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Vibrational analysis of HOCl up to 98% of the dissociation energy
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We have analyzed the vibrational energies and wave functions of HOCl obtained from previousab
initio calculations@J. Chem. Phys.109, 2662 ~1998!; 109, 10273 ~1998!#. Up to approximately
13 000 cm21, the normal modes are nearly decoupled, so that the analysis is straightforward with a
Dunham model. In contrast, above 13 000 cm21 the Dunham model is no longer valid for the levels
with no quanta in the OH stretch (v150). In addition tov1 , these levels can only be assigned a
so-called polyad quantum numberP52v21v3 , where 2 and 3 denote, respectively, the bending
and OCl stretching normal modes. In contrast, the levels withv1>2 remain assignable with three
v i quantum numbers up to the dissociation (D0519 290 cm21). The interaction between the
bending and the OCl stretch (v2>2v3) is well described with a simple, fitted Fermi resonance
Hamiltonian. The energies and wave functions of this model Hamiltonian are compared with those
obtained fromab initio calculations, which in turn enables the assignment of many additionalab
initio vibrational levels. Globally, among the 809 bound levels calculated below dissociation, 790
have been assigned, the lowest unassigned level, No. 736, being located at 18 885 cm21 above the
~0,0,0! ground level, that is, at about 98% ofD0 . In addition, 84 ‘‘resonances’’ located aboveD0

have also been assigned. Our best Fermi resonance Hamiltonian has 29 parameters fitted with 725
ab initio levels, the rms deviation being of 5.3 cm21. This set of 725 fitted levels includes the full
set of levels up to No. 702 at 18 650 cm21. Theab initio levels, which are assigned but not included
in the fit, are reasonably predicted by the model Hamiltonian, but with a typical error of the order
of 20 cm21. The classical analysis of the periodic orbits of this Hamiltonian shows that two
bifurcations occur at 13 135 and 14 059 cm21 for levels with v150. Above each of these
bifurcations two new families of periodic orbits are created. The quantum counterpart of periodic
orbits are wave functions with ‘‘pearls’’ aligned along the classical periodic orbits. The complicated
sequence ofab initio wave functions observed within each polyad is nicely reproduced by the wave
functions of the Fermi resonance Hamiltonian and by the corresponding shapes of periodic orbits.
We also present a comparison between calculated and measured energies and rotational constants
for 25 levels, leading to a secure vibrational assignment for these levels. The largest difference
between experimental and calculated energies reaches 22 cm21 close toD0 . © 1999 American
Institute of Physics.@S0021-9606~99!01034-X#
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I. INTRODUCTION

The HOCl molecule plays an important role in the che
istry of the upper atmosphere as a reservoir of OH a
chlorine.1 Its phodissociation, either into OH and Cl, or HC
and O, or H and OCl gives reactive species of atmosph
relevance.2 HOCl has been first studied by visible3 and IR4–9

absorption. Recently, the highly excited vibrational levels
HOCl have been studied in four related projects:~a! the 3–5
overtones of the OH stretch have been observed and
lyzed using intracavity absorption~ICLAS!;10–12 ~b! eigen-
state selected unimolecular dissociation rates have been

a!Electronic mail: jost@polycnrs-gre.fr
6800021-9606/99/111(15)/6807/14/$15.00
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sured close to the dissociation threshold;13–15~c! dissociation
rates have been calculated;16,17 and~d! an ab initio potential
energy surface~PES!, including the corresponding vibra
tional eigenstates, has been calculated up to and ab
dissociation.18–20 The spectroscopic~energies, wave func-
tions! and dynamic aspects being strongly linked, both bel
the dissociation threshold~IVR mechanisms! and above it
~dissociation rates!, it was tempting to extract, from theab
initio results, some relevant information for the interpretati
of the experimental results mentioned above.

Recently, potential energy surfaces~PESs! for other tri-
atomics like H2O, HCN/HNC, HO2, HCP, H3

1, and NO2

have been calculated up to and above the dissociation an
7 © 1999 American Institute of Physics
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isomerization energies. These surfaces have been used i
act calculations of vibrational energies and wave functio
Such calculations are numerically intensive and the res
are not always easily understood. A complimentary and co
putationally less expensive approach to understanding
interpreting vibrational spectra is provided by construct
an effective Hamiltonian. The goal of this paper is to analy
the vibrational energies of HOCl and to describe, with
simple and compact effective Hamiltonian, the ground el
tronic state of HOCl. Our results show that the domina
features of its intramolecular dynamics are well reprodu
by this effective Hamiltonian which is obtained from a d
tailed analysis of thefull set of calculated vibrational eigen
states~energies and wave functions!, which includes 809
bound levels below dissociation@D0519 920 cm21 ~Refs.
13–15!#. At this point, it should be mentioned that only 2
vibrational levels have been experimentally observed, w
most having excitation in the OH stretch. In contrast, le
information concerning the two other modes~the bending
and the OCl stretch! is experimentally accessible. The ma
advantage of theab initio methods~compared to the experi
mental approach! is that calculations of all the levels can b
done, thereby gaining a global description of the spec
scopic and dynamic properties of each molecule, even if
precision of the energies is significantly below that of expe
ment. The main feature of the ground state of HOCl is
regular behavior of the vibrational energy levels, which c
be deduced from the statistical analysis of levels spac
distributions.19 This is due to the near separability of th
three normal modes. Indeed, the inspection of the equipo
tial energy plots~see Fig. 4 in Ref. 18! suggests only mod
erate coupling of the OCl and OH stretches with the bend
mode. Far above the dissociation threshold, the OH str
and the bend become strongly coupled, due to
HOCl→HClO isomerization. However, here we are on
concerned with vibrational states up to the OH1Cl dissocia-
tion energy at 19 290 cm21 and the potential used does n
contain this isomer~the newer potential of Ref. 20 does co
tain the isomer!.

One goal of the present work is to determine up to wh
energy the assignment of these calculated vibrational st
is possible. Surprisingly, the assignment was possible alm
up to dissociation and, for many levels~resonances!, even
above dissociation. In addition the observed pattern of vib
tional energies and wave functions can be interpreted, in
framework of semiclassical analysis, in terms of bifurc
tion~s! and periodic orbits.21–33This results in a condensatio
of the huge amount of data provided byab initio calculations
by a simple and compact analytic Hamiltonian, for which t
semiclassical analysis reproduces the dominant feature
the spectroscopic and dynamic vibrational properties
HOCl up to and even above dissociation. This paper is or
nized as follows: Theab initio results are summarized i
Sec. II. In Sec. III, we present the Dunham analysis, wh
shows that above 13 000 cm21 the O–Cl stretch interact
strongly with the bending mode. Section IV is devoted to
description of the fitted Fermi resonance Hamiltonian, wh
describes the complete set of HOCl vibrational energies
to 18 885 cm21, i.e., 98% of the dissociation energy. Secti
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V contains the semiclassical analysis of the Fermi resona
Hamiltonian and shows the bifurcations and the correspo
ing new families of periodic orbits. In Sec. VI, theab initio
vibrational energies and rotational constants are compare
the existing experimental values.

