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Canonical perturbation theofZPT) is a powerful tool in the field of molecular physics. It consists

of a series of coordinate transformations aimed at rewriting the Hamiltonian in a simpler form
without modifying the geometry of the phase space. The major achievement of CPT is the
straightforward derivation of relations between the physically meaningful parameters of potential
energy surfaces and the coefficients of the so-called effective Hamiltonians. While most of the
studies performed up to date deal with surfaces expanded in polynomial series around a single
minimum, CPT has also been applied to mixed polynomial/trigonometric expansions in the
treatment of torsions. In this latter case, however, the accuracy of CPT has not been verified. The
goal of this article is to suggest some modifications of the procedures, which allow for the successful
application of CPT to floppy molecules with several equilibrium positions and nonpolynomial
expansions. The levels belonging to all the wells or located above the saddle points are satisfactorily
reproduced by the perturbative Hamiltonian. More precisely, the vibrational modes are sorted into
two categories, namely oscillator-like ones and hindered-rotor-like ones. The application of CPT
enables the expression of the Hamiltonian in terms of the good quantum numbers and/or classical
constants of the motion associated with the oscillator-like modes. The perturbative Hamiltonian then
acts on the reduced dimensional space of the hindered-rotor-like modes. The validity and accuracy
of this approach are tested on two-dimensional and three-dimensional models mimicking,
respectively, nonlinear and linear HCN. 2000 American Institute of Physics.
[S0021-960600)00101-X]

I. INTRODUCTION tively applied to the studied system, the so-called “spectro-

scopic Hamiltonians,” whose forms are just the expected

Since the pioneering work of Nielskim the early fifties,  results of CPT, provide remarkably accurate fits over large

canonical perturbation theorfCPT) has been a powerful energy ranges. The most well-known examples of such spec-

tool in the field of molecular physics. Whether based on theiroscopic Hamiltonians are the Dunham expansion, the

original quantum approach due to Van Vigckthe classical  permi resonance Hamiltonian, and the Darling—Dennison
method developed by Birkhdffand later extended by resonance Hamiltoniafsee, for example, Refs. 23-35 for

Gustavso?’l0 (see also Refs. 11_ and 12 for a good descrip_—Some studies dealing with SONO,, CO,, CS,, HOCI,
tion), or the more recent classical procedures based on L'EHD and HS)
3 :

3-19 H ;
algebra, the purpose for applying CPT is always the Up to now, CPT has been shown to work for some low-

same: the goal is to find a sequence of canor(imaunitary) . .
. . . . order polynomial surfaces, which are expected to model
transformations of the coordinates, which help write the

Hamiltonian in a simpler form. Most of the time, this is atomic(see, for example, Ref. 36r molecular systemee,
obtained by finding almost conserved quantum numbers oflOr example, Refs..11,37—;12from thg regular up to the
approximate classical constants of the motion and in expresSrondly chaotic regions, and for a variety of accurate poten-
ing the Hamiltonian in terms of these quantities. The advanli@l e€nergy surfacesPES for molecules like HO, SO,

tage for doing so is twofold. First, the solutiofeigenvalues ©C2; HCN, HCP, GH,, H,CO, and Al obtained either
and wave functionscan be obtained with sufficient accuracy from fits or ab initio calculations(see, for example, Refs.
using a significantly smaller basis set than is needed to ob{.8:43—53. In each case, the energy levels and wave func-
tain the solutions in the original representation. More impor-tions of the exact and perturbative Hamiltonians were shown
tant, however, is the fact that the conserved quantities allo#0 be in good agreement. The procedure in the examples
for a much simpler and deeper study of the dynanfiiifur- ~ quoted above involved) expansion of the PES in Taylor
cations, intramolecular vibrational energy redistributionseries around the minimum energy configuration, appli-
(IVR), chaos, etg.of the system, especially when associatedcation of CPT to the polynomial expression thus obtained,
with the so-called Einstein—Brillouin—KellefEBK) semi-  and (iii) assumption that the zero-order Hamiltonian can be
classical quantization rulé$-?? It is also to be noted that taken as the sum of the harmonic oscillators associated with
even in the cases where the perturbation scheme is not effeeach degree of freedom. This procedure, however, clearly

does not work for floppy molecules, that is, for molecules

dAuthor to whom correspondence should be addressed; electronic maiV:Vith several equili_brium pOSi_tiOIle separatgd by barriers
Marc.joyeux@Uuijf-grenoble.fr which are not too high. The principal reason is that the mo-
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tion is too different from one well to another to be describedll. DESCRIPTION OF THE PERTURBATION
by a single oscillator. For example, the studies dealing wittPROCEDURE
: 4547 :

HCN mentioned abové*>*"were only aimed at reproduc- A The (common ) perturbative scheme
ing the levels in the HCN well and not in the CNH one. ) o

