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On the application of canonical perturbation theory to floppy molecules
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Canonical perturbation theory~CPT! is a powerful tool in the field of molecular physics. It consists
of a series of coordinate transformations aimed at rewriting the Hamiltonian in a simpler form
without modifying the geometry of the phase space. The major achievement of CPT is the
straightforward derivation of relations between the physically meaningful parameters of potential
energy surfaces and the coefficients of the so-called effective Hamiltonians. While most of the
studies performed up to date deal with surfaces expanded in polynomial series around a single
minimum, CPT has also been applied to mixed polynomial/trigonometric expansions in the
treatment of torsions. In this latter case, however, the accuracy of CPT has not been verified. The
goal of this article is to suggest some modifications of the procedures, which allow for the successful
application of CPT to floppy molecules with several equilibrium positions and nonpolynomial
expansions. The levels belonging to all the wells or located above the saddle points are satisfactorily
reproduced by the perturbative Hamiltonian. More precisely, the vibrational modes are sorted into
two categories, namely oscillator-like ones and hindered-rotor-like ones. The application of CPT
enables the expression of the Hamiltonian in terms of the good quantum numbers and/or classical
constants of the motion associated with the oscillator-like modes. The perturbative Hamiltonian then
acts on the reduced dimensional space of the hindered-rotor-like modes. The validity and accuracy
of this approach are tested on two-dimensional and three-dimensional models mimicking,
respectively, nonlinear and linear HCN. ©2000 American Institute of Physics.
@S0021-9606~00!00101-X#
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I. INTRODUCTION

Since the pioneering work of Nielsen1 in the early fifties,
canonical perturbation theory~CPT! has been a powerfu
tool in the field of molecular physics. Whether based on
original quantum approach due to Van Vleck,2–8 the classical
method developed by Birkhoff9 and later extended by
Gustavson10 ~see also Refs. 11 and 12 for a good descr
tion!, or the more recent classical procedures based on
algebra,13–19 the purpose for applying CPT is always th
same: the goal is to find a sequence of canonical~or unitary!
transformations of the coordinates, which help write t
Hamiltonian in a simpler form. Most of the time, this
obtained by finding almost conserved quantum number
approximate classical constants of the motion and in expr
ing the Hamiltonian in terms of these quantities. The adv
tage for doing so is twofold. First, the solutions~eigenvalues
and wave functions! can be obtained with sufficient accurac
using a significantly smaller basis set than is needed to
tain the solutions in the original representation. More imp
tant, however, is the fact that the conserved quantities a
for a much simpler and deeper study of the dynamics~bifur-
cations, intramolecular vibrational energy redistributi
~IVR!, chaos, etc.! of the system, especially when associat
with the so-called Einstein–Brillouin–Keller~EBK! semi-
classical quantization rules.20–22 It is also to be noted tha
even in the cases where the perturbation scheme is not e

a!Author to whom correspondence should be addressed; electronic
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tively applied to the studied system, the so-called ‘‘spect
scopic Hamiltonians,’’ whose forms are just the expec
results of CPT, provide remarkably accurate fits over la
energy ranges. The most well-known examples of such sp
troscopic Hamiltonians are the Dunham expansion,
Fermi resonance Hamiltonian, and the Darling–Dennis
resonance Hamiltonian~see, for example, Refs. 23–35 fo
some studies dealing with SO2, NO2, CO2, CS2, HOCl,
CHD3, and H2S).

Up to now, CPT has been shown to work for some lo
order polynomial surfaces, which are expected to mo
atomic~see, for example, Ref. 36! or molecular systems~see,
for example, Refs. 11,37–42! from the regular up to the
strongly chaotic regions, and for a variety of accurate pot
tial energy surfaces~PES! for molecules like H2O, SO2,
CO2, HCN, HCP, C2H2 , H2CO, and AlF3 obtained either
from fits or ab initio calculations~see, for example, Refs
7,8,43–53!. In each case, the energy levels and wave fu
tions of the exact and perturbative Hamiltonians were sho
to be in good agreement. The procedure in the exam
quoted above involves~i! expansion of the PES in Taylo
series around the minimum energy configuration,~ii ! appli-
cation of CPT to the polynomial expression thus obtain
and ~iii ! assumption that the zero-order Hamiltonian can
taken as the sum of the harmonic oscillators associated
each degree of freedom. This procedure, however, cle
does not work for floppy molecules, that is, for molecul
with several equilibrium positions separated by barri
which are not too high. The principal reason is that the m
il:
© 2000 American Institute of Physics
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tion is too different from one well to another to be describ
by a single oscillator. For example, the studies dealing w
HCN mentioned above44,45,47were only aimed at reproduc
ing the levels in the HCN well and not in the CNH one.

Some tools, based on a matrix version of the Feshb
approach54 or on the vibrationally adiabatic
approximation,55–61 have been developed for floppy system
and applied to the HCN/HNC and acetylene/vinylidene i
mers. However, both methods are based on perturba
theory, not oncanonical perturbation theory, and are no
expected to be accurate enough for spectroscopic purpos
the field of highly excited vibrational states. On the oth
hand, CPT has been applied to mixed polynom
trigonometric expansions in the treatment of torsions.62–69

Yet, the purpose for doing so was principally to relate t
experimentally accessible molecular parameters in the
turbative~or effective! Hamiltonian to the physically signifi-
cant molecular parameters in the untransformed Hamilton
in order to improve the fittings of the absorption frequenc
of the studied molecules~almost exclusively methanol!. The
energy levels of the unperturbed Hamiltonian were neit
calculated nor compared to those of the perturbative Ha
tonian, so that the actual accuracy of CPT remains unkno
Moreover, the barriers in the torsional problem are very l
~of the order of 1 quantum of excitation in the torsion
mode70! compared to the barriers in HCN or acetylene~sev-
eral tens of quanta in the bending mode! and convergence
properties might be expected to be more problematic in
latter case.

