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■ Abstract In this overview we discuss the vibrational spectrum of phosphaethyne,
HCP, in its electronic ground state, as revealed by complementary experimental and
theoretical examinations. The main focus is the evolution of specific spectral pat-
terns from the bottom of the potential well up to excitation energies of approximately
25,000 cm−1, where large-amplitude, isomerization-type motion from H–CP to CP–H
is prominent. Distinct structural and dynamical changes, caused by an abrupt transfor-
mation from essentially HC bonding to mainly PH bonding, set in around 13,000 cm−1.
They reflect saddle-node bifurcations in the classical phase space—a phenomenon well
known in the nonlinear dynamics literature—and result in characteristic patterns in the
spectrum and the quantum-number dependence of the vibrational fine-structure con-
stants. Two polar opposites are employed to elucidate the spectral patterns: the exact
solution of the Schr¨odinger equation, using an accurate potential energy surface and
an effective or resonance Hamiltonian (expressed in a harmonic oscillator basis set
and block diagonalized into polyads), which is defined by parameters adjusted to fit
either the measured or the calculated vibrational energies. The combination of both
approaches—together with classical mechanics and semiclassical analyses—provides
a detailed spectroscopic picture of the breaking of one bond and the formation of a
new one.
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INTRODUCTION

One major objective of molecular spectroscopy is an understanding of the forces
that couple the various internal degrees of freedom in a polyatomic molecule (1, 2)
and thereby control the flow of energy from one mode to another (intramolecu-
lar vibrational energy redistribution) (3–8). The strength of these forces is indi-
rectly manifested through the vibrational-rotational levels, i.e. the eigenenergies
of the underlying Hamiltonian. The eigenenergies can be measured in a spectro-
scopic experiment, and they can be calculated from first principles by solving the
Schrödinger equation. The understanding we seek is based on the recognition of
specific diagnostic patterns in the spectrum, their interpretation in terms of partic-
ular features of the Hamiltonian, and the sometimes qualitative changes of these
patterns as the total energy increases. This ambition to understand is distinct from
the traditional spectroscopic goal of compiling a more-or-less complete list of
all energy levels and of parameterizing these levels and relative intensities to the
accuracy of spectroscopic experiments.

In what follows,Q1, . . . , QN designate a particular set of internal coordinates,
with N being the number of degrees of freedom. The interactions between the
vibrational modes normally depend markedly on the energy,E. Near the bottom
of the potential well, the potential energy surface (PES),V(Q1, . . . , QN) is well
approximated by a sum of one-dimensional potentials,Ṽi (Qi ), plus some small
coupling terms of the formQn

i Qm
j , and the spectrum of energy levels closely re-

sembles the spectrum of a set of uncoupled harmonic oscillators. Because the
interoscillator coupling is weak in this low-energy regime and because the den-
sity of states is small, the classical as well as quantum dynamics is regular, or
predictable. As a result, each state can be assigned, without ambiguity, to a set
of quantum numbers(v1, . . . , vN). This assignment can be based on either regu-
lar patterns of energy levels (experimentally observable) or nodal patterns in the
eigenfunctions (experimentally unobservable).

As the energy increases, the intermode coupling gradually becomes stronger,
or in other words, the molecule samples regions of the coordinate space where
anharmonic effects become increasingly important. The consequence is that the
complexity of the energy spectrum increases, and at the same time, fewer and fewer
eigenstates can be assigned in a meaningful manner. Eventually, the intermode
coupling is so strong that the dynamics becomes irregular and almost all states lose
their distinct identity, i.e. the nodal structures of the wave functions are so irregular
that a meaningful counting of nodes, and therefore assignment (or description as a
specific mixture of states with simple nodal structures), is impossible (9, 10). For
such a case, it has been suggested that the only way to extract information from
a spectrum is by statistical analysis of the distribution of nearest-neighbor energy
spacings and/or relative intensities (11–14).

The transition from the regular to the irregular regime in polyatomic molecules is
gradual rather than abrupt; unassignable wave functions appear already at relatively
low energies, whereas perfectly regular-looking wave functions still exist in an
energy region where most other states are already unassignable (15). It is this



P1: FLM/FGM P2: FDR/FGM QC: FDR

August 10, 1999 17:4 Annual Reviews AR091-16

?
HCP↔ CPH ISOMERIZATION 445

intermediate energy regime that is most difficult to describe—but therefore most
compelling for experimental and theoretical studies (2).

In addition to the gradual and incomplete evolution from regularity to irregu-
larity, distinctive new patterns might appear when the shape of the PES changes
significantly in a certain energy region. An example is the isomerization barrier
(saddle point) between two stable conformers, as in HCN/CNH (16, 17) or acety-
lene/vinylidene (18). It is reasonable to surmise that the energy-level pattern must
change when the energy is sufficiently high so that the wave functions simultane-
ously explore the potential wells of both isomers. However, as the example of HCP
shows, a true potential barrier is not necessarily required for new effects to arise
suddenly; an abrupt change of the slope of the PES may be sufficient. The precise
nature of these structural changes in the energy-level spectrum and how they reflect
the changes in the bond structure of the molecule is one focus of this article.

The two cornerstones of molecular spectroscopy are the experimental spectrum
and the solution of the Schr¨odinger equation using a global PES (Figure 1). The
experimentalist faces two inherent problems. The first concerns the completeness
of the measured spectrum. Regardless of the method used [overtone pumping,
stimulated emission pumping, etc (2, 19, 20)], because of unfavorable vibrational
intensity factors, relatively few vibrational states are observed compared with the
totality of all states; normally, one is able to follow only certain regular progres-
sions, with states belonging to other progressions not observable at all (and with
those not belonging to regular progressions often not being assignable). The sec-
ond complication of experimental spectroscopy comes from the fact that the spec-
trum of energy levels does not directly reveal the underlying quantum mechanical

Figure 1 Schematic illustration of how information about the potential energy surface
(PES) is obtained from experiment and from theory.
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wave functions. At best, the spectrum reflects wave functions only indirectly,
through band intensities and rotational and vibrational fine-structure constants.
This tremendously complicates the rigorous assigning of the levels, especially at
higher energies, where unanticipated changes are likely to occur without warning.

In order to extract information about the PES, the measured spectrum is usu-
ally represented by a power series expansion in terms of the quantum numbersvi

(Figure 1). This provides force constants, anharmonic constants, etc. If the spec-
trum is complicated by an anharmonic resonance effect (accidental or systematic
near-degeneracies), the Dunham expansion alone is inappropriate and an effective
or resonance model Hamiltonian must be used (21). Such models explicitly take
into account approximate constants of motion [such as polyad quantum numbers
(22)] and assume particular forms (selection rules and vibrational quantum num-
ber scaling) for the elements of the Hamiltonian matrix in a suitable basis. The
parameters of the model are then determined by fitting experimental data. Effec-
tive Hamiltonian models are known to work very well for a variety of systems.
However, a question remains: To what extent are such models applicable when
the spectrum significantly changes its behavior, for example, in the vicinity of an
isomerization barrier or near a “kink” in the PES, as for HCP?

In the quantum mechanical calculation of the vibrational spectrum, one starts
from the PES, solves the Schr¨odinger equation in a numerically exact way, and
compares the calculated energies with the experimental ones (Figure 1). The ad-
vantages are the following: All bound-state energies up to the dissociation thresh-
old are obtained, and the full quantum mechanical calculations, in contrast to
experiment, also provide the wave functions. This second point is important be-
cause without the possibility of examining the nodal structure of the wave func-
tions, assignments become increasingly unreliable at higher energies (23, 24).
However, the PES, irrespective of whether it is calculated from first principles
or fitted to experimental data, is never the real potential; the calculated and mea-
sured energies do not exactly match and the deviations gradually increase with
increasing energy. This makes the comparison with the measured spectrum com-
plicated, especially if one examines an energy region where the density of states is
large, where unique correspondences between observed and calculated states are
a problem, where only a small fraction of the states are seen in the experiment,
and where, in addition, some unexpected effects might occur.

Although the exact Hamiltonian method and (approximate) spectroscopic
Hamiltonian models start from completely different points, they complement one
another. The exact calculations can be used to test the validity and reveal the na-
ture of the eigenstates of spectroscopic Hamiltonians, and vice versa, the model
calculations can help to reveal the structure of the exact spectrum, because they are
designed in such a way that certain structural elements (e.g. polyads) are explicitly
built in. The interplay between the two approaches is another focus of this overview.

Solving the Schr¨odinger equation yields the exact energies and wave func-
tions—for the particular PES used. However, this enormous body of numerical
information offers no guarantee that we will be able to understand the inter-
nal vibrational dynamics. In many cases, the analysis of the structure of the
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classical phase space has provided extremely valuable insights (25, 26). For ex-
ample, the backbone of the quantum mechanical wave functions (perpendicular
to the pattern of nodal surfaces) often parallels special trajectories, so-called pe-
riodic orbits (27). Moreover, the combination of solely classical ingredients with
the quantum mechanical superposition principle—called semiclassical mechanics
(9, 28)—provides even more detailed insights into the molecular dynamics.

Thus, in order to illuminate the spectrum of a molecule from all perspectives, one
needs a highly accurate PES, exact quantum mechanical and effective Hamiltonian
calculations, classical and semiclassical calculations, and as much experimental
data (both energies and relative intensities) as possible. The experimental data are
indispensable to the constructing of a theoretical framework on a solid foundation.
We know of no triatomic molecule, besides perhaps water (29, 30), for which all
these different facets are available—except for HCP. In this article, we highlight
the joint experimental and theoretical efforts made in the past 4 years to assign
and interpret the vibrational spectrum of this simple molecule, from very low
energies up to the energy range where new and unexpected effects occur. The
insight gained from this concerted effort will provide insights into the dynamics
of other molecules.

EXPERIMENT

The isomerization of a triatomic monohydride, HAB↔ ABH, is the simplest
example of a bond-breaking isomerization. It is a fundamental cornerstone of
molecular dynamics and is addressed in numerous experimental and theoretical
studies. One of the key questions—in general as well as in particular for our joint
experimental/theoretical investigation of HCP—is how isomerization is encoded
into the vibration-rotation spectrum of a HAB molecule, i.e. what is the signature
of isomerization on the energy level (and intensity) distribution?

The molecule that has been examined most for signatures of isomerization in
the vibrational spectrum is HCN (17, 31). Although there are several extensive
experimental studies of highly excited vibrational levels of HCN (32, 33), there is
no experimental observation of isomerization states, i.e. states that simultaneously
sample both the HCN and the CNH potential wells. As the excited electronic states
of HCN, from which highly excited vibrational states in the ground-state manifold
can be accessed (see below), lie in the vacuum ultraviolet wavelength region and
as most of these states rapidly predissociate, it is difficult to extend the existing
spectroscopic experiments to higher energies. The spectroscopic conditions are
more favorable for HCP, the third-row homologue of HCN, and as we show below,
the symptoms of isomerization indeed can be perceived.

The study of isomerization requires excitation of highly excited bending states,
i.e. states that contain large-amplitude motion of the hydrogen atom around the AB
entity. High-resolution direct absorption spectroscopic methods, such as Fourier-
transform infrared or cavity ring-down spectroscopy (34), are sensitive primarily to
H–X stretch overtone states. Dispersed fluorescence (DF) (2, 8, 35) and stimulated



P1: FLM/FGM P2: FDR/FGM QC: FDR

August 10, 1999 17:4 Annual Reviews AR091-16

?
448 ISHIKAWA ET AL

emission pumping (SEP) (2, 19, 20) are based on electronic transitions and there-
fore give access, through Franck-Condon transitions, to complementary classes of
states that involve high excitation in bending and AB stretching vibrations. They
are the methods of choice for studying highly excited vibrational states, especially
for high bending states.

