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The well-known Birkhoff-Gustavson canonical perturbation theory has been used so far to obtain
a reasonable approximation of model systems near the bottom of the well. It is argued in the present
work that Gustavson’s calculation procedure is also a powerful tool for the study of the dynamics
of highly excited vibrational states, as soon as the requirement that the transformed Hamiltonians be
in Birkhoff's normal form is dropped. Mathematically, this amounts to modifying the content of
Gustavson’'s null space. Physically, the transformed Hamiltonians are of the single or
multiresonance type instead of just trivial Dunham expansions, even though no exact resonance
condition is fulfilled. This idea is checked against 361 recently calculated levels of HCP up to
22 000 cm* above the bottom of the well and involving up to 30 quanta in the bending degree of
freedom. Convergence up to 13th order of perturbation theory and an average absolute error as low
as 2.2cm?! are reported for a two-resonance Hamiltonian, whereas the Dunham expansion
converges only up to 4th order at an average error of 215 cifihe principal advantages of the
resonance Hamiltonians compared to the exact one rely on its remaining good quantum numbers and
classical action integrals. Discussions of the limitations of the method and of the connections to
other canonical perturbation theories, like Van Vleck or Lie transforms, are also presented.
© 1998 American Institute of Physids50021-960808)01730-9

I. INTRODUCTION the zero order levels are coupled for highly excited mol-
. e L . ecules studied along these lines, and even the very basic
The experimentalist’s first step for deriving information . . . . .
o . : information, like the assignment to sets of approximate good
from vibrational spectra usually consists of developing a . : . .
uantum numbers, requires the visual inspection of several

simple Hamiltonian, which is able to reproduce the measure undred or even thousands of quantum wave functions. This
spectrum. Examples for such Hamiltonians are the Dunhal ) ; quant - '
Is both time and patience consuming. Similarly, from the

expansioh™* and the single resonance Hamiltonian used toI ical point of Vi bi fund al "
model molecules with Fermi or Darling—DennisonCass"ca point ot view, problems as fundamental as the

resonance®: 12 Obviously, the broader the energy range en_seargh for pgriodic orpits require complex numerical meth—
compassed by the spectrum, the more terms are needed in tA&S like multiple shooting algorithms or damped and quasi-
Hamiltonian to take into account those effects, the strengthléwton iterative methods—not to speak of action integrals
of which increase with energy, like diagonal anharmonicities?" classical frequencies!
and off-diagonal couplings between zero order modes. An interesting question is: Is it possible to keep the ad-
Gradually, the fit of these terms to the observed transitioryantages of the two approaches while getting rid of their
frequencies becomes more and more tedious. This is due ligspective drawbacks? That is: Is it possible to obtain a
part to their very rapidly increasing number, but most of allHamiltonian expression, which is precise enough at high en-
to the very strong correlations which exist among them ancergies and the interesting, physically meaningful features of
cause the problem to become numerically unstable. which are nevertheless easily grabbed? Keeping in mind that
Accordingly, the problem must be approached from athe computation of a precise PES seems to be an unavoidable
completely different viewpoint at sufficiently high energies. prerequisite, the question can again be formulated in the fol-
That is, one must first compute an accurate potential energpwing way: Is it possible to derive from the computed PES
surface(PES and then solve exactly the multidimensional this simple Hamiltonian expression, which is both precise at
Schralinger equation. Though still limited to small mol- high energy and easy to analyze?
ecules, principally triatomic ones and a few tetratomics, sig- A possible answer to this question comes from the ca-
nificant advances have been registered in this field in the lasfonical perturbation theory derived by Birkhtffand later
few years.>~*° In addition to the difficulties inherent to extended by Gustavsbhto take resonances properly into
quantum mechanical variational calculations, the principabccount. Gustavson’s procedure explicitly enables one to re-
dravyback of this approach lies in the working of the r_esultswrite a polynomial Hamiltonian in “Birkhoff's normal
coming out from the computer codes. Indeed, essentially ayym » that is, in a form such that the Poisson bracket of the
second degree terfthat is the sum of uncoupled harmonic
dElectronic mail: Marc.JOYEUX@Uujf-grenoble.fr oscillatorg with any term of higher degree vanishes. As al-
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ready shown on several examples—two coupled harmonimotationless levels of phosphaethyCP) from anab initio
oscillators?®?! the Henon—Heiles surfaé®? or the qua- potential energy surfad®ES at the multireference configu-
dratic Zeeman effect in hydrogéh, Birkhoff—Gustavson ration interaction-complete active space self-consistent field
perturbation theoryBGPT) enables one to obtain a reason- (MRCI-CASSCH level, will serve as a reference to illustrate
able approximation of these systems near the bottom of thhis idea.
well. Now, the interesting point is, that Birkhoff's normal The remainder of this article is organized as follows: the
forms happen to be just the simple Hamiltonians mentionegbrinciples of BGPT are outlined in Sec. Il, paying special
at the beginning of this section. More precisely, Birkhoff's attention to dissociating Birkhoff's normal form from
normal form for a nonresonant system is the Dunham exparfsustavson’s calculation procedure. The possibility of includ-
sion, whereas for a resonant systéim., a system with ra- ing more terms in the null space is put in evidence, thus
tionally related fundamental frequendigsis a single reso- leading to multiresonance Hamiltonians. Starting from the
nance Hamiltonian. exact expression of kinetic energy in curvilinear internal co-
It is therefore tempting to use BGPT to simplify the ordinates and thab initio PES of Beclet al,? 361 levels of
analysis of highly excited vibrational systems. When doingseveral transformed resonance Hamiltonians derived from up
so, one is, however, soon confronted with a well-knownto 14th order perturbation calculations are then compared in
shortcoming of canonical perturbation theories, namely thé&ec. lll to the exact ones. The studied energy range extends
divergence of the perturbative series. Let us be more precigép to more than half the dissociation energy value and in-
about what divergence means in this context: Gustavson’éolves up to 30 quanta in the bending motion. Convergence
procedure uses only well chosen canonical transformation$lp to 13th order and an average absolute error as low as
that is transformations of the phase space variables whicB.2 cm " are reported for a two-resonance Hamiltonian,
preserve the form of Hamilton’s equations. It operates on avhereas the Dunham expansion converges only up to 4th
polynomial Hamiltonian, and at each degieef the theory, ~order at an average error of 215 chn Section 1V is next
a canonical transformation is performed, which leaves thélevoted to a discussion of the limitations of this modified
terms with degree lower thamunchanged, while the terms Version of Gustavson's procedure. At last, the connections to
with degrees are put in Birkhoff's normal form. Usually, other canonical perturbation theories, like Van Vleck or Lie
after the procedure has been applied up to a chosen degrdeansforms, are presented in Sec. V.