The purpose of the present article is to show that C
might lead to very accurate perturbative Hamiltonians e
for floppy molecules, provided that some changes are m
in the procedures used up to now. Following the ‘‘mix
diagonalization’’ scheme introduced by Hernandez,71 the
modes are first sorted into two categories, which, in our p
cedure, can be described as oscillator-like ones~for example,
the two stretching degrees of freedom in HCN/CNH! and
hindered-rotor-like ones~for example, the bending in HCN
CNH!. As in the usual procedure, the Hamiltonian is e
panded as a polynome in terms of the oscillator-like mod
and the goal of CPT is to rewrite the Hamiltonian in terms
the action integrals and/or the good quantum numbers a
ciated with these degrees of freedom. In contrast, much m
general expressions are tolerated for hindered-rotor-like
ordinates, but no classical constant of the motion or go
quantum number is searched~nor is expected to exist! for
these latter coordinates.

The remainder of this article is organized as follows: t
procedure we suggest for applying CPT to floppy molecu
is described in Sec. II. It is presented in the context of
Birkhoff–Gustavson perturbation theory, but extension to
other CPTs is straightforward. In Sec. III this scheme
shown to give excellent results for a two-dimensional mod
which mimics the CH stretching and the bending degree
freedom of nonlinear HCN. Finally, a more complex thre
dimensional model, where the degeneracy of the bend
motion of linear HCN is explicitly taken into account,
handled in Sec. IV and CPT is again shown to be very
curate.
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II. DESCRIPTION OF THE PERTURBATION
PROCEDURE

A. The „common … perturbative scheme

Assume that« is an arbitrarily small parameter and th
the HamiltonianH(p,q) of the system is partitioned, accord
ing to some choice discussed later in this section, in the fo

E5H~p,q!5(
n

«nHn~p,q!. ~2.1!

Assume further that a canonical transformation from
~p,q! set of conjugate coordinates to a new~P,Q! set is de-
fined through the generating functionF(P,q), such that

F~P,q!5Pq1«sW~P,q!, ~2.2!

wheres is an integer known as the order of the perturbat
and W some function ofP and q. Last, assume that the re
sulting HamiltonianG~P,Q! is expressed in the same form a
the initial Hamiltonian

E5G~P,Q!5(
n

«nGn~P,Q!. ~2.3!

Then, a simple Taylor expansion9–12 shows that for each
value ofn

Gn5Hn1 (
~ i 1 ,i 2 ,...,i F!

1

Pki k! H ] iHn2 is

Pk]Pk
i k )

k51

F S ]W

]qk
D i k

2
] iGn2 is

Pk]qk
i k )

k51

F S ]W

]Pk
D i kJ

q5Q
p5P

, ~2.4!

whereF is the number of position coordinates, (i 1 ,i 2 ,...,i F)
is a set ofF positive integers,i is defined asi 5 i 11 i 21¯

1 i F , and the sum in Eq.~2.4! runs for all those values o
( i 1 ,i 2 ,...,i F) such that 1< i<n/s. In particular, for each
value of n smaller than s, there exists no such se
( i 1 ,i 2 ,...,i F), so that

;n,s, Gn5Hn . ~2.5!

Application of CPT consists of the iteration of the pr
cedure outlined in Eqs.~2.1! through ~2.4! for values ofs
increasing froms51 up to some maximum values5S. This
means that the output functionG obtained from Eq.~2.4! at
the end of steps is used as the input functionH in Eq. ~2.1!
at the beginning of steps11. After iterationS is completed,
the termsGn with n.S, which are expected to be negligible
are dropped. The resulting perturbative Hamiltonian is th

H5(
s51

S

Gs . ~2.6!

The goal for applying CPT is to obtain a perturbative Ham
tonian in Eq.~2.6!, which is both close to the initial one an
much easier to handle. In the cases where CPT is succes
this is made possible by the fact that approximate const
of the motion ~also called ‘‘secular’’ or ‘‘almost secular’’
terms! are hidden behind the apparent complexity of the i
tial Hamiltonian. The canonical transformations in Eqs.~2.2!
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through ~2.4! are precisely aimed at rewriting the Ham
tonian in terms of these constants of the motion.

It should then be clear that the key features in CPT
the initial partitioning into a sum ofHn’s in Eq. ~2.1! and the
choice of the generating functionsW in Eq. ~2.2!. Indeed,
one has to make sure in the initial partitioning thatH0 con-
tains only secular terms and, at each orders>1, that the
function W in Eq. ~2.2! be chosen such that the resultingGs

obtained from Eq.~2.4! also contains only secular terms. Th
reason is, according to Eq.~2.5!, that terms withn,s are no
longer modified by the perturbation calculations at ordes,
so that a bad choice forW and the appearance of nonsecu
terms in a givenGs cannot be corrected at higher orders.