In principle, DF and SEP spectra yield equivalent information. However, be-
cause of the different realizations (spontaneous versus stimulated emission), they
complement each other. SEP spectra are typically recorded at resolutions∼100
times higher than DF spectra, but the relative intensity information in a SEP spec-
trum is usually corrupted by experimental artifacts. The lower resolution of DF
spectra is not necessarily a disadvantage, because such spectra contain informa-
tion exclusively relevant to the early time dynamics of the perfectly specified and
initially localized state that is prepared by short-pulse excitation. DF spectra (un-
resolved features) reveal the most important anharmonic effects, which must be
understood first, whereas SEP spectra (eigenstates) sample all anharmonic effects.

Low-resolution DF spectra, originating from different vibrational states in the
electronicC̃ state (36), are depicted in Figure 2. All spectra show a pronounced
and long progression in what had been identified as theν2 mode, which, in the
absence of the theoretical analysis, was believed to reflect bending overtones (37).
The bands labeled asa–eseem not to be members of the even-v2 progression.
Furthermore, their rotational constants are much larger than those obtained from
the analysis of the vibrational levels in the lower-energy region, which indicates
that they represent a new family of vibrational states. Because DF spectra are
relatively easy to record, they are useful for getting an overview of the vibrational
spectrum and dynamics in the ground state.

In a SEP experiment, the output of a tunable dye laser is used to stimulate
emission to a particular vibration-rotation state in the electronic ground state.
This guarantees∼0.03 cm−1 (rotational) spectral resolution. However, only a
very narrow energy range (∼20 cm−1) can be sampled in a single scan, and in
addition, the relative intensities are much more difficult to measure accurately.
Figure 3 shows two SEP spectra recorded from the (0, 3, 0) vibrational level in
theC̃ state in the region of the (0, 18, 0) level (36). What was merely one broad
line in Figure 2 turns out to consist of transitions into eight different vibrational
levels. Actually, what we see here is the (almost) complete [[0, 18]] polyad (see
below); for reasons discussed below, the two lowest members of this polyad are
not observed because of unfavorable Franck-Condon factors.

Because HCP is linear in the ground electronic state,X̃, bent excited electronic
states are required in order to examine highly excited bending states by DF or SEP
spectroscopy. ThẽA andC̃ states have significantly bent equilibrium geometries
[130◦ and 113◦, respectively (38)]. Because the equilibrium values of the HC bond
coordinate in the lower and upper states are similar, only states without excitation
in the HC mode,ν1, are spectroscopically accessible, unless multiple resonance
or hot-band excitation schemes are used. That is why the spectra in Figures 2 and
3 are relatively sparse. Lehmann et al (37) were the first to study highly excited
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Figure 2 Dispersed fluorescence spectra of theC̃→ X̃ transition of HCP. The inter-
mediate levels used are indicated. (Horizontal bars) Vibrational bands that are inves-
tigated by stimulated emission pumping spectroscopy. (From Reference 36; reprinted
with the permission of the American Institute of Physics.)

vibrational levels in the ground state of HCP. They recorded and analyzed (high-
resolution) Ã − X̃ DF spectra and observed 94 vibrational levels, all of which
were assigned to pure overtones and combinations of theν2 and the CP stretchν3

modes. The highest overtone reported wasv2 = 27, corresponding to an energy
(above the zero-point level) of 16,912 cm−1. Despite the high excitation in the
bending mode,ν2, a surprisingly regular harmonic-like behavior was observed; no
features in the spectrum that might be attributed to isomerization were found.

The initial survey of Lehmann et al was later extended by Chen et al (39)
and Ishikawa et al (40), who primarily sampled the pure(0, v2, 0) overtones from
v2 = 26 through 42, thereby probing a much higher energy regime. They recorded
SEP spectra via thẽA − X̃ and C̃ − X̃ transitions. Later, Ishikawa et al (36)
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Figure 3 Stimulated emission pumping spectrum of HCP in the region of the [[0, 18]]
polyad. The nomenclature [0, 18, 0 ≤ i ≤ 9] indicates the HC stretch quantum number,
the polyad quantum number, and the position inside the polyad, respectively. Thelow-
intensity linesnext to themain linesrepresent a different rotational transition. (From
Reference 36; reprinted with the permission of the American Institute of Physics.)

extended the SEP measurements to the lower-energy regime and analyzed many
combination levels(0, v2, v3) of the [[0, 14]]–[[0, 34]] polyads.

The two crucial observations emerging from the SEP studies were a sudden on-
set of perturbations atv2 ≥ 32 and the onset of rapid changes of all of the vibrational
fine-structure constants in the vicinity ofv2 = 36. For example, the rotational con-
stant increases by about 8% fromv2 = 34 to 42. It was surmised that these drastic
changes are consequences of a qualitative change of the potential along the isomer-
ization path as HC bonding gradually changes into predominantly HP bonding,
resulting in a significant change of the H–CP stretching frequency. Thus, both the
onset of perturbations and the abrupt changes of the molecular vibration-rotation
fine-structure constants were suggested as diagnostic of the onset of isomerization.

However, the “story” encoded in the vibration-rotation spectrum is more com-
plicated. Large rotational constants are indeed a fingerprint of the motion along
the isomerization path—but in a different way than was originally proposed by
Ishikawa et al (40). Because of the incompleteness of the experimental spectra
and because of the fact that without examining the nodal structure of the quan-
tum mechanical wave functions unique assignments are almost impossible at high
energies.

POTENTIAL ENERGY SURFACE

An accurate global PES is the cornerstone for the quantum mechanical calculation
of vibrational energies. “Global” means here that the PES covers a large part of
the energetically accessible coordinate space rather than only the region around
the equilibrium geometry. For HCP, the surface must extend all the way from the



P1: FLM/FGM P2: FDR/FGM QC: FDR

August 10, 1999 17:4 Annual Reviews AR091-16

?
HCP↔ CPH ISOMERIZATION 451

linear HCP equilibrium structure to the CPH saddle point; in addition, the CP
and HC bond distances must be varied over large ranges. In previous studies we
employed a global ab initio potential (41, 42). However, although this earlier ver-
sion did describe some of the peculiar aspects of the vibrational dynamics of
HCP in a qualitatively correct manner, it was not sufficiently accurate to allow
direct comparisons between calculated and observed vibrational energy levels.
Two other, very accurate PESs had only been constructed in regions near the lin-
ear potential minimum and were thus not suitable for calculating the spectrum
at high excitation energies, where large-amplitude bending motion is important
(43–45).

To make direct contact with experiment, we constructed a completely new PES
that covers a wide range of nuclear geometries. About 1100 points on the PES have
been calculated at a high level of ab initio theory (multireference configuration
interaction with a large atomic basis set). The calculated points are subsequently
fitted to a complex analytical expression that was then used to compute the vibra-
tional energy levels (46). Fitting a global PES, which covers a wide range of coor-
dinates far from equilibrium and a wide range of energies, more than 25,000 cm−1

in the present case, with an accuracy of about 10–20 cm−1, is not an everyday
task—even if only three vibrational degrees of freedom are involved. A power
series expansion of the PES is certainly not appropriate; the global potential fit
includes, in some sense, all powers of coordinate displacements.

The transition frequencies for the three vibrational fundamentals, as obtained
from the fitted PES, are 3216.2 (3216.889) cm−1, 1332.3 (1334.980) cm−1, and
1262.5 (1278.278) cm−1 for states (1, 0, 0), (0, 2, 0), and (0, 0, 1), respectively
[the numbers in parentheses are from the high-resolution Fourier-transform in-
frared data of Jung et al (47)]. Although the values for the HC stretching mode
(ν1) and modeν2 agree well with their experimental counterparts, the frequency of
the CP stretching mode(ν3) is underestimated by 16 cm−1. A deviation as small
as 16 cm−1 for only one vibrational mode is quite good for an ab initio calculation.
However, if the molecule is excited by many vibrational quanta, the error quickly
accumulates to a value that prohibits making unique correspondences between
calculated and observed energy levels. Therefore, we applied a simple scaling cor-
rection to the CP coordinate, including only a single parameter. This parameter
was not adjusted to minimize the error for the fundamental, rather it was chosen
so that good overall agreement over a large energy region is obtained. The funda-
mental frequencies for the improved potential are 3216.6 cm−1, 1333.7 cm−1, and
1274.6 cm−1, in good agreement with the experimental values. An indication of
how well the quantum mechanical calculation reproduces the measured spectrum
up to high energies is given below.

Figure 4 shows a contour plot of the HCP PES for a fixed CP bond distance. (In
what follows, potential energies are measured with respect to the energy at the HCP
equilibrium geometry.) There is only one stable minimum, H–CP; the linear CP–
H configuration is a saddle point on the three-dimensional PES (see also 37, 42).
Therefore, it is, strictly speaking, not justified to allude to isomerization in HCP.
However, the large-amplitude bending motion, on which we focus in this article,
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Figure 4 Contour plot of the HCP ground-state potential energy surface. The energy
for the lowest contour is 0.236 eV and the spacing is 0.25 eV. Energies are relative
to E = 0 at the HCP minimum. The CP bond distance is fixed atr = 2.893 a0. cm,
center-of-mass of CP;R, r , andγ , the Jacobi coordinates described in the text.

can be viewed as a precursor of isomerization. The contour plot intriguingly
reflects the quite different “radii” of the carbon and phosphorous atoms, which
lead to the pronounced “waist” of the peanut-like structure. The corresponding
minimum-energy path from H–CP to CP–H, depicted in Figure 5, reveals a drastic
slope change exactly in this waist region between 120◦ . γ . 130◦. Although
V(γ ) is harmonic in the H–CP hemisphere, it becomes surprisingly anharmonic in
the CP–H hemisphere. The slight undulations between 50◦ and 90◦ are partly due
to the analytical fit (46). It is the narrow angular region of the waist, which was
difficult to fit, that causes the profound structural changes in the energy spectrum
and the wave functions that we highlight below.

FULL QUANTUM MECHANICAL APPROACH

Once the PES is known, the vibrational-rotational eigenvalue spectrum of a tri-
atomic molecule can be calculated exactly by solving the Schr¨odinger equation

(Ĥ − E)9 = 0, 1.

where Ĥ is the Hamiltonian operator and9 is the total wave function of the
molecular system. In the current calculations we use Jacobi coordinates,R and
r , to describe the internal motion of the molecule (48);R is the vector from H to
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Figure 5 (a) Potential energy as a function of the Jacobi angleγ along the minimum-
energy path; the potential is minimized in the two stretch coordinatesR andr . (Dia-
monds) Outer maxima of the eigenfunctions of states(0, v2, 0); (circles) outer maxima
of the eigenfunctions of states(0, v2, 0)I ; (arrows) first two saddle-node bifurcations
of the classical phase space. (b) Cuts along the minimum-energy paths of the two-
dimensional adiabatic potentials̃Vv1(r, γ ) for HC stretching quantum numbersv1 =
0, 1, and 2. For comparison, allcurvesare vertically shifted to have the same minimum
value at the linear HCP geometry. See the text for more details.

the center-of-mass of CP andr is the vector joining the atoms C and P (Figure 4).
Depending on the particular molecule (two energetically accessible dissociation
channels, two equivalent bond coordinates, etc), other coordinate systems such
as hyperspherical, Radau, or valence coordinates might be more appropriate (49).
Nevertheless, all these coordinate systems allow numerically exact solutions of the
Schrödinger equation (7, 50). Various types of two-dimensional contour plots of
the HCP PES in Jacobi coordinates are depicted in Figure 6, together with selected
wave functions and classical periodic orbits.