II. AB INITIO CALCULATIONS, POTENTIAL ENERGY
SURFACE, AND VIBRATIONAL ENERGIES

The ab initio calculations for HOCl, fitting of the PES
and variational calculations of vibrational states have b
presented in previous papers16,18–20and are only summarized
here. Theab initio calculations were performed by Peters
for 756 HOCl geometries employing the correlatio
consistent double, triple, and quadruple basis sets of D
ning and co-workers,34,35 the electron correlation effects be
ing incorporated by using internally contracte
multireference configuration interaction~icMRCl! wave
functions.36,37 The results ofab initio calculations were ex-
trapolated to the complete basis set limit and then used
the fit of the PES. The one-dimensional~1D! OH diatomic
potentials were fitted by Morse-type functions for a set
fixed values of the two other coordinates, namely the O
distance and the HOCl angle, and then a three-dimensi
~3D! surface was obtained as a two-dimensional~2D! spline
of Morse parameters over the ranges of the OCl distance
HOCl angle. The splines were arbitrarily truncated at an O
distance equal to 10a0 and, beyond this distance, energy w
assumed to depend only on the OH bond length. Based
preliminary calculations, the PES was adjusted to impro
the agreement with experimental data.18 In particular, the
PES minimum was shifted to the exact experimental geo
etry, dissociation energy was adjusted, and coordina
slightly rescaled. After these adjustments, the HOCl exp
mental vibrational energies up to six quanta in the O
stretch were reproduced to within a few cm21.19 Excellent
agreement with experiment was also found for a numbe
rotational and rovibrational energies of bound,18 as well as
resonance states.20 The HOCl dissociation energy is com
puted at 19 289.2 cm21, in good agreement with the exper
mental value of 19 289.6 cm21.13,15

TheJ50 vibrational eigenstates and eigenfunctions a
lyzed here were computed16 using the truncation/recoupling
method.19 The calculations were performed in Jacobi coor
natesR, r, andg, whereR is the distance from Cl to G, the
center of mass of OH,r is the OH bond length, andg the
OGCl angle set to 0 at linear HOCl geometry. After a ser
of truncations of reference 1D and 2D Hamiltonians, the s
of the final 3D Hamiltonian matrix was reduced to 720
which is small enough to be diagonalized directly by sta
dard diagonalization routines. The details of the truncati
recoupling method and of more specific details of the cal
lations, such as basis sets, grids, etc., can be found in R
19 and 16, respectively.

Due to the relatively small size of the basis set, all t
necessary eigenfunctions could be stored in memory or
disk for further use. In particular, the eigenfunctions we
used to compute expectation values for the Jacobi coo
nates for the first 1500 wave functions. Note that, due to
large mass of Cl, the Jacobi distanceR is very close to the
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OCl bond length and therefore the expectation value forR is
a good indicator of the OCl bond stretching excitation
each eigenstate.

III. VIBRATIONAL ANALYSIS USING A DUNHAM
EXPANSION

Only the HO35Cl isotope will be discussed in this article
However, most of the results are expected to remain valid
the HO37Cl isotope.

Having in hand the calculated vibrational energies
well as the associated wave functions and expectation va
one can try to assign quantum numbers to these levels.
shape of the PES~see Fig. 4 of Ref. 18! indicates that the
normal modes 1–3 should be close, respectively, tor ~OH
stretch!, g ~bending!, andR ~close to the O–Cl stretch!, the
Jacobi coordinates used in Ref. 18. The approximate 1:2
quency ratio between the O–Cl stretch and the bending p
a crucial role in the vibrational assignment. In contrast,
1:3 ratio between the bending and the O–H stretch pl
only a minor role in the vibrational analysis, because it
duces only the local interactions briefly discussed below

After a straightforward vibrational assignment of abo
100 levels with three quantum numbersv1 ,v2 ,v3 , a prelimi-
nary Dunham fit, including typically 20 parameters@see Eq.
~2! in Sec. IV#, was performed on these levels, with a rms
a few cm21 ~much less than the average spacing!. Based on
the predictions given by this Dunham model, a large num
of higher levels could be assigned easily. In fact, the
(v1 ,v2 ,v3) vibrational analysis~i.e., the assignment proce
dure! can easily be split into one 2D analysis involving on
v2 andv3 for each value of the OH stretching quantum nu
ber, v1 . Indeed, thev1 assignment is straightforward, be
cause of the regular evolution of the expectation values
culated for each eigenstate. Around and above 13 500 c21

@unless specified, the energies are given relative to the~0,0,0!
ground state located at 2867.0 cm21 above the bottom of the
PES#, it becomes obvious that the Dunham fit is no long
able to describe correctly the levels for which only the be
ing and the O–Cl stretch are excited, i.e., levels withv1

50. The anharmonicity of the OCl stretch~described by the
x33 and higher order terms in the Dunham fit! being signifi-
cantly larger than that of the bending motion~parameters
x22¯!, a crossover occurs between the bending and
O–Cl stretch progressions. The Fermi resonance wh
couples these two modes is then strong enough to destro
v2 andv3 quantum numbers. This corresponds to a bifur
tion in the semiclassical analysis presented in the follow
sections. These two quantum numbers are replaced b
single polyad quantum number,P52v21v3 . The effect of
this crossover can also be observed on the evolution of
expectation values which reflect the properties of the w
functions. In contrast, the levels withv1 larger than zero
remain easily assignable above 13 500 cm21. The crossovers
in the progression of levels havingv151 occurs around
17 500 cm21. The crossover for the progressions withv1

>2 occurs above the dissociation energy. The energy ra
covered by each polyad is represented by a vertical line
Fig. 1. For the sake of clarity, the levels with differentv1 are
shifted horizontally. The 32 fitted Dunham parameters (3v i ,
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6xi j , 10yi jk and 13zi jkl parameters! given in Table I corre-
spond to a set of 314 levels fitted with a rms error of 2.
cm21. This set of 314 levels includes 75 levels withv150
~upper level at 10 060 cm21!, 70 levels withv151 ~upper
level at 14 000 cm21!, 73 levels withv152 ~upper level at

FIG. 1. Energy range classification of the HOCl vibrational levels sorted
polyads for eachv1 ~OH stretch! family. Each vertical bar shows the energ
range covered by the levels belonging to a given polyadP. Polyads 0, 10
and 20 are indicated as aP scale. The polyads are represented vsv1 ~OH
stretch! along the horizontal axis in order to avoid too many overlaps. T
closed dots correspond to the levels observed experimentally up to 18
cm21 and listed in Table III.