The general scheme described in Eqs.~2.1! through~2.6!
is common to the standard Birkhoff–Gustavson perturba
theory9–12 ~BGPT! and the modified procedure we propo
for the study of floppy molecules. The two methods, ho
ever, differ precisely in the expressions allowed for the init
HamiltonianH, in the choice of the initial partitioning in Eq
~2.1! and of the secular terms to be kept in the perturba
Hamiltonian, and therefore in the generating functionW in
Eq. ~2.2!. The standard BGPT procedure is summarized
subsection B just below, in order to emphasize the diff
ences with the modified procedure described in subsectio
For the sake of clarity, only the case where all the nonlin
resonances are negligible is treated, but the results ex
readily to the cases where Fermi or other resonances mu
taken into account.

B. The standard BGPT procedure

According to standard BGPT, both the potential and
netic energies must consist of polynomial expansions aro
a minimum of the potential energy. Whenever necess
Wilson’s GF procedure72 is applied, so that the lowest orde
~quadratic! terms are reduced to a sum of uncoupled h
monic oscillators. This sum is taken asH0 . Next, each term
of the expansion of total degreen (n>3) is arbitrarily put in
Hn22 . Equation~2.4! shows that ifW is always chosen as a
homogeneous polynome of degrees12 at orders of pertur-
bation theory, then all theHn andGn remain homogeneou
polynomes of degreen12. The method9–12 for finding the
explicit expression forW at some given orders of BGPT first
requires thatHs be rewritten in terms of a new set of coo
dinates, which are just the classical analogs of the quan
creation and annihilation operators, and which we theref
call a anda1

a5
1

A2
~q1 ip! a15

1

A2
~q2 ip!. ~2.7!

One obtains

Hs5(
m,l

Am,lS )
k51

F

ak
mk~ak

1! l kD , ~2.8!

where the positive~or null! integers mk and l k satisfy
(k51

F mk1 l k5s12. If all the nonlinear resonances can
neglected, then the secular terms to be kept inGs are those
which satisfymk5 l k ~for k51,2,...,F). This is clearly under-
stood when referring to the quantum picture, since they
e
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precisely the terms of the diagonal Dunham expansion
order to obtain this result, one just needs to takeW in the
form

W~P,q!5 (
mÞ1

Am,l

Pk51
F ~qk1 iPk!

mk~qk2 iPk!
l k

(k51
F ivk~mk2 l k!

, ~2.9!

wherevk is the fundamental frequency of modek, andmÞl
means that at least onemk is different from the associatedl k .
At the end of the perturbation calculations, the resulting p
turbative Hamiltonian in Eq.~2.6!, therefore, is

H5(
k

vkI k1(
k< l

xklI kI l1 (
k< l<m

yklmI kI l I m1¯ ,

~2.10!

whereI k denotes the action integral of thekth harmonic os-
cillator

I k5akak
15 1

2~pk
21qk

2!. ~2.11!

Stated in other terms, the perturbative Hamiltonian is jus
polynomial expansion in terms of a complete set of consta
of the motionI k , the terms with total powern in the actions
I k being obtained at order 2n22 of perturbation theory.

C. The modified procedure

It is clear that the procedure described in the previo
subsection cannot satisfactorily handle a PES with sev
equilibrium positions. The principal reason is that the moti
is too different from one well to another to be described b
single oscillator. A prototypical example is the HCN/CN
molecule, for which there exist several global surfaces.73–78

When moving along the minimum energy path~or reaction
path!, one observes two minima separated by a saddle po
The deepest minimum corresponds to the linear HCN i
mer, whereas the second minimum, located roughly 5
cm21 above the first one, corresponds to the linear CN
isomer. The barrier to isomerization is found at an an
HCN of approximately 80° and an energy about 15 000 cm21

above the HCN minimum. When considering the bend
degree of freedom alone, the analogy with the problem of
hindered rotor is striking: motion in each well~i.e., below the
saddle point! can be described as a libration, whereas mot
above the saddle point corresponds to the rotational mo
of the hindered rotor.

Accordingly, the principal idea at the basis of the mod
fied procedure is to sort the degrees of freedom into t
categories, namely oscillator-like ones@hereafter denoted
~p,q!# and hindered-rotor-like ones@hereafter denoted
~j ,C!—be careful, however, that the~j ,C! are vibrational co-
ordinates, not rotational ones#, and to apply CPT only to the
former ones. To do so, one starts the perturbation proce
with a Hamiltonian in the form

E5H~p,q,j ,C!

5 (
k51

N
vk

2
~pk

21qk
2!1(

u,v
S)

k
pk

ukqk
vkD f u,v~ j ,C!, ~2.12!
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whereN is the number of oscillator-like coordinates and t
f u,v might be any function of the~j ,C! hindered-rotor-like
coordinates. For most systems~like the HCN/CNH or
acetylene/vinylidene molecules! there exists a single
hindered-rotor-like degree of freedomC and Eq.~2.12! is
simply arrived at by~i! expanding for each value ofC the
Hamiltonian in Taylor series in terms of the deviations of t
oscillator-like coordinates from their value at the reacti
path, and~ii ! Fourier transforming the result with respe
to C.

Let us now assume thatHs , at the beginning of the
calculations at some orders of perturbation, is expressed in
form similar to Eq.~2.8!, plus some general dependence
~j ,C!