the terms with higher degree are simply dropped: this degreg. cUSTAVSON'S PROCEDURE AND BIRKHOFE'S

will be called the “order” of the procedure. For example, the NORMAL FORM

Xij spectroscopic parameters are obtained at fourth order of | ot ;s first outline Gustavson’s proceddfayhile drop-
Gustavson’s procedure, while thig, parameters result from  iny every reference to Birkhoff's normal forti.To begin
sixth order calculations. A naive conclusion is then that th&ii, |et us assume that the original polynomial Hamiltonian
higher the order of the perturbation calculations, the morq_l(p’q)’ wherep is expressed in units df, has already been
precise the obtained approximation. This conclusion is, Ungansformed up to degree— 1, wheres=3, and let us de-
fortunately, wrong: For a given set of levels, an increase inyrine how it is transformed up to degreeaccording to
the order will most certainly first result in an increase in theg;stavson’s procedure. In other terras;3 canonical trans-

precision of the frequencies calculated according to the apymations have already been performed, leading from the
proximate Hamiltonian, but at a given order the precision(p q):(p(z) q(z)) to the (p(s—l) q(s—l)) set of coordinates

will start decreasing again and the divergence is then ofteg,;ch that
very rapid(numerical examples will be given in the follow-
ing sections of this papgrMoreover, it is not possible to
predict at which order the precision will start to diverge, nor
to guess what the optimal precision will be. The question is:
what if the series diverges before the needed accuracy goal is n 2 H(s= 1) (p(s=1) g(s= D)y, 2.
achieved? n=s

i 'I_'herérgTof thlshplaper IS tobshow dtrt]ﬁt i. Sligg.t modifica- and one now looks for the next step, that is for the canonical
lon 1n can help going beyond e Nrst AIVETGENCes, » ,stormation from g~ ,q ) to (p®,q®), such that,

That is, the divergence of the series is repelled to higher .

orders, while the accuracy of the approximate energy levels

is further improved. This modification consists of using H(p,q)=r§2 r(n)(p(s)'q(S)Hn;ﬁl HEY(p' '),
Gustavson’s procedure, while dropping the requirement that (2.2
the transformed Hamiltonian be in Birkhoff’'s normal form.
Actually, the only point which needs to be modified is the
definition of Gustavson’s “null space,” whereas explicit cal-
culations proceed along unaltered lines. Physically, thi
amounts to accepting that the approximate Hamiltonian H® =N®+RS),
might be a multiresonance one, instead of just a Dunham (9= N
expansion or a single resonance Hamiltonian. The recent - '
work of Becket al,?® who were able to calculate variation- In Egs.(2.1) to (2.3), I'(™, H=1M HEM  NM  gnd RM
ally the energy values and the wave functions for about 100@re all homogeneous polynomes of degne®Ve shall come

s—1

H(p,a)=2, T (ps™,q*7%)

the goal being thal’® contains only some given, chosen
partN® of HS™19 that is, of the term with degresin the
yamiltonian transformed up to degree 1:

2.3
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back later to the respective contents of the null spse 1 1
and the remaindeR(®). Simple calculationS~—2! show that, =5 (PE+ap)= > (aay +ag ay),
whatever these contents are, the canonical transformation is (2.8
obtained in the form of a generating functigv® P
tan o= — —,
AW (p'® gls—D)y Uk

-1
q¥=q*> '+

0pi(s) ’ where the superscripts) are again omitted, one sees that
(8 (S m(6=1) the truncation at a given order leads precisely to the Dunham
JWZ(P.a" ) polynomial expansion in terms of thg's, which in this case
&qi(s’l) ' are actually the action integrals of the motion. The fact that
this series at best does not always convétge easily
grabbed by realizing that unconditional convergence would
imply that all the systems are integrable and that chaos does
1 not exist.
a=—(a+jpi, As worked out by Gustavsoii,a further difficulty arises
2 2.5 whenever the fundamental frequencies of the system satisfy
' an exact resonance condition, because of the division by
the term in Eq.(2.6). For example, if modes 1 and 2 are in
exact Fermi resonance, such tha{=2w,, then each mo-
nomial of R® in the formaf'a; *™II,a, *(a; )™ (or its com-
plex conjugate would lead to a division by zero, whatever

(2.9

-1
Pl 9 =pl+

computed as followsR(® is rewritten in terms of the classi-
cal analogs of the quantum ladder operators

=

a?=5(qi—1pi)-

The (s—1) superscripts are omitted in E(.5. Each mo-

. | + . ..
nomial IT,a,‘(ay ) ™ of the result is next divided by the values ofm and them,’s. The same conclusion holds
for the Darling—Dennison resonance;=w, and the
iY wle—my). (2.6  afa; "M,a,(a; )™ monomials. These monomials, there-
X

fore, ought to be put in the null spaté®, in order for the
The result is then expressed back in tpéS( Y, q~ %) co- above procedure to work, leading, respectively, tona,

ordinates, anch®~ 1) is finally replaced byp®. Once this —2M¢, and ame;—Me, angle dependence of the trans-

function W has been computed, the homogeneous polyformed Hamiltonian. o

nomesH®" where n>s, that is the terms with degree For these two possible definitions of the null space, cor-

higher thans in the Hamiltonian transformed up to degrge  responding to the nonresonant and resonant cases, the trans-

are obtained according to formed Hamiltonians are said to be in Birkhoff's normal
form, which just means that the Poisson bracket of d&éh

H®(p,q) with the quadratic part of the Hamiltonigthat is, with the

sum of the uncoupled harmonic oscillaiorsgnishes. This

FHETEM o [IWE) i that eacl® remai imatel tant of
—H= I (p,q) + insures that eac remains approximately a constant o
! . “ T .
(iniz- | Ihadps k 0k the motion—or at least does not vary too much—as long as
(- 1m) the quadratic part of the Hamiltonian dominates. While prob-
a — 4

1 (ﬁW(s>)|k / T () 2.7 ably interesting in the context of the derivation of formal
Hkaqu Kk \ Pk R ' mathematical theories, this property is, however, of no help
from a practical, physical point of view. More interesting is
wherei=Zi, and m=n—i(s—2). The sum in Eq(2.7)  the fact that the transformed Hamiltonians remain integrable,
runs over all those values ofiy(i, --) such that: Xi  as |ong as no more than one resonance condition is satisfied:
<(n—2)/(s—2). (s) superscripts are again omitted in Eq. this point has been used to assign approximate constants of
(2.7). Up to that point, the procedure involves no approxima-the motion for classically chaotic vibrational dynamfég®
tion: It is just a sequence of canonical transformations. The |t is hoped that the presentation above clearly puts in
approximation eventually consists, after having transforme@vidence that the calculation procedure developed by
the original Hamiltonian up to a given degree, in neglectingGustavson and the question of Birkhoff's normal form can
all the terms with higher degree, thus retaining only thepe totally dissociated. In particular, it is stressed taath
rers, different choice of ) (s=3) leads to a different approxi-

Let us now come back to the contents of the null spacenation of the original HamiltonianOf great importance is
N©® and the remainderR®. The result obtained by also the fact thathe convergence properties of these ap-
Birkhoff'® is that the original Hamiltonian can be trans- proximations are differentFor example, one can consider
formed into a Hamiltonian, which is a power series in one-that in the extreme limit wherdl(® is taken to beH (™19,
dimensional uncoupled harmonic oscillators. For doing sothen the transformed Hamiltonian is just the original one and
one just needs to require that the null spAt® is obtained  the procedure is convergent. Intuitively, the more terms are
from H(~1*) expressed in terms of ladder operators by re-added in the null space, the closer the transformed Hamil-
taining only the monomials of the foria, “(a;)™. Using  tonian from the original one, and the better the convergence
the canonical transformation to action-angle-like coordinateproperties. But simultaneously, the more terms in the null
(e, @K), space, the more complex and the less interesting the trans-
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formed Hamiltonian. One can, however, try to play with thecare that all the values remain inside the convergence radius
actual content oN®, in order to get a precise yet simpler of each function when expandingin Taylor series. In par-
description of the original Hamiltonian. It should be noted—ticular, the convergence radius gk is 0<x<2, and it hap-
but this is of no practical consequence—that most of the tim@ens that folR; the expression below the square root some-
the transformed Hamiltonian is no longer in Birkhoff's nor- times becomes greater than 2 starting from about
mal form. 15 000 cm* above the bottom of the well. Since the goal is
The two following sections of this work are aimed at to take into account the levels up to 22 000 ¢nabove the
showing that Gustavson’s procedure with the modified defibottom, these coordinates are again not convenient.