TABLE I. Dunham parameters~in cm21!. The uncertainty is given as plu
or minus two times the standard deviation.

v1 3788.47 64.328
v2 1245.09 62.209
v3 739.685 61.445
x11 284.540 12.620
x22 12.181 60.743
x33 23.517 60.377
x12 216.291 62.266
x13 20.490 60.950
x23 27.049 60.660
y111 20.173 60.634
y222 20.778 60.009
y333 20.259 60.035
y112 20.154 60.673
y122 23.965 60.401
y113 10.508 60.155
y133 20.122 60.131
y223 20.428 60.071
y233 20.131 60.109
y123 20.767 60.350
z1111 10.0153 60.0506
z2222 10.0111 60.0038
z3333 10.0098 60.0011
z1112 10.0793 60.0649
z1122 20.0426 60.0044
z1133 20.0174 60.0143
z1222 10.2885 60.0246
z1333 20.0007 60.0048
z2233 20.0079 60.0084
z2333 10.0021 60.0047
z1123 20.1553 60.0426
z1223 10.1003 60.0285
z1233 10.0854 60.0177
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17 100 cm21!, 49 levels withv153 ~upper level at 18 130
cm21! and 32, 13, and 2 levels withv154, 5, and 6, respec
tively, these levels lying up to about 19 900 cm21. This
choice of 32 parameters is more or less arbitrary: all 6xi j and
the 10yi jk parameters were kept, even when the error ba
larger than the parameter value. The 13 selectedzi jkl are
those contributing to a reduction of the rms, but this choi
selected after numerous tries, remains more or less arbit
The upper energies given above for thev150 – 3 sequences
correspond roughly to the upper limit of validity for the Du
ham expansion. Above these energies, the interaction~Fermi
resonance! between the OCl stretch and the bending b
comes important and the levels cannot be described
longer by a Dunham expansion.

In addition, it should be noted that the 1:3 resonan
between the OH stretch and the bending modes is effectiv
energies as low as 6250 cm21, where the~1,1,2! level inter-
acts with the~0,4,2! level ~see Sec. IV!. The energy shifts
due to this interaction are typically less than 10 cm21 and
this stretch–bend interaction, which is large in other m
ecules, plays only a minor role in HOCl. However, som
pairs of wave functions reveal unambiguously this inter
tion, as discussed in Sec. IV. Globally, the Dunham analy
allows us to assign at most about 350 levels including so
levels up to and above the dissociation energy~see the list
above!. However, many levels, which cannot be assign
three quantum numbers can still be assigned av1 and aP
~polyad, see above! quantum numbers. At this stage, it
necessary to consider an explicit form of the O–Cl stretc
bending interaction, i.e., the Fermi resonance, to quan
tively describe theab initio vibrational energies. This is th
purpose of Sec. IV.

IV. VIBRATIONAL ANALYSIS WITH A FERMI
RESONANCE HAMILTONIAN

The Fermi resonance Hamiltonian is a polynomial e
pansion in terms of the normal mode coordinates and
menta (pi ,qi), or alternately in terms of the correspondin
creation and annihilation operators (ai ,ai

1). The Hamil-
tonian can be split into three parts:

H5HD1HF1HC , ~1!

whereHD is a Dunham expansion,HF is the Fermi 1:2 non-
linear resonance between the bending~mode 2! and the OCl
stretch~mode 3!, andHC is the additional 3:1 nonlinear reso
nance between the OH stretch~mode 1! and the bend~mode
2!. The Dunham expansion is diagonal in the normal mo
basis. The matrix elements are taken in the form:

^v1 ,v2 ,v3uHDuv1 ,v2 ,v3&

5(
i

v ini1(
i< j

xi j ninj1 (
i< j <k

yi jkninjnk

1 (
i< j <k<m

zi jkmninjnknm

1 (
i< j <k<m<n

zi jkmnninjnknmnn , ~2!
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whereni5v i11/2. The Fermi interaction which couples th
bending and the OCl stretching motion arises from terms
q2q3

2, p2p3q3 , and so on. However, in the effective Hami
tonian, only the terms of the form (a2a3

1a3
11a2

1a3a3) are
retained, because this is the only contribution which coup
basis levels brought into close degeneracy by the appr
mate 1:2 ratio betweenv2 and v3 . The additional matrix
elements due toq2q3

2, p2p3q3 , and so on, couple energet
cally well separated basis levels, and canonical perturba
theory shows that they can safely be absorbed in the Dun
expansion. Therefore, the Fermi resonance matrix eleme
taken in the form:

^v1 ,v2 ,v3uHFuv1 ,v221,v312&

5Av2~v311!~v312!S k1(
i

kini1(
i< j

ki j ninj D , ~3!

wheren15v111/2, n25v2 , andn35v313/2 ~these values
for n1 , n2 , and n3 in an off-diagonal matrix element ar
obtained from the simplest symmetrized arrangement of
ation and annihilation operators, which is discussed, for
ample,in Sec. IV C of Ref. 38!. Similarly, the additional 3:1
resonance between the OH stretch and bending motion
based on the single coupling term (a1a2

1a2
1a2

1

1a1
1a2a2a2), and the corresponding matrix element is

^v1 ,v2 ,v3uHCuv121,v213,v3&

5KAv1~v211!~v212!~v213!. ~4!

Note that v1 and P are good quantum numbers forHD

1HF , whereas there remains only one good quantum nu
ber for HD1HF1HC , namely 3v11P. However, since
only a few pairs of levels are substantially coupled byHC ,
approximate good quantum numbersv1 and P can be as-
signed to all the levels ofHD1HF1HC , according, for ex-
ample, to the procedure described in Sec. III D of Ref. 38

The iterative fitting procedure used to determine t
Fermi resonance Hamiltonian is analogous to the one u
for the Dunham model. The crucial importance of the no
linear resonances appears when considering the energy
ues, but most of all when the wave functions are also exa
ined ~see below!. The results of numerical calculations wi
now be presented, and the results of exact quantum dia
nalizations will then be interpreted in light of the polya
structure of the Fermi resonance Hamiltonian.

A total of 874 vibrational levels have been assigned, 7
below the dissociation threshold and 84 above it. The lis
levels and their assignments can be sent upon request t
authors. The first unassigned level, No. 736, calculated
18 885 cm21 is located at about 98% of the dissociation e
ergy (D0519 290 cm21). Among the 809 vibrational levels
calculated up toD0 , only 19 remain unassigned. This mea
that it is possible to assign at least av1 , a P, and a sequence
number to 97.5% of the bound vibrational levels. All th
unassigned levels should havev150, because all the level
with v1>1 predicted belowD0 have been assigned. Furthe
more, the Fermi resonance Hamiltonian shows that the u
signed levels should be low energy members of polyads w
large values ofP ~typically 34,P,50!. It should be noted
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6811J. Chem. Phys., Vol. 111, No. 15, 15 October 1999 Vibrational analysis of HOCl
that these levels, which span the O–Cl dissociation chan
may only roughly be described by the present PES since
OCl energy dependence was truncated at an OCl dista
equal to 10a0 .18 ~A new global analytical PES has bee
recently developed39 which represents more accurately t
long range tail of the HO–Cl interaction and thus will allo
a more accurate description of highly excited OCl states.! In
addition, 84 levels located aboveD0 and up to 21 716 cm21

