Fermi resonance Hamiltonian. Interestingly,
error distribution is highly singular: all the levels, except f
three of them, are calculated with an error smaller th
13 cm21. The three exceptions are the first and third levels
the polyad (v3 ,i )5(0,30), with respective errors of 188 an
28.4 cm21, and the first level of the polyad (v3 ,i )5(0,28),
with an error of 62.1 cm21, that is again the lowest levels o
the highest polyads. The fact that the better results obta
for the two-resonance Hamiltonians compared to the Fe
resonance Hamiltonians are most of all due to the correc
of the parameters of the Fermi resonance Hamiltonian ra
than to the interpolyad coupling by itself, can be furth
proved by calculating the levels of HCP using the Fer
resonance Hamiltonians in Eqs.~3.14! and ~3.15!, but the
parametersv, x, y, and k computed for the two-resonanc
Hamiltonians in Eqs.~3.16! and~3.17!. The result is given in
the last two columns of Table II. Despite the slight deter
ration of the average absolute error for the Fermi resona
Hamiltonian with two angles, the discussion above rema
mostly unchanged, whether the off-diagonal coupling in E
~3.17! is taken into account or not. Finally, it should b
noted, in agreement with the previous subsection, thatHF

(3)

and higher order Fermi couplings have almost no influe
on the computed eigenstates.

IV. DISCUSSION

With an average absolute error as good as 2.2 cm21 and
an average relative error of about 0.014% for 361 levels
to 22 000 cm21 above the bottom of the well, and with up t
30 quanta in the bending degree of freedom, the transform
Hamiltonians presented in the previous section are con
ered to be good approximations of the exactT1V Hamil-
tonian. Yet, they are much easier to handle than the e
one, thanks to the remaining good quantum numbers
action integrals. Some advantages of the transformed r
nance Hamiltonians are easily grabbed. For example, f
the technical point of view, the calculation of the eigensta
requires the diagonalization of matrices less than 190 tim
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190, which is achieved without any particular programmi
care. In contrast, the diagonalization of the exact Ham
tonian involves basis sizes as large as a few thousands
cannot be performed without the help of such sophistica
tools as highly contracted/truncated basis sets.30 Another ob-
vious advantage of the transformed Hamiltonians consist
the immediate assignment of the levels, thanks to the rem
ing good quantum numberv3 and the moderate mixing of th
polyads with different values ofi. This again contrasts with
the assignment of the levels of the exact Hamiltonian, wh
requires a visual examination of 2D projections and 3D r
resentations of the wave functions.25 Further advantages o
resonance Hamiltonians, connected with the calculation
classical quantities, will become clearer in a forthcoming
ticle dedicated to the description of the classical dynamic
HCP at high vibrational energies31 by means of the reso
nance Hamiltonians derived in the present article. In the
mainder of this paper, the limitations of this approach w
instead be presented.

A. Validity of the model

The numberv3 of quanta in the C–H stretch and th
polyad numberi remain good quantum numbers for th
Fermi resonance Hamiltonians in Eqs.~3.14! and ~3.15!.
Therefore, the calculation of eigenstates is performed for
polyad (v3 ,i ) at a time, and involves the diagonalization o
finite square matrix of size Int(i /211). In contrast,i is no
longer a good quantum number for the two-resona
Hamiltonians in Eqs.~3.16! and ~3.17!, because theHC

(m)

terms couple levels with different values ofi. Therefore, the
matrix to be diagonalized isa priori infinite for each value of
v3 . What is hoped, is that the computed eigenvalues dep
only very slightly on the size of the basis. To check th
point, the following calculations were performed: Let us c
i max(v3) the highest polyad one wants to compute for ea
value ofv3 ~for example,i max530 for v350, see Sec. III B!.
The Hamiltonian matrices which led to the results in Table
were built, for each value ofv3 , in a basis which includes al
the vectorsuv1 ,v2 ,v3&, such thatv2 is even andi 52v1

1v2< i max16 instead of justi max ~this basis contains 190
vectors!. The validity of these calculations is now check
by varying the numbern of polyads, which are added toi max

(n56 for the results in Table II!. The results for the two-
resonance HamiltonianHD1HF