nition of N(® might be a powerful tool in the field of vibra- In contrast, the usual curvilinear internal coordinates
tional dynamics, and particularly in the study of highly ex-r,,r, and «, wherer,; andr, are again just the HC and CP
cited vibrational states. bond lengths and is the HCP angled4= = at equilibrium,
are found to be a good set of coordinates. Fys are ex-

lIl. APPLICATION TO THE HIGHLY EXCITED pressed in the form
VIBRATIONAL STATES OF HCP
A. Preliminary calculations Ri=ry,

As stated in the Introduction, the recent work of Beck R,=r,, 3.2

et al,?® who were able to calculate variationally the energy

values and the wave functions for about 1000 rotationless
levels of HCP from amab initio potential energy surface Rs=\ri+r5—2rr, cosa,

(PES at the MRCI-CASSCEF level, will serve as a reference

to illustrate this idea. However, since the canonical perturbaand all the values are found to remain inside the convergence
tion theory described in Sec. Il applies only to polynomesradii of the square root, exponential and hyperbolic tangent
with no first degree terms and with no second degree crossinctions up to 22 000 cit above the bottom of the wel/
terms, one must first expand both the PES and the kinetiis thus expanded around the equilibrium values 1.0768,
energy in Taylor series near an extremum. Then, Wilson's ,=1.5581 A, anda=m at E=—42 231 cm relative to

GF matrix formalisn?,’ which is nothing but a first canonical H+CP. The vibrational part of the exact kinetic enefy
transformation, has to be applied, in order to eliminate the

second degree cross terms. These calculations are outlined in 1 / 1 1 1/ 1 1
the present subsection. T=53 (m— + p,21+ 5| = m_> prz2
The PES derived by Bedit al®® is expressed as a func- HoC c P
tion V of the three coordinateR,, R,, andR;, which stand, cosa sina [Pr, Pr,
respectively, for the HC, CP, and HP separations. These co- +——pPr P, —— |7t~ (Pa
! . i mc Mme (o Iq
ordinates are, however, not convenient for the Taylor expan
sion, since the minimum df in the R; coordinates is located 1 ( 1 1\1 1 1)1 2cose| ,
=1 ; i i +-{|—+—| 5+|—+—]| 55—
at —52 54jlcm relative to the minimum of.HCP, that is 2|\my T me) 2 \me  me) 12 mergr,| e
10316 cm* below the bottom of the well in Jacobi or in
internal coordinates. Moreover, the values of the three bond 33

lengths at the minimum are respectiveR;=1.0173, R,
=1.5026, andR;=3.5183 A, which is physically meaning- wherep;;, p;, and p, are the momenta conjugate to the
less, sinceR; is necessarily smaller than the sumRfand ~ coordinates ;, r, anda, is next expanded around the same
R,. Jacobi or internal coordinates, which consist of twoequilibrium values. Since only the rotationless levels are
bond lengths and one angle, automatically take this conditiogonsidered in the work of Beddt al,* the term dealing with
into account, but th&®, coordinates do not. the kinetic energy of the molecule rotating around the van-
One can also think of expandingas a function of the ishing moment of inertia, which is called the vibrational an-
deviations from equilibrium of the Jacobi coordinate®?, ~ gular momentum, is omitted in E¢3.3). Nonetheless, the
andy used by Beclet al. to diagonalize the quantum Hamil- double degeneracy of the bending motion is taken into full
tonian matrix and to plot their figures. is the CP bond account in what follows. One is then left with two poly-
length,R is the length from H to the center of maGsof the ~ nomes forV and T, the second degree terms of which are
CP bond, andy is the angle between HG and CPis equal  Written in the form
to zero in the linear equilibrium configuration HCP. TRgs
are expressed as TOP)+VA(Q)=P"-G-P+3Q"-F.Q, (3.9

R;=Vp?r?+R?—2pRr cosy,

where Q=(Ar,,Aa,Ary) and P=(p;2,P,,Pr1), Ary,
Ro=r, (3.1  Ar,, and A« being the deviations of;, r,, and « from
N ey =y — equilibrium. G and F are symmetric but nondiagonal matri-
Rs=V(1-p)*r*+R*+2(1~p)Rr cosy, ces. The point is, that Gustavson’s procedure applies to poly-
p being the ratianp /(mc+mp) andmp andm¢ the masses nomial Hamiltonians, the second degree of which is a sum of
of the phosphor and carbon atoms. Of course, one has to takmcoupled harmonic oscillators, which can be written as
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1 1
r@p,q)=T?(p)+V?(q)= 272 p"-Q-pt > q"-Q-q HD=Ei wi|i+i2<j Xij|i|j+i<12<k Yijliljlct-
) (3.11
= @i [P o 3
& 2 \R2 ai ) (3.9 Each term with total degremr in the |, coordinates is ob-

) ) ) tained at the degreg=2n of BGPT. One is also reminded,
where() is the diagonal matrix of the fundamental frequen-inat if the Hamiltonian has been put in normal form up to
cies w;. The linear coordinate transformation from the degrees, then the coordinatgsandq in Eq. (3.8), as well as
(P.Q) to the (p,q) sets of conjugate coordinates is obtainedine corresponding ladder operators and the action integrals
according to Wilson's GF matrix formalisff, as follows: " arise froms—2 canonical transformations. The super-
Let us callL the eigenvectors of the product matrix G.F. The scripts §) are simply dropped. The elements of the diagonal
products, quantum Hamiltonian matrix in the harmonic oscillator basis

f=L*.F-L, are just
(3.6
g=L G- (L)Y

are again diagonal, with eigenvalugsandg; . Define nowx
as the diagonal matrix with elements, such that

h2g;\ V4 +,<E<k Yijkninjne+---,
A= T (3.7 == (3.12
I

The first canonical transformation, which is the link between  n;=v,;+ 3 n,=v,+1 ng=vs+ 3,

Egs.(3.4) and(3.5), is obtained as
Q=L-\-q which is the usual, well-known Dunham expansion. The vi-
' (3.9  brational angular momentum is assumed to be zero in Egs.
P=((L-\)") t.p, (3.11 and(3.12, as well as in the following expressions. If
this were not the case, then only very slightly more complex
expressions should be us&® The explicit numerical val-
wi=f\2=h%g\; 2=hf,g. (3.9  ues for the parameters appearing in the expressions of the

. . . . transformed Hamiltonians are not given in this article, be-
It is worth noting that the i§,q) coordinates defined by Eq. cause there are too many of them:9119 for the Dunham ex-