could also be unambiguously assigned. These are the r
nance states with typically very narrow widths.16 Among
these 874 assigned vibrational levels, only 725 have b
included in the fit of the Fermi resonance Hamiltonian, b
cause more and more accidental couplings are observed
tween neighboring levels which cannot be reproduced us
the Hamiltonian in Eqs.~1!–~4!. The lowest level not in-
cluded in the fit is No. 703 at about 18 650 cm21, whereas
the higher lying levels taken into account havev1>1 and are
therefore not much perturbed by the dissociation. Include
the fit are levels with up to 38 quanta in the O–Cl stretch
motion (P<38) and 7 quanta in the O–H stretching moti
(v1<7). The polyads are complete up to@v1 ,P#5@0,31#,
@1,25#, @2,20#, @3,13#, @4,8#, @5,4#, @6,2#, and @7,0#. The 725
selected levels were fitted with a total of 29 paramete
which are listed in Table II. The rms error is 5.29 cm21 and
the maximum error is 27.08 cm21. Upon neglect of the 3:1
resonance between modes 1 and 2, that is when puttinK
50 in Eq. ~4!, the rms error rises only up to 5.33 cm21,
which means thatHC is statistically of little consequence fo
the calculation of energy values. However, the agreem
between theab initio PES and the Fermi resonance Ham

TABLE II. Parameters of the Fermi resonance Hamiltonian~in cm21!. The
uncertainty is given as plus or minus two times the standard deviation.

v1 3777.067 63.172
v2 1258.914 61.368
v3 753.834 60.564
x11 280.277 61.126
x22 23.204 60.174
x33 27.123 60.036
x12 219.985 61.108
x23 210.637 60.282
y111 20.361 9 60.113 2
y333 10.082 5 60.000 6
y122 21.953 4 60.280 0
y133 20.053 2 60.010 0
y223 20.080 2 60.016 8
y233 20.250 3 60.022 0
z2222 20.041 17 60.000 60
z3333 20.001 71 60.000 02
z1122 20.150 70 60.050 10
z1222 10.131 89 60.017 92
z2333 20.012 29 60.000 45
z1233 10.023 81 60.008 70
z22222 10.001 51 60.000 02
z22333 20.000 66 60.000 02
k 0.000 00 ~fixed!
k2 20.760 17 60.063 47
k3 20.249 39 60.005 913
k22 20.011 58 60.002 138
k23 10.040 75 60.004 977
k33 10.005 83 60.000 247
K 10.195 20 60.100 16
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tonian is substantially improved for about 15 pairs of leve
especially for wave functions, whenHC is taken into ac-
count. For example, the lowest pair of levels strong
coupled byHC are Nos. 39 and 40 at about 6250 cm21 above
the ground state, andHC is here necessary to reproduce t
strong mixing observed in the wave functions. But on
again,HC is responsible only for local interactions and do
not substantially influence either the global structure of
HOCl vibrational eigenstates at high energy values or
classical phase space structure. Therefore, in the fur
analysis, the 3:1 resonance between the OH stretch and
bend will simply be ignored.

The wave function of the eight levels belonging to t
polyad@v1 ,P#5@0,14# are plotted in Fig. 2 in order to show
the regular evolution of the nodal structure of these wa
functions in terms of the OCl stretch~the horizontal axis is
the R Jacobi coordinate! and the bending angle~the vertical
axis is the cosine ofg!. This regularity explains the straight

FIG. 2. Ab initio wave functions of the vibrational levels belonging t
polyad @v1 ,P#5@0,14#. The horizontal axis is theR Jacobi coordinate
(2.65,R,5.3) and the vertical axis cos(g)(21,cosg,11). The lowest
level in this polyad~No. 77! can be assigned as~0,7,0! ~pure bending!, the
second one~No. 82! as~0,6,2!, and so on up to level 96 which is the~0,0,14!
pure O–Cl stretch. Note that the number of nodes along the OCl stretc
not easy to count for the four higher levels of this polyad because the no
coordinates are not exactly the Jacobir, R and g coordinates. The energy
~cm21! and the rank~#! are given for each level.
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forward assignments in terms ofv2 andv3 . In contrast, the
family of wave functions of polyad@v1 ,P#5@0,24# pre-
sented in Fig. 3 shows that a new,ø-shaped family of wave
functions is created in addition to the bending and the O
stretch families observed at lower energies, the latter hav
smoothly evolved to a ‘‘horse-shoe,’’ù-like shape. This
new ø-like type, which appears progressively starting fro
P518, is clearly seen in all the polyads located aboveP
524. This can be checked in Fig. 4, where the complete
of wave functions for polyad@v1 ,P#5@0,30# is shown. This
series of wave functions demonstrates that a dramatic ch
has occurred in the description of the eigenstates. The
plest way to rationalize these observations is to consider
semiclassical approach in which periodic orbits and bifur
tions enable a classification of the quantum eigenstates
deed, following the pioneering work of Gutzwiller21–23 and
Heller,24,25 there have been several numerical applicatio
which have demonstrated the importance of POs in un

FIG. 3. Ab initio wave functions of the vibrational levels belonging
polyad@v1 ,P#5@0,24#. The coordinates and scales are the same as in
2. The upper left panel gives the 2D plot of the PES. The lowest level~No.
283! can be assigned as~0,12,0! ~pure bending!, the second one~No. 293! as
~0,11,2!, the third one~No. 299! as ~0,10,4!, but the fourth one~No. 306!
can hardly be assigned as~0,9,6!. The fifth one~No. 307! resembles an
almost pure OCl stretch. The highest members of this polyad conv
toward level 336, which displays the ‘‘horse-shoe’’ù-shape due to the
progressive transformation of the@R# periodic orbit~see Fig. 6!. The energy
~cm21! and the rank are given for each level.
l
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standing the localization of quantum wave functions, wh
in turn is helpful in understanding spectral patterns.26–29Re-
cently, it has been shown for HCP that the drastic chan
observed in the quantum wave functions around 13 000 cm21

~i.e., polyad P518!, could be interpreted qualitatively in
terms of POs and bifurcations.30–33

For the sake of comparison, the wave functions plot
in the (q3 ,q2) plane for the 16 levels of polyad@v1 ,P#
5@0,30# obtained using the Fermi resonance Hamilton
are displayed in Fig. 5. The periodic orbits are superimpo
as discussed in Sec. V. This polyad, which ranges fr
16 581 to 17 785 cm21 above the ground state, is the next
last to be complete in our assignments forv150. Figures 4
and 5 can be readily compared, because the two sets o
ordinates, namely (R,g) and (q3 ,q2) are close, despite the
fact that they are not expressed in the same units. It sho
be noted, however, that the plots in the (q3 ,q2) plane are
symmetric with respect to theq350 axis, whereas the plot
in the (R,g) plane are not symmetric with respect to th
equilibrium value forR. This reflects the nonlinear relation
ships between the Jacobi and normal coordinates. Kee
this point in mind, it is seen that the agreement between
nodal structure of these two sets of wave functions is go
In particular, the alternation of bending and stretching wa
functions at the bottom of the polyad and then the progr
sive switching to a ‘‘horse shoe’’~ù-like! wave function are
closely reproduced. Clearly, threev i quantum numbers can
not be assigned to each level of this polyad. The remain
of this section, as well as Sec. V devoted to the semiclass
analysis of the Fermi resonance Hamiltonian, are aimed
understanding what happens in the energy gap between t
two polyads. Polyads withv150 will mainly be discussed,
because levels withv1>1 are much less influenced by th
Fermi resonance below the dissociation threshold.