After making the transformation9(R, r) → Rr9(R, r), the Hamiltonian op-
erator is given by (48)

Ĥ = − h̄2

2µR

∂2

∂ R2
+ 1

2µRR2
l̂
2 − h̄2

2µr

∂2

∂r 2
+ 1

2µr r 2
ĵ
2 + V(R, r, γ ), 2.

whereµR andµr are the reduced masses for H–CP and CP, respectively, andγ

is the angle between the two vectorsR andr . l̂ is the orbital angular momentum
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Figure 6 Two-dimensional contour plots of the HCP potential energy surface in
Jacobi coordinatesR, r , andγ . The energy of the lowest contour is 0.236 eV and
the contour spacing is1E = 0.5 eV. Also shown are examples of quantum mechan-
ical wave functions(sinγ |9|2) and the corresponding classical periodic orbits. The
assignments of the states are (a, c) (0, 24, 0); (b, d) (0, 26, 0)I; (e) (0, 0, 12); and
( f ) (5, 0, 0). The energies of the quantum levels and the classical orbits roughly
correspond to each other. See the text for further details.
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operator associated withR, and ĵ is the rotational angular momentum related tor .
To account for the conservation of the total angular momentumĴ, one can replace
ĵ
2

by ( Ĵ + l̂ )2 and obtain, after some straightforward algebra (51, 52),

Ĥ = − h̄2

2µR

∂2

∂ R2
− h̄2

2µr

∂2

∂r 2
+ 1

2µRR2
l̂
2 + 1

2µr r 2
(Ĵ

2 + l̂
2 − 2Ĵzl̂ z)

+ V(R, r, γ ) − 1

2µr r 2
(Ĵ+l̂− + Ĵ−l̂+), 3.

where the indexz denotes components of the angular momenta with respect to
the projection on the molecule-fixedz-axis, the CP bond in the present case,
and the indices± indicate the appropriate raising and lowering operators (the
raising/lowering roles ofJ± are reversed here). The last term in Equation 3 (Coriolis
coupling) is responsible for the coupling between states with differentK quantum
numbers, whereK is the body-fixedz-axis projection quantum number for bothĴ
and l̂ . K corresponds to the vibrational angular momentum of a linear molecule
(which is conventionally labeledl ). It is, in principle, not a conserved quantum
number; however, if the coupling between differentK -states is small, one can
considerK to be a good quantum number.

Alternative schemes to construct appropriate basis sets to expand the wave
function9(R, r) and to represent the Hamiltonian are described in the literature
(53, 54, 54a). One usually starts with products of one-dimensional basis functions,
i.e. spherical harmonics for the angleγ and oscillator wave functions for the two
stretch coordinatesR andr . In order to represent highly excited states, a very
large number of such “primitive” basis functions are required (several hundred
thousand). The resulting Hamiltonian matrix can be diagonalized by an iterative
procedure (55–57). However, the matrix dimension is generally too large for direct
diagonalization. By applying various contraction/truncation schemes (49, 58), the
dimension can be reduced to manageable size (N < 10,000 or so). Direct dia-
gonalization has the advantage that all relevant eigenvalues and eigenstates are ob-
tained at once. However, because of the limited size of the basis set, the accuracy
generally decreases with increasing energy. Nevertheless, direct diagonalization
is the method we applied in the current study; more details about the numerical
procedure are given elsewhere (46, 59), and some indications concerning the accu-
racy of the variational calculations are given below, where the results are discussed.
An alternative and very efficient approach is provided by “filter diagonalization”
(60, 61).

Calculations for total angular momentumJ ≥ 1, required for extracting rota-
tional constants, are considerably more demanding because, as a result of Coriolis
interaction, the basis size increases by a factor ofJ or J + 1, depending on
the parity (48). The problem is overcome by first performing approximate cal-
culations for fixed values of the projection quantum numberK, ignoring the
Coriolis coupling, i.e. the last term in Equation 3. The resulting approximate wave
functions for fixedK are used in a second step as basis functions for the exact
Hamiltonian, inclusive of the Coriolis interaction term (52, 59, 62).
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Whatever method is used for solving the eigenvalue problem, the asset of the
quantum mechanical calculations is that they provide the wave functions as func-
tions of all three internal coordinates. Wave function plots are essential for unique
assignments of states and to understand the story encoded in the vibration-rotation
spectrum. A few examples of uniquely assignable wave functions are presented
in Figure 6. Figure 7 depicts wave function plots for all eigenstates belonging to
one particular polyad, [[0, 14]]. TheR-axis is perpendicular to the(r, γ )-plane
and not seen here. The actual assignments are discussed in the next section. For
J = K = 0, the wave functions are symmetric with respect to the linear geometry
and, therefore, only even values ofv2 are possible. States with odd values ofv2

occur forK = 1, 3, . . .. The wave functions forK > 0 have a node at linearity.
Any kind of automatic assignment, for example, by means of the expectation val-
ues of the kinetic energy operators corresponding toR, r , andγ , would be helpful

Figure 7 Wave functions for the complete polyad [[0, 14]]. Thehorizontal axis
ranges fromγ = 180◦ to 100◦; thevertical axisranges fromr = 2.40 a0 to 4.00 a0.
Plotted is one particular contour of the function sinγ |9(R, r, γ ) |2. The plots are
viewed along theR-axis, i.e. in a direction perpendicular to the(r, γ )-plane. Because
of the sinγ weighting factor, there is a node at the linear configuration irrespective of
whetherv2 is even or odd. In order to illustrate how the wave functions are nested in
the well of the potential energy surface, a two-dimensional contour plot for fixed value
of R is also shown. Theheavy dotmarks the equilibrium geometry in thẽA state. The
energy decreases from state (0, 14, 0) to state (0, 0, 7).
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but is not sufficient at higher energies, when unexpected structures develop. In the
case of HCP, the first thousand eigenfunctions have been visually inspected, one
state after the other (59, 63). Only by such a careful systematic procedure can the
big picture be revealed.

The tabulated results of the quantum mechanical calculations (energies, assign-
ments, rotational constants, etc) are available (R Schinke, personal communica-
tion). In general, the agreement with the measured energies is very gratifying. Of
course, comparison can only be made with those states that can be unambiguously
assigned in the experimental spectrum. However, most of the experimentally ob-
served levels are assigned. There are some unassigned states, for which clear-cut
comparisons with calculated states seem hopeless (see for example 40:Table 9).
The results for four polyads, discussed below, exemplify the degree of agreement
between theory and experiment [see Table 1 (online only; also available through
http://AnnualReviews.org, Electronic Materials)]. The accuracy of the variational
calculations is estimated to be of the order of 0.1 cm−1 for the highest of these four
polyads.

POLYADS

Polyad Structure and Wave Functions

The principal feature of the energy-level spectrum of HCP is a pronounced 2:1
anharmonic resonance between modes 2 and 3, i.e. 2ν2 ≈ ν3 (1335 cm−1 ≈
1278 cm−1). This resonance leads to a well-defined clustering of the vibra-
tional spectrum in terms of polyad [[v1, P]] with polyad quantum numberP =
v2 + 2v3 = 0, 1, 2, . . .; in this article, only polyads with even values ofP are
discussed. The polyad pattern was crucial to the initial assignments of the exper-
imental spectra at high vibrational energy (36, 40). All states having the sameP
(and HC stretch quantum numberv1) have approximately the same energy. There
are(P + 2)/2 and(P + 1)/2 individual states in each polyad for even and odd
values ofP, respectively. Their assignments are(v1, P − 2v3, v3); alternatively,
we occasionally use the notation [v1, P, i ], with i indicating the position within
the polyad (i = 0 for the top state) (see Figure 3). In Figure 8 we illustrate the
energy-level structure in the region of the [[0, 8]]–[[0, 16]] polyads. For a given
value ofv1, a relatively large energy gap separates adjacent polyads, at least in
this lower-energy regime. For the discussion below, note that another resonance
may have an important effect on the level structures and dynamics: One quantum
of the ν1 mode is worth roughly five quanta of theν2 mode, i.e. the states be-
longing to polyads [[0, P]] have roughly the same energies as the states in polyads
[[1, P−5]] and [[2, P−10]], etc. Becauseν1 changes slightly withP, the precise
locations of the [[1, P − 5]] and the [[2, P − 10]] polyads with respect to [[0, P]]
also change with excitation energy.

The systematic evolution of the nodal patterns of the wave functions within
a polyad is illustrated in Figure 7 for polyad [[0, 14]]. Highlighted is the(r, γ )
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TABLE 1 Comparison of calculated (QM), fitted (fit A and fit B), and measured (Exp.)
vibrational energies (in cm−1, relative to the ground vibrational state) for four selected polyads
(experimental data from Reference 36: Table 2)

no.a [v1, P, i]b v1, v2, v3) QM Fit Ac Fit Bd Exp.

22 [0,10,5] (0,0,5) 6298.42 1.6 6274.4 —

24 [0,10,4] (0,2,4) 6334.42 −3.9 6331.9 6328.0

25 [0,10,3] (0,4,3) 6369.65 1.7 6364.2 6367.0

26 [0,10,2] (0,6,2) 6411.63 2.4 6406.5 6411.0

27 [0,10,1] (0,8,1) 6459.21 0.4 6458.3 6464.0

28 [0,10,0] (0,10,0) 6515.70 −0.8 6518.9 6522.0

87 [0,18,9] (0,0,9) 11121.48 −0.6 11078.6 —

88 [0,18,8] (0,2,8) 11158.53 4.8 11150.0 —

89 [0,18,7] (0,4,7) 11175.09 0.9 11157.5 11161.2

90 [0,18,6] (0,6,6) 11200.19 2.9 11189.2 11187.8

92 [0,18,5] (0,8,5) 11233.99 3.2 11222.2 11221.4

93 [0,18,4] (0,10,4) 11273.71 2.2 11264.6 11264.1

95 [0,18,3] (0,12,3) 11319.64 0.0 11315.0 11314.9

98 [0,18,2] (0,14,2) 11374.31 −1.4 11373.6 11373.4

100 [0,18,1] (0,16,1) 11440.87 −0.3 11441.1 11440.7

101 [0,18,0] (0,18,0) 11521.58 3.4 11518.7 11516.7

145 [0,22,11] (0,22,0)I 13429.86 −12.1 13403.1 13426.9

147 [0,22,10] (0,0,11) 13457.28 −3.9 13435.2 —

148 [0,22,9] (0,20,1)I 13503.55 −3.6 13495.0 —

149 [0,22,8] ((0,6,8))e 13519.99 −3.2 13502.3 —

(continued)

(

150 [0,22,7] (0,8,7) 13548.88 0.5 13538.9 13534.9

152 [0,22,6] (0,10,6) 13580.56 0.6 13567.9 13566.5

153 [0,22,5] (0,12,5) 13620.50 1.0 13609.3 13607.8

155 [0,22,4] (0,14,4) 13666.06 −0.3 13658.5 13657.4

157 [0,22,3] (0,16,3) 13719.37 −1.9 13716.0 13715.5

159 [0,22,2] (0,18,2) 13783.51 −1.8 13782.4 13782.0

162 [0,22,1] (0,20,1) 13859.73 −0.9 13858.6 13857.5

164 [0,22,0] (0,22,0) 13947.86 −1.9 13946.1 13942.0

286 [0,30,15] (0,30,0)I 17128.58 −15.5 17181.7 17172.4

307 [0,30,14] (0,28,1)I 17534.52 −4.4 17544.4 —

319 [0,30,13] (0,26,2)I 17831.55 12.5 17804.3 —

328 [0,30,12] (0,0,15) 17997.00 7.7 17888.1 —
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?329 [0,30,11] (0,24,3)I 18001.40 −1.2 17979.2 —

332 [0,30,10] (0,2,14) 18067.58 −3.9 18013.0 —

335 [0,30,9] (0,22,4)I 18106.74 5.1 18084.2 —

337 [0,30,8] ((0,14,8))d 18124.2 1.3 18097.4 —

338 [0,30,7] (0,16,7) 18157.95 2.4 18137.6 —

341 [0,30,6] (0,18,6) 18195.42 −0.5 18177.8 —

343 [0,30,5] ((0,20,5))d 18241.11 −3.8 18230.2 —

346 [0,30,4] (0,22,4) 18302.02 −0.6 18292.1 18292.4

348 [0,30,3] (0,24,3) 18370.28 0.0 18363.8 18366.6

355 [0,30,2] ((0,26,2))d 18453.18 3.3 18446.0 18448.9

361 [0,30,1] (0,28,1) 18549.23 5.3 18534.0 18536.7

366 [0,30,0] (0,30,0) 18656.61 1.6 18647.0 18648.0

aNumber of calculated bound state.
b

1, HC stretch quantum number; P = v2 + 2v3, polyad quantum number; i, position inside the polyad, i = 0 for the highest
level.
cEnergies obtained from the fit of the full quantum mechanical spectrum; listed are the deviations from the original values.
dEnergies obtained from the fit of the experimental spectrum.
eDouble brackets indicate states that are not pure, i.e. states that show a high degree of mixing with a nearby state.