Hs5(
m,l

Am,lgm,l~ j ,C!S )
k51

N

ak
mk~ak

1! l kD . ~2.13!

Thegm,l are known functions of the~j ,C! hindered-rotor-like
coordinates, but the condition(k51

N mk1 l k5s12 is no
longer required, in contrast with subsection B. If the nonl
ear resonances are negligible, the terms to be kept in
perturbative Hamiltonian~i.e., in Gs) are again those with
mk5 l k ~for k51,2,...,N). Indeed, these terms depend on
on the hindered-rotor-like coordinates and the action in
grals associated with theN oscillator-like degrees of free
dom. Straightforward calculations show that this might
obtained with a generating functionW transforming~p,q!
and ~j ,C! into ~P,Q! and ~J,c! rather similar to the standar
BGPT procedure in Eq.~2.9!, that is

W~P,J,q,C!5 (
mÞ l

Am,lgm,l~J,C!

3
Pk51

N ~qk1 iPk!
mk~qk2 iPk!

l k

(k51
N ivk~mk2 l k!

, ~2.14!

provided, however, that the initial choice for H0 does not
depend on the hindered-rotor-like coordinates. This condi-
tion is absolutely crucial : if it is not fulfilled, then Eq.~2.4!
~where PN11 ,...,PF must obviously be understood a
J1 ,...,JF2N , qN11 ,...,qF as C1 ,...,CF2N , and so on!
shows that a large number of spurious terms are left inGs at
each orders of perturbation theory. Therefore, the natur
choice consists in takingH0 as the sum of theN uncoupled
harmonic oscillators associated with the oscillator-like d
grees of freedom, that is, the first term in the right-hand s
of Eq. ~2.12!. One might feel uncomfortable that the zer
order Hamiltonian contains strictly no information concer
ing the hindered-rotor-like degrees of freedom, but the
merical examples in the next sections show that this
actually of no consequence. The choice for the partition
into higher-order termsHn (n>1) might appear to be tricky
because one does not know how to handle the funct
f u,v( j ,C) as far as some ordering is required~the ordering
proposed in the framework of the torsional problem62–69will
be shown in the next section to be a bad choice for
present problem!. Here, it must however be stressed th
such an ordering into increasingHn’s (n>1) is not compul-
sory, but is instead only aimed at simplifying somewhat
-
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calculations. For example, the choice that the initialHn’s
(n>1) be homogeneous polynomes of degreen12 in stan-
dard BGPT insures that all theHn and theW remain homo-
geneous polynomes, whatever the orders of the perturbation,
and consequently that each term

)
k51

F

I k
mk

appears only once in the perturbation scheme, namely a
der 2(m11m21¯1mF)22. It is therefore simply sug-
gested that in the modified procedurethe sum of the N har-
monic oscillators be put in H0 and all the remaining terms
that is, the second term in the right-hand side of Eq. (2.1
in H1 . The price to pay is a slightly higher number of term
to handle, which is not a serious drawback—and this pro
dure is much less dangerous than tempting some hazar
ordering. One must also be aware that the same term m
appear at different orders of perturbation theory~that is, in
variousGs): these contributions just have to be summed
at the end of the perturbative scheme, leading to a pertu
tive Hamiltonian of the form

H5E0~ j ,C!1(
k

vk~ j ,C!I k1(
k< l

xkl~ j ,C!I kI l

1 (
k< l<m

yklm~ j ,C!I kI l I m1¯ . ~2.15!

This expression is a polynome in terms of theN constants of
the motionI k associated with the oscillator-like degrees
freedom, whereas the dependence on the F–N hinde
rotor-like degrees of freedom might be much more compl
Stated in other terms, one constant of the motion is lost
each hindered-rotor-like degree of freedom. It is to be no
that the loss of one simple constant of motion is also
price to pay for taking into account one nonlinear resona
between the zero-order normal modes, even in the usual
of a PES with a single equilibrium position. This similarity
due to the fact that both a saddle point and a nonlinear re
nance might lead to bifurcations, that is, to discontinuities
the phase space structure and the zero-order descriptio
the system.

For the sake of illustration, the modified procedure
applied in the next section to a 2D model, which mimics t
CH stretching and the bending degrees of freedom of n
linear HCN, and in Sec. III to a more complex 3D mod
where the degeneracy of the bending motion of linear H
is explicitly taken into account.

III. APPLICATION TO A TWO-DIMENSIONAL MODEL
FOR NONLINEAR HCN

The model Hamiltonian is taken to be

H5T1V,

\2T5ApR
21Bpg

2, ~3.1!

V5V1 cosg1V2 cos 2g1~ f RR1 f RRgg cosg!