The first point to be noted is that at ‘‘low’’ energy value
~approximately up to polyadP520!, the polyads are very
regular. The lowest energy level in the polyad has an alm
pure bending wave function, whereas the highest ene
level has an almost pure OCl stretching wave function. O
goes from the low energy end to the high energy end of
polyad by withdrawing one node along theg axis, while
adding two of them along theR axis. As long as the neglec
of the Fermi resonanceHF and the Dunham expansion o
Sec. III is valid ~approximately up to polyadP515!, the
‘‘necklaces’’ supporting the ‘‘pearls’’ of the wave function
remain rigorously parallel to theg andR axes~see, e.g., Fig.
3 for polyadP514!. Starting withP515, the ‘‘necklace’’
lying originally along theR axis acquires more and mor
bending character but the wave functions elongated al
this necklace remain the highest energy ones in each pol
For the highest energy polyads studied, the bending con
bution is even larger than the OCl stretching contributio
leading to the pronounced ‘‘horse-shoe’’~ù-type! shape.
This series of wave functions, which corresponds to
highest energy level in each polyad, can be easily follow
up to very high energy values, and is shown in the th
column of Fig. 6.As a result, the highest energy wave fun
tion in each polyad, which at low P values points along t
OCl stretch, andwhich is expected to converge to t
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FIG. 4. Ab initio wave functions of the vibrational levels belonging to polyad@v1 ,P#5@0,30#. The coordinates and scales are the same as in Figs. 2 a
The lowest level~No. 483! can be assigned as~0,0,30! ~pure OCl stretch!, the next one~No. 495! as~0,1,28!, but the third one~No. 502! is mostly a bending
level associated with the new stable periodic orbit@B2# discussed in Sec. V. The fourth level~No. 503! can be assigned as~0,2,26! but the fifth one~No. 510!
has again many quanta in the bending mode and is again associated with the@B2# periodic orbit. The sixth level~No. 512! resembles the~0,3,24! state and
the higher members of this polyad converge toward level 603, which displays the ‘‘horse-shoe’’ù-shape due to the progressive transformation of the@R#
periodic orbit~see Fig. 6!. The energy~cm21! and the rank~#! are given for each level.
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HOCl→HO1Cl dissociation pathway, progressively avoid
this pathway. This result is similar to the case of the HC
molecule40–43 ~where the original purebendingwave func-
tions are observed to progressively avoid the isomeriza
pathway!, except that the OCl stretch here plays the r
assumed by the bending degree of freedom in HCP.

However, pure OCl stretching wave functions have n
definitely disappeared. They instead reappear approxima
in polyad P524—but this time in the middle of the
polyad—and progressively move to thelow energy endof
the polyad: e.g., the pure OCl stretching wave function is
fifth one ~by increasing energy! in polyad P524 and is the
lowest one aboveP530. This in part reflects the fact tha
because of the anharmonicities, the energies of pure
stretching states are now below those of pure bending st
A smooth transition with coupled wave functions is observ
between, say, polyadsP520 andP524, but this new series
of wave functions can then be followed again very clearly
n
e

t
ly

e

Cl
es.
d

p

to very high energy values, as can be checked in the sec
column of Fig. 6. This time, as far as can be understood fr
the comparison with the wave functions of the Fermi re
nance Hamiltonian, this new family of wave functions a
pearsnot to avoid the dissociation pathway, at least up
98% of the dissociation energy.

The fate of the pure bending wave functions is simpl
though not trivial: Indeed, the OCl stretching contribution
these wave functions remains small for the totality of t
studied energy range. Moreover, as already stated, th
wave functions are the lowest energy ones in each polyad
to P529 and then move regularly toward the top of t
polyad. But, at the same time, starting withP526 or so,
these wave functions progressively split into two branch
and acquire a narrow V shape. This is clearly seen in the
column of Fig. 6.

How these quantum observations can be related to
classical dynamics of the system is the subject of Sec. V
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FIG. 5. Wave functions of the levels of polyad@v1 ,P#5@0,30# calculated with the Fermi resonance Hamiltonian. The horizontal and vertical axis are the
stretch (29.5,q3,19.5) and bending (26.7,q2,16.7) dimensionless normal coordinates of the Fermi resonance Hamiltonian. These normal
coordinates are roughly similar to the axes in Figs. 2–4. The visual comparison of the nodal structure of the wave functions in Figs. 4 and 5 showsere
exists a one to one correspondence between these wave functions and that the Fermi resonance Hamiltonian reproduces well the complex progrhe
ab initio vibrational eigenstates~energy and wave functions!. The periodic orbits~POs! are superimposed to show the good correspondence between qua
and semiclassical analysis. The energy~cm21! and the rank~#! are given for each level.
m

r
a

o
of
V. SEMICLASSICAL ANALYSIS OF THE FERMI
RESONANCE HAMILTONIAN

The expression of the classical Fermi resonance Ha
tonian is similar to the quantum one, except thatpi andqi no
longer denote quantum operators, but rather classical coo
nates. Making the canonical transformation to zero-order
tion angle-like conjugate coordinates (I i ,w i), such that

qi5A2I i cosw i , pi52A2I i sinw i , ~5!

one obtains the following form for the classical Fermi res
nance Hamiltonian:
il-

di-
c-

-

H5HD1HF ,

HD5(
i

v i I i1(
i< j

xi j I i I j

1 (
i< j <k

yi jk I i I j I k (
i< j <k<m

zi jkmI i I j I kI m

1 (
i< j <k<m<n

zi jkmnI i I j I kI mI n , ~6!

HF52I 2
1/2I 3 cos~w222w3!S k1(

i
kini1(

i< j
ki j ninj D

@note the close similarity between Eq.~6! and the matrix
elements in Eqs.~2! and ~3!#. It is trivially shown using
Hamilton’s equations, that there are two simple constants
the motion, which are
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FIG. 6. Series of selectedab initio wave functions belonging to polyads ranging fromP518 to P530. The coordinates and scales are the same as in F
2–4. The left, middle, and right columns correspond, respectively, to the@B#, @R2# and@R# periodic orbits. Note that, whenP is odd, the lowest level has one
quanta in OCl stretch becauseP52v21v3 . All the polyads are shown betweenP518 andP525 in order to emphasize the smooth apparition of a new k
of wave functions which converge to an almost pure O–Cl stretch wave functions~middle column!. This family of wave functions is scattered within eac
polyad. In parallel, the highest member~the right column! of each polyad, which is associated with the@R# periodic orbit~see the text, Sec. V!, evolves from
a pure OCl stretch to a ‘‘horse shoe’’ shape. Similarly,~the left column! the bending mode~with one quanta in OCl whenP is odd! is replaced aboveP
528 by a new V-shaped family of wave functions associated with the new@B2# periodic orbit~see the text, Sec. V!.
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I 15 1
2~p1

21q1
2!,

I 52I 21I 35p2
21q2

21 1
2~p3

21q3
2!.

