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The vibrational spectrum of deuterated phosphaethyne: A quantum
mechanical, classical, and semiclassical analysis
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The vibrational spectrum of deuterated phosphaethyne~DCP! is analyzed in terms of
quantum-mechanical variational calculations, classical mechanics~periodic orbits!, and an effective
Hamiltonian model. The quantum mechanical and classical calculations are performed with a new,
spectroscopically accurate potential energy surface. The spectrum is governed by a 2 : 1 DC
stretch : CP stretch anharmonic resonance, which already exists for the fundamentals. The bending
degree of freedom is to a large extent decoupled. It is shown that several bifurcations in the classical
phase space profoundly influence the quantum spectrum. For example, a new progression, which
does not exist at very low excitation energies, comes into existence at intermediate energies. In
contrast to HCP, the pure bending states gradually evolve along the isomerization path with
increasing bending quantum number. ©2000 American Institute of Physics.
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I. INTRODUCTION

As a consequence of the coupling between the vari
internal modes, which typically increases with energy,
vibrational spectrum of even a triatomic molecule can
come quite intricate.1–3 In many cases, anharmonic res
nances and the resulting mixing between zero-order st
determine the structure of the energy spectrum even at
energies.4–7 As a consequence of anharmonic resonan
nonlinear dynamics effects such as bifurcations may occ8

which leave distinct hallmarks in the quantum-mechani
energy spectrum. The investigation of these and related
fects reveals a lot of information about the intramolecu
dynamics of small molecules, in particular, and nonline
dynamics in general.

In a series of recent papers we analyzed, inspired
high-resolution stimulated-emission-pumping~SEP! spectro-
scopic measurements at high-transition energies,9 the vibra-
tional spectrum of HCP,10,11 a molecule with a pronounce
2 : 1 CP stretch : bend resonance. The most interesting fea
in the spectrum of HCP is the occurrence of a saddle-n
bifurcation at relatively high energies, at which a new ki
of states, which does not exist at low energies, is abru
born. The existence of these ‘‘isomerization’’ states, as t
are called,12 has been confirmed in subsequent experime
by Ishikawa et al.13 However, the early calculations wer

a!Electronic mail: rschink@gwdg.de
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performed with a potential energy surface~PES!,10,11 which
did not allow direct comparison with the experimental da
A completely new PES has been calculated byab initio
methods, which has the required accuracy.14 The calculated
energy levels agree very nicely with the measured ones
to high energies, and in particular reproduce the experim
tally observed isomerization states.12

In the present article we analyze the spectrum of D
using this new PES. Because of the drastic change of on
the atomic masses, the DCP spectrum is completely diffe
from the HCP level spectrum.15 Instead of the CP stretch
bend resonance, a 2 : 1 DC stretch : CP stretch reson
governs the DCP spectrum. Furthermore, the bifurcations
curring in DCP are of different types than observed for HC
Unfortunately there are no experimental results, except
the lowest levels, to compare the theoretical predictions w

The article is organized in the following way: In Sec.
details of the numerical calculations will be briefly d
scribed. The quantum-mechanical results and the deve
ment of the polyad structure from low to high energies a
investigated in Sec. III. Additional clues of the quantum
mechanical eigenvalue spectrum are provided by an ana
of the classical phase-space structure and an effective Ha
tonian model, which will be presented in Secs. IV and
respectively. The pure bending states are briefly discusse
Sec. VI. All calculations, except where otherwise stated,
performed for nonrotating DCP (J50). Energies are mea
sured with respect to the potential minimum for linear DC
5 © 2000 American Institute of Physics
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II. CALCULATIONS

A. Numerical details

We have performed quantum-mechanical variational c
culations for determining the vibrational energies as well
the corresponding wave functions. The coordinates used
the Jacobi coordinatesR ~the distance between the center-o
mass of CP and D!, r ~the CP separation!, andg ~the angle
between the two vectorsR and r with g5180° correspond-
ing to linear DCP!. The Hamiltonian is represented in
highly contracted–truncated~three-dimensional! 3D basis as
described in detail in Ref. 16. The variational program
quires basically two parameters: The energyEcut up to which
all internally contracted basis functions are included and
maximal distance in the dissociation coordinate,Rmax. All
other parameters are chosen automatically. The results
ported below are obtained withEcut54.536 eV andRmax