(3.8) are “normal coordinates,” in the sense that they d|ag—pansion at 14th order and 296 f‘er+H(F1)+ H(F2)+ H(Cl) at

onalize the second degree terms of the vibrational Hami the same ordefsee Sec. lll D, Instead, the results will be

tonian. However, they are not exactly the usual “normal Co'presented as error tables. These tables give, for each Hamil-

ordinates,” since they are not linear combinations of, .
: : . . onian and each order of perturbation, the average absolute
Cartesian coordinates, but rather of true curvilinear mterna}

) L ) . .. “error, the root mean squafems) error, and the maximum
coordinates. Also, it is interesting to notice that the initial )
: . absolute error between the exact quantum levels relative to
choice of ther, r,, and a set of coordinates leads to a

. . e ) the ground state calculated by Beekal 2 and the levels of
transformation matrix, which is close to unity. Indeed, the N . .
numerical value fol. is the transfor_med Hamiltonians, calculated using the r_natnx

elements displayed throughout the text. The calculation of
099 0 0.13 these errors further implies that one is able to associate each
L= 0 1 0 (3.10 level of the exact Hamiltonian with one level of the trans-
formed Hamiltonians. For this purpose, the assignments of
—0.091 0 0.99 Beck et al?® have been used. However, due to the strong
which means that the normal mode 1 is almost exactly th&ermi resonance between the C—P strétobde 1 and the
C—P stretching motion, the normal mode 2 is exactly thévend(mode 3, which will be put in evidence in this and the
bending motion, and the normal mode 3 is essentially théext subsections, the assignment according to only two quan-
C—H stretching motion. tum numbers plus one ordering integer has been chosen. The
two quantum numbers are the number of quanta in the C—H
stretch ¢ in our notationw, in Becket al.'s notatior) and
B. The Dunham expansion the polyad numbet. i is defined as

<UlvUZvUB|HD|UlaU2’US>:Ei wini+i2<j Xjjnin;

and the fundamental frequencies are just

Calculation of the fundamental frequencies of HCP ac- =2, +y, (3.13
cording to Eq.(3.9 leads to:w;~1256 (C—P stretch w,
~650 (bend, and w3~3479 cm* (C—H stretch. No low  in our notation, and=2P=2uv,+ 2v5 in Becket al’s nota-
order exact resonance condition is therefore fulfilled andtion. The last good quantum number is destroyed by the
according to the original prescription by Birkhoff and Fermi resonance and is replaced by the order of the level
Gustavson, the sole diagonal terﬁiﬁa:("(a;)'k ought to be  within a given @3,i) polyad. At last, the levels of all the
put in the null space at each even order. The Hamiltonian ipolyads with no level beyond 22 000 chabove the bottom
then obtained in the normal form of the well (<30 forvz=0,i<24 forvs=1,i<20 forv,
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TABLE I. Accuracy of the levels of the Dunham expansion and the Fermi resonance Hamiltonians with one to
three angles, obtained at perturbation orders increasing from 2 to 14. In each column, the sequence: average
absolute/root mean square/maximum erfior cm™?) between the exact quantum levels of HORef. 25

relative to the ground state and those of the transformed Hamiltonians is given. The 361 levels belonging to the
complete polyads up to 22 000 chabove the bottom of the well are included in the calculations. “nc” means

“not calculated,” and “idem” that the result is identical to that in the previous column.

H— Hp+H®
Order Hp Hp+H® Hp+H®+HE +HP+H®

2 987/1122/2852 idem idem idem

3 987/1122/2852 987/1124/2852 idem idem

4 215/441/2701 173/287/1341 idem idem

5 215/441/2701 169/256/1011 idem idem

6 706/1694/14433 21.0/40.0/235 20.9/40.3/245 idem

7 706/1694/14433 20.9/35.2/152 20.9/36.1/178 idem

8 7625/22262/226120 35.6/76.2/571 35.7/76.2/586 idem

9 7625/22262/226120 35.5/72.6/592 35.5/72.6/561 35.5/72.6/560
10 nc 10.8/36.7/395 10.6/33.2/350 10.6/33.2/350
11 nc 14.6/36.5/404 10.6/29.6/317 10.6/29.7/317
12 nc 20.7/47.8/397 19.8/52.2/564 19.8/52.1/561
13 nc 30.4/97.5/1161 19.7/51.3/563 19.7/51.2/559
14 nc 29.9/136/1870 13.1/58.0/749 13.1/58.0/749

=2,i<14 forv3=3,i<10 forvy=4, i<6 for v3=5, and aTa}zmHkaLnk(aQ)mk (and their conjugate complexeare

i=0 for v3=6) have been included in the calculation of included in the null spac&l® at orders=3m+23,m, in

errors, that is 361 out of the first 395 levels. the case of an exact 1:2 resonance, because of the division by
The results of error calculations for the Dunham expanthe term in Eq(2.6). However, one can try to add the reso-

sion obtained from 3rd to 9th order BGPT are given in thenance terms one at the time for an approximate resonance, in

second column of Table I. The line at order 2 corresponds t@rder to check their influence and to get as simple a Hamil-

just the uncoupled harmonic oscillators. Orders 4 and 5 cononian as possible. The classical Hamiltonian is therefore ob-
sist of the expansion up to the; parameters, and orders 8 tajined in the form

and 9 of the expansion up to tlyg,, parameters. It is seen
that the convergence of this model is very poor, being lim- H=Hp+ 2 H<Fm>
ited to 4th or 5th orders and an average absolute error of m=1

215 cmt. At 8th order, the average absolute error has al- (M) oy mi2ym 3.19
. - . . HEY=217"713" codme,—2me5)
ready diverged up to 7625 crh (with a maximum error of F 172
226 120 cm). It is therefore concluded that the Dunham
expansion is very far from being sufficient for whatever EEDY kfm)lﬁrz KWL+
guantitative purpose, despite there being no exact resonance ! =
in the HCP molecule. and the additional nonzero matrix elements are
(V102,03 HE o1 —m,v,+2m,v3)
C. The Fermi resonance Hamiltonian
The rapid divergence, which is observed for the Dunham — =(— 1)’“( KM+ k™ni+ > k{™nin +)
expansion, can be traced back to the division by the small : 1=
w1~ 2w,~—44 cm ! factor, which occurs at third order in m
BGPT and leads to crudely overestimated values for some X [T {Voi—k+1(v,+2k)},
anharmonic parameters. For exampley, andy,,3 are cal- k=1 (3.15
culated, respectively, at 4.009 and6.628 cm® for the m—1 1
Dunham expansion, whereas more probable values, obtained=v,— — N,=v,+m+1 nz=vs+ X

for the best two-resonance Hamiltonidty+H& +HE)
+H® in Sec. IID, are close t0-0.073 and 0.167 ciif, ~ The expression in the right-hand side of E§.15 is not

and no 6th order parameter has an absolute value larger thamique, and depends on the way the quantum operators are
0.424 cmY! So the criterion of the normal form has to be arranged during the quantization process. We shall come
abandoned, and the Fermi resonance must be taken into agack to that point in Sec. IV C. Equatid3.15 shows that
count despite its not being exact: this point is well known totheH(Fm) terms only couple levels with the same values of

the spectroscopists who need to fit speétf& This involves  and the polyad numbeéfEq. (3.13], which therefore remain