(1)1HF
(2)1HC

(1) are presented
in Table III in the form of error calculations, for perturbatio
orders increasing from 11 to 14 andn increasing from 4 to
12. It is seen that the size of the basis has virtually no in
ence on the average absolute error and a limited effect on
maximum error~and hence on the rms error! up to the 13th
order of perturbation. In contrast, the average absolute e
varies from 3.6 to 4.5 cm21 and the maximum error from
150 to 402 cm21 at 14th order of perturbation theory. It wa
verified, using a different, more sophisticated method for
signing quantum numbers to each energy level, that this c
clusion does not depend on the assignment procedure.
same results are presented in Table IV for the two-resona
HamiltonianHD1HF

(1)1HF
(2)1HC

(1)1HC
(2) and for perturba-

tion orders increasing from 8 to 11. For this Hamiltonian, t
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results are seen to remain stable with respect to the basis
only up to 9th order, whereas 10th order calculations alre
fluctuate too much. What physically happens with the res
that are not satisfactory, is that the levels of additional hig
polyads lie in the same energy range as those of lower p
ads and interact all the more strongly with them as the or
of the perturbation is increased. For sufficiently strong co
plings, the addition of a single high energy polyad will ther
fore displace in series the coupled levels of lower ene
polyads. Stated in other words, the model of a resona
type Hamiltonian built on a harmonic basis is no longer va
at sufficiently high perturbation orders and/or at sufficien
high vibrational energies, the limit of validity depending o
the exact expression of the Hamiltonian.

B. Difficulties in further lowering the error

The agreement between the exact and transform
Hamiltonians presented above is felt to be sufficient in m
practical cases. Let us recall that average/rms/maximum
rors as small as 9.5/13.8/54.6 cm21 ~4th column of Table II!
are obtained for the very simple 10th orderHD1HF

(1) Hamil-
tonian using the parameters ofHD1HF

(1)1HC
(1) , and that

these errors are lowered to 2.2/10.8/188 cm21 ~3rd column of
Table II! for the slightly more complexHD1HF

(1)1HF
(2)

1HC
(1) Hamiltonian at 13th order. Several attempts we

made to further diminish this error, but the task proved to
difficult for various reasons. As mentioned in Sec. III D, th
three badly converged levels of the most precise tw
resonance HamiltonianHD1HF

(1)1HF
(2)1HC

(1) are the low-
est levels of the highest polyads, that is the levels with
most pronounced bending character. Therefore, the
diagonal coupling which has to be added to further lower

TABLE III. Checking for the stability of the computed levels o
HD1HF

(1)1HF
(2)1HC

(1) , at perturbation orders increasing from 11 to 14.n
is the number of additional polyads included in the basis set. In each
umn, the following sequence is given: average absolute/root mean sq
maximum error~in cm21) between the exact quantum levels of HCP~Ref.
25! relative to the ground state and those of the two-resonance Hamilton
The 361 levels belonging to the complete polyads up to 22 000 cm21 above
the bottom of the well are included in the calculations.

Order
n

11 12 13 14

4 4.4/9.4/77.0 2.6/11.3/189 2.2/10.4/180 3.6/12.2/15
6 4.4/9.3/76.5 2.6/11.5/197 2.2/10.8/188 4.0/15.7/20
8 4.3/9.3/76.0 2.7/12.8/222 2.3/12.1/214 4.5/24.0/40

10 4.3/9.3/73.1 2.7/11.3/189 2.3/10.5/180 4.1/15.8/17
12 4.3/9.4/76.7 2.6/11.8/202 2.3/11.1/194 4.4/23.1/38

TABLE IV. Same as Table III, but for the HamiltonianHD1HF
(1)1HF

(2)

1HC
(1)1HC

(2) and perturbation orders increasing from 8 to 11.

Order
n

8 9 10 11

4 9.6/22.8/207 5.8/11.8/130 3.9/9.2/133 2.9/7.0/104
6 9.6/22.7/205 5.7/11.8/128 4.6/16.2/219 3.1/10.5/18
8 9.5/22.6/200 5.7/11.7/125 4.0/11.0/166 3.4/12.6/21

10 9.5/22.5/198 5.7/11.6/124 3.7/7.1/72.8 2.9/6.0/56.
12 9.5/22.4/194 5.7/11.4/121 4.0/9.1/111 3.0/6.8/81.
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error, certainly corrects the anharmonic parameters w
prevalent bending character. The most probable coupl
are then built on the symmetry allowed monomia
a2