56.36a0. The size of the primary direct-product basis f
these parameters is 322 770, whereas the dimension o
contracted–truncated basis is only 12 087. In order to as
the accuracy of the variational calculations we perform
additional calculations forEcut54.486 and 4.636 eV. The
convergence is best for the pure bending states and less
isfactory for the pure CP stretch progression. The uncert
ties for the energies of the CP stretch progression are
mated to be 0.1, 3, and 14 cm21 for the first 100, 500, and
1000 states, respectively, which corresponds to 4, 8, an
quanta of the DC stretch coordinate. Most states are sig
cantly better converged; the average error is more than
order of magnitude smaller. The qualitative behavior of
wave functions is the same for all three calculations a
therefore, we are confident that the main conclusions of
present work are not affected by convergence problems.

In order to determine the rotational constants for some
the lowest levels we also performed calculations forJ51 as
described in Ref. 14.

B. Comparison with experimental data

Unlike HCP, the experimental information on th
vibration–rotation spectrum of DCP is sparse~see Ref. 17
and references therein!. Merely the transition energies of th
lowest states are known.18–20 In Table I we compare the
calculated term values and rotational constants with the m

TABLE I. Comparison of calculated and measured transition energiesDE
and rotational constantsB ~in cm21) for DCP.

(v1 ,v2
l ,v3)

DE B

Theory Experimenta Theory Experiment

(0,00,0) 0 0 0.567 0.572
(0,11,0) 525.8 525.22 ••• •••
(0,20,0) 1037.2 1037.50 0.574 0.569
(0,22,0) 1053.5 1052.93 ••• •••
(0,00,1) 1228.7 1231.40 0.569 0.564
(1,00,0) 2419.5 2419.43 0.570 0.563
(1,11,0) 2937.5 2935.64 ••• •••
(2,00,0) 4790.2 4789.05 0.570 0.559
(1,00,2) 4837.0 4832.275 0.567 0.557

aReferences 18 and 20.
l-
s
re

-

e

re-

the
ss
d

at-
n-
ti-

10
fi-
ne
e
,
e

f

a-

sured data. In what follows,n1 andn3 are the DC stretch and
the CP stretch mode, respectively, andn2

l is the bending
mode with l indicating the vibrational angular momentu
quantum number.~The real meaning of these assignmen
especially at higher energies, will be discussed in the n
section.! The agreement between the measured and the
culated energies is excellent. It must be underlined, that
originally calculated PES had been modified very slightly
order to compensate an underestimation of the CP stretc
frequency by 16 cm21 in HCP.12,14 The corresponding scal
ing factor was not adjusted to minimize the error for t
fundamental, rather it was chosen so that good overall ag
ment over a large energy region was obtained.

In view of the excellent agreement for many energy le
els of HCP14 and the agreement seen in Table I for DCP,
are confident that the calculated DCP levels are well su
for guiding future SEP studies at higher excitation energ
The energies of the first hundred levels including their
signments are listed in Table II. The data for the lowe
thousand states are available electronically.21

III. QUANTUM MECHANICAL SPECTRUM, WAVE
FUNCTIONS, AND ASSIGNMENTS

We have visually inspected the lowest five hundred
brational wave functions in order to achieve an unambigu
assignment and to elucidate how the spectrum develops
increasing energy. Above state No. 500 only selected p
gressions have been followed to higher energies.

A. Polyad structure for v 2Ä0

The spectrum of DCP is governed by a 2 : 1 anharmo
resonance between modesn1 and n3

20,22 @E(0,0,2)2E(1,0,0)

541.5 cm21#. As a result, it is structured in terms o
polyads23 @@v2 ,P## with ‘‘polyad quantum number’’ P
52v11v3. The bending degree of freedom is—at least
the low and intermediate energy regimes—relatively wea
coupled to the two stretching degrees of freedom and me