a modification in the definition of the null spaces and leads tggood quantum numbers. The assignment to the levels calcu-
a non-normal formaccording to the definition of Birkhoff lated by Becket al® is thus again trivial. Concerning the

of the transformed Hamiltonian. As noted in Sec. Il, Gustav-classical picture of the molecule, it is worth noting that, de-
son’s procedure prescribes that all the monomialspite the non-normal form,; and1=2l,+1, remain con-
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stants of the motion, so that the system is integrdbt- the lowest states of the highest polyads, like, for example,
chaotig: the last action integral is a function of the enerfy, (v3,i)=(0,30), (0,28, (0,26), or (1,24. In each case, the
andl ;. level of the Fermi resonance Hamiltonian is computed at a
Error calculations are reported in the last three columndower energy than the level of the exact Hamiltonian. Fur-
of Table | for the Fermi resonance Hamiltonians with one tothermore, these badly converged eigenvalues are extremely
three angles, that is explicitly foHp+H®, Hy+HY  sensitive to the value of the 10th order paramgtgp,,, SO
+H® and Hp+HO+H@+H® | It is seen that for the that the average/rms/maximum errors are reduced from
three of them the convergence is much better than for th@0.8/36.7/395 to 6.0/10.7/44.5 Chas .50, is increased
Dunham expansion: at 7th order of Gustavson’s procedurdfom its original value ¢5.68 10°°) to —4.20 10°° cm™*
the average absolute error is about 21érand the maxi- (+26%). These eigenvalues are also quite sensitive to the 8th
mum absolute error less than 180 tmAccuracy seems to order parametey,,»,, while being much less sensitive to the
diverge at 8th and 9th order, with an average absolute erroralues of all the other parameters. The conclusion one arrives
of about 36 cm?, but it improves again somewhat unexpect-at is that the badly converged levels are associated with al-
edly at 10th order, with an average absolute error less thamost pure bending motions and that the additional resonance
11 cml. A closer examination reveals that a majority of one is looking for must principally result in an increase of
levels is calculated with a significantly smaller error at 10ththe values of they,,os, Vo200, -+ parameters. It is to be
order, but that the largest errors are also much larger at 10thoted that the bending character of the lowest lying states in
order (about 600 cm?) than at 7th order, leading to close high energy polyads was not obvioaspriori and is a result
rms errors of about 36 cnt. Moreover, the Hamiltonian of anharmonicities, since the negative offset—2w,
with two angles remains very close to the Hamiltonian with~ —44 cm * shows that the levels with prominent bending
a single angle up to 10th order, whereas its divergence igharacter are the highest ones in low energy polyads.
slower at higher orders. Also, the differences between the The lowest order coupling with the strongest effect on
two and three(or highe) angle Hamiltonians remain very Y2, (and so ofone can think of is obtained upon inclusion
small up to 14th order. of the a%ml'[kafk(a;)mk monomials (and their conjugate
complexegin the null spaces. If the Fermi coupling is meant
to be a “w;~2w," resonance, then this additional coupling
D. Two-resonance Hamiltonians might be described as a ‘@,~0" resonance, despite the

Now, what if average absolute errors of 21 or 11¢m rather large value @,~1301cm™ More precisely, the
are still too large? Owing to the reduction of the averagecl@ssical Hamiltonian is obtained in the form
error by a factor of 10 or 20 upon addition of a single reso-
nance in the definition of the null spaces, it is most probable H=Hp+ >, H{™+ > HM,
that the error can be further reduced upon inclusion of other m=1 m=1 (3.19
terms. However, this second step is far from being as obvi-
ous as the first one. Indeed the small offset—2w,~ H=217 coschpz)(Z )+ kP
—44 cm !, together with the low 3rd order of Fermi reso- ' =
nance, made the choice of the first resonance unambiguouand the additional nonzero matrix elements are
The choice of the second resonance is not so clear. One c?n (m)
first think of a second small divisor problem, and look at 01,02,03/Hc" [v1,02+ 2Movg)
small offsets appearing at low order, typically less than 7th
order, in order to cancel the divergence observed at 8th order =(— 1)m( E Ki(m)ni + 2 Ki(jm)ninj t-e-
for the Fermi resonance Hamiltonians. There are only five of ' =)

them below 450 cm': 4w;— 2w,— w3~246 (7th ordey, m
3w, — w3~290 (4th orde}, 2w;+2w,— w3~334 (5th or- <1 (vp+2Kk),
den, w;+4w,—w3~379 (6th ordey, and 6w,— w, k=1 (3.17)

~423 cm'! (7th ordej. Among them, the most probable is

by far the 1:3 close resonance between the C—P stretch amd=v,+ > N,=v,+m+1 nz=vs+ 7
the C—H stretch, which is a 4th order coupling. The calcula-

tions are nevertheless not reported here, because it was fouAdcording to Egs.(3.16 and (3.17), Hg“) couples levels

that this term changes the computed eigenvalues only vernyith the same numbers of quanta in the C—H stretch, but
little. For example, the average/rms/maximum errors at 8tlwith different valuesi and i+=2m of the polyad number.
order and a single angle for the Fermi resonance ar€onsequentlyy, is the last good quantum number. From the
36.0/76.5/572 cm': this is even very slightly worse than in classical point of view, the system is no longer integrable,
the third column of Table I, where the 1:3 resonance betweebut chaos cannot be generalized, dud ¢p which remains

the stretching motions is not taken into account. The othethe last action integral. The fact that the polyad numbier
small offsets listed above were not checked, because a difto longer a good quantum number causes the assignment of
ferent approach proved to be much more efficient. the levels of the two-resonance Hamiltonians in E§s16

This approach relies on the observation that, for the Fermand(3.17) to become somewhat less straightforward than for
resonance Hamiltonian with a single angle, the largest errorthe Fermi resonance Hamiltonian in the previous subsection.
observed at 10th order of the theory are all associated witRolyads are, however, not heavily mixed, and the following
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TABLE II. Accuracy of the levels of two resonance Hamiltonians, obtained at perturbation orders increasing
from 6 to 14. In each column, the sequence: average absolute/root mean square/maximuin emor)
between the exact quantum levels of HE®ef. 29 relative to the ground state and those of the transformed
Hamiltonians is given. The results for the two-resonance Hamiltonians are presented in the columngl1abeled
and(2), whereas the results for the Fermi resonance Hamiltonians with one and two angles—but with the same
parameters as, respectively, in colun{i$ and (2)—are presented in the last two columns. The 361 levels
belonging to the complete polyads up to 22 000 érabove the bottom of the well are included in the

calculations.
Ho+H®+

H— Hp+H®+HY H®+HE Hp+H® Hp+H®+HP

Order] D 2 Parameters ofl) Parameters of2)
6 30.4/60.9/608 30.9/61.0/601 35.1/63.4/611 35.4/63.5/605
7 28.7/55.5/524 29.4/56.2/532 33.5/58.2/529 34.1/58.9/537
8 11.0/33.1/397 11.5/32.9/388 15.5/33.8/372 15.9/33.6/364
9 9.0/19.8/195 8.1/21.8/282 14.5/23.0/179 13.8/24.6/263
10 5.9/11.0/46.0 4.4/8.0/48.6 9.5/13.8/54.6 8.3/11.0/47.8
11 8.1/20.3/191 4.4/9.3/76.5 10.8/22.5/207 8.1/11.1/84.8
12 9.3/26.2/304 2.6/11.5/197 11.3/25.8/215 6.9/12.5/133
13 29.8/129/1631 2.2/10.8/188 30.6/109/1415 6.6/11.4/120
14 29.4/108/1533 4.0/15.7/205 30.8/112/1481 7.7/16.8/203