4,a1a2
2,a2

2a3
1 ,a2

2a3 and their conjugate complexes, and a
associated, respectively, with the angles 4w2 ,w112w2 , and
w372w2 . The first possibility is justHC

(2) , which was
shown in the previous subsection to lead to a prematu
invalid model at 10th order of perturbation theory. The a
dition of the next anglew112w2 , while not suffering from
the same drawback, just does not increase significantly
accuracy of the computed levels. A different problem w
encountered while trying to include the last two anglesw3

72w2 . Namely, the coupling between the vecto
uv1 ,v2 ,v3& and uv1 ,v212,v371& of the harmonics basis
happens to be so large that neitherv3 nor i remain, even
approximately, good quantum numbers. The first con
quence is that the simple assignment procedure of Sec.
is by far insufficient. Most certainly, this is not a serio
drawback, and one could think of a slightly more compl
scheme to assign the levels. But the game is not worth
candle, for the simple reason that the resulting resona
Hamiltonian has lost most of its other advantages compa
to the exactT1V expression anyway: from the quantu
point of view, there remain no good quantum numbers at
and the Hamiltonian matrices are no longer of small size
the same way, there remains no classical constant of
motion, and the study of the dynamics at high vibration
energies is then no longer simpler for the resonance Ha
tonian than for the exact one.

C. The influence of the quantum matrix elements

Gustavson’s procedure transforms a classical, poly
mial Hamiltonian in (p,q)5(p(2),q(2)) coordinates into an-
other classical, polynomial Hamiltonian in (p(s),q(s)) coor-
dinates. When expressed in terms of the action-angle-
coordinates of Eq.~2.8!, the transformed Hamiltonians ar
those given in Eq.~3.11! for the Dunham expansion, in Eq
~3.14! for the Fermi resonance Hamiltonian, and in E
~3.16! if the ‘‘2 v250’’ resonance is also taken into accoun
Calculation of energy levels, and therefore the computa
of the quantum matrix elements in Eqs.~3.12!, ~3.15!, and
~3.17!, further requires that explicit quantization rules a
assumed, for the simple reason that quantumpk andqk op-
erators, as well as creation and annihilation operators, do
commute. This problem is not simple and will not be trea
here. For a discussion of the quantization of Birkhof
Gustavson’s normal forms, the reader is referred to the wo
of Robnik,32 Ali, 33 Eckhardt,34 and Fried and Ezra.35 What
we want to stress instead, is that the question of the exp
correspondence, which is assumed between a classical
nome and its quantum counterpart, might anyway make
definition of more accurate resonance Hamiltonians at b
ambiguous. Since Weyl’s correspondence rules, which
sometimes claimed to be the ‘‘best’’ ones,36 result in an ex-
plosion of the number of expressions to handle,32 this idea
will be illustrated using three easier correspondence ru
which are some kinds of symmetrized versions of Robni
rules.32
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First of all, the quantum operators associated with
monomialsPkak

l k(ak
1) l k of the Dunham expansion are take

to be

~4.1!

The polynomial expansions ink(m) and k (m), which appear
in HF

(m) and HC
(m) and which we call genericallyd, are

handled along the same lines as in Eq.~4.1!. Let us further
call ofd the purely off-diagonal couplings, where the raisin
operator acts on mode 2, that is explicitly,ofd5a1

ma2
12m for

HF
(m) and ofd5a2

12m for HC
(m) . Three possible choices o

correspondence rules forHF
(m) andHC

(m) , which lead to Her-
mitian matrices with simple elements, are

left5d+ofd1ofd* +d,

right5d+ofd* 1ofd+d, ~4.2!

sym5 1
2 ~ left1right!,

whereofd* denotes the operator conjugate toofd ~it is re-
membered thatd is self conjugate!. The later symmetrized
arrangement ‘‘sym’’ was actually assumed in Eqs.~3.15! and
~3.17!. For the two other choices, the sole values ofn1 and
n2 need to be changed in these equations. For the ‘‘le
arrangement, one obtains

n15v12m1 1
2 n25v212m11 in Eq. ~3.15!,

~4.3!

n15v11 1
2 n25v212m11 in Eq. ~3.17!,

and for the ‘‘right’’ arrangement the result is

n15v11 1
2 n25v211 in Eqs. ~3.15! and ~3.17!.

~4.4!