~7!

The classical constants of motionI 1 and I are the clas-
sical counterparts of the good quantum numbersv1 and P
52v21v3 . Therefore, like the quantum spectrum, the sem
classical one can be considered to consist of indepen
subspectra characterized by different values of the
stretching quantum numberv1 , and so the classical Hamil
tonian will be handled as a two-dimensional Hamiltonian
coordinates 2 and 3 parameterized by the value ofI 1 . Fur-
thermore, the classical study is simplified upon the use of
(I ,u) and (J,c) sets of conjugate variables, where
i-
nt

H

e

I 52I 21I 3 , J52I 2 , u5w3 , c5w2/22w3 . ~8!

Of interest are the periodic orbits~POs! of the 2D sys-
tem, that is those classical trajectories, which exactly lo
after some finite time in the (p2 ,p3 ,q2 ,q3) subspace. Since
according to Eqs.~5! and ~8!, one has

q25AJ cos~2u12c!, p252AJ sin~2u12c!,
~9!

q35A2~ I 2J! cos~u!, p352A2~ I 2J!sin~u!,

the POs of interest in this study match one of the two f
lowing criteria.

~a! POs might be associated to a fixed point in the (J,c)
surface of section:J andc remain constant along the trajec
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tory and a loop is accordingly completed each timeu in-
creases by 2p. These POs are simply obtained from Eq.~6!
by solving]H/]J5]H/]c50 for given values ofI 1 and I.

~b! Two other POs are obtained whenJ is a constant
equal to either 0 orI andc is free to vary. These two familie
of trajectories are, respectively, confined to theq250 (J
50) andq350 (J5I ) axes. They correspond to the cas
where no energy is put in the bending motion (J50) or in
the OCl stretching motion (J5I ).

There actually exists another class of POs, known
rational tori~see, e.g., Refs. 44–47!, but they play no role in
the present study. A small number of POs~typically from 2
to 5! are thus found for each values ofI 1 and I. For each of
these POs, the ratioJ/I remains constant~with a value be-
tween 0 and 1! along the trajectory and is a good indicator
the nature of the PO. Indeed, ifJ/I is close to zero, thenI 2 is
close to 0 and the PO corresponds to an almost pure
stretching motion. In contrast, ifJ/I is close to 1, thenI 3 is
close to zero and the PO is an almost pure bending tra
tory. To complete this brief summary of classical dynami
let us at last recall that a PO is said to bestableif neighbor-
ing trajectories oscillate around it and to beunstable if
neighboring trajectories approach or move away from it
ponentially. Moreover, a saddle-node~or tangent! bifurcation
is a point in the (I 1 ,I ,E) space, where a stable and an u
stable PO are created or destroyed simultaneously.

In order to perform the PO analysis for HOCl, we ne
to know what values ofI 1 and I must be assumed in th
search for the POs for a given polyad@v1 ,P#. These rela-
tions are simply obtained from the Einstein–Brillouin
Keller ~EBK! quantization rules,43 which state that the clas
sical counterpart for each quantum state is a trajectory w
integer or half-integer values of action integrals~action inte-
grals can be understood as a linearly independent set of
stant generalized momenta!. It is now well recognized44,45

that I 1 andI, in addition to being constants of the motion, a
also action integrals of the system, and that the correspo
ing quantization rules for nondegenerate vibrations can s
ply be written as

I 15v11 1
2, I 5P1 3

2. ~10!

In other words, the classical POs, which are relevant for
study of the quantum polyad@v1 ,P#, are obtained by replac
ing I 1 by v111/2 andI by P13/2 in Eqs.~6! and~8! and by
subsequently solving]H/]J5]H/]c50 @type ~a! POs# or
assumingJ50 or J5I @type ~b! POs# to obtain the energy
values of the POs.

The result of the periodic orbit analysis for the polya
of HOCl with no excitation in the OH stretching degree
freedom (v150, that is,I 151/2! is illustrated in Fig. 7. The
small insert in the upper part represents the energy of
POs~relative to the quantum ground state! as a function of
the action integralI in the range 0<I<39.5. For the sake o
a simpler comparison, the horizontal axis is, however,
beled with the value of the quantum polyad numberP ob-
tained from the EBK quantization rule in Eq.~10! ~in the
relation I 5P13/2, P is then allowed to vary continuously!.
In the upper part of Fig. 7, the energy of the pure bend
motion @the type~b! PO withJ5I # has been subtracted from
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all the POs, in order to magnify the interesting part of t
E(P) plot shown in the insert. In this plot, the vertica
dashed line indicates the highest polyad with all levels ta
into account in the fit (P531), whereas the limit of the plo
(P538) is the highest polyad with at least one level tak
into account in the fit. The bottom plot gives the variations
the ratioJ/I as a function ofP for the same POs and there
fore reflects the evolution of the nature of the POs for
creasing values ofP.

At low energy, in the range where the Dunham expa
sion is a valid approximation~that is up to about polyadP
515!, only three POs are found for each value ofP. One of
them, namely the type~b! PO with J50 ~see above!, plays
no role in the present study, so that only the two othe
which are stable, need to be taken into account. The low
one is labeled@B# and is simply the pure bending motio
(J5I ). The highest one is labeled@R# and is a fixed point in
the (J,c) surface of section. The ratioJ/I for @R# is equal to
zero at the bottom of the well (I 50, that is,P523/2! and
remains small in the range 0<P<15, so that@R# can safely
be described in that range as an almost pure OCl stretc
motion. The important point to realize is that the quantu
levels of polyad@v1 ,P# always lie between the two outer

FIG. 7. The PO analysis forv150. The upper part shows the energy of th
POs as a function ofP which is preferred toI (I 5P13/2) in order to
simplify the comparison with the quantum results. The inlet shows the
ergy of the POs vsP, while, in the main figure, the energy of the@R# PO has
been subtracted in order to magnify the evolution withP within each polyad.
The POs are discussed in the text. The lower part of the figure shows
ratio J/I ~or J/(P13/2)) vsP. J/I 50 corresponds to the pure OCl stretc
normal mode whileJ/I 51 corresponds to the pure bending normal mod
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most stable POs calculated atI 15v111/2 andI 5P13/2. In
the low energy range, the lowest level in the polyad, wh
according to the previous section has an almost pure ben
wave function, is then close to the@B# PO, whereas the high
est one, with an OCl stretching wave function, lies in t
vicinity of the @R# PO ~see Fig. 7, where the dots represe
the exact quantum levels of polyadsP514 andP530!. This
feature is very general and the@R# and @B# POs are actually
the ‘‘necklaces’’ on which the ‘‘pearls’’ of the wave func
tions of the lowest and highest levels are thread~this point
will be illustrated in the next paragraph for polyadP530!.