TABLE 1

no.a [v1, P, i]b v1, v2, v3) QM Fit Ac Fit Bd Exp.

(continued)

(

v
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dependence of the wave functions, which, because of the 2ν2 ≈ ν3 resonance, is
more interesting than the behavior with respect toR; for v1 = 0, all wave functions
have a Gaussian-type shape along theR axis, the axis perpendicular to the(r, γ )-
plane. In the case of the pure(0, v2, 0) overtones,v2 specifies the number of nodes
along the backbone of the wave function fromγ = 0◦ all the way to 360◦, as is
customary for a molecule with linear equilibrium geometry. The pure(0, 0, v3)

states havev3 nodes along their backbones. They are essentially aligned along the
axis of the CP stretch coordinater, i.e. the(0, 0, v3) overtones are almost pure CP
stretching states. For all polyads up to [[0, 20]], the purev2 overtones(0, v2, 0)

lie at the top of the polyad, whereas the purev3 overtones(0, 0, v3) are located
at the bottom. Between these energetic extremes within each polyad, the wave
functions are easily recognized as(0, P − 2, 1), (0, P − 4, 2), etc. All polyads
[[0, P ≤ 14]] have the same general behavior. However, with [[0, 16]], some
slight changes appear at the bottom of the polyads that become fully developed by
P = 22.

Pure v2- and v3-Overtones

The purev2-progression has received the most experimental attention. The lowest
members have been precisely measured by microwave and infrared spectroscopy
(47), and the states up tov2 ≤ 27 have been studied by DF (37). Ishikawa et al
(40) observed the overtonesv2 = 26−42 by SEP and extracted for all states the
vibrational fine-structure constants, which, as shown below, contain valuable in-
formation about the dynamics of these vibrational levels.

The(0, v2, 0) states are very robust, which means they form regular series that
are easily recognizable up to very high energies, where many other states are
unassignable because of complex mixings among neighboring (zero-order) states.
The wave functions of the(0, v2, 0) states do not change their general shape,
except for accidental admixtures from near-degenerate states; with increasing en-
ergy, successively more “pearls” are added to the “necklace.” The energy spacing
between adjacent(0, P, 0) states as a function ofP (Figure 9a) is essentially a
straight line, which indicates that the transition energies can be well represented
by a (Morse-like) power series inv2 up to second order.

The calculated transition energies for the purev2 overtones can be compared
with experimental data up tov2 = 42. The deviationEth. − Eex. is negative from
v2 = 2−14, becomes positive atv2 = 16, and then monotonically increases up to
v2 = 42. The root mean square deviation for states (0, 2, 0)− (0, 32, 0) is only
6.6 cm−1, but it increases to 16 cm−1 when all states up tov2 = 42 are included.
The deviation is 10.2 cm−1 for v2 = 32 and rises to 41 cm−1 for v2 = 42. The
estimated error due to the limited basis set in the variational calculations is 0.3 cm−1

for v2 = 32 and 0.5 cm−1 for v2 = 42.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 8 Energy-level spectrum in the regions of (left) polyads [[0, 8]]–[[0, 16]]
and (right) polyads [[0, 22]]–[[0, 30]]. (Dotted lines) The isomerization eigenstates
(v1, v2, v3)I . Energy is normalized with respect toE = 0 at the (0, 0, 0) level.
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Figure 9 (a) Energy differences [1E = E(0,P,0) − E(0,P − 2,0), etc] between neigh-
boring states of the progressions(0, P, 0), (0, 0, P/2), and(0, P, 0)I versus polyad
quantum numberP. (Black dots) Quantum mechanical results; (open circles) ex-
perimentally observed energy levels. (b) The frequencies of the various families of
periodic orbits as functions of energy (relative toE = 0 at the bottom of the potential
well). (Dots) Saddle-node bifurcations, discussed in the text. Thehorizontal axesin
(a) and (b) roughly correspond to each other.

One extremely important point must be made here: The(0, v2, 0) wave func-
tions start out as true bending wave functions at the bottom of the energy-level
spectrum, i.e. their backbones are predominantly aligned along the angular (bend-
ing) axis. Thus, as the energy in this mode is increased, one naturally expects the
corresponding wave functions to monotonically follow the isomerization path all
the way from the H–CP side to the CP–H hemisphere. However, that is not what
happens. With increasing energy, thev2 overtones evolve toward larger and larger
CP bond distancesr , i.e. they acquire more and more CP stretch character (see
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Figure 7). Contrary to expectation, the(0, v2, 0) wave functions are confined to
a small angular range around linearity. This is illustrated in Figure 5a, where the
angleγmax at which the wave functions have maximal amplitude is plotted versus
energy;γmax is the quantum mechanical counterpart of the angle at the classical
turning point. Even for the highest states considered, the maximal bending ampli-
tude around linearity is restricted to merely±40◦. Thus, even when the energies
of the high-v2 states lie well above the energy where the minimum-energy-path po-
tential departs from the diabatic part by leveling off to the CP–H side, the(0, v2, 0)

wave functions do not follow this adiabatic path.
The pure(0, 0, v3) states are also robust and may easily be followed to very

high energies. As the quantum numberv3 increases, they align themselves more
and more along ther -axis, i.e. they behave more and more like pure CP stretching
states. Because of unfavorable Franck-Condon factors—the(0, 0, v3) states are
centered aroundγ = 180◦ whereas thẽA and C̃ states are strongly bent—only
states up tov3 = 3 have been observed experimentally (37). In particular, that is
why the lowest two states of the [[0, 18]] polyad are missing in the SEP spectrum
in Figure 3. The root mean square deviation of our calculated values from the
measured ones is 2.8 cm−1. The energy spacing between adjacent levels of theν3

progression is also a linear function and parallels the curve for the(0, P, 0) states
up to high quantum numbers (Figure 9).

Genesis of Isomerization States

Wave functions that follow the minimum-energy isomerization path exist—but
they only appear at higher energies. The reasons they suddenly are born at rela-
tively high energies, and how their abrupt emergence causes the polyad structure
to change, provide deep insight into how a vibrational energy spectrum, which
behaves in a “normal” and predictable manner at low energies, changes with
energy.

The qualitative mutation of the wave functions first appears in the lower-energy
parts of the polyads, whereas the wave functions near the top change gradually and
in a predictable manner. To illustrate the structural changes, we show in Figure 10
the four lowest energy wave functions in polyads [[0, 16]]–[[0, 22]]. Beginning
with P = 18, the wave function of the second-to-lowest state, (0, 2, 8), gradually
changes its shape in the(r, γ )-plane, namely it behaves more like what is expected
for a real bending state. Subtle signs of this metamorphosis appear in the lower
polyads (seeP = 16) but become incontrovertible forP = 18 and 20. The assign-
ments (0, 2, 8) and (0, 2, 9) here reflect more the positions of these states within
their respective polyads than the character of the wave function. The mutation of
the (0, 2, P/2 − 1) states continues with increasing energy, and more and more
states in the lower-energy part of each polyad become participants in this process.
Because the new form of the bending states follows the isomerization path, we
assign these states as(v1, P, 0)I , (v1, P − 2, 1)I , etc, where the subscript I stands
for isomerization. The isomerization states are the real bending states.
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Figure 10 Illustration of the genesis of isomerization states. The wave functions
shown are for the lowest four eigenstates of polyads [[0, 16]]–[[0, 22]]. The axes have
the same ranges as in Figure 7. Within each row the states are in order of increasing
energy (left to right).

The potential substantially levels off along the minimum-energy path, toward
the CP–H hemisphere (see Figure 5), and as a consequence, the(0, P, 0)I pro-
gression is considerably more anharmonic than is the purev2-progression; the
gap between neighboring(0, v2, 0)I energy levels drops rapidly with increasing
value of P (Figure 9). The result is that the energies of the(0, P, 0)I states fall
rapidly relative to the corresponding(0, 0, P/2) states, as seen in Figure 10 for
P = 22 as well as in Figure 8. It should be emphasized that—in view of the num-
ber of nodes—the states(0, 22, 0)I and(0, 20, 1)I definitely belong to theP = 22
polyad. The polyads do not crumble, rather they change their face.

With increasing total energy, more and more isomerization states come into
existence in each polyad, and the number of such states rapidly increases. Simul-
taneously, more and more of the regular states, those that exist at lower energies,
disappear. Because the isomerization states have a large anharmonicity, the ener-
getic ordering at the lower end of the polyads becomes complicated and confusing
(Figure 8). Actually, without being able to examine the wave functions, it would
seem to be impossible to understand the level structure in this energy regime.
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Because the isomerization states drop considerably in energy with respect to the
top members within a particular polyad, neighboring polyads begin to overlap.
The increasing complexity is illustrated in Figure 11 (online only; also avail-
able through http://AnnualReviews.org, Electronic Materials); it depicts all wave
functions belonging to polyad [[0, 32]]. Starting withP = 32, the isomeriza-
tion states belonging to theP + 2 polyads come close in energy to the(0, P, 0)

pure overtone states and could possibly perturb them; we return to this point
below.

The most important difference between the(0, v2, 0)I isomerization states and
the(0, v2, 0)overtone states is that the isomerization states do follow the minimum-
energy isomerization path and therefore are not confined to angles close to lin-
earity. This is demonstrated in Figure 12 (online only; also available through
http://AnnualReviews.org, Electronic Materials), which shows the wave func-
tion for the state(0, 40, 0)I superimposed on the potential energy contours; the
wave function nicely samples the minimum-energy path, including the waist of
the peanut. Figure 5 depicts the angleγmax, at which the wave function of each
(0, v2, 0)I state is largest. The contrast with the(0, v2, 0) states is striking. This
picture also demonstrates that the isomerization states come into existence just
where the potential energy profile, and therefore the overall structure of the clas-
sical phase space, changes rapidly.

The energy spacing1i between adjacent levels within av1 = 0 polyad steadily
increases from the bottom to the top forP ≤ 10 (Figure 8). However, starting with
P = 12,1i gradually develops a nonmonotonic behavior, which becomes clearly
visible for polyadsP = 14 and higher:1i is large at the bottom, then decreases,
goes through a minimum, and eventually increases again. This general behavior
is simply the consequence of the different wave function characters for the states
at the bottom and the top of the polyads. A semiclassical analysis of effective
Hamiltonian models provides an explanation in terms of quantizing trajectories
located on either side of a separatrix (64, 65).