The errors between the exact levels of Becket al.25 and the
levels of the two-resonance HamiltonianHD1HF

(1)1HF
(2)

1HC
(1) computed according to the three quantization pro

dures mentioned above are presented in Table V. While

TABLE V. The influence of the explicit form of quantum matrix element
In each column, the following sequence is given: average absolute
mean square/maximum error~in cm21) between the exact quantum levels o
HCP ~Ref. 25! relative to the ground state and those ofHD1HF

(1)1HF
(2)

1HC
(1) obtained at perturbation orders increasing from 6 to 13. The exp

quantum matrix element corresponding to each classical monomial va
from column 2 to 4~see Sec. IV C!. The third column of this table is
identical to the third column of Table II and has been copied for con
nience. The 361 levels belonging to the complete polyads up to 22 000 c21

above the bottom of the well are included in the calculations.

Order↓ ‘‘left’’ ‘‘sym’’ ‘‘right’’

6 31.4/62.1/608 30.9/61.0/601 30.5/60.1/594
7 30.1/58.0/544 29.4/56.2/532 29.2/54.8/520
8 13.4/34.6/387 11.5/32.9/388 10.5/31.4/388
9 8.5/21.5/273 8.1/21.8/282 8.7/22.4/289

10 4.6/8.6/62.6 4.4/8.0/48.6 5.5/9.0/46.1
11 5.4/11.5/100 4.4/9.3/76.5 5.0/8.3/48.8
12 3.3/8.6/128 2.6/11.5/197 4.5/18.6/323
13 3.2/7.8/116 2.2/10.8/188 4.4/18.1/317
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general trends of the convergence properties are identica
the three of them for increasing values of the order of p
turbation, it is seen that the errors vary largely at the high
orders. For example, at 13th order, the average/r
maximum errors are, respectively, 3.2/7.8/116 for the ‘‘lef
arrangement and 4.4/18.1/317 cm21 for the ‘‘right’’ arrange-
ment, compared to 2.2/10.8/188 cm21 for the symmetrized
sum. It is therefore most likely that any further refinement
the resonance Hamiltonian, which will be obtained at ord
probably greater than, say, 11 to 13, will depend on the p
cise quantization rules which are assumed. One might t
wonder about the physical interest in pursuing calculati
further.

V. CONNECTIONS TO OTHER CANONICAL
PERTURBATION THEORIES

This section contains a comparison with the results
tained using two other canonical perturbation theori
namely the Van Vleck perturbation theory~CVPT! and the
classical Lie operator based perturbation theories~LOPT’s!.
Actually, CVPT and LOPT are closely related, and classi
LOPT’s,35,37–43 specially Dragt–Finn perturbatio
theory,35,39–41 mostly involve replacing quantum commut
tors by classical Poisson brackets in quantum CVPT.44–49

Also, a new method,50 which can be viewed as a specifi
case of a more general work51,52 and is called mixed diago
nalization, has recently been introduced, in which an eff
tive Hamiltonian operator acting on a reduced dimensio
space is constructed using the same similarity transfor
tions of CVPT. Detailed descriptions of these methods w
not be presented here, the interested reader being referr
the articles listed above, but it is noted that strong similarit
also exist between LOPT or CVPT and BGPT: indeed,
null spaceG (s) in BGPT plays the same role as the tran
formed HamiltonianKn

(n)(n5s22) in CVPT, and the re-
mainderR(s) as the operatorS(n) associated with the unitar
transformation exp(iln@S(n),#) ~the notations here are those
Sibert48,49!.

The point that is common to all these methods and c
trasts with those based on generating functions like Gus
son’s procedure, is that the coordinate transformations
linear, so that the inversion of equations to express ‘‘ne
coordinates in terms of ‘‘old’’ ones is trivial. This is ofte
presented as a decisive advantage of LOPT and CVPT c
pared to BGPT. It should, however, be noted that Gust
son’s procedure leads directly to an expression of the Ha
tonian in the new coordinates, so that inversion is
required for the computation of eigenstates. It is only wh
more precise results are wanted, like, for example, the ca
lation of infrared transition intensities, that this inversio
must be performed, in order to compute the dipole opera
in the new coordinates. This is probably not an insupera
task from the computational point of view, but it is true th
the proof remains to be given that this can be done
Gustavson’s procedure, whereas such results have alr
been obtained using CVPT.53–56 On the other hand, one ca
argue that linear transformations are perhaps not the
suited ones for studying PES’s far above the bottom of
well, and that allowing for a polynomial dependence b
or
r-
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tween new and old coordinates might be more adapted to
curvature of the PES. For example, we have shown that
els of HCP with up to 30 quanta in the bending degree
freedom, corresponding to something like a 240° amplitu
of motion, can be reproduced with an error lower th
55 cm21 using Gustavson’s procedure, whereas no such
sult has ever been published for CVPT—which again d
not mean that CVPT is unable to meet this standard.