3~R2a2b cos 2g!21 f RRR~R2a2b cos 2g!3,
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where (pR ,R) and (pg ,g) are two sets of conjugate coord
nates, which mimic, respectively, the distance betweenH
and the center of massG of CN and the HGC angle in HCN
~R andg are so-called Jacobi coordinates!. The very simple
form of T in Eq. ~3.1! is assumed in order for full quantum
mechanical calculations to remain affordable to us~see be-
low!. Numerical values forA and B are taken to beA
517.6 cm21 Å2 and B56.0 cm21. On the other hand,V in
Eq. ~3.1! is one of the simplest surfaces displaying two we
centered aroundg50 andg5p and connected by a curve
reaction path~or minimum energy path: MEP!. Here, the
MEP is simply characterized by

RMEP~g!5a1b cos 2g, ~3.2!

but in more general cases, its characterization requires
the value of each oscillator-like coordinate along the reac
path be expanded in a complete Fourier series in terms o
hindered-rotor-like coordinate. The valuesa51.4 Å, b50.3
Å, V1522000 cm21, andV2526000 cm21 are chosen so
as to reproduce, at least qualitatively, the principal featu
of HCN: in particular, the saddle point and the second
minimum are calculated at 14 083 and 4000 cm21 above the
absolute minimum, respectively. Moreover, the values of
force constants for the stretching degree of freedom (f RR

5145 000 cm21 Å22 and f RRR52115 000 cm21 Å23) and
for the stretch–bend interaction (f RRgg521800 cm21 Å22)
are chosen so as to lead to realistic parametersv, k, andl
~see below!. A contour plot of the surfaceV is given in Fig.
1 and is seen to compare well with similar figures for HC
for example, Fig. 4 of Ref. 77.

Application of the canonical transformation to the ne
sets of conjugate coordinates (p,q) and (j ,C), according to

q5r~R2RMEP~g!!, pR5rp
~3.3!

C5g, pg5 j 2r
]RMEP

]g
p,

FIG. 1. Contour plot of the potential energyV in Eq. ~3.1!. The contours
~solid lines! are separated by 2000 cm21 and range from 2000 to 20 000
cm21 above the absolute minimum atR51.7 Å andg50. The two other
extrema found atR51.7 Å and g5180° ~secondary minimum! and R
51.10 Å andg594.8°~saddle! are located, respectively, at 4000 and 14 0
cm21 above the absolute minimum. The position of each extremum
marked with a black dot. The dashed line indicates the minimum ene
path ~MEP! linking the three of them@see Eq.~3.2!#.
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where r5( f RR/(A12b2B))1/4, leads to the following ex-
pression for the Hamiltonian:

\2T5
v

2
p21B j21C sin~2C! jp1D cos~4C!p2,

~3.4!

V5
v

2
q21kq31V1 cosC1V2 cos 2C1lq2 cosC,

with:

v52 f RRr22'3291.56 cm21,

C54bBr'67.58 cm21,

k5 f RRRr
23'2139.06 cm21, ~3.5!

D522b2Br2'295.15 cm21.

l5 f RRggr22'220.43 cm21,

The couplings between the two modes~terms withC, D, and
l! are seen to be strong. Using the convention that\51, H is
next partitioned intoH01H1 , where:

H05
v

2
~p21q2!,

~3.6!

H15kq31V1 cosC1V2 cos 2C1lq2 cosC1B j2

1C sin~2C! jp1D cos~4C!p2.

The modified CPT procedure described in the previous s
tion is then applied to the Hamiltonian in Eq.~3.6!. The
general result of Eq.~2.15! is obtained here in the form

H5 (
k,m,n

ak,m,nI kj m cos~nC!. ~3.7!

Although a cutoff value of 10210cm21 was used in actua
calculations, there are too many coefficientsak,m,n to present
an exhaustive table thereof. Still, Table I gives a flavor
how some parameters evolve with increasing perturba
order. As could be expected, the general trend is that
contribution to each parameter decreases as the perturb
order increases~note, however, that a correction of 15.6
cm21 to the fundamental frequencya1,0,0 is calculated at
third order of perturbation theory!.

The remainder of this section is devoted to a discuss
of the accuracy of the perturbative Hamiltonian in Eq.~3.7!.
A straightforward method for comparing two Hamiltonian
which are not expressed in terms of the same coordina
consists in comparing the spectra of their quantum analo
This is admittedly not a trivial problem from the theoretic
point of view, even for the simple polynomial expressio
obtained from usual BGPT,41,79–81 because conjugate pos
tion and momentum operators do not commute. From
practical point of view, however, it is noted that the vario
ordering possibilities lead to very close spectra52 ~a more
detailed discussion of this point will be presented somew
later in this section!. The results presented below have be
obtained by quantizing each classical termj m cos(nC) ac-
cording to Weyl’s rule
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TABLE I. Contributions~in cm21! to the coefficients of the terms inI, I 2, j 2, j 4, cosC, cos 2C, and cos 4C
in the expression of the perturbative HamiltonianH in Eq. ~3.7! calculated for increasing perturbation orders.
The total coefficients of the HamiltonianH in Eq. ~3.7! at a given orders are obtained by summing all the
contributions from 0 up tos. For example, the fundamental frequencya1,0,0 ~coefficient of the termI! at
perturbation orders53 is calculated to bea1,0,053291.560010.000020.7193115.613153306.4538 cm21.

Coefficient→
Term→

Orders ↓

a1,0,0

I
a2,0,0

I 2
a0,2,0

j 2
1053a0,4,0

j 4
a0,0,1

cosC
a0,0,2

cos 2C
a0,0,4

cos 4C

0 3291.5600 0.0000 0.0000 0.0000 0.0000 0.0000 0.00
1 0.0000 0.0000 6.0000 0.0000 22000.0000 26000.0000 0.0000
2 20.7193 222.0310 20.3469 0.0000 0.0000 0.0000 0.000
3 15.6131 0.0251 0.0100 0.0000 0.0000 0.0000 0.00
4 0.2461 20.0011 20.0006 21.8441 21.1526 0.0320 4.6744
5 0.0649 0.3999 0.0000 0.1066 0.0454 0.000020.4644
6 20.1789 0.0088 20.0010 20.0279 20.0010 0.0000 0.0172
7 0.0042 0.0048 0.0001 0.0114 0.0096 0.008820.0300
8 20.0037 20.0125 0.0000 20.0457 20.0044 0.0000 0.0060
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j m cos~nC!→ 1

2m (
k50

m S m
k D ~ j k cos~nC! j m2k!. ~3.8!