As P increases,@R# remains the PO with highest energ
so that the wave functions of the highest levels in the poly
are obtained by adding more and more pearls on@R#. TheJ/I
ratio, however, increases strongly from almost zero at, s
P515 ~approximately where the Dunham expansion start
be unsatisfactory, see Sec. III! to more than 0.5 aboveP
523, reflecting the fact that@R# avoids the dissociation path
way and acquires a marked ‘‘horse shoe’’~ù-type! shape.
The conjunction of the two results—@R# remaining the high-
est PO throughout the spectrum and theJ/I ratio increasing
strongly aboveP515—are the classical interpretations f
the series of wave functions shown in the right-hand colu
of Fig. 6. For the sake of illustration, in Fig. 5, the classic
POs are superimposed on the quantum wave functions
the levels of the Fermi resonance Hamiltonian belonging
polyad P530: the ‘‘horse shoe’’~ù-type! shape and the
necklace role of the@R# PO are very clearly seen in thi
figure.

In Fig. 7, the cross indicates a first saddle-node bifur
tion SN1, which takes place atP521.76. Its energy relative
to the quantum ground state is 13 135 cm21 and the value of
the momentumJ53.67. Therefore, the ratioJ/I at the bifur-
cation is small (J/I 50.16) and the two POs~one stable and
one unstable! created at the bifurcation have a predomina
OCl stretching character. This is the reason why they
called, respectively,@R2# and@R2* #. As P further increases
the energy of the stable@R2# PO approaches that of the ben
ing @B# PO and becomes smaller aboveP527.8. Therefore,
for polyadsP>28, the quantum states are no longer loca
between the classical POs@B# and @R#, but instead, between
@R2# and @R#, as can be seen in Fig. 7. Moreover, the ra
J/I decreases slowly from 0.16 to almost zero, so that
geometrical shape of@R2# almost does not change with in
creasing energy and@R2# is oriented along the dissociatio
pathway. Wave functions with pearls on this new ‘‘nec
lace’’ can be observed clearly forP>24. At P524, the cor-
responding state is the fifth lowest one in the polyad. B
cause of the crossing of the@B# and @R2# POs~at P527.8!,
the wave functions with pearls along this new@R2# ‘‘neck-
lace’’ are those of the lowest level in each polyad aboveP
528. The occurrence of the SN1 bifurcation and the cl
OCl stretch character of the stable@R2# PO born at this bi-
furcation are the classical interpretations for the series
wave functions shown in the middle column of Fig. 6.

On the other hand, the influence of unstable POs
quantum wave functions is much less important than the
fluence of stable POs. Usually, they only affect the wa
functions which are energetically very close to them a
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unless the quantum level and the classical unstable PO
energetically almost degenerate, the wave function is lik
to appear as a mixture of several zero-order states. Thes
the reasons why it is not expected to observe a series of w
functions with pearls along an unstable PO. Still, it is seen
Figs. 4 and 5 that the wave function of the seventh low
level of polyadP530 clearly stretches along@R2* #, which
remains close to the center of the polyad but acquire
strong bending contribution as theP quantum number in-
creases.

A second saddle-node bifurcation, called SN2, tak
place atP524.50 (E514 059 cm21) andJ5I 526.00. Note
that the Fermi resonance Hamiltonian might reproduce
position of this bifurcation with an accuracy somewhat low
than for the SN1 bifurcation. Indeed, SN1 and more p
cisely @R2#, i.e., the new stable PO born at SN1, explain t
sudden increase in the energy range encompassed
polyad, whereas SN2 is associated with more subtle de
of the energy spectrum and requires a better accuracy o
fitted Hamiltonian. Up to SN2, the pure bending motion@B#
characterized byI 5J is a stable PO in (p2 ,p3 ,q2 ,q3) but
not a fixed point in the (J,c) surface of section. Above SN2
this pure bending motion is associated with a fixed point
the (J,c) surface of section, but this point isunstable, and
the corresponding PO is therefore called@B2* #. A stable PO
is simultaneously created at SN2 as a pure bending mo
(J/I 51) and is called@B2#. As P increases,J/I slowly de-
creases and@B2# acquires a very narrow V shape. Quantu
wave functions being mostly sensitive to stable POs, the
result is that the@B# ‘‘necklace’’ with a vertical nodal struc-
ture is continuously replaced by a@B2# ‘‘necklace’’ with a
more and more open V shape. The SN2 bifurcation and
replacement of@B# by @B2# are the classical interpretation fo
the series of quantum wave functions shown in the left-ha
column of Fig. 6. The observation of this feature is ma
somewhat more complex by the fact that, due to the cross
of @R2# and @B2#, the members of this series are the lowe
level of each polyad only up to polyadP529, and then
move upwards inside the polyads forP>30.

All the results discussed in this section can be summ
rized as follows~see Fig. 6 for the wave functions!.

~1! The @R# PO, associated with the highest level in ea
polyad, corresponds to a pure OCl stretching motion
to aboutP515. This family of wave functions, as we
as the@R# PO, subsequently evolve progressively towa
a ‘‘horse-shoe’’ type~ù-type! in the same energy rang
where the SN1 bifurcation occurs.

~2! The SN1 bifurcation creates a newø-shaped family of
wave functions, which progressively converge to a pu
OCl stretching motion, thereby replacing the family
wave functions lying on top of@R#.

~3! The @B# PO is associated with pure bending wave fun
tions up toP528. The SN2 bifurcation destroys the pu
bending type and creates the new V-shaped family
wave functions aboveP528.

VI. COMPARISON WITH EXPERIMENTAL DATA

There are 25 experimentally observed vibrational lev
for HOCl. Twelve vibrational levels have been observed
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TABLE III. Comparison between experimental (J50) and calculated vibrational energies and rotational c
stants. All the quantities are expressed in cm21 and energy levels are given relative to the quantum ground s

(v1 ,v2 ,v3)

Experimental Ab initio

Energy

Rotational const

Energy

Rotational const

B A–B B A–B

0,0,0 0.00 0.4977 19.966a 0.00 0.4967 19.898
0,0,1 724.36 0.4931 19.941b 724.34 0.4917 19.875
0,1,0 1 238.62 0.4962 20.731b 1 238.62 0.4944 20.633
0,0,2 1 438.68 0.4886 19.915c 1 444.10 0.4868 19.852
0,2,0 2 461.21 0.4947 21.436d 2 456.36 0.4924 21.511
1,0,0 3 609.48 0.4973 19.171a 3 609.97 0.4955 19.118
0,3,0 3 668.44 0.4933 22.260c 3 670.39 0.4907 22.517
1,0,1 4 331.91 0.4923 19.148e 4 333.99 0.4903 19.106
1,1,0 4 820.43 0.4954 19.886e 4 821.99 0.4932 19.826
1,2,0 6 013.83 0.4940 20.762e 6 014.82 0.4912 20.650
2,0,0 7 049.81 0.4962 18.385f 7 050.41 0.4943 18.345
3,0,0 10 322.29 0.4957 17.634e 10 322.10 0.4935 17.538
2,2,3 11 472.47 0.4795 19.661g 11 493.84 0.4747 19.941
3,1,0 11 478.01 0.4940 18.223g 11 480.32 0.4915 18.143
2,3,3 12 590.68 0.4779 20.326h 12 612.66 0.4727 20.536
3,2,0 12 612.55 0.4927 18.884i 12 623.35 0.4873 18.918
4,0,0 13 427.39 0.4953 16.895h 13 425.32 0.4918 16.778
4,1,0 14 555.60 0.4937 17.465h 14 556.23 0.4895 17.466
4,2,1 16 352.00j 0.4875 18.005h 16 372.80 0.4823 17.877
5,0,0 16 374.00j 0.4949 16.168h 16 359.26 0.4905 16.109
6,0,0 19 124.14k 0.4952 15.418l 19 121.60 0.4892 15.355
4,4,2 19 137.29k 0.4799 19.250l 19 154.56 0.4728 19.400
5,2,1 19 243.67 0.4863 17.958m 19 261.38 0.4811 16.980
6,1,0 20 193.06 0.4924 16.229m 20 194.78 0.4870 15.670
7,0,0 21 709.07 0.4950 14.660n 21 716.74 0.4880 14.600