Concerning the quantization of the classical norm
form, the problem is just the same for LOPT’s35 and Gustav-
son’s procedure.32–34 In contrast, the Van Vleck transforma
tions, be they performed in the matrix representation or
the operator representation,48,49,57,58correctly treat the order-
ing of the operators, so that one does not have to inv
Weyl’s correspondence rules. The operator representa
has the prominent advantage compared to the matrix re
sentation, that it leads to an analytical expression for
transformed Hamiltonian, so that its classical and semic
sical properties can be investigated,59 just like upon use of
Gustavson’s procedure.20–24,28,29,31It is to be noted that a key
feature for applying CVPT to the study of rea
molecules49,59–65 is that all the operators be reexpressed
the same form, in order to both reduce the space require
store the transformed Hamiltonian and to simplify the eva
ation of all the commutators. The convention, which is us
ally assumed,48 is that the lowering operators act first and t
raising operators act second... which happens to be the q
tization rule proposed by Eckhardt34 to quantize the classica
BGPT normal forms.

Let us now consider the question of the shape of
transformed Hamiltonian, that is of the resonanc
which are explicitly taken into account. What is clear
that physicists who use CVPT have long recognized
importance of taking some resonances explicitly into
count, even though they are not exact. However, exc
in one case,62 the strategy adopted for the definition of th
transformed Hamiltonian is different from that presented
this article, because the underlying purpose is also differ
Indeed, our main interest is in the classical, dynamical pr
erties of the molecular system. Therefore, the number
resonances that are taken into account must be as sma
possible, for the reasons outlined in Sec. IV B. In contra
the main goal of the people who use CVPT is to spare co
puter time. This is achieved by requiring that the transform
Hamiltonian have one or several good quantum numbers
For example, the last good quantum number is taken to
2v11v21v31v412v51v6 for H2CO,49,62,63 2v11v2

12v3 for H2O and its deuterated derivatives60 and SO2,
63

2v11v214v3 for CO2,
61 2v11v213v31v4 for AlF3,

65

and 3v11v214v31v4 for SiF3.
65 What CVPT does is to

transform the initial coordinates to new coordinates, su
that, except for neglected higher order terms, the linear c
binations above remain good quantum numbers for
Hamiltonian expressed in the new coordinates. That is,
Hamiltonian matrix in the new coordinates is block diagon
and each block can be diagonalized separately, ther
largely reducing the computer time. However, the exact c
tent of the blocks has a much more limited influence on
speed of the numerical calculations, so that actuallyall the
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resonances coupling levels with the same value of the
maining good quantum numberwere retained in the trans
formed Hamiltonians for the molecular systems listed abo
For instance, the basic resonances for water are the F
resonance between the symmetric stretch and the bend
is a1

1a2
21hc, and the Darling–Dennison resonance betwe

the symmetric and the asymmetric stretches, that isa1
12a3

2

1hc. However, the transformed Hamiltonian discussed
Ref. 60 contains low order additional terms likea1a2

2a3
12

1hc, which also couple only basis levels with the sam
values of 2v11v212v3 . But again, these differences b
tween Sibertet al.’s work and this one result mostly from
different strategies inspired by different goals. CVPT cou
have been used to derive a Hamiltonian similar to Eqs.~3.16!
and~3.17! for HCP ~whether the corresponding values of t
spectroscopic parameters lead to a better or a worse accu
remains an open question!. This is actually what was done i
the exception mentioned above,62 where it was shown tha
two resonances were necessary, but also sufficient, to c
pute with a good accuracy the intensity of a few infrar
transitions of HCN.