After the isomerization states had been predicted by the calculations using the
old, less-accurate PES, they were also found experimentally, however at slightly
lower energies (66). What was found in the spectra was a progression of states,
which could not be explained by the other progressions analyzed previously and
which exhibited an uncharacteristically large anharmonicity and unusually large
rotational constants (levelsa–e, Figure 2). These are exactly the features of isomer-
ization states predicted by Beck et al (42). Now, with the new PES in hand, we can
directly compare these particular measured levels with the calculated isomeriza-
tion states (Table 2), and very good agreement is observed. Definitive assignment
of the measured levels is possible only on the basis of the calculations and this
almost perfect state-by-state agreement. The isomerization states are true bending
states, and therefore they should have at least as good Franck-Condon overlap
factors with the intermediate levels in theÃ andC̃ states as do the states belonging
to thev2 progression.
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Figure 11 Wave functions for the eigenstates belonging to polyad [[0,32]]. (Hori-
zontal axis) Ranges fromγ = 180◦ to 100◦; (vertical axis) ranges fromr = 2.40 a0 to
4 a0.
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?Figure 12 Wave function of the isomerization state (0,40,0)I superimposed on the
potential energy surface. (Dashed line) Minimum-energy path.
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TABLE 2 Comparison of measured (Exp.) and calcu-
lated (QM) vibrational energies and rotational constants
B (in cm−1, relative to the ground vibrational state) for
the progression of isomerization states (0, v2, 0)I

a

v2 Exp. QM BExp BQM

22 13424 13425 0.695 0.695

24 14497 14494 0.688 0.698

26 15505 14497 0.723 0.702

28 16413 16393 0.707 0.704

30 17172 17129 0.725 0.711

aExperimental data from Reference 66:Table 1.

Polyads for v1 6= 0

Because of space limitations, we can touch only briefly on how the polyad structure
changes when the HC mode is excited, i.e. whenv1 ≥ 1. As one immediately
sees from Figure 8, the polyad structure forv1 = 1 and 2 differs from the structure
for v1 = 0. The polyads forv1 ≥ 1 are not just replicas of thev1 = 0 polyads
merely shifted upward by one quantum of the HC stretch mode. This indicates that
the coupling between the HC stretch mode, on the one hand, and the CP stretch
mode and modeν2, on the other, is not negligible. The influence of this coupling
is also evidenced by the decrease in the energy gap between the states(v1, 2, 0)

and(v1, 0, 1) from 59.2 cm−1 for v1 = 0 to 22.4 cm−1 for v1 = 2 (starting with
v1=3 the gap increases again). This decrease is mainly caused by the lowering of
the frequency of the bending mode with increasingv1. As a consequence, the 2:1
bend-stretch resonance condition is better and better fulfilled at lowP when the
HC mode is excited, and this, in turn, results in stronger intrapolyad mixing. The
enhanced mixing at lowP is clearly exhibited by the corresponding wave functions,
which at the lowest energies show the behavior typical of normal-mode states. As
the polyad quantum numberP increases, the states at the top of the polyad behave
identically to the top states in thev1 = 0 polyads, namely they develop more and
more CP stretch character. However, the states at the bottom of the polyad acquire
increasingly more bending character, and the wave functions behave similarly to
the isomerization wave functions discussed in detail forv1 = 0. The most important
points to be made here are that this evolution from normal mode to isomerization
character occurs at lower values ofP and that it is very gradual, i.e. the sudden
changes observed to occur forv1 = 0 over a relatively narrow energy range is
replaced by a gradual evolution.

A more detailed discussion of thev1 ≥ 1 spectra is given by Beck et al (59).
Qualitatively, the differences betweenv1 = 0 andv1 ≥ 1 polyads can be explai-
ned by two-dimensional adiabatic PESsṼv1(r, γ ). They are constructed in an
adiabatic way by solving the one-dimensional Schr¨odinger equation for the HC
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stretching degree of freedom,R, for a fixed pair of coordinatesr andγ , i.e. the HC
stretch mode on the one hand and the combination of the CP stretch and the bending
mode on the other are adiabatically decoupled. The eigenvalues obtained by solv-
ing the Schr¨odinger equation define a set of two-dimensional PESs, one for each
value ofv1. The minimum-energy paths derived from theṼv1(r, γ ) are depicted
in Figure 5b. Two observations are immediately apparent. First, the angular force
constant slightly but noticeably decreases with increasingv1; this explains the
decrease in the bending frequency with increasing HC stretching quantum number
and, hence, the systematic change in the quality of the bend:CP stretch resonance
condition forv1 = 0, 1, and 2. Second, the change in slope of the isomerization
path from the harmonic region at low energy to the more linearγ -dependent branch
that occurs nearγ ≈ 130◦ is less abrupt forv1 = 1 and 2 than it is forv1 = 0. As a
consequence, the polyads forv1 ≥ 1 evolve more smoothly with the polyad quan-
tum numberP. Moreover, as seen in Figure 8, the intrapolyad energy spacing1i

changes drastically fromv1 = 0 to 1, 2, and 3.

SPECTROSCOPIC HAMILTONIAN

The polyad structure of the energy levels emerges naturally from the quantum
mechanical variational calculations performed using the full PES, without any
assumptions about the particular form of the PES (Taylor series expansion, for
example) or the underlying Hamiltonian; it is an immediate consequence of the 2:1
resonance of the bending and CP stretching frequencies. The energy dependence
of the centers of the polyads (average over all polyad components) can be easily
described by a three-mode Dunham-type expansion. More interesting, however,
is the distribution of levels inside a particular polyad, as this distribution reflects
the coupling between the various states that belong to the polyad (22, 67). This
intrapolyad structure is most revealing of dynamical details.

In a simplified treatment, which explicitly takes into account the polyad struc-
ture and which assumes thatP is a “good”, i.e. conserved, quantum number, one
can define a basis of zero-order wave functions9(P) as products of single-mode
wave functionsφ(2)

v2
(γ ) and φ(3)

v3
(r ) (the HC stretching mode is omitted in the

following discussion and only even values ofP are considered),

ψ
(P)
i (r, γ ) = φ

(2)
v2=P−2i (γ ) φ

(3)
v3=i (r ), 4.

with i = 0, . . . , P/2. Note thatv2 + 2v3 = P. The single-mode basis functions
are perfectly aligned along theγ - or ther -axis withP−2i andi nodes, respectively.
The true wave functions for the eigenstates that belong to a particular polyad are
then expanded as

9(P)(r, γ ) =
∑

i

a(P)
i ψ

(P)
i (r, γ ). 5.
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Representing the full Hamiltonian in this basis yields the Hamiltonian matrix

H (P)
i i ′ = 〈

ψ
(P)
i |Ĥ |ψ(P)

i ′
〉

6.

with dimension(P/2 + 1) × (P/2 + 1). Diagonalization of this matrix gives
P/2 + 1 eigenvalues, which can be considered as reasonable approximations of
the real vibrational levels in this particular polyad. In contrast to the exact pro-
cedure, only a very small matrix has to be diagonalized. The price to be paid is
the neglect of any coupling between different polyads, regardless of whether they
belong to the same or to different values ofv1.

If one assumes that the single-mode wave functions are of the harmonic type
and that the PES is expanded in a Taylor series in the coordinates, one can evaluate
the elements of the Hamiltonian matrix analytically. The first and therefore most
important potential term that contributes to the intra-polyad coupling isγ 2r . If
the PES is known, the above procedure provides a well-defined recipe for approx-
imately calculating—with modest numerical efforts—the vibrational energies and
wave functions (see 68, and references therein). If the potential is not known, which
is usually the case, one can parameterize the elements of the Hamiltonian matrix
and then determine the unknown parameters by fitting the experimental levels (ef-
fective, resonance, or spectroscopic Hamiltonian approach) (21). This requires,
of course, that one knows which of the observed levels belongs to the particular
polyad and how these levels map onto the totality of levels in a given polyad. In the
case of HCP, finding the correct relationship is not difficult for the lower polyads,
but once the isomerization states appear, this, because of their large anharmonic-
ity, becomes increasingly difficult at higher energies. In a sense, polyad patterns
are the spectroscopist’s alternative to direct access to wave functions. Effective
Hamiltonians have a long history in molecular spectroscopy (69).

In this section, we describe two fits to the same effective Hamiltonian model:
one of the set of calculated data and another of the set of measured energies,
however including only states withv1 = 0. (There are no experimentally observed
and securely assigned states that have excitation in the HC stretching mode.) The
expressions used for the elements of the effective Hamiltonian matrix are

〈v1, v2, v3|Ĥ |v1, v2, v3〉 =
∑

n

wnvn+
∑
n≥m

xnmvnvm+
∑

n≥m≥k

ynmkvnvmvk+z2222v
4
2

7.
for the diagonal elements, and

〈v1, v2, v3|Ĥ |v1, v2 − 2, v3 + 1〉 = 1

2
√

2

√
v2

2(v3 + 1)

×
{

k223 + λ1

(
v1 + 1

2

)
+ λ2v2 + λ3(v3 + 1) + µ22v

2
2

+ µ23v2(v3 + 1) + µ33(v3 + 1)2

}
8.
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for the off-diagonal elements; remember that the constraintv2 + 2v3 = P must
be fulfilled. Energy normalization is made with respect to the ground state (0,
0, 0). Recent applications of effective Hamiltonian treatments of highly excited
vibrational states by spectroscopists can be found elsewhere (70–74).

In an attempt to evaluate the quality of the effective Hamiltonian model for HCP,
the complete set of quantum mechanical energy levels forv1 = 0 up toP = 30 are
fitted (fit A). One goal is to determine whether the effective Hamiltonian model
generates the same qualitative changes in wave functions and other diagnostics as
the exact Hamiltonian. When performing the fit, it is essential to reproduce both
energy positions and the assignments [v1, P, i ], wherei indicates the position of
the level inside the polyad (top statei = 0, bottom statei = P/2). The adjusted
parameters are listed in Table 3 (online only; also available through http://Annual
Reviews.org, Electronic Materials).

In Table 1 (online only; also available through http://AnnualReviews.org, Elec-
tronic Materials), we compare the fitted energies from the polyad Hamiltonian with
the exact ones from the full Hamiltonian for four different polyads. The root mean
square deviations are 2.1, 2.5, 4.1, and 6.0 cm−1, respectively. As expected, the
accuracy of the fit is very good for the lower polyads but diminishes with increas-
ing polyad quantum number. ForP = 30, the agreement is worst at the lower-
energy end of the polyad, where because of the isomerization states (or interpolyad
interactions) the deviations from the “normal” behavior are most significant. Nev-
ertheless, it is astonishing how well the model reproduces even the disordering
caused by the occurrence of the I states.

Fitting the vibrational energies is, however, only half of the success story; the
wave functions are also well reproduced by the model Hamiltonian. For example,
the wave functions for polyad [[0, 32]] obtained from the model Hamiltonian (not
shown here) compare well with their counterparts in Figure 11 (online only; also
available through http://AnnualReviews.org, Electronic Materials), even though
this polyad was not included in the fitting procedure. The general structures, qual-
itative changes, and even finer details are astonishingly well reproduced. The
admixtures from other polyads, clearly seen in the exact wave functions, are,
of course, not mimicked by the isolated polyad model calculations. Because the
mixing between states belonging to different polyads increases rapidly withP, the
effective Hamiltonian model would have to be significantly extended, by inclusion
of several interpolyad interaction mechanisms for applications aboveP ≈ 34−36
or so (75).