automatic assignment procedure was found to work veryor the better Fermi resonance Hamiltonian. Interestingly, the
well: For each normalized eigenvectgr™'3s) associated error distribution is highly singular: all the levels, except for
with the nth level withv; quanta in the C—H stretch three of them, are calculated with an error smaller than
13 cm L. The three exceptions are the first and third levels of
WALLEIES E cf}”'"3)|vl,v2,v3>, (3.18  the polyad ¢3,i)=(0,30), with respective errors of 188 and
viwp U102 28.4 cm'l, and the first level of the polyady§,i)=(0,28),
a vector P("?3) of the contribution of each polyad to the With an error of 62.1 cm?, that is again the lowest levels of
level is computed, according to the highest polyads. The fact that the better results obtained
for the two-resonance Hamiltonians compared to the Fermi
p(nvs) E 2 (3.19 resonance Hamiltonians are most of all due to the correction
: 20qFop=i 102 of the parameters of the Fermi resonance Hamiltonian rather
than to the interpolyad coupling by itself, can be further
Sproved by calculating the levels of HCP using the Fermi
resonance Hamiltonians in Eg8.14 and (3.15, but the
parametersw, X, y, andk computed for the two-resonance
Hamiltonians in Egs(3.16 and(3.17). The result is given in
the last two columns of Table II. Despite the slight deterio-
ration of the average absolute error for the Fermi resonance
Hamiltonian with two angles, the discussion above remains
mostly unchanged, whether the off-diagonal coupling in Eq.

Afterward, polyads are filled one at a time, starting from the
lowest one {=0), by arranging the so-far unassigned level
in descending order of thith component of theiP("v?)
vectors and in retaining for the polyadthe first Int{/2
+1) levels in the lisfInt(x) is just the integral part of and
Int(i/2+ 1) is the number of levels in polyad.

Error calculations are reported in Table Il for the two-
resczr;?nce(l)HamiltonianﬁD+ HO+HE and Hp+HE
+HE’+HE’ . The 8th order divergence is canceled for both . ) ? .
of thFem, a(r:1d perturbation calculat?ons converge at least up t£)3'17) S taken into ac_count or nc_Jt. Finally, It. should be
10th order. At 10th order, the average/rms/maximum error oted,_ In agreement W'_th the previous subsection, .Hfé{
are 5.9/11.0/46.0 for the former, and 4.4/8.0/48.6¢m and higher order Fermi couplings have almost no influence
for the latter, very close to the optimal values on the computed eigenstates.

(6.0/10.7/44.5 cmt) obtained following the correction “by
hand” of y,,,,,. However, y,,,,, is calculated at about
—8.610°%cm™! for the two-resonance Hamiltonians, With an average absolute error as good as 2.2'camd
against—4.20 10°° cm™! for the value corrected by hand. an average relative error of about 0.014% for 361 levels up
This shows that, as was to be expected, the change in parato-22 000 cm* above the bottom of the well, and with up to
eters due to the consideration of thew2=0" resonance is 30 quanta in the bending degree of freedom, the transformed
more complex than the sole increasing of {hg,,, param-  Hamiltonians presented in the previous section are consid-
eter. The Hamiltonian with a single angle for the Fermi reso-ered to be good approximations of the exaetV Hamil-
nance then diverges again rather sharply starting from th&nian. Yet, they are much easier to handle than the exact
11th order: at 13th order the average/rms/maximum errorsne, thanks to the remaining good quantum numbers and
are again as high as 29.8/129/1631¢min contrast, the action integrals. Some advantages of the transformed reso-
Hamiltonian with two angles for the Fermi resonance goesiance Hamiltonians are easily grabbed. For example, from
on converging up to 13th order, with an average absolut¢he technical point of view, the calculation of the eigenstates
error of about 2.2 cmt, that is about five times better than requires the diagonalization of matrices less than 190 times

IV. DISCUSSION
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190, which is achieved without any particular programmingTABLE 1ll. Checking for the stability of the computed levels of
care. In contrast, the diagonalization of the exact HamilHo*HE+HP+HE, at perturbation orders increasing from 11 to 4.

. . L is the number of additional polyads included in the basis set. In each col-
tonian involves basis sizes as large as a few thousands ay n, the following sequence is given: average absolute/root mean square/
cannot be performed without the help of such sophisticate¢haximum erroriin cm™2) between the exact quantum levels of HGRef.
tools as highly contracted/truncated basis $&#mother ob- 25 relative to the ground state and those of the two-resonance Hamiltonian.
vious advantage of the transformed Hamiltonians consists offe 361 levels belonging to the complete polyads up to 22 000 @bove

. . . . the bottom of the well are included in the calculations.
the immediate assignment of the levels, thanks to the remain-
ing good quantum number; and the moderate mixing of the  orger 11 12 13 14
polyads with different values df This again contrasts with n
the qssignm_ent of the Igve!s of the exac.t quiltonian, which 441941770  26/113/189  2.2/10.4/180 _ 3.6/12.2/150
requires a visual examination of 2D projections and 3D rep- g 44/9.37765 2.6/11.5/197  2.2/10.8/188  4.0/15.7/205
resentations of the wave functiofisFurther advantages of 8 4.3/9.3/76.0  2.7/12.8/222  2.3/12.1/214  4.5/24.0/402
resonance Hamiltonians, connected with the calculation of 10 ~ 4.3/9.3/73.1  2.7/11.3/189  2.3/10.5/180  4.1/15.8/174
classical quantities, will become clearer in a forthcoming ar- 12~ 4.3/9.4/76.7  2.6/11.8/202  2.3/11.1/194  4.4/23.1/383
ticle dedicated to the description of the classical dynamics of
HCP at high vibrational energi¥sby means of the reso-
nance Hamiltonians derived in the present article. In the reresults are seen to remain stable with respect to the basis size
mainder of this paper, the limitations of this approach will only up to 9th order, whereas 10th order calculations already
instead be presented. fluctuate too much. What physically happens with the results

that are not satisfactory, is that the levels of additional higher

polyads lie in the same energy range as those of lower poly-
A. Validity of the model ads and interact all the more strongly with them as the order
of the perturbation is increased. For sufficiently strong cou-
plings, the addition of a single high energy polyad will there-

Fermi resonance Hamiltonians in Eq@.14 and (3.15. fore displace in series the coupled levels of lower energy

Therefore, the calculation of eigenstates is performed for Ongolyads. Stated in other words, the model of a resonance

polyad (v3.i) at a time, and involves the diagonalization of a ype Hamiltonian built on a harmonic basis is no longer valid
finite squgé{re matrix 01: size Init2-+1). In contrastj is no at sufficiently high perturbation orders and/or at sufficiently

longer a good quantum number for the two-resonanc igh vibrational energies, the limit of validity depending on