In conclusion, it is the first time that so many levels a
computed for a realistic molecular system using so few re
nances, which makes HCP a fine benchmark for the comp
son of the respective capabilities of LOPT’s, CVPT, a
Gustavson’s procedure, which is asked for by many auth
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22C. Jafféand W. P. Reinhardt, J. Chem. Phys.77, 5191~1982!.
23R. B. Shirts and W. P. Reinhardt, J. Chem. Phys.77, 5204~1982!.
24W. P. Reinhardt and D. Farrelly, J. Phys.~France! 43, C2-29~1982!.
25C. Beck, H. M. Keller, S. Y. Grebenshchikov, R. Schinke, S. C. Faran

K. Yamashita, and K. Morokuma, J. Chem. Phys.107, 9818~1997!.
26C. L. Siegel, Ann. Math.42, 806 ~1941!.
27E. B. Wilson, J. C. Decius, and P. C. Cross,Molecular Vibrations~Dover,

New York, 1955!.
28M. Joyeux, Chem. Phys.221, 269 ~1997!.
29M. Joyeux, Chem. Phys.221, 287 ~1997!.
30A. J. Dobbyn, M. Stumpf, H. Keller, and R. Schinke, J. Chem. Phys.103,

9947 ~1995!.
31M. Joyeux, S. Y. Grebenshchikov, and R. Schinke~submitted!.
32M. Robnik, J. Phys. A17, 109 ~1984!.
33M. K. Ali, J. Math. Phys.26, 2565~1985!.
34B. Eckhardt, J. Phys. A19, 2961~1986!.
35L. E. Fried and G. S. Ezra, J. Chem. Phys.86, 6270~1987!.
36M. Springborg, J. Phys. A16, 536 ~1983!.
37A. J. Lichtenberger and M. A. Lieberman,Regular and Stochastic Motion

~Springer, New York, 1983!.
38J. R. Cary, Phys. Rep.79, 129 ~1981!.
39A. J. Dragt and J. M. Finn, J. Math. Phys.17, 2215~1976!.
40A. J. Dragt and J. M. Finn, J. Math. Phys.20, 2649~1979!.
41A. J. Dragt and E. Forest, J. Math. Phys.24, 2734~1983!.
42G. Hori, Publ. Astron. Soc. Jpn.18, 287 ~1966!.
43A. Deprit, Celest. Mech.1, 12 ~1969!.
44J. H. Van Vleck, Rev. Mod. Phys.23, 213 ~1951!.
45G. Amat, H. H. Nielsen, and G. Tarago,Rotation-Vibration Spectra of

Molecules~Dekker, New York, 1971!.
46I. Shavitt and L. T. Redmon, J. Chem. Phys.73, 5711~1980!.
47D. Papousek and M. R. Aliev,Molecular Vibrational-Rotational Spectra

~Elsevier, Amsterdam, 1982!.
48E. L. Sibert, J. Chem. Phys.88, 4378~1988!.
49E. L. Sibert, J. Chem. Phys.90, 2672~1989!.
50R. Hernandez, J. Chem. Phys.101, 9534~1994!.
51V. Hurtebise, J. Chem. Phys.99, 265 ~1993!.
52V. Hurtebise and K. F. Freed, J. Chem. Phys.99, 7946~1993!.
53H. M. Hanson and H. H. Nielsen, J. Mol. Spectrosc.4, 468 ~1960!.
54H. M. Hanson, J. Mol. Spectrosc.23, 287 ~1967!.
55A. Willetts, N. C. Handy, W. H. Green, and D. Jayatilaka, J. Phys. Che

94, 5608~1990!.
56A. B. McCoy and E. L. Sibert, J. Chem. Phys.95, 3488~1991!.
57H. Primas, Helv. Phys. Acta34, 331 ~1961!.
58H. Primas, Rev. Mod. Phys.35, 710 ~1963!.
59E. L. Sibert and A. B. McCoy, J. Chem. Phys.105, 469 ~1996!.
60A. B. McCoy and E. L. Sibert, J. Chem. Phys.92, 1893~1990!.
61A. B. McCoy and E. L. Sibert, J. Chem. Phys.95, 3476~1991!.
62A. B. McCoy and E. L. Sibert, J. Chem. Phys.95, 3488~1991!.
63A. B. McCoy and E. L. Sibert, J. Chem. Phys.95, 7449~1991!.
64A. B. McCoy and E. L. Sibert, J. Chem. Phys.97, 2938~1992!.
65Y. Pak, E. L. Sibert, and R. C. Woods, J. Chem. Phys.107, 1717~1997!.