Some tools, based on a matrix version of the Feshbach Assume that is an arbitrarily small parameter and that
approach* or on the vibrationally adiabatic f[he Hamlltomarﬂ(p,q) of the system is partmo_ned,. accord-
approximatior?®-6have been developed for floppy systemsn9 to some choice discussed later in this section, in the form
and applied to the HCN/HNC and acetylene/vinylidene iso-
mers. However, both methods are based on perturbation E= H(p,q)=2 e"H,(p,q). (2.1
theory, not oncanonical perturbation theory, and are not "

expected to be accurate enough for spectroscopic purposesagsume further that a canonical transformation from the
the field of highly excited vibrational states. On the other(p q) set of conjugate coordinates to a néwQ) set is de-

hand, CPT has been applied to mixed polynomial/fined through the generating functiéi(P,q), such that
trigonometric expansions in the treatment of torsitms®

Yet, the purpose for doing so was principally to relate the ~ F(P.q)=Pg+e°W(P,q), (2.2

experimentally accessible molecular parameters in the pefynaresis an integer known as the order of the perturbation
turbative(or effective Hamiltonian to the physically signifi- and W some function of® andq. Last, assume that the re-

cant molecular parameters in the untransformed Hamiltoniagu'ting Hamiltoniarl'(P,Q) is expressed in the same form as
in order to improve the fittings of the absorption frequenciesq initial Hamiltonian ’

of the studied molecule@lmost exclusively methanolThe
energy levels of the unperturbed Hamiltonian were neither _ B N
calculated nor compared to those of the perturbative Hamil- E_F(P’Q)_En: ' Tn(P.Q). 23
tonian, so that the actual accuracy of CPT remains unknown.

Moreover, the barriers in the torsional problem are very lowThen, a simple Taylor expansitit® shows that for each
(of the order of 1 quantum of excitation in the torsional value ofn
mod€®) compared to the barriers in HCN or acetyldsev-

i F [

eral tens of quanta in the bending mopdand convergence I=H,+ 1 (?Hil'ﬁ (ﬂ) ‘
properties might be expected to be more problematic in this (g ip) Lhidy! HkaPkk k=1 \ 90k
latter case. . 4

o TP aw) ik

The purpose of the present article is to show that CPT ~ dlnis (5_) 2.4

might lead to very accurate perturbative Hamiltonians even ka9q|kk k=1 | Py} |q4=q’ ’
for floppy molecules, provided that some changes are made p=P

in the procedures used up to now. Following the “mixed whereF is the number of position coordinates, i, ... i)
diagonalization” scheme introduced by Hernandezhe s a set ofF positive integersi is defined ag=i,+i,+---

modes are first sorted into two categories, which, in our pro-+j_  and the sum in Eq(2.4) runs for all those values of
cedure, can be described as oscillator-like dffi@sexample, (i, ,i,,...,ir) such that ki=<n/s. In particular, for each
the two stretching degrees of freedom in HCN/CN&hd  value of n smaller thans, there exists no such set
hindered-rotor-like onetfor example, the bending in HCN/ (i, |i,,...,if), so that

CNH). As in the usual procedure, the Hamiltonian is ex-

panded as a polynome in terms of the oscillator-like modes, Vn<s, I'y=H,. (2.9
and the goal of CPT is to rewrite the Hamiltonian in terms of Application of CPT consists of the iteration of the pro-

the action integrals and/or the good quantum numbers ass@zqure outlined in Eqs2.1) through (2.4) for values ofs
ciated with these degrees of freedom. In contrast, much morﬁlcreasing froms=1 up to some maximum valtge=S. This

general expressions are tolerated for hindered-rotor-like ¢Os,aans that the output functidh obtained from Eq(2.4) at
ordinates, but no classical constant of the motion or googhe end of steps is used as the input functidd in Eq. (2.1)
quantum number is searchédor is expected to exisfor ¢ the heginning of step+ 1. After iterationSis completed,
these latter coordinates. the termd’,, with n>S, which are expected to be negligible,

The remainder of this article is organized as follows: theyre gropped. The resulting perturbative Hamiltonian is then
procedure we suggest for applying CPT to floppy molecules

is described in Sec. Il. It is presented in the context of the >

Birkhoff—Gustavson perturbation theory, but extension to the H :;::l [s. (2.6

other CPTs is straightforward. In Sec. Ill this scheme is

shown to give excellent results for a two-dimensional model;The goal for applying CPT is to obtain a perturbative Hamil-
which mimics the CH stretching and the bending degrees ofonian in Eq.(2.6), which is both close to the initial one and
freedom of nonlinear HCN. Finally, a more complex three-much easier to handle. In the cases where CPT is successful,
dimensional model, where the degeneracy of the bendinthis is made possible by the fact that approximate constants
motion of linear HCN is explicitly taken into account, is of the motion(also called “secular” or “almost secular”
handled in Sec. IV and CPT is again shown to be very actermg are hidden behind the apparent complexity of the ini-
curate. tial Hamiltonian. The canonical transformations in E(2)



J. Chem. Phys., Vol. 112, No. 1, 1 January 2000 Canonical perturbation theory 33

through (2.4) are precisely aimed at rewriting the Hamil- precisely the terms of the diagonal Dunham expansion. In
tonian in terms of these constants of the motion. order to obtain this result, one just needs to t&ken the