The spectrum for the exact Hamiltonian in Eq.~3.4! was
obtained by direct diagonalization of a 1654*1654 matrix,
each vector of the basisuv& ^ um& being the direct product o
a vector of the harmonic oscillator basis (0<v<16) and of
the free rotor basis (2101<m<101). The harmonic oscil-
lator basis is obviously used for thep andq operators and the
free rotor basis for thej andC operators. The first 158 level
up to 15 000 cm21 above the ground state are estimated to
converged to within less than 0.2 cm21. Each state was as
signed two quantum numbers (vs ,vb) and a localization flag
~localized in theg50 well, localized in theg5p well, or
delocalized! through inspection of the wave functions. On
hundred thirty-six out of these 158 levels are localized i
one of the wells, while the remaining 12 levels are deloc
ized over the two wells. These 12 levels have no excitat
in the stretching degree of freedom (vs50). In contrast, the
stretching quantum numbervs , which is the quantum coun
terpart of the classical action integralI, is by construction a
conserved quantity for the perturbative Hamiltonian in E

TABLE II. Difference between the assigned spectra of the exact Ha
tonian in Eq.~3.4! and the perturbative Hamiltonian in Eq.~3.7! for increas-
ing orders of perturbation theory. Columns 2 and 3 give, respectively,
average absolute and maximum errors for the first 100 levels and colum
and 5 the average absolute and maximum errors for the first 158 levels
blanks in these later columns fors51 to s53 are due to the fact that fo
these lowest values ofs the number of localized and delocalized states is
the same for the exact and perturbative Hamiltonians.

Orders

100 levels 158 levels

Average Max Average Max

1 146.35 318.64
2 4.91 25.25
3 10.90 40.03
4 1.36 15.37 1.99 15.37
5 1.72 17.23 2.72 19.91
6 0.83 12.79 1.34 14.37
7 0.86 13.81 1.42 16.46
8 0.79 12.54 1.27 14.60
e

o
l-
n

.

~3.7!. Therefore, one only needs to diagonalize six mu
smaller matrices of size 121*121 (260<m<60), one for
each value ofvs50,1,...,5, in order for the same 158 levels
be converged to within less than 0.001 cm21. Assignment of
the spectrum is also much simpler.

The average absolute difference between the two
signed spectra is presented in Table II for increasing per
bation orders. More precisely, the error for the first 10
states is given fors ranging from 1 to 8, whereas the error fo
the first 158 states is given only for values ofs larger than 4,
because for lower values the distribution into localize
delocalized states is not the same for the exact and pertu
tive Hamiltonians. It is seen that the convergence is exc
lent, the error for the first 158 states being as low as 1
cm21 at fourth order of perturbation theory. The error
eighth order of perturbation theory is further plotted in F
2. It is seen that the largest errors occur in pairs of oppo
values. For example, levels #76 and #77 are calculated
respective errors of212.5 and112.1 cm21, levels #137 and
#139 with respective errors of210.1 and19.2 cm21, and so
on. Looking at the assignments, one notices that these le
are, respectively, described as (vs ,vb)5(0,23) and~1,15!
~well around g50! for the first pair of states, (vs ,vb)
5(2,15) and~1,23! ~well aroundg50! for the second one

l-

4
he

t

FIG. 2. Plot of the errors~in cm21! between exact and perturbative~eighth
order! energy values as a function of the position of the level in the sp
trum for the model Hamiltonian discussed in Sec. III.
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TABLE III. Difference between the exact and perturbative energy values of some selected bending statesvb)
as a function of the perturbation orders for the nondegenerate model of Sec. III. The second column indic
whether the state is localized in theg50 or in theg5p well. The third column contains the exact quantu
energy of the state in cm21 relative to the ground level. The errors in the last eight columns are express
cm21. The sudden increase of the error observed at third order of perturbation theory is probably conne
the large correction computed at the same order for the fundamental frequencya1,0,0 ~see Table I!.

vb g Energy s51 s52 s53 s54 s55 s56 s57 s58

1 0 558.66 1.91 20.56 0.11 20.13 20.05 20.09 20.08 20.08
15 0 7 502.63 198.26 8.32 18.10 1.52 2.53 0.11 0.56 0.
30 0 13 124.35 291.15 14.35 28.55 2.95 5.1520.15 1.25 20.45
1 p 4 511.49 2.01 20.86 20.05 20.26 20.20 20.23 20.22 20.23