aReference 7.
bReference 8.
cReference 9.
dReference 4.
eReference 8.
fReference 6.
gReference 12.
hReference 11.
iReference 10.
jPerturbed band origins (J50, K50) given in Ref. 11. The depertubed band origins are, respectively, 16 36
cm21 for ~5,0,0! and 16 362.66 cm21 for ~4,2,1!. These two levels are strongly mixed near their band origi
The two calculated levels~fifth column! are also significantly mixed and their energies can be permuted
contrast, the rotational constants are those of deperturbed vibrational levels~in both pairs of columns! in order
to check the assignments.

kPerturbed band origins (J50, K50) to be compared withab initio values in which vibrational interactions ar
taken into account. The deperturbed band origins are 19 126.23 and 19 135.20 cm21, respectively. These two
zero-order levels are coupled by an anharmonic matrix element of 4.814 cm21 ~see Ref. 46!.

lReference 46.
mReference 47.
nReference 14.
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absorption with a FT spectrometer up to 10 300 cm21,5–9

eight levels have been observed by Intra-Cavity Laser
sorption ~ICLAS!,10–12 and five have been observed b
double resonance pumping leading to the dissociation
OH1Cl, the OH product being detected by laser-induc
fluorescence~LIF!.13–15,46,47Table III gives a comparison be
tween the experimental and the calculated vibrational e
gies and rotational constants. The comparison between
dicted and observed vibrational energies and rotatio
constants enables a secure (v1 ,v2 ,v3) vibrational assign-
ment. For oscillator strength and Franck–Condon reasons
the observed levels have only few quanta in the bending
the OCl stretch modes. Consequently these observed le
-

to
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els

are not sensitive to the Fermi interaction discussed in Sec
and can be assigned with threev i quantum numbers. The
calculated rotational constants have been obtained for
energy levels by a direct energy calculation for variousJ
~andK! values and, at higher energy, by extrapolation of
vibrational dependence observed at low energy~see below!.
The direct calculation is reliable up to typically 12 000
14 000 cm21 because, at higher energies, there are too m
rovibrational perturbations. About 100 A and 130 B valu
have been securely determined forab initio vibrational levels
assigned with threev i quantum numbers. A fit of these rota
tional constants allows a determination of the vibrational
pendence, and then to predict the rotational constants
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higher vibrational levels. Thea and g parameters are no
significantly different from those given in Table IV of Ref. 8
except that we determined approximatelyg22

A

510.06 cm21. The rotational constants thus obtained a
reported in Table III. It should be noted that the calcula
constants are almost systematically lower than the exp
mental values by typically 0.3% at low energy and up
1.5% close to dissociation. The reasonable agreement
tween the predicted and measured rotational constants
firms the validity of the vibrational assignment of expe
mental levels. It should be noted that the other lev
calculated in the vicinity of each observed levels have ca
lated rotational constants which differ significantly from t
measured ones.

Several ‘‘local’’ anharmonic resonances have been
ferred from the analysis of the experimental spectra for n
zero values of the total angular momentum,J andK. Indeed,
the ~3,1,0! level was found to interact with the~2,2,3! level
via a fifth-order Fermi interaction (Dv55) with a matrix
element of 0.51 cm21,12 for K52 and 3. The correspondin
anharmonic operator can beq1q2q3

2. Similarly, for J511,
K54, the level~3,2,0! interacts with the level~2,3,3! via the
same fifth-order interaction but the matrix element was
given.12 Moreover, around 16 360 cm21 the level~5,0,0! in-
teracts with the level~4,2,1! via a fourth-order anharmoni
interaction11 for K51. The matrix element of 13.2 cm21

should correspond to theq1q2
2q3 operator. Last, the leve

~6,0,0! interacts with the level~4,4,2! with an anharmonic
matrix element of about 5 cm21. This interaction can be
interpreted either as a second-order interaction@stepwise via
the ~5,2,1! level# due to theq1q2

2q3 operator or a first orde
interaction of order eight (Dv58). As noted these anhar
monic interactions occur for nonzeroJ and K, because, for
these values the energy gap becomes comparable to th
harmonic matrix element. These anharmonic interacti
have been found not to be significant forJ50, both in theab
initio and Fermi-resonant wave functions. However, in
cent work, involving a collaboration with Chen and Gu
some of these interactions are found forJ.0.48 These inter-
actions do not occur at exactly the same values ofJ andK as
seen experimentally, due to slight inaccuracies in the po
tial energy surface.

VII. CONCLUSION AND PERSPECTIVES

We have successfully analyzed the complete set of
brational levels of HOCl almost up to~and partially above!
the HOC1 dissociation channel into OH1Cl located at
19 290 cm21. This has been possible in part because of
relative simplicity of the vibrational motions in this mo
ecule. We now have a reliable, analytical description of p
of the PES of HOCl, which enables the interpretation of
dynamical properties up to about 98% of the dissociat
energy. However, this analytical effective Hamiltonian isa
priori unable to describe the photodissociation dynamics
cause it does not have the correct asymptotic behavio
should also be noted that these results deal only with r
tionless levels while room temperature experiments are c
cerned withJ values up to 30 andK values ranging from 0 to
e
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5. Moreover, it is pointed out that, close to the dissociat
threshold, the accuracy of theab initio vibrational energies
ranges from a few cm21 for the levels with most of their
energy in the OH stretch to a few tens of cm21 for the others
levels, i.e., several orders of magnitude less than required
a quantitative comparison with the results of eigenstate
solved experiments~which are typically accurate to within
0.1 cm21!. In contrast, the average properties and the wi
of distributions can reasonably be predicted fromab initio
calculations.16,17

The analysis of the HOCl vibrations of relevance to t
simple OCl bond cleavage indicates mildly coupled motio
with, however, significant manifestations of Fermi res
nances. While this has made the present analysis fairly e
it should be noted that it has also made the calculation of
very narrow resonance widths very demanding.16,20 Further
studies on the new potential, which contains the HClO i
mer, are under way and the characterization of these isom
ization states may present greater challenges for an effec
Hamiltonian.
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