It should then be clear that the key features in CPT ardorm
the initial partitioning into a sum dfl;’s in Eq. (2.1) and the

i i oMY i T 1 (Qu TP ™ (g —iPy) '
choice of the generating functio¥ in Eq. (2.2). Indeed, WPrgp=3S A k=1{0k k) Ak k
one has to make sure in the initial partitioning ti&f con- ' ™! Eﬁzliwk(mk—lk)
tains only secular terms and, at each orderl, that the _
function W in Eq. (2.2) be chosen such that the resultiig ~ Wherew, is the fundamental frequency of molgandm I
obtained from Eq(2.4) also contains only secular terms. The Means that at least omg, is different from the associated.
reason is, according to E(R.5), that terms witm<s are no At the end of the perturbation calculations, the resulting per-
longer modified by the perturbation calculations at orgler turbative Hamiltonian in Eq(2.6), therefore, is
so that a bad choice fal and the appearance of nonsecular
terms in a giverl's cannot be corrected at higher orders. H=> o+ 2 X+ 2> Yiaml il s

The general scheme described in E@sl) through(2.6) k k<l k<l<m
is common to the standard Birkhoff—Gustavson perturbation (2.10

—12 e

theory™** (BGPT) and the modified procedure we Proposeyherel, denotes the action integral of tiéh harmonic os-
for the study of floppy molecules. The two methods, how-gijjjator
ever, differ precisely in the expressions allowed for the initial
HamiltonianH, in the choice of the initial partitioning in Eq. l=awa, =3(p+qd). (2.12)
(2.1 and of the secular terms to be kept in the perturbative ) ) S
Hamiltonian, and therefore in the generating functitdhin Stated in other terms, the perturbative Hamiltonian is just a
Eq. (2.2). The standard BGPT procedure is summarized inPolynomial expansion in terms of a complete set of constants
subsection B just below, in order to emphasize the differ-f the motionl,, the terms with total powen in the actions
ences with the modified procedure described in subsection ¢ P€ing obtained at orderm2-2 of perturbation theory.
For the sake of clarity, only the case where all the nonlinear
resonances are negligible is treated, but the results extend
readily to the cases where Fermi or other resonances must lpe The modified procedure
taken into account.

(2.9

It is clear that the procedure described in the previous
B. The standard BGPT procedure sub_s_ec?ion can_n_ot satisfactqrily handle a _PES with seyeral
equilibrium positions. The principal reason is that the motion
According to standard BGPT, both the potential and ki-js too different from one well to another to be described by a
netic energies must consist of polynomial expansions aroungingle oscillator. A prototypical example is the HCN/CNH
a minimum of the potential energy. Whenever necessarymolecule, for which there exist several global surfaCe&
Wilson’s GF procedur® is applied, so that the lowest order \When moving along the minimum energy pdtr reaction
(quadrati¢ terms are reduced to a sum of uncoupled harpath, one observes two minima separated by a saddle point.
monic oscillators. This sum is taken Bg. Next, each term  The deepest minimum corresponds to the linear HCN iso-
of the expansion of total degree(n=3) is arbitrarily putin  mer, whereas the second minimum, located roughly 5000
Hn-2. Equation(2.4) shows that ifWis always chosen as an ¢m™! above the first one, corresponds to the linear CNH
homogeneous polynome of degree 2 at orders of pertur-  jsomer. The barrier to isomerization is found at an angle
bation theory, then all théi, andI', remain homogeneous HCN of approximately 80° and an energy about 15000 tm
polynomes of degree+2. The methot** for finding the  above the HCN minimum. When considering the bending
explicit expression fowV at some given ordesof BGPT first  degree of freedom alone, the analogy with the problem of the
requires thatHs be rewritten in terms of a new set of coor- hindered rotor is striking: motion in each wélle., below the
dinates, which are just the classical analogs of the quantuaddle pointcan be described as a libration, whereas motion
creation and annihilation operators, and which we thereforgphove the saddle point corresponds to the rotational motion

callaanda*® of the hindered rotor.
1 1 Accordingly, the principal idea at the basis of the modi-
a=-—(q+ip) a'=-——=(q—ip). (2.7  fied procedure is to sort the degrees of freedom into two
\/E \/5 categories, namely oscillator-like on¢kereafter denoted
One obtains (p,q)] and hindered-rotor-like o.nes{herea_fter _ denoted
. (j,¥)—be careful, however, that tHg V) are vibrational co-
ordinates, not rotational ongsand to apply CPT only to the
— m 31
Hs 2| AmJ( kljl a(ay) k) (28 former ones. To do S0, one starts the perturbation procedure

N ) ) with a Hamiltonian in the form
where the positive(or null) integers m, and |, satisfy

Sk_oime+ 1 =s+2. If all the nonlinear resonances can be E=H(p,q,j,¥)

neglected, then the secular terms to be kegdf Jrare those N

; : _ _ o : Wy .
which satisfym I_k (fork=1,2,...F). Thl_s is clea_rly under => —(p§+q§)+2 I1 ptkq‘ék fuu(,®), (212
stood when referring to the quantum picture, since they are k=1 2 uv |k
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whereN is the number of oscillator-like coordinates and thecalculations. For example, the choice that the init's
f,v might be any function of th&j,¥) hindered-rotor-like (n=1) be homogeneous polynomes of degnee2 in stan-
coordinates. For most systeni§ke the HCN/CNH or dard BGPT insures that all thé,, and theW remain homo-
acetylene/vinylidene moleculesthere exists a single geneous polynomes, whatever the orslef the perturbation,
hindered-rotor-like degree of freedo# and Eq.(2.12 is  and consequently that each term
simply arrived at by(i) expanding for each value oF the F
Hamiltonian in Taylor series in terms of the deviations of the H | Mk
oscillator-like coordinates from their value at the reaction k=1 X
path, and(ii) Fourier transforming the result with respect
to .