11 p 9 126.38 118.56 2.55 8.48 20.05 0.60 20.40 20.19 20.37
22 p 13 077.16 213.44 4.14 14.64 0.54 1.84 0.36 0.2420.36
m
es

e
u

fe
rb

t

fe

o

t
a

ve
ib

er
ex
te

l
-
r-

ll
a
r

.
t

-
r

ni

e
her

or
c.
nal
e

he
age
till
ved

ate
tten

th

l

and so on. The conclusion, which is confirmed by the exa
nation of the wave functions, is therefore that the larg
errors observed in Fig. 2 are due to the weak 1:8~and also
1:6! resonances between the two modes, which become
cally noticeable in the exact quantum spectrum in the cas
accidental near degeneracy of the uncoupled levels. Calc
tions show that, fors>6, the five pairs of most strongly
coupled levels are responsible for 50% of the average dif
ence between the first 100 levels of the exact and pertu
tive spectra. The origin of the remaining 0.4 cm21 average
error is less clear. It is probably due in part to the acciden
resonances discussed just above~but for levels further from
degeneracy! and in part to the quantization rule in Eq.~3.8!.
Indeed, use of a simpler quantization rule, according to

j m cos~nC!→ 1
2~ j m cos~nC!1cos~nC! j m!, ~3.9!

leads, at eighth order of perturbation, to levels which dif
on average by 0.43 cm21 and at maximum by 1.22 cm21

from the 158 perturbative levels obtained using Eq.~3.8!.
Since the use of two different quantization rules leads t
difference of several tenths of a cm21, it cannot be excluded
that part of the remaining 0.4 cm21 error between the exac
and perturbative spectra is due to the use of the approxim
Weyl quantization rule in Eq.~3.8!. A full quantum version
of the procedure described in Sec. II would be needed
check this point. Anyway, the residual resonances and e
tually the approximate quantization scheme are respons
for the fact that increasings from 6 up to 8 does not improve
the convergence further.

A complementary insight into the convergence prop
ties of the modified CPT procedure is provided by the
amination of the errors for some specific bending sta
(0,vb) reported in Table III. Errors fors increasing from 1 to
8 are shown for the states withvb51, 15, and 30 in the wel
centered aroundg50 andvb51, 11 and 22 in the well cen
tered aroundg5p. The main information is that the conve
gence properties and the relative errors~that is, the errors
divided by vb) are of the same order of magnitude for a
these levels. This uniformity differs markedly from usu
procedures, for which low-lying levels converge much mo
rapidly ~i.e., at much lower orders! than highly excited ones
The most probable reason is that all the terms, except for
harmonic oscillators, are put inH1 in the procedure de
scribed in Sec. II, whereas terms with increasing powe
which become important for highly excited states, are i
i-
t
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tially put in higher termsHn in the usual procedure and ar
therefore first taken into account at correspondingly hig
orders of perturbation theory.

Before concluding this section, it is worth noting that f
the simple model in Eq.~3.1! the procedure proposed in Se
II happens to be close to that used in the torsio
problem,62–69the major difference arising precisely from th
initial ordering of the terms into theHn . Indeed, according
to the prescriptions in Refs. 62–69, the termskq3, b j2, and
V1(12cosC) should be put inH1 , V2(12cos 2C), and
lq2(12cosC) in H3 , C jp(sin 2C) in H5 , and Dp2(1
2cos 4C) in H9 . Since the terms withC andD are so im-
portant, this ordering scheme clearly cannot work in t
present case. Calculations effectively show that the aver
error at 12th order with the torsional ordering scheme is s
about one order of magnitude larger than the error obser
at sixth order with the ordering scheme in Sec. II~10.23
cm21 vs 1.34 cm21!.

IV. APPLICATION TO A THREE-DIMENSIONAL
MODEL FOR LINEAR HCN

The same model as in Sec. III, but with a degener
bending vibration instead of a nondegenerate one, is wri
in the form

H5T1V,

\2T5ApR
21BS pg

21
px

2

sin2 g D , ~4.1!

V5V1 cosg1V2 cos 2g1~ f RR1 f RRgg cosg!

3~R2a2b cos 2g!21 f RRR~R2a2b cos 2g!3,

wherex is the rotation angle around the axis of inertia wi
smallest momentum andpx is the momentum conjugate tox.
The kinetic energy in Eq.~4.1! is seen to display the usua
singularity for the linear configurations atg50 and g5p.
Using the canonical transformation in Eq.~3.3!, the Hamil-
tonian is rewritten in the form

\2T5
v

2
p21BS j 21

px
2

sin2 C D 1C sin~2C! jp

1D cos~4C!p2, ~4.2!
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V5
v

2
q21kq31V1 cosC1V2 cos 2C1lq2 cosC,

wherev, k, l, C, andD are the same as in Eq.~3.5!. The
basis adapted to the Hamiltonian in Eq.~4.2! consists of
direct products of the formuv& ^ um,l &, whereuv& is a vector
of the harmonic oscillator basis andum,l & denotes the spheri
cal harmonicYm

l (C,x). Use of this basis solves the proble
of the singularity at linear configurations, since

S j 21
px

2

sin2 C D um,l &5m~m11!um,l &

pxum,l &5 l um,l &. ~4.3!

The vibrational angular momentuml is a good quantum
number for the Hamiltonian in Eq.~4.2!. For each value ofl,
the spectrum is obtained by direct diagonalization of a ma
of size up to 1382*1382 for l 50 (0<v<20 and l<m
<131). All the levels up to 15 000 cm21 above the ground
state are estimated to be converged to within less than
cm21. As for the nondegenerate case in Sec. III, each sta
further assigned a stretching quantum numbervs , a bending
quantum numbervb , and a localization flag~localized
aroundg50 or C5p, or delocalized! through inspection of
its wave functions.