A satisfactory fit of the complete set of calculated energy levels is necessary to
confirm that the effective Hamiltonian model is capable of describing the structural
changes observed in the lower-energy regions of each polyad. More interesting
and significantly more difficult, however, is the question of whether the effective
Hamiltonian model can also correctly describe the experimental energy levels. The
list of experimental data is incomplete; with increasing polyad quantum number,
more and more levels in the lower-energy region of each polyad have not been
observed experimentally. Moreover, the measured spectrum yields only indirect
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?TABLE 3 The parameters obtained in fits of the calculated (fit A) and the measured (fit B) energy
levels a

Fit ω0
2 ω0

3 x0
22 x0

23 x0
33 y0

222 y0
223 y0

233 y0
333

A 678.14 1289.86 −5.002 −5.523 −5.877 0.2385 0.0330 0.0427 −0.0103

B 679.01 1284.09 −4.935 −4.982 −5.565 0.2255 0.0065 0.0698 −0.0358

Fit z0
2222 k223 + λ1/2 λ2 λ3 µ22 µ23 µ33 # of data σ

A −0.00624 14.71 −0.0639 −1.193 0.0067 0.0083 0.0326 135 4.84

B −0.00590 12.51 0.2794 −1.1858 −0.0069 0.0151 0.0298 82 8.31

a All values are in units of cm−1.
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(through rotational constants and relative intensities) and therefore vague infor-
mation about the shapes of the wave functions and thus about assignments. Both
shortcomings make the effective Hamiltonian model more difficult to apply. In
fact, it would be hopeless to apply the polyad model to experimental data were it
not for the ability to bootstrap from many securely assigned and simultaneously
fitted polyads to the level patterns (spacings, intensities, rotational constants, vibra-
tional fine structure) of the next-higher polyad. However, the assignment process
begins to break down as soon as one incorrect correspondence between observed
and calculated levels is incorporated into the bootstrap process.

In an attempt to model the experimental data, Ishikawa et al (36) made an ef-
fective Hamiltonian fit to the observed vibrational levels without using any infor-
mation derived from quantum mechanical energy-level calculations (which were
not available for the new PES when the fits were performed). Although the lower
polyads and the top parts of the higher polyads—where the isomerization states and
the onset of overlap between [[0, P]] and [[0, P + 2]] polyads do not complicate
the spectral patterns—are quite well described, the lower ends of the higher polyads
are in substantial disagreement with the new calculations. This is not surprising
because the available experimental information is not sufficient to guarantee valid
extrapolation to unobserved levels.

With the new calculations in hand, the same experimental data have been fitted
once again, this time, however, taking into consideration information relevant to the
assignments derived from the full quantum mechanical calculation. No calculated
levels are included in this fit; the calculations are used exclusively to ensure that
each observed level is assigned to the correct polyad eigenstate. The results of
this fit (fit B), in which energies up toP = 36 are included, are also listed in
Table 1 (online only; also available through http://AnnualReviews.org, Electronic
Materials) and the agreement with the theoretical data is reasonable. Energies of
levels that have not been measured are predicted in an acceptable manner by the
model. Although the fit of the (incomplete) set of experimental energies is good,
we must emphasize that in some cases the deviations from the calculated energies,
which in this energy regime are believed to be still trustworthy, are large (e.g. state
no. 328). In addition, looking at the wave functions calculated from the fit of the
experimental data, one occasionally notices a wrong assignment, especially at the
lower end of the polyad.

CLASSICAL MECHANICS APPROACH

Although the full quantum mechanical calculations provide enormous detail about
the spectrum and how the wave functions evolve with energy, the overall picture
would be incomplete without being accompanied by classical mechanics calcula-
tions, i.e. an analysis of the structure of the corresponding classical phase space
(9). In numerous applications it has been demonstrated that classical trajectories,
the solutions of Hamilton’s equations of motion, provide valuable insights into the
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intra- and intermolecular dynamics (76). Owing to the richness of detail generated
by the exact quantum mechanical calculations, deeper insights require guidance
from classical mechanics. This is particularly true for the highly excited states,
which may be governed by nonlinear dynamics effects (77).

Of particular importance for understanding the structure of the classical phase
space, and hence the dynamics of a (rotationless) molecule, are periodic orbits
(POs), i.e. closed trajectories in the(2N −1)-dimensional phase space for a given
energyE (9, 25, 26, 78). If the initial conditions for the coordinates and momenta
of a trajectory lie on a PO, the system remains on this particular orbit for all times.
One distinguishes between stable and unstable POs. An orbit is called stable if
trajectories, which are initiated in the vicinity of this PO, stay close to it for all
time. Likewise, an orbit is called unstable when all trajectories launched in the
neighborhood of the PO exponentially depart from that orbit (like the motion of a
billiard ball on a potential ridge). POs provide the structure of the classical phase
space and—in a loose sense—they are the backbones for the quantum mechanical
wave functions, i.e. the wave functions are localized around the POs (scarring of
wave functions) (79, 80). Finding POs for a system with more than two degrees
of freedom is not simple. Numerical methods have been developed, but they are
not routine, especially at high energies (81, 82).

POs have been calculated for HCP at many fixed energies, from the bottom of
the well up to more than 3 eV. At low energies one finds three different families
of POs, the so-called principal families, which are denoted as [B], [r], and [R],
respectively. An example of a PO for each family is superimposed on the corre-
sponding potential contour diagrams in Figure 6. The orbits that belong to the [R]
and [r] families are confined to the planeγ = 180◦ and describe primarily motions
along theR- andr -axes, respectively (Figure 6e andf ). The orbits belonging to
the [B] family explore the full three-dimensional coordinate space. At very low
energies they perform oscillations basically along the angular coordinate, and that
is the reason we term them bending (B) orbits. However, just like the quantum
mechanical wave functions, the [B]-type trajectories quickly become dominated
by CP stretching character as the energy increases (Figure 6a andc). The an-
gular region explored by these trajectories remains confined to a small interval
(1γ ≈ ±40◦) around the linear configuration. The comparison of [R], [r], and
[B] POs with the quantum mechanical wave functions of the(v1, 0, 0), (0, v2, 0),
and(0, 0, v3) pure progressions clearly demonstrates the correspondence between
classical and quantum mechanics.

Instead of plotting and analyzing many individual POs, one can obtain a com-
prehensive overview of the structure of the classical phase space by so-called
continuation/bifurcation diagrams (83). This is nothing more than a plot of one
particular quantity (e.g. the maximum value of a coordinate, the period of the
orbit, etc) for each family of POs plotted as a function of the energy. Continua-
tion/bifurcation diagrams are direct fingerprints of the (classical) dynamics of the
system. They call attention to those energy regimes in which interesting qualitative
changes both in the classical dynamical and in the quantum mechanical worlds
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occur. Other examples of continuation/bifurcation diagrams can be found else-
where (84–88).

In Figure 9bwe show an example of a continuation/bifurcation diagram. Plotted
are the frequencies (ν = 2π /period, in energy units) of the various types of POs
versus energy. Each point in this figure corresponds to one PO. All three of the
principal families, [B], [r], and [R], are robust. In other words, the orbits are stable
and can be followed without ambiguity up to high energies. (The curve for the
[R] family is not shown here.) The [B] family exhibits a bifurcation into two
branches atE = 1.338 eV. However, the periods as well as the general structure
of the two corresponding POs are so similar that quantum mechanics does not
distinguish between them, i.e. both orbits can be considered as backbones of the
(0, P, 0)-type wave functions.

The most interesting feature of the classical trajectory study is another bifur-
cation, a so-called saddle-node bifurcation atE = 1.669 eV. At this energy, a
new family of POs, which we refer to as the [SN1] family, suddenly comes into
existence. [SN1] POs do not exist at lower energies—they are abruptly born at the
bifurcation. The [SN1] bifurcation is not a bifurcation of the [r] branch, as Figure 9
might suggest. An example of a [SN1]-type PO is depicted in Figure 6b andd. In
contrast to the [B]-type orbits, a [SN]-type PO extends to larger angles and clearly
follows the minimum-energy isomerization path. However, at higher energies,
the [SN1] POs also stop penetrating deeper into the CP–H hemisphere and are
deflected away from the minimum-energy path. This development is accompanied
by an abrupt bend of the frequency curve at around 2.1 eV. But near this energy
another saddle-node bifurcation occurs at 2.164 eV, [SN2], and the corresponding
orbits for this new family of POs do continue to follow the isomerization path.
At still higher energies, more and more [SN]-type POs are born, which penetrate
deeper and deeper into the CP–H hemisphere of the PES. However, locating them
becomes increasingly problematic. The [SN]-type POs are the classical back-
bones for the wave functions for the(0, v2, 0)I family of states that we have called
isomerization states.

The close resemblance of the frequencies of the various types of POs with
the analogous quantum mechanical transition frequencies is another manifesta-
tion of the classical/quantum mechanical correspondence principle—despite the
slightly different horizontal axes shown in Figure 9a andb. The isomerization
states(0, P, 0)I first seem to follow the [SN1]-type POs up to the kink of the
[SN1] frequency curve. At higher energies, the wave functions are then guided
by the [SN2] POs. At still higher energies, where more and more saddle-node
bifurcations occur, the picture becomes much more complicated, and a clear-cut
correspondence between POs and wave functions is no longer obvious. This is in
accord with the observation that pure(0, P, 0)I states cannot be located beyond
P = 40. At these high energies, the coupling between the internal modes is appar-
ently so strong that many of the wave functions have no readily assignable nodal
structure.
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SEMICLASSICAL APPROACH

The classical approach briefly described in the previous section is able to explain
some of the coarser features of the quantum mechanical calculations, such as the
general nodal structure of the wave functions and the occurrence of qualitatively
new families of states. Classical mechanics is, however, not suited for answering
more subtle questions, such as why the isomerization states come into existence
in the lower-energy region of the polyads and not at the top, why the I states and
the CP stretching states are interleaved (P = 22 in Figure 10), or why the general
behavior is different forv1 = 0 versusv1 = 1? In order to answer such questions,
a semiclassical theory is needed, in which each quantum level corresponds to one
particular classical trajectory [Einstein-Brillouin-Keller (EBK) quantization] (89).
Because a semiclassical theory for a three-mode system with an arbitrary PES is
difficult to formulate, one uses a much simpler but approximate Hamiltonian as the
starting point for a semiclassical analysis. This approach has the advantage that
approximate constants of motion or good quantum numbers can be built in from
the beginning. If a resonance phenomenon governs the spectrum, a spectroscopic
effective Hamiltonian is the natural choice. Because of lack of space, only some
flavor of the semiclassical approach can be given here; for more details see Joyeux
et al (65, 90 and references therein).

The classical analogue of the 2:1 stretch-bend resonance Hamiltonian, which
can be rigorously derived from perturbation theory (91, 92), is given byH =
HD + HF (D and F stand for Dunham and Fermi, respectively), where

HD =
∑

n

ωn In +
∑
n≥m

xnmIn Im +
∑

n≥m≥k

ynmkIn ImIk + · · · 9.

and

HF = I2

√
I3 cos(2ϕ2 − ϕ3)

(
k +

∑
n

λn In + · · ·
)

. 10.