Let us now assume thdtly, at the beginning of the
calculations at some ordsiof perturbation, is expressed in a
form similar to Eq.(2.8), plus some general dependence in

(1,%)

appears only once in the perturbation scheme, namely at or-
der 2(m;+my+---+mg)—2. It is therefore simply sug-
gested that in the modified proceduh® sum of the N har-
monic oscillators be put in fland all the remaining terms,
that is, the second term in the right-hand side of Eq. (2.12),
in H,. The price to pay is a slightly higher number of terms
N to handle, which is not a serious drawback—and this proce-
H=>, Am,lgm,l(jvq,)( 11 arknk(a;)lk>_ (2.13  dure is much less dangerous than tempting some hazardous
m,| k=1 ordering. One must also be aware that the same term might
Theg,, | are known functions of thg, V) hindered-rotor-like appear at different orde_rs 9f pe_rturbatlon thedhat is, in
! variousI'y): these contributions just have to be summed up

coordinates, but the conditio}_ ;m+l,=s+2 is no t th 4 of th wurbai h leading t wrb
longer required, in contrast with subsection B. If the nonlin-2t 1N€ €na ot the perturbative scheme, feading to a perturba-

ear resonances are negligible, the terms to be kept in thikve Hamiltonian of the form

perturbative Hamiltoniar(i.e., in I'g) are again those with . . )

my=1, (for k=1,2,...N). Indeed, these terms depend only H:Eo(lv‘l')JFEk wk(Jv‘I’)|k+él X (1, W) Il

on the hindered-rotor-like coordinates and the action inte-

grals associated with thE oscillator-like degrees of free- .

dom. Straightforward calculations show that this might be +kg|2gm Yiam(§ ) It (219
obtained with a generating functiow transforming(p,q)

and (j,¥) into (P,Q) and (J,) rather similar to the standard This expression is a polynqme in term§ of mt_eonstants of
BGPT procedure in Eq2.9), that is the motionl, associated with the oscillator-like degrees of

freedom, whereas the dependence on the F—N hindered-
rotor-like degrees of freedom might be much more complex.

W(P’J’q’q’):él Am 1 Gm, (3, V) Stated in other terms, one constant of the motion is lost for
each hindered-rotor-like degree of freedom. It is to be noted

Ht'zl(qk+iPk)mk(qk—iPk)'k that the loss of one simple constant of motion is also the

SN o (me—1) . (214 price to pay for taking into account one nonlinear resonance

between the zero-order normal modes, even in the usual case
provided, however, that the initial choice forgHloes not  of a PES with a single equilibrium position. This similarity is
depend on the hindered-rotor-like coordinat@is condi-  due to the fact that both a saddle point and a nonlinear reso-
tion is absolutely crucial : if it is not fulfilled, then E42.4)  nance might lead to bifurcations, that is, to discontinuities in
(where Py.q,...,Pr must obviously be understood as the phase space structure and the zero-order description of
Ji,oooJE-Ny Onst1s---0F @S ¥yq,...,.We_y, and so oh  the system.
shows that a large number of spurious terms are left iat For the sake of illustration, the modified procedure is
each orders of perturbation theory. Therefore, the natural applied in the next section to a 2D model, which mimics the
choice consists in takingly as the sum of th&l uncoupled CH stretching and the bending degrees of freedom of non-
harmonic oscillators associated with the oscillator-like dedinear HCN, and in Sec. lll to a more complex 3D model
grees of freedom, that is, the first term in the right-hand sidevhere the degeneracy of the bending motion of linear HCN
of Eq. (2.12. One might feel uncomfortable that the zero- is explicitly taken into account.
order Hamiltonian contains strictly no information concern-
ing the hindered-rotor-like degrees of freedom, but the nu-
merical examples in the next sections show that this ig||. APPLICATION TO A TWO-DIMENSIONAL MODEL
actually of no consequence. The choice for the partitioningcOR NONLINEAR HCN
into higher-order termbl, (n=1) might appear to be tricky, o
because one does not know how to handle the functions 1he model Hamiltonian is taken to be

fuu(j,¥) as far as some ordering is requiréie ordering H=T+V,
proposed in the framework of the torsional probfémfi®will , , ,
be shown in the next section to be a bad choice for the 7#°T=Apr+Bp, (3.9

present problem Here, it must however be stressed that
such an ordering into increasimd},’s (n=1) is not compul-
sory, but is instead only aimed at simplifying somewhat the X (R—a— Bc0s 2y)?+ frrd R— a— B cos 2y)3,

V=V, cosy+V,cos 2y+ (frrt frr,, COSY)