Hamiltonians in Eqs(3.16 and (3.17), because thed{™ he exact expression of the Hamiltonian.
terms couple levels with different values iofTherefore, the
matrix to be diagonalized & priori infinite for each value of
v3. What is hoped, is that the computed eigenvalues depend The agreement between the exact and transformed
only very slightly on the size of the basis. To check thisHamiltonians presented above is felt to be sufficient in most
point, the following calculations were performed: Let us callPractical cases. Let us recall that average/rms/maximum er-
i max(v3) the highest polyad one wants to compute for eacHors as small as 9.5/13.8/54.6 ch(4th column of Table )
value ofv (for example; ., =30 forus=0, see Sec. lIl B are obtained for the very simple 10th orde + H " Hamil-

The Hamiltonian matrices which led to the results in Table Iltonian using the parameters be+H(Fl)+ HY | and that
were built, for each value afy, in a basis which includes all these errors are lowered to 2.2/10.8/188 ¢ii8rd column of

the vectors|v,,v,,03), Such thatv, is even andi=2y,  Table 1) for the slightly more complexp+H® +HP
+05,<inat6 instead of just ., (this basis contains 190 +H(Cl) Hamiltonian at 13th order. Several attempts were
vectors. The validity of these calculations is now checked made to further diminish this error, but the task proved to be
by varying the numben of polyads, which are added tg,,  difficult for various reasons. As mentioned in Sec. Il D, the
(n=6 for the results in Table Il The results for the two- three badly converged levels of the most precise two-
resonance HamiltoniaHp, +H® +H® +HEY) are presented  resonance Hamiltoniakp+H& +HE) +HE) are the low-

in Table Il in the form of error calculations, for perturbation est levels of the highest polyads, that is the levels with the
orders increasing from 11 to 14 amdincreasing from 4 to most pronounced bending character. Therefore, the off-
12. It is seen that the size of the basis has virtually no infludiagonal coupling which has to be added to further lower the
ence on the average absolute error and a limited effect on the

maximum error(and hence on the rms erjarp to the 13th  TABLE Iv. Same as Table Ill, but for the Hamiltoniay+H Y+ HE
order of perturbation. In contrast, the average absolute errof H®+H® and perturbation orders increasing from 8 to 11.

varies from 3.6 to 4.5 cmt and the maximum error from
150 to 402 cmi* at 14th order of perturbation theory. It was ~ ©rder 8 ° 10 1
verified, using a different, more sophisticated method for as- n

signing quantum numbers to each energy level, that this con- 4 ~ 9.6/22.8/207  5.8/11.8/130  3.9/9.2/133 2.9/7.0/104
clusion does not depend on the assignment procedure. The®  9.6/22.7/205  57/11.8/128  4.6/16.2/219  3.1/10.5/183
same fesuls are presented n Table IV for the wo-resonance,, 5522920 ST 40liohe  suizane
HamiltonianHp + HE+ HEP) + HE +HE and for perturba- 15 o524/104 571147121 4000111 3.0/6.8/81.9
tion orders increasing from 8 to 11. For this Hamiltonian, the

The numberv; of quanta in the C—H stretch and the
polyad numberi remain good quantum numbers for the

B. Difficulties in further lowering the error
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error, certainly corrects the anharmonic parameters witHABLE V. The influence of the explicit form of quantum matrix elements.
prevalent bending character. The most probable coupling@ each column, _the followlng s_elquence is given: average absolute/root
are then built on the svmmetry allowed rTlonomialsmean square/maximum errén cm ) between the exact quantum levels of

4 2.2 1 symmetry HCP (Ref. 29 relative to the ground state and thosetf+HM +HE)
a2,4183,8383 ,A333 find the!r conjugate complexes, and aré . 4 optained at perturbation orders increasing from 6 to 13. The explicit
associated, respectively, with the angles,4p,+2¢,, and  quantum matrix element corresponding to each classical monomial varies
37 2¢,. The first possibility is justH®), which was

from column 2 to 4(see Sec. IV ¢ The third column of this table is
shown in the previous subsection to lead to a prematureli entical to the third column of Table Il and has been copied for conve-

ience. The 361 levels belonging to the complete polyads up to 22 00b cm

invalid model at 10th order of perturbation theory. The ad-apove the bottom of the well are included in the calculations.

dition of the next anglep;+2¢,, while not suffering from
the same drawback, just does not increase significantly the Order

“left”

“sym”

“right”

accuracy of the computed levels. A different problem was 6
encountered while trying to include the last two angles 7
F¥2¢,. Namely, the coupling between the vectors 8
[v1,v5,03) and vy,v,+2v3F1) of the harmonics basis 9
happens to be so large that neithey nor i remain, even 1
approximately, good quantum numbers. The first conse- 1,
guence is that the simple assignment procedure of Sec. llID 13

31.4/62.1/608
30.1/58.0/544
13.4/34.6/387
8.5/21.5/273
4.6/8.6/62.6
5.4/11.5/100
3.3/8.6/128
3.2/7.8/116

30.9/61.0/601
29.4/56.2/532
11.5/32.9/388
8.1/21.8/282
4.4/8.0/48.6
4.4/9.3/76.5
2.6/11.5/197
2.2/10.8/188

30.5/60.1/594
29.2/54.8/520
10.5/31.4/388
8.7/22.4/289
5.5/9.0/46.1
5.0/8.3/48.8
4.5/18.6/323
4.4/18.1/317

is by far insufficient. Most certainly, this is not a serious
drawback, and one could think of a slightly more complex
scheme to assign the levels. But the game is not worth the ~First of aII,I the quantum operators associated with the
candle, for the simple reason that the resulting resonanc@onomialsila,*(ay)'« of the Dunham expansion are taken

Hamiltonian has lost most of its other advantages comparet be
to the exactT+V expression anyway: from the quantum 1
point of view, there remain no good quantum numbers at all 11 PYA (aray +ajfay) (aza; +ag ay)

and the Hamiltonian matrices are no longer of small size. In k2% - ' (4.
the same way, there remains no classical constant of the

motion, and the study of the dynamics at high vibrational

energies is then no longer simpler for the resonance Hamil- ) ) . )
tonian than for the exact one. The polynomial expansions k™ and «(™, which appear

in HM™ and H™ and which we call generically, are
handled along the same lines as in E41). Let us further
call ofd the purely off-diagonal couplings, where the raising

' d f lassical. ol operator acts on mode 2, that is explicithfd=al'a; 2" for
Gustavson’s procedure transforms a classical, po YMOH(™ and ofd—a; 2" for H{™ . Three possible choices of

i i ian i =(pn(2 g2 i i -
mial Hamiltonian in ,q)=(p*",q") coordinates into an- ., onondence rules fer™ andH{™ | which lead to Her-

other classical, polynomial Hamiltonian irp((s),q(.s)) COOI-  itian matrices with simple elements, are
dinates. When expressed in terms of the action-angle-like

coordinates of Eq(2.9), the transformed Hamiltonians are left=doofd+ ofd* ~d,

those given in Eq(3.11) for the Dunham expansion, in Eq. o

(3.19 gfor the Fgrmi resonance Hamiltoniﬁ)sm, and in gq. right=d-ofd" + ofckd, 4.2
(3.16 if the “2 w,=0" resonance is also taken into account.
Calculation of energy levels, and therefore the computation
of the quantum matrix elements in E¢8.12), (3.15, and  Whereofd* denotes the operator conjugatedfd (it is re-
(3.17), further requires that explicit quantization rules aremembered thatl is self conjugate The later symmetrized
assumed, for the simple reason that quanpymandq, op-  arrangement “sym” was actually assumed in EGs15 and
erators, as well as creation and annihilation operators, do né8-17). For the two other choices, the sole valuesgfand
commute. This problem is not simple and will not be treated2 need to be changed in these equations. For the “left”
here. For a discussion of the quantization of Birkhoff—arrangement, one obtains