As far as quantum results are needed for the perturba
Hamiltonian, it is not wise to apply CPT directly to the e
pression in Eq.~4.2!. Indeed, this leads to complex operato
involving inverse and powers of trigonometric functions, f
which no matrix representation can be found. In contra
every function of j 21px

2/sin2 C and px , no matter how
complex, has a trivial matrix representation because th
operators are diagonal in theum,l & basis @see Eq.~4.3!#.
Therefore, it is better to perform an additional canoni
transformation before applying CPT. The function

F~M ,L,C,x!5M S p

2
2arcsin

M cosC

AM22L2D
1LS x1arctan

L cosC

AM2 sin2 C2L2D , ~4.4!

generates a canonical transformation from (j ,C) and (x,px)
to (M ,u) and (L,w), such that

j 21
px

2

sin2 C
5M2, cosC5A12

L2

M2 cosu

~4.5!

px5L, j sin 2C5S 12
L2

M2D M sin 2u.

Upon expression of the Hamiltonian in Eq.~4.2! in terms
of these new coordinates and application of the modifi
CPT procedure of Sec. II, the general result of Eq.~2.15! is
obtained in the form

H5 (
k,m,p,q,n

bk,m,p,q,nI kM pLmS 12
L2

M2D q

cos~nu!, ~4.6!

where the indicesk, m, andn are positive,p can be positive
or negative, andq is either half-integral~positive or nega-
x

01
is

ve

t,

se

l

d

tive! or zero. This expression differs markedly from the r
sults of the torsional problem; related calculations consu
substantially more computer time and memory. For quant
calculation purposes, the result in Eq.~4.6! is expressed back
in the (j ,C) and (x,px) sets of coordinates and quantize
according to

S j 21
px

2

sin2 C D p/2S 12
px

2

j 21
px

2

sin2 C
D q

cos~nC!

→ 1

2 S S j 21
px

2

sin2 C D p/2

3S 12
px

2

j 21
px

2

sin2 C
D q

cos~nC!1h.c.D , ~4.7!

where h.c. means the hermitian conjugate of the preced
expression. The Hamiltonian matrix is then built in the sa
basis ofuv& ^ um,l & vectors as the exact Hamiltonian. Diag
nalization of a 71*71 matrix for each value ofvs and l leads
to levels which are converged to within less than 1026 cm21.
At second order of perturbation theory, the perturbat
Hamiltonian in Eq.~4.6! is as accurate as the nondegener
case forl smaller than 3~about 5.9 cm21 average error for all
the levels up to 15 000 cm21 above the ground state!. The
average error then increases rapidly, reaching 10.8 cm21 for
l 54, 22.6 cm21 for l 56, and 38.5 cm21 for l 58. At third
order of perturbation theory, the accuracy is the same as
the nondegenerate case up to a higher value ofl 56 and then
worsens again rapidly for higher values ofl. It seems to be a
general property that the higher the vibrational angular m
mentum l, the higher the needed order of the perturbat
theory for the corresponding subspectrum to be as accu
as the nondegenerate case or the subspectrum withl 50. Ex-
amination of Table IV, which displays the values of the e
ergy splittingsD02 l between (vb ,l ) and (vb,0) for selected
bending states (vs50) with vb up to 26 and selected value

TABLE IV. Exact and perturbative~third order! values for the energy split-
ting D02 l between the states (vb ,l ) and (vb,0) for some selected bendin
states (vs50) in both wells. The value ofvb is given in the first column.
The second column indicates whether the state is localized in theg50 or in
the g5p well. The third column contains the exact quantum energy of
state withl 50 in cm21 relative to the ground level. The next four column
contain the exact and perturbative values of the splittingsD02 l ~in cm21! for
l 52, 4, 6, and 8.

vb g

Energy D0 – 2 D0 – 4 D0 – 6 D0 – 8

( l -0) Exact CPT Exact CPT Exact CPT Exact CP

2 0 1 098.8 18.3 18.9
10 0 5 157.9 17.2 18.1 68.8 65.0 154.5 137.7 274.0 24
18 0 8 720.1 16.8 13.2 67.1 60.0 150.8 134.4 267.6 22
26 0 11 745.3 17.1 13.2 68.6 53.8 154.2 126.6 273.6 23
2 p 3 975.4 18.8 19.4
8 p 7 777.6 17.9 18.7 71.4 66.5 160.4 147.6 284.4 274

14 p 10 245.1 17.5 14.8 70.1 62.6 157.5 134.7 279.5 23
20 p 12 346.0 17.9 13.6 71.5 57.0 160.7 133.0 285.0 23
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of l (0< l<8) at third order of perturbation theory, furthe
shows that this splitting is better reproduced for the smal
values ofvb . Last, it should be noted that the simpler com
puter code for the nondegenerate model in Sec. III can
used for the more complex degenerate model in Sec. IV
long as only rotationless levels (l 50) are needed. After the
coefficientsa or b have been computed, one must howev
be careful to use the correct basis set~if quantum calcula-
tions are performed! or the good Maslov indexes~if semi-
classical quantization is used!.

V. CONCLUSION

We have shown that CPT might be as accurate for flo
molecules as it was known to be for rigid ones. We now p
to apply the procedure described in Sec. II to more reali
surfaces, like those for HCN/CNH or acetylene/vinyliden
in order to see what can be learned concerning the hig
excited vibrational dynamics of these molecules.
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