J. Chem. Phys., Vol. 112, No. 1, 1 January 2000 Canonical perturbation theory 35

where p=(frr/(A+23°B))** leads to the following ex-
pression for the Hamiltonian:
140
[ w _ . .
120 ﬁ2T=Ep2+BJZ+CSIn(2‘I’)]p+DCOS(4\I’)p2,
(3.9
w
V= Eq2+ kg®+V; cosW¥ +V, cos 2V + \q? cos¥,

coordinate v (degree)

with:

w=2frrp 2~3291.56 cm?,

coordinate R (A)

C=4BBp~67.58 cm !,
FIG. 1. Contour plot of the potential enerd¥ in Eqg. (3.1). The contours

(solid lineg are separated by 2000 ¢fhand range from 2000 to 20 000 k=frrro °~—139.06 cm?, (3.5
cm ! above the absolute minimum &=1.7 A and y=0. The two other

extrema found atR=1.7 A and y=180° (secondary minimuinand R D=—-2B°Bp?~—95.15 cm™.

=1.10 A andy=94.8°(saddI¢ are located, respectively, at 4000 and 14 083

cm™* above the absolute minimum. The position of each extremum is A=Trr p*Z%_20_43 cml

marked with a black dot. The dashed line indicates the minimum energy vy '

path(MEP) linking the three of thenisee Eq/(3.2)]. The couplings between the two modésrms withC, D, and

\) are seen to be strong. Using the convention fivat, H is
next partitioned intdHy+H,, where:

where pg,R) and (p,,y) are two sets of conjugate coordi-

nates, which mimic, respectively, the distance betwkkn Hozg(p2+ a?), 36
and the center of ma<s of CN and the HGC angle in HCN 36
(Randvy are so—calleq Jacobi coo_rdina)te§he very simple H,=kg®+V, cosW +V, cos 2F + A g? cos¥ + B2
form of T in Eq. (3.1 is assumed in order for full quantum

mechanical calculations to remain affordable to(sse be- +Csin(2¥)jp+D cog4W¥)p?.

low). Numerical values forA and B are taken to beA i . . .
—17.6cm A2 andB=6.0cni L. On the other handy in The modified CPT procedure described in the previous sec-

tion is then applied to the Hamiltonian in E@.6). The

Eq. (3.1) is one of the simplest surfaces displaying two wells
a.(3.1 P Paying general result of Eq2.15 is obtained here in the form

centered aroundg=0 and y=m and connected by a curved
reaction path(or minimum energy path: MEP Here, the
MEP is simply characterized by H= 2 ak,m,nlkjmcos(nllf). (3.7

k,m,n
Ruep(y)=a+ B cos 2y, 32 Although a cutoff value of 10'°cm ! was used in actual

but in more general cases, its characterization requires th&@lculations, there are too many coefficieas, , to present

the value of each oscillator-like coordinate along the reactio@" €xhaustive table thereof. Still, Table I gives a flavor of
path be expanded in a complete Fourier series in terms of tHe0W some parameters evolve with increasing perturbation
hindered-rotor-like coordinate. The values-1.4 A, 5=0.3  order. As could be expected, the general trend is that the
A, v,=-2000cm !, andV,=—6000cni ! are chosen so contribution to each parameter decreases as the perturbation
as to reproduce, at least qualitatively, the principal feature§rder increasegnote, however, that a correction of 15.61

of HCN: in particular, the saddle point and the secondanfM * to the fundamental frequencg o, is calculated at
minimum are calculated at 14 083 and 4000 ¢rabove the third order of perturbation theory

absolute minimum, respectively. Moreover, the values of the ~ The remainder of this section is devoted to a discussion

force constants for the stretching degree of freeddmy( Of the accuracy of the perturbative Hamiltonian in E8}.7).
=145000cm*A~2 and frrr=—115000cm*A~%) and A straightforward method for comparing two Hamiltonians,

for the stretch—bend interactiofig(z,, = — 1800 cm *A~2) which are not expressed in terms of the same coordinates,
are chosen so as to lead to realistic paramateds and\ ~ CONsists in comparing the spectra of their quantum analogs.
1 and is seen to compare well with similar figures for HCN, Point of view, even for the simple polynomial expressions
for example, Fig. 4 of Ref. 77. obtained from usual BGP¥,"°-®'because conjugate posi-
Application of the canonical transformation to the new tion and momentum operators do not commute. From the

sets of Conjugate Coordinatep’q) and (i,\II), according to praCtical pOint of VieW, hOWeVer, it is noted that the various
ordering possibilities lead to very close spetiréa more

d=p(R=Ryep(7)), Pr=pP detailed discussion of this point will be presented somewhat
(3.3 later in this section The results presented below have been
IRvep obtained by quantizing each classical tejfhcosqi?) ac-

Y=y py=i-p gy P cording to Weyl's rule
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TABLE I. Contributions(in cm™?) to the coefficients of the terms in12, j2, j*, cosW, cos 2F, and cos &

in the expression of the perturbative Hamiltonidrin Eq. (3.7) calculated for increasing perturbation order
The total coefficients of the Hamiltoniad in Eq. (3.7) at a given ordes are obtained by summing all the
contributions from 0 up tcs. For example, the fundamental frequeray,, (coefficient of the terml) at
perturbation ordes=3 is calculated to ba; 5 ,=3291.5606- 0.0000-0.7193+ 15.613% 3306.4538 cmt.