The In andϕn (n = 1−3) are action/angle variables (68).(ϕ1, I1), (ϕ2, I2), and
(ϕ3, I3) approximately correspond to motion alongR, γ , andr , respectively. Note
the formal similarity of Equations 7 and 8, on the one hand, with Equations 9 and
10, on the other. The constantsωn, xnm, etc, can be obtained either directly from the
PES, provided a Taylor series expansion of the potential around the equilibrium is
sufficiently accurate, or by fitting the energy levels of the full quantum mechanical
calculation, as described above. In this work, the latter procedure is used, including
all energy levels up to about 18,700 cm−1 above the lowest one; states withv1 6=
0 are not excluded. The approximate wave functions are observed to closely re-
semble the exact ones. Details are given by Joyeux et al (90).

For the subsequent discussion, it is convenient to make the following additional
transformations:ψ = ϕ2 − ϕ3/2, θ = ϕ2, J = 2I3, and I = I2 + 2I3, where
the anglesψ andθ are conjugate toJ and I , respectively. Deriving the classical
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equations of motion for the coordinatesϕ1, ψ , and θ and for the generalized
momentaI1, I , andJ, it immediately follows that

d I1
dt

= d I

dt
= 0, 11.

i.e. I1 andI are constants of motion and, according to the EBK quantization rules,
can be set tov1 + 1/2 andP + 2, respectively. (The additional terms 1/2 and
2 in the relationship betweenI1 and I and the quantum numbersv1 and P are
Maslov indices.) The only nontrivial equations of motion concernψ andJ. The
corresponding quantization condition reads

JJ ≡ 1

2π

∫
ψ∈[0,π ]

J dψ = n + 1

2
, 12.

whereJJ is the action integral andn = 0, ±1, etc. Because two of the generalized
momenta,I1 and I , are conserved, the classical resonance Hamiltonian can be
treated as an effective one-dimensional problem. In particular, trajectories can
be calculated and analyzed for any specified quantum polyad [[v1, P]]. Such a
simplification is definitely impossible in the full classical approach. The advantages
of this reduced dimensionality picture are as follows: First, the classical equations
of motion can be solved analytically; second, POs can be determined for any pair of
quantum numbersv1 andP; and third, the original three-dimensional semiclassical
quantization condition is reduced to a one-dimensional root-search procedure.

We are now in a position to answer the detailed questions raised at the beginning
of this section. Similar to the full classical approach, however, one can calculate
POs now for any specified values ofv1 and P rather than for fixed energy. The
corresponding energies of the different families of POs are plotted versusP (not
necessarily an integer) in Figure 13a, wherev1 = 0 is chosen for this example.
Figure 13bshows, on an expanded energy scale, the same data but centered around
the energy of the [r]-type PO, so that the details are more visible and understand-
able. Up toP = 12 one finds only two POs, one that approximately corresponds to
the CP stretch, [r], and one that corresponds to the bending motion, [B]. A saddle-
node bifurcation occurs atP = 12.297, corresponding to an energy of 10,732 cm−1

relative to the quantum mechanical ground state (corresponding to 1.699 eV
above the bottom of the potential well), where [SN]-type POs, which have the
same general behavior as in the full classical calculations, suddenly appear. Ac-
tually, two branches of [SN]-type orbits are born at the saddle-node bifurcation,
a stable one, labeled [SN], and an unstable one, labeled [SN]. The unstable POs
also exist in the classical treatment, but they have not been followed.

The semiclassical energies,Ei (i = 0, 1, . . . , P/2), for each specified value of
P (which, incidentally, agree perfectly with the corresponding quantum mechani-
cal energies obtained from the fit) lie in the classically allowed region between the
[B] curve and the [r] or [SN] curves. These energy values are determined by the
quantization condition in Equation 12. The energy where the bifurcation occurs
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Figure 13 (a) Energies of the four different periodic orbits (with respect toE = 0
at the quantum mechanical ground state energy) derived from the spectroscopic Hamil-
tonian, Equations 9 and 10, as functions of the polyad quantum numberP; the HC
stretching quantum number isv1 = 0. (b) The same as in (a) but on an expanded
energy scale, with respect to the energy of the [r] PO. [r], [B], and [SN] indicate the
different families of periodic orbits. (Dashed curve) The unstable periodic orbit that
appears simultaneously with the [SN]-type orbits at the saddle-node (SN) bifurcation.
(Heavy dots) The semiclassical energiesEi for P = 14, 22, and 30 obtained from the
quantization condition Equation 12.

lies close to the [r] curve, which implies that the metamorphosis of the normal
states into isomerization states initially occurs at the lower end of the polyads, just
as is observed for the quantum mechanical wave functions shown in Figure 10.
However, the energy of the bifurcation lies slightly inside the classically allowed
region, not directly on the [r] curve, which explains why the qualitative change of
the wave functions first appears in the second-lowest state and not in the lowest
one. The curves in Figure 13 also predict very nicely that for the higher polyads,
for exampleP = 30, the three lowest levels must lie considerably below the energy
of the pure CP stretching level.

The CP stretch and isomerization state wave functions for the [[0, 22]] polyad
show a surprising alternating behavior at the bottom of the polyad (Figure 10);
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Figure 14 The classical action integralJJ as a function of energy (normalized to
the quantum mechanical ground state energy) for polyad [[0, 22]]. (Vertical lines)
The energies for the four periodic orbits [r], [B], [SN], and [SN]; (heavy dots) the
semiclassical energiesEi obtained from the quantization condition Equation 12;E0 is
the energy of the highest level in this polyad andE11 is the energy of the lowest one.

similar behavior is also found for higher polyads [see the wave functions for polyad
[[0, 32]] in Figure 11 (online only; also available through http://AnnualReviews.
org; Electronic Materials)]. This peculiar observation can be explained by analyz-
ing the quantization condition. In Figure 14, we plot, for the [[0, 22]] polyad, the
action integral,JJ , as a function of energy. The vertical lines indicate the energies
of the four POs present at this energy. The essential feature is the splitting ofJJ(E)

into two branches in the low-energy range. The different values ofJJ for the two
branches indicate that the two branches represent qualitatively different motions.
The trajectories belonging to the upper branch are of the I type, whereas those for
the lower branch have mainly CP stretch character. The trajectories, which are rel-
evant for the quantum mechanical dynamics, are those for which the quantization
condition is fulfilled. Thus, although fori = 0–7 all trajectories lie on the same
curve, the energetic ordering of trajectories 8–11 is interleaved: 8 and 10 belong
to the normal branch, and 9 and 11 belong to the other one. Additional examples
of semiclassical studies based on effective Hamiltonians can be found elsewhere
(e.g. 30, 93–100).
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SPECTROSCOPIC PERTURBATIONS

Up to now we have only discussed the vibrational spectrum up to moderate ex-
citation energies,P ≤ 30. With increasing energy, the structure of the spectrum
becomes rapidly more intricate. Because the frequency (i.e. consecutive level
spacing) of the isomerization states is significantly smaller than are the frequen-
cies of the(0, v2, 0) and(0, 0, v3) states, and because more and more members of
the lower half of each polyad turn into I states, the number of(v1, v2, v3)I states
increases rapidly with energy. As a result of their relatively small frequency, iso-
merization states belonging to higher polyads begin to overlap the energy region
of the normal states at the top of lower-P polyads (Figure 8). Thus, one expects
interpolyad interactions to affect the states observed in the SEP spectra. Moreover,
mixing between polyads belonging to different values of the HC stretch quantum
number also generally becomes more likely, again because of overlapping energy
regions. As a result, increasingly fewer states can be clearly assigned based on the
nodal structure of their wave functions. The examples forP = 32 in Figure 11 (on-
line only; also available through http://AnnualReviews.org, Electronic Materials)
illustrate this general behavior.

In the SEP experiment of Ishikawa et al (40), the pure(0, v2, 0) progression
was followed fromv2 = 26 up to 42. This was possible because the states in this
progression are very robust and the wave functions preserve their distinct identity,
although small perturbations due to mixing with nearby states do occur for the
higher members. In the SEP experiments, only a narrow energy window of width
1E ≈ ±20 cm−1 centered around the predicted(0, v2, 0) energy was scanned with
the probe laser, and the following observation was made: Although forv2 ≤ 30
only one vibrational band was observed within the window, starting withP = 32
suddenly more than one vibrational state was present. This was interpreted as a
“sudden onset of spectroscopic perturbations.”

Exactly the same effect is observed in the quantum mechanical calculations.
Vibrational states that are quasi-degenerate with the pure(0, v2, 0) levels exist be-
low the energy ofv2 = 32, but these quasi-degenerate levels always have several
quanta in theν1 mode and therefore would not appear in the SEP spectrum because
of Franck-Condon selectivity againstv1 > 0 levels. However, atP = 32, suddenly
other vibrational states are predicted to occur in the spectrum near the(0, v2, 0)

states. These states have no excitation in the HC mode and therefore presumably
have nonnegligible Franck-Condon intensities. They have mostly the character of
isomerization states, which become more and more numerous atP>30. Manifes-
tations of the mixing between normal states of one polyad and the isomerization
states belonging to a higher polyad can be seen in Figure 11 (online only; also avail-
able through http://AnnualReviews.org, Electronic Materials) for the states (0, 28,
2) and (0, 22, 5) of theP=32 polyad. As a matter of fact, all states(0, v2 ≤ 30, 0)

are extremely pure, whereas the wave functions for states(0, v2 ≥ 32, 0) increas-
ingly frequently exhibit admixtures of one or more isomerization states.
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Other candidates for anharmonic (as opposed to Coriolis) perturbers of the
pure (0, v2, 0) states are levels with two quanta of HC stretch. As mentioned
previously, a weak 2ν1:10ν2 resonance is already evident at very low vibrational
energy. Becauseν1 gradually changes with increasing polyad quantum number,
starting withv2 = 28, states with two quanta of excitation of the HC stretch mode
are near-degenerate with the pure(0, v2, 0) states (see Figure 8). An example of
such an interpolyad mixing is recognized in Figure 11 (online only; also available
through http://AnnualReviews.org, Electronic Materials).

On the other hand, swapping of two quanta of the HC stretching mode for 10
quanta of mode 2 is a very high-order anharmonic process, and therefore we believe
that the isomerization states are the more likely candidates for most of the extra
states observed in the proximity of thev2 overtones. Because isomerization states
indeed have been observed at lower energies (see Table 2), there is no reason why
they should not appear in the SEP spectra at higher energies as well. Several of the
additional states have unusually large rotational constants,B, and, as we discuss
in the next section, large rotational constants are a signature of isomerization
states.

Unfortunately, the limited accuracy of the PES does not allow us to specify
uniquely which states, in addition to the main polyad states, are observed in the
SEP spectra. The(0, v2, 0) states are accurately predicted by the calculations, but
the high overtones of the I states very likely do not have the necessary predictive
accuracy. Nevertheless, the onset of the perturbations is correctly prognosticated.

ROTATIONAL CONSTANTS

Spectroscopists do not have direct access to the wave functions; thus they do
not have direct access to the structure of the molecule in a particular vibrational
state. The best source of such information, in addition to intensities, is rotation-
ally resolved spectra. In order to extract this information from the rotational-level
structure of a linear molecule, an effective Hamiltonian matrix is employed, which
is defined by a rotational constant,B, and several vibrational fine-structure con-
stants,g22, q2, andγll (40). The vibrational fine structure arises because the
bending mode of a linear triatomic molecule is doubly degenerate; hence, the
bending overtones form quasi-degenerate groups ofv2 +1 (v2 even) orv2 (v2 odd)
levels, where the levels in each group are distinguished by the vibrational angular
momentum quantum number,l (denoted asK in this paper). The degeneracy of the
different l components of a givenv2 is lifted in first-order perturbation theory by
quartic and sextic anharmonicity effects and in second-order perturbation theory
by cubic and quintic anharmonicity and Coriolis effects. This is a complex subject
treated in detail by Nielsen (69) and in summary by Mills (101). The two important
points are as follows: (a) The built-in quasi-degeneracy confers high sensitivity to
specific features of the energy-level spectrum, in particular the systematic energy
difference between the centers of different polyads such as [[0, P]], [[1 , P − 5]],
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[[2, P−10]], etc. (b) The rotational constant does not have its nominal mechanical
significance as the expectation value of a reciprocal moment of inertia. Moreover,
none of the vibrational fine-structure constants, in particularg22, has a simple
mechanical definition. Despite the complexity of the definition ofB, g22, etc,
considerable insight is gained by examining their behavior versusv2 as the iso-
merization states appear and, at higher energies, when the(0, v2, 0) states tune
through degeneracy with states that are excited in the HC stretch mode(v1 > 0).