Gustavson’s normal forms, the reader is referred to the works 1 .
of Robnik®? Ali,3® Eckhardt* and Fried and Ezr& What fi=v;=m+3z np=vpt2m+l in Eq. (319, 4.3
we want to stress instead, is that the question of the expliciit]1 in Eq. (3.17),
correspondence, which is assumed between a classical poly-
nome and its quantum counterpart, might anyway make thend for the “right” arrangement the result is
definition of more accurate resonance Hamiltonians at best
ambiguous. Since Weyl's correspondence rules, which are
sometimes claimed to be the “best” on&sesult in an ex- 4.9
plosion of the number of expressions to haridi¢his idea  The errors between the exact levels of Betkal?® and the

will be illustrated using three easier correspondence ruledevels of the two-resonance Hamiltoniathy +H{ +H®
which are some kinds of symmetrized versions of Robnik’s+ HE;” computed according to the three quantization proce-
rules?? dures mentioned above are presented in Table V. While the

I, times

C. The influence of the quantum matrix elements

sym= 3 (left+right),

=v;+ 3 Ny=v,+2m+1

ni=v,+3 n,=v,+1 in Egs.(3.19 and (3.17.
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general trends of the convergence properties are identical faween new and old coordinates might be more adapted to the
the three of them for increasing values of the order of percurvature of the PES. For example, we have shown that lev-
turbation, it is seen that the errors vary largely at the highestls of HCP with up to 30 quanta in the bending degree of
orders. For example, at 13th order, the average/rmdteedom, corresponding to something like a 240° amplitude
maximum errors are, respectively, 3.2/7.8/116 for the “left” of motion, can be reproduced with an error lower than
arrangement and 4.4/18.1/317 chfor the “right” arrange- 55 cmi ! using Gustavson’s procedure, whereas no such re-
ment, compared to 2.2/10.8/188 Thfor the symmetrized sult has ever been published for CVPT—which again does
sum. It is therefore most likely that any further refinement ofnot mean that CVPT is unable to meet this standard.

the resonance Hamiltonian, which will be obtained at orders  Concerning the gquantization of the classical normal
probably greater than, say, 11 to 13, will depend on the preform, the problem is just the same for LOP¥&nd Gustav-
cise quantization rules which are assumed. One might theson’s procedurd?=34In contrast, the Van Vleck transforma-
wonder about the physical interest in pursuing calculationsions, be they performed in the matrix representation or in

further. the operator representatiéh?®®">¢orrectly treat the order-

ing of the operators, so that one does not have to invoke
V. CONNECTIONS TO OTHER CANONICAL Weyl's correspondence rules. The operator representation
PERTURBATION THEORIES has the prominent advantage compared to the matrix repre-

This section contains a Comparison with the results obsentation, that it leads to an analytical expreSSion for the
tained using two other canonical perturbation theoriestransformed Hamiltonian, so that its classical and semiclas-
namely the Van Vleck perturbation theof@VPT) and the ~Sical properties can be izfl\gggggafédmt like upon use of
classical Lie operator based perturbation theofig3PT's). ~ Gustavson’s procedur8-2*23293}t s to be noted that a key

Actually, CVPT and LOPT are closely related, and classicafeature for applying CVPT to the study of real
LOPT's35%-4 specially  Dragt—Finn  perturbation Molecule$®**~%is that all the operators be reexpressed in

theory®>3%~*1mostly involve replacing quantum commuta- the same form, in order to both reduce the space required to
tors by classical Poisson brackets in quantum CVP1®  store the transformed Hamiltonian and to simplify the evalu-
Also, a new method® which can be viewed as a specific ation of all the commutators. The convention, which is usu-
case of a more general w32 and is called mixed diago- ally assumed? is that the lowering operators act first and the
nalization, has recently been introduced, in which an effecraising operators act second... which happens to be the quan-
tive Hamiltonian operator acting on a reduced dimensionafization rule proposed by Eckhaffito quantize the classical
space is constructed using the same similarity transformaBGPT normal forms.
tions of CVPT. Detailed descriptions of these methods will ~ Let us now consider the question of the shape of the
not be presented here, the interested reader being referredtt@nsformed Hamiltonian, that is of the resonances,
the articles listed above, but it is noted that strong similaritiesvhich are explicitly taken into account. What is clear is
also exist between LOPT or CVPT and BGPT: indeed, théhat physicists who use CVPT have long recognized the
null spacel’® in BGPT plays the same role as the trans-importance of taking some resonances explicitly into ac-
formed Hamiltoniaan”)(nzs—Z) in CVPT, and the re- count, even though they are not exact. However, except
mainderR(® as the operato®™ associated with the unitary in one casé? the strategy adopted for the definition of the
transformation expk"TS™,)) (the notations here are those of transformed Hamiltonian is different from that presented in
Siberf®49), this article, because the underlying purpose is also different.
The point that is common to all these methods and conindeed, our main interest is in the classical, dynamical prop-
trasts with those based on generating functions like Gustawrties of the molecular system. Therefore, the number of
son’s procedure, is that the coordinate transformations areesonances that are taken into account must be as small as
linear, so that the inversion of equations to express “new’possible, for the reasons outlined in Sec. IV B. In contrast,
coordinates in terms of “old” ones is trivial. This is often the main goal of the people who use CVPT is to spare com-
presented as a decisive advantage of LOPT and CVPT conputer time. This is achieved by requiring that the transformed
pared to BGPT. It should, however, be noted that GustavHamiltonian have one or several good quantum numbers left.
son’s procedure leads directly to an expression of the HamilFor example, the last good quantum number is taken to be
tonian in the new coordinates, so that inversion is nov,+v,+vg+uvs+2vs+vg for H,CO 28 2y, +p,
required for the computation of eigenstates. It is only when+ 2v; for H,O and its deuterated derivativésand SQ,%3
more precise results are wanted, like, for example, the calciRv,+v,+4v; for CO,% 2v,+v,+3vz+v, for AR,
lation of infrared transition intensities, that this inversionand % ;+v,+4v3+v, for SiF;.%® What CVPT does is to
must be performed, in order to compute the dipole operatotransform the initial coordinates to new coordinates, such
in the new coordinates. This is probably not an insuperabl¢hat, except for neglected higher order terms, the linear com-
task from the computational point of view, but it is true that binations above remain good quantum numbers for the
the proof remains to be given that this can be done foHamiltonian expressed in the new coordinates. That is, the
Gustavson’s procedure, whereas such results have alreadyamiltonian matrix in the new coordinates is block diagonal
been obtained using CVPP->®On the other hand, one can and each block can be diagonalized separately, thereby
argue that linear transformations are perhaps not the bekrgely reducing the computer time. However, the exact con-
suited ones for studying PES’s far above the bottom of theéent of the blocks has a much more limited influence on the
well, and that allowing for a polynomial dependence be-speed of the numerical calculations, so that actuallythe
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