Coefficient> 100 00 Qo0 10°X Q04,0 Q00,1 ag o2 Ag 04
Term— I 12 j? i cos¥ cos 2V cos 4
Orders |
o 3291.5600 0.0000  0.0000 0.0000 0.0000 0.0000  0.0000
1 0.0000 0.0000  6.0000 0.0000 —2000.0000 —6000.0000  0.0000
2 —-0.7193 —22.0310 —0.3469 0.0000 0.0000 0.0000  0.0000
3 15.6131 0.0251  0.0100 0.0000 0.0000 0.0000  0.0000
4 0.2461 —0.0011 —0.0006 —1.8441 —~1.1526 0.0320  4.6744
5 0.0649 0.3999  0.0000 0.1066 0.0454 0.0008-0.4644
6 -0.1789 0.0088 —0.0010 —0.0279 —0.0010 0.0000  0.0172
7 0.0042 0.0048  0.0001 0.0114 0.0096 0.00880.0300
8 —0.0037 —0.0125  0.0000 —0.0457 —-0.0044 0.0000  0.0060
m 3.7). Therefore, one only needs to diagonalize six much
1 m Yy
jmcos(n\lf)—>2—m2 K (j*cogn¥)jmk). (3.8 smaller matrices of size 12121 (—60=m=60), one for
k=0

each value o¥,=0,1,...,5, in order for the same 158 levels to
be converged to within less than 0.001 ¢mAssignment of
the spectrum is also much simpler.

The average absolute difference between the two as-

The spectrum for the exact Hamiltonian in Eg.4) was
obtained by direct diagonalization of a 1634654 matrix,
each vector of the basjs)®|m) being the direct product of
a vector of the harmonic oscillator basis<@<16) and of signed spectra is presented in Table Il for increasing pertur-
the free rotor basis+{10l=m=101). The harmonic oscil- bation orders. More precisely, the error for the first 100
lator basis is obviously used for tipeandq operators and the states is given fos ranging from 1 to 8, whereas the error for
free rotor basis for theandW operators. The first 158 levels the first 158 states is given only for valuessdarger than 4,
up to 15000 cm’ above the ground state are estimated to béecause for lower values the distribution into localized/
converged to within less than 0.2 cfh Each state was as- delocalized states is not the same for the exact and perturba-
signed two quantum numbers{,v,) and a localization flag tive Hamiltonians. It is seen that the convergence is excel-
(localized in they=0 well, localized in they== well, or  lent, the error for the first 158 states being as low as 1.99
delocalized through inspection of the wave functions. One cm™* at fourth order of perturbation theory. The error at
hundred thirty-six out of these 158 levels are localized intoeighth order of perturbation theory is further plotted in Fig.
one of the wells, while the remaining 12 levels are delocal2. It is seen that the largest errors occur in pairs of opposite
ized over the two wells. These 12 levels have no excitatiorvalues. For example, levels #76 and #77 are calculated with
in the stretching degree of freedomg&0). In contrast, the respective errors of-12.5 and+12.1 cm'l, levels #137 and
stretching quantum number,, which is the quantum coun- #139 with respective errors 6f10.1 and+9.2 cm %, and so
terpart of the classical action integialis by construction a on. Looking at the assignments, one notices that these levels
conserved quantity for the perturbative Hamiltonian in Eg.are, respectively, described ags(vy,)=(0,23) and(1,15

(well around y=0) for the first pair of states, W,Vp)

=(2,15) and(1,23 (well aroundy=0) for the second one,
TABLE II. Difference between the assigned spectra of the exact Hamil-
tonian in Eq.(3.4) and the perturbative Hamiltonian in E@.7) for increas-
ing orders of perturbation theory. Columns 2 and 3 give, respectively, the 15
average absolute and maximum errors for the first 100 levels and columns 4 | |
and 5 the average absolute and maximum errors for the first 158 levels. The ok o |
blanks in these later columns fe=1 to s=3 are due to the fact that for | o |
these lowest values sfthe number of localized and delocalized states is not

the same for the exact and perturbative Hamiltonians. /TE\
o
100 levels 158 levels g
“
Orders Average Max Average Max b
1 146.35 318.64 —1oh o O |
2 491 25.25 O
3 10.90 40.03 _151""“""“"0“7
4 1.36 15.37 1.99 15.37 0 20 40 B0 80 100 120 140 160
5 1.72 17.23 2.72 19.91 state number
6 0.83 12.79 1.34 14.37
7 0.86 13.81 1.42 16.46 FIG. 2. Plot of the errorgin cm™?!) between exact and perturbatit@ghth
8 0.79 12.54 1.27 14.60 ordep energy values as a function of the position of the level in the spec-

trum for the model Hamiltonian discussed in Sec. IIl.
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TABLE Ill. Difference between the exact and perturbative energy values of some selected bending stgtes (O,

as a function of the perturbation ordgfor the nondegenerate model of Sec. Ill. The second column indicates
whether the state is localized in the=0 or in the y=7 well. The third column contains the exact quantum
energy of the state in cnd relative to the ground level. The errors in the last eight columns are expressed in
cm L. The sudden increase of the error observed at third order of perturbation theory is probably connected to
the large correction computed at the same order for the fundamental freqaggeysee Table)l