There are two distinct ways of computingB values in the full quantum me-
chanical calculations for any vibrational state(v1, v2, v3):

Bspec. = 1

2
[E(1, 0) − E(0, 0)] 13.

and

Bmech. = 〈
9J=0

∣∣I −1
b

∣∣9J=0
〉
. 14.

The E(J, K ) are the energies for rotational quantum numbersJ and K , as cal-
culated with the full Hamiltonian, including the Coriolis coupling term, i.e. the
last term in Equation 3.9J=0 is the vibrational wave function for total angular
momentumJ = 0, andI −1

b is the inverse of the moment of inertia with respect to
theb rotation axis in the principal axis system.Bspec. includes both anharmonic
and Coriolis effects and reflects details incorporated in the effective Hamiltonian
used by spectroscopists to extract a fittedB value (e.g. effects of theq2 parameter
as well as off-diagonal intrapolyad interactions and the local effects of specific
isolated perturbers).Bspec. is the calculated constant most closely related to the ro-
tational constant extracted from the SEP experiments.Bmech. is an approximation;
it involves only J = 0 wave functions and therefore does not contain1K = ±1
coupling effects. However, becauseBmech. is an expectation value and thus re-
flects the average structure of the molecule in a particular vibrational state, it can
be exploited to interpret the state dependence of the rotational constant (except for
effects that cannot be reflected inBmech.).

It is instructive to compare the computed values ofBspec. andBmech. with each
other, as well as with theB values obtained from the SEP spectrum. It is also
instructive to look at the evolution of the spectroscopic values ofg22 andq2 (40).
The former is sensitive to many of the anharmonic effects that appear in bothBspec.

and Bmech. but not at all to the Coriolis effect that appears inBspec.; the latter is
sensitive exclusively to the interpolyad Coriolis effects.

In Figure 15a we depict the computed and measuredB values for the(0, P, 0),
(0, 0, P/2), and(0, P, 0)I progressions in order to illustrate the different behaviors.
Bmech. is a useful discriminant for excitation in CP stretch versus bend. Because the
CP-extended turning point is much softer than the CP-compressed turning point,
excitation of CP stretch causesBmech. to decrease, typically∼0.003 cm−1 perv3.
Because both bending turning points bring the H atom closer to the inertialb-axis,
a normal bend should causeBmech. to increase,∼0.0004 cm−1 perv2 at low values
of v2. However, as discussed in detail above, mode 2 acquires more and more the
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Figure 15 (a) Rotational constantsB for the three progressions(0, P, 0),
(0, 0, P/2), and(0, P, 0)I . (Open symbols) The experimental values extracted from
the stimulated emission pumping experiments; (solid lines) the calculated valuesBspec.;
(dotted lines) the values calculated from the moment of inertia,Bmech.. (b) Experimen-
tal (open circles) and calculated (closed dots) vibrational fine-structure constantsg22

for the two progressions(0, P, 0) and(0, P, 0)I . (Crosses) Values calculated without
including the Coriolis interaction term.
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character of CP stretch and as a result theB value starts to decrease after going
through a maximum aroundv2 = 6. This decrease continues up tov2 = 36 in the
calculation and up tov2 = 34 in the values measured in the SEP spectrum. Owing
to their large-amplitude bending motion, the isomerization states are characterized
by distinctively largeB values. The five experimental values for the(0, P, 0)I

progression in Figure 15a show fluctuations, which probably reflect numerical
uncertainties arising from incompleteness of the deperturbation model. Although
Bmech. approximatesBspec. remarkably well up tov2 ∼ 36 for the(0, P, 0) states,
discrepancies betweenBmech. andBspec. become substantial abovev2 ∼ 28 for the
progression of isomerization states. The reason is that the description in terms of
an averaged moment of inertia apparently breaks down for the large-amplitude
bending motion (i.e. maximal classical Coriolis forces), which is characteristic
for the(0, P, 0)I states.

Figure 15b shows the other constant,g22, versusP for the two progressions
(0, P, 0) and(0, P, 0)I . The calculated values are determined from (40)

g22 = 1

4
[E(2, 2) − E(2, 0)] + B. 15.

Because of the linear equilibrium geometry of HCP, there is no meaningful expres-
sion forg22 in terms of averaged moments of inertia, and therefore we cannot relate
the differences in the various progressions or the variations withP to the molecular
structure in the specific vibrational states. (In the case of the bent molecule HCO,
g22 corresponds to theA rotational constant, which approximately corresponds to
rotation of the hydrogen atom about the CO axis.) As for the rotational constantB,
g22 is substantially larger for the isomerization states than for the normal(0, P, 0)

states.g22 is exclusively controlled by anharmonic coupling terms contained in the
PES and not by Coriolis coupling effects. Calculations with and without the last
term in the Hamiltonian in Equation 3 give almost identical results; the changes
in g22 are on the order of∼0.1 cm−1.

The most noticeable features in Figure 15aandbare the pronounced maxima for
the measured B andg22 values aroundP = 40; the other vibrational fine-structure
constants,q2 andγll , show similar variations withP. In fact it was the appearance
of the largeB perturbations and largeB-values for(0, P, 0) levels that originally
provoked the close experimental/theoretical collaboration. The calculated values
Bspec. andg22 show a similarP dependence, but the maxima are less pronounced
compared with their experimental counterparts.

Such resonance-like behavior is symptomatic of interpolyad interactions. When
the centers of two families of polyads tune through degeneracy, the magnitudes
of the second-order corrections to theB value and to the other vibrational fine-
structure constants go through a maximum and the signs reverse (because the
energy denominator crosses through zero), leading to an abrupt reversal of trend.
The questions to be answered are then (a) which states perturb the(0, P, 0) states
and (b) what is the nature of the perturbation, anharmonic coupling, or Coriolis
1K = ±1 coupling?
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As discussed above, there are (at least) two types of possible perturbers. Be-
cause of the approximate 1ν1:5ν2 resonance, states(1, P − 5 − 2v3, v3), (2, P −
10− 2v3, v3), etc, tune through resonance with the(0, P, 0) states at larger values
of P. The former are coupled by1K = ±1 Coriolis coupling to the(0, P, 0)

states, and the latter perturb the(0, P, 0) states through anharmonic coupling.
In addition to these states with excitation of HC stretch, states with strong iso-
merization character, which emerge from the lower regions of higher polyads,
are observed to mix with the(0, P, 0) states. Unfortunately, these isomerization
states do not have a clear-cut nodal structure, and therefore they cannot be as-
signed in terms of quantum numbers; in other words, it is difficult to decide from
the exact energy levels and wave functions whether the basis states form a regular
progression that tunes through perfect degeneracy with the(0, P, 0) basis states.

The constantg22 is not affected by Coriolis coupling, and therefore the per-
turbations must be caused by coupling through the PES. The small glitch in
g22 at P = 32 is probably due to a resonance with state (2, 20, 1), which indeed is
nearly degenerate with (0, 32, 0) (1E ∼ 2 cm−1). Because more than 10 quanta
must be exchanged, however, the(2, P − 10− 2v3, v3) ∼ (0, P, 0) interpolyad
coupling may not be sufficiently strong also to explain the large peak atP = 42.
The level spectrum reveals that each of the states (0, 38, 0)–(0, 44, 0) is accompa-
nied by an isomerization-type state, with the energy mismatch being smallest for
P = 42(1E ∼ 10 cm−1). Because both kinds of states have highly excited bend-
ing character, the interpolyad coupling arising from diagonal bend anharmonicity
is likely to be sufficiently strong to have a pronounced effect on theg22 value.
Therefore, we believe that the unassigned isomerization states are responsible for
the abrupt increase in the calculatedg22 value atv2 = 38.

The B-values are roughly an order of magnitude smaller thang22, and there-
fore both anharmonic and Coriolis coupling effects must be taken into consider-
ation. Bmech. shows a small maximum atP = 42, which must be due to an effect
already contained in theJ = 0 vibrational wave functions. However, this max-
imum is significantly enhanced forBspec., i.e. when1K = ±1 coupling is also
taken into account. Actually, the (0, 38, 0)–(0, 44, 0) states withK = 0 are found
also to be in near resonance withK = 1 isomerization-type states; the coupling
between these two families of states must be of the Coriolis type. Thus, we tend
to explain the large peak ofBspec. at P = 42 as a result of Coriolis coupling. This
is supported by the fact that the experimentalB andq2 values show nearly iden-
tical behaviors; the latter constant, however, is exclusively sensitive to Coriolis
coupling.

Whether these explanations for the maxima of the calculatedg22 and Bspec.

values are valid is unclear because of the unassignability of a large fraction of
states in the high-energyP ≥ 36 region. Moreover, whether the maxima in the
measured constants have the same origins as the maxima in the calculated values
is also not clear. Potential and dynamics calculations with accuracies higher than
in the current study are required to unambiguously reveal all details of the SEP
spectra.
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CONCLUSIONS

This review of experimental and theoretical studies of the vibration-rotation spec-
trum and dynamics of HCP is intended as a case study in large-amplitude in-
tramolecular motions. Encoded in the spectrum are qualitative changes in the
quantum and classical dynamics and information about central topographic fea-
tures of the PES, such as the minimum-energy isomerization path. A variety of
computational approaches are shown to provide complementary information cru-
cial to a global understanding of the spectrum and dynamics.

Exact quantum calculations, based on an accurate ab initio PES, provide wave
functions, energy-level patterns, and computed quantities such as rotational con-
stants. The nodal structures of wave functions, upon which rigorous eigenstate as-
signments are based, are not experimentally observable quantities. Spectroscopists
must instead rely on energy-level patterns and effective Hamiltonian polyad mod-
els to assign the small observable subset of the totality of vibrational levels. The
sudden appearance of large-amplitude bending isomerization states is predicted by
both the exact PES calculations and the spectroscopic effective Hamiltonian model.
Several well-understood qualitative changes in the spectrum—the appearance of
large-B-value isomerization states, the sudden onset of spectroscopic perturba-
tions, and abrupt resonance-like changes in vibrational fine-structure constants—
are identified as universal signatures of qualitative changes in nodal patterns in
wave functions, bifurcations in the forms of classical mechanical POs, and the
emergence of new features in the reduced dimension semiclassical trajectories
that correspond to intrapolyad dynamics.

This case study should serve as an introduction to the language, observables,
and diagnostics of spectra, quantum calculations, classical POs, bifurcations, and
reduced dimension semiclassical quantization. Workers in these closely related
areas often have difficulty communicating with each other because they are unable
to perceive the relationships between these complementary sets of observables,
terminology, and analysis tools. HCP, by being the first triatomic molecule in which
two different chemically bonded networks (HCP and HPC) can be simultaneously
sampled by individual, spectroscopically observed eigenstates, and by having an
ab initio PES characterized to near spectroscopic accuracy up to energies well
above the bond rearrangement region, is the ideal molecule for such a case study.
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