Vp Energy s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8

Y
1 0 558.66 191 -0.56 0.11 -0.13 -0.05 -0.09 -0.08 -0.08
15 0 7502.63  198.26 8.32 18.10 1.52 2.53 0.11 0.56 0.01
30 0 1312435 291.15 14.35 28.55 2.95 5.15-0.15 1.25 -0.45
1 T 4511.49 201 -086 -005 -026 -020 -023 -0.22 -0.23
11 ™ 9126.38  118.56 2.55 8.48 —0.05 060 -040 -0.19 -0.37
22 ™ 13077.16  213.44 4.14 14.64 0.54 1.84 0.36 0.24-0.36

and so on. The conclusion, which is confirmed by the examitially put in higher term&H,, in the usual procedure and are
nation of the wave functions, is therefore that the largestherefore first taken into account at correspondingly higher
errors observed in Fig. 2 are due to the weak (&®8d also  orders of perturbation theory.

1:6) resonances between the two modes, which become lo- Before concluding this section, it is worth noting that for
cally noticeable in the exact quantum spectrum in the case dhe simple model in Eq.3.1) the procedure proposed in Sec.
accidental near degeneracy of the uncoupled levels. Calcul#+ happens to be close to that used in the torsional
tions show that, fors=6, the five pairs of most strongly problem®?~%°the major difference arising precisely from the
coupled levels are responsible for 50% of the average differinitial ordering of the terms into thél,,. Indeed, according
ence between the first 100 levels of the exact and perturbde the prescriptions in Refs. 62—69, the terktg, bj2, and
tive spectra. The origin of the remaining 0.4 chaverage V;(1—cos¥) should be put inH;, V,(1—cos2¥), and
error is less clear. It is probably due in part to the accidentahq?(1—cos¥) in Hs, Cjp(sin2¥) in Hs, and Dp?(1
resonances discussed just abdet for levels further from  —cos4V) in Hg. Since the terms witlC andD are so im-
degeneracyand in part to the quantization rule in E@.8). portant, this ordering scheme clearly cannot work in the
Indeed, use of a simpler quantization rule, according to  present case. Calculations effectively show that the average

m Lm m error at 12th order with the torsional ordering scheme is still

ITeogn¥)—z(j" cod m¥) + codn¥) ), 3.9 about one order of magnitude larger than the error observed
leads, at eighth order of perturbation, to levels which differat sixth order with the ordering scheme in Sec.(1D.23
on average by 0.43 cm and at maximum by 1.22 ¢ cm™!vs 1.34 cmid).
from the 158 perturbative levels obtained using E8;8).

Since the use of two different quz}ntization rules leads to a
difference of several tenths of a ¢m it cannot be excluded
that part of the remaining 0.4 cm error between the exact IV. APPLICATION TO A THREE-DIMENSIONAL

. . . ODEL FOR LINEAR HCN
and perturbative spectra is due to the use of the approxmaﬁg
Weyl quantization rule in Eq3.8). A full quantum version The same model as in Sec. lll, but with a degenerate
of the procedure described in Sec. Il would be needed tending vibration instead of a nondegenerate one, is written
check this point. Anyway, the residual resonances and evenn the form
tually the approximate quantization scheme are responsible
for the fact that increasingfrom 6 up to 8 does not improve H=T+V,
the convergence further.

A complementary insight into the convergence proper- hZT:Ap2R+B
ties of the modified CPT procedure is provided by the ex-
amination of the errors for some specific bending states
(O,vy,) reported in Table lll. Errors fos increasing from 1 to
8 are shown for the states with,=1, 15, and 30 in the well X (R—a— B cos 2y)?+ frr R— a— B cos 2y)3,
centered aroung=0 andv,=1, 11 and 22 in the well cen-
tered aroundy=m. The main information is that the conver-
gence properties and the relative err@ifsat is, the errors
divided byvy,) are of the same order of magnitude for all _. ) ) . . - dve
these levels. This uniformity differs markedly from usual Eln_gula;:ty for th? I|Inear c;onflgqratlgns 8’1;0 ‘:}m H7_7.T|'
procedures, for which low-lying levels converge much moretosr':g% tiser:va\m'gg:::?n ttr;leniocr):;natlon in B@.3), the Hamil-
rapidly (i.e., at much lower ordes) than highly excited ones.

The most probable reason is that all the terms, except for the »
harmonic oscillators, are put i, in the procedure de- h2T=§p2+B
scribed in Sec. Il, whereas terms with increasing powers,

which become important for highly excited states, are ini- +D cog4%¥)p?, 4.2

p2
2 X
py+ m) y (41)

V=V, cosy+V, cos 2y+ (frrt frr,, COSY)

wherey is the rotation angle around the axis of inertia with
smallest momentum arq, is the momentum conjugate fo
The kinetic energy in Eq(4.1) is seen to display the usual

Py

2
T

+Csin(2¥)jp
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TABLE IV. Exact and perturbativéhird orde) values for the energy split-

w
V=— q2+ kq3+ V,; cos¥ +V, cos 2¥ + )\qz cosV, ting Ag_, between the statew/(,l) and (/,,0) for some selected bending
2 states ys=0) in both wells. The value 0¥, is given in the first column.

. The second column indicates whether the state is localized i=tteor in
wherew, k, A, C, andD are the same as in qu’S) The the y=m well. The third column contains the exact quantum energy of the

basis adapted to the Hamiltonian in E@.2) consists of  state withi =0 in cm ™ relative to the ground level. The next four columns
direct products of the forrfv)®|m,l), where|v) is a vector  contain the exact and perturbative values of the splittiigs; (in cm™?) for

of the harmonic oscillator basis aha,|) denotes the spheri- =2, 4, 6, and 8.

cal harmonicY'm(\If,X). Use of this basis solves the problem
of the singularity at linear configurations, since

Energy Ao Agg Ag_s Ao_g

) Vi (1-0) Exact CPT Exact CPT Exact CPT Exact CPT
. p
24+ == |Im,)=m(m+1)|m,l) 2 1098.8 183 18.9
S 10 5157.9 17.2 18.1 68.8 650 1545 137.7 2740 249.6
18 87201 168 132 67.1 60.0 1508 134.4 267.6 2285
p,Im,1)y=1{m,l). (43 26 0 117453 171 132 686 53.8 1542 126.6 273.6 236.3

39754 188 194

77776 179 18.7 714 66.5 1604 147.6 284.4 274.3
10245.1 175 148 70.1 62.6 1575 134.7 279.5 236.5
12346.0 179 13.6 715 57.0 160.7 133.0 285.0 235.6

The vibrational angular momenturinis a good quantum g
number for the Hamiltonian in E¢4.2). For each value df, 14
the spectrum is obtained by direct diagonalization of a matrixe0
of size up to 13821382 for I=0 (0<v=<20 andl<m
<131). All the levels up to 15000 cr above the ground
state are estimated to be converged to within less than 0.01 . ) ]

cm L. As for the nondegenerate case in Sec. Ill, each state f&&) Or zero. This expression differs markedly from the re-
further assigned a stretching quantum numhgra bending sults of t_he torsional problem; related calculations consume
quantum numberv,, and a localization flag(localized substantially more computer time and memory. For quantum

aroundy=0 or W=, or delocalizefi through inspection of calculation purposes, the result in £4.6) is expressed back
its wave functions. in the (,¥) and (x,p,) sets of coordinates and quantized

As far as quantum results are needed for the perturbativ&ccording to

333 3 0000 |

Hamiltonian, it is not wise to apply CPT directly to the ex- p)Z( p/2 p)2( q
pression in Eq(4.2). Indeed, this leads to complex operators 2+ sinz\P) 1= ———=—| cogn¥)
involving inverse and powers of trigonometric functions, for j2+ _pX
which no matrix representation can be found. In contrast, sin’ W
every function ofj2+p?/si?¥ and p,, no matter how 1 p2 | P2
complex, has a trivial matrix representation because these — — ( j2+ = n2X )
operators are diagonal in tHen,l) basis[see Eq.(4.3)]. sin ¥
Therefore, it is better to perform an additional canonical
transformation before applying CPT. The function 02 q
_ M cost X[ 1- —*5—| cogn¥)+h.c.|, 4.7
= R i i2 X
F(M,L,¥,x)=M 5 arcsm\/ﬁ) i +sinz\lf

where h.c. means the hermitian conjugate of the preceding

) , (4.4  expression. The Hamiltonian matrix is then built in the same
basis oflv)®|m,I) vectors as the exact Hamiltonian. Diago-

nalization of a 7171 matrix for each value ofs andl leads

L cos¥
n—
JM?ZsiP & —L?

generates a canonical transformation frgmi() and (x,p,)

+L| x+arcta

to (M,6) and (L, ), such that to levels which are converged to within less than 46m ™.
At second order of perturbation theory, the perturbative
S pf( oo B L? Hamiltonian in Eq.(4.6) is as accurate as the nondegenerate
1+ gy —M% cos¥=/1- pmcosd case foll smaller than 3about 5.9 c* average error for all

(4.5 the levels up to 15000 cnt above the ground stateThe
average error then increases rapidly, reaching 10.8' dor
=4, 22.6 cm? for | =6, and 38.5 cm® for | =8. At third
order of perturbation theory, the accuracy is the same as for
he nondegenerate case up to a higher valle=@ and then
orsens again rapidly for higher valuesloft seems to be a
general property that the higher the vibrational angular mo-
mentuml, the higher the needed order of the perturbation
2\q theory for the corresponding subspectrum to be as accurate
1- W) cogndo), (4.6 as the nondegenerate case or the subspectrun with Ex-
amination of Table IV, which displays the values of the en-
where the indice&, m, andn are positivep can be positive ergy splittingsA,_; between ¢,,l) and (v,,0) for selected
or negative, andj is either half-integralpositive or nega- bending statesvs=0) with vy, up to 26 and selected values

L2

— W) M sin 26.

pP,=L, ] sin2\1f=(
Upon expression of the Hamiltonian in E4.2) in terms
of these new coordinates and application of the modifie
CPT procedure of Sec. Il, the general result of EQl5 is
obtained in the form

H= > brmpqnl “MPL™
k,m,p,q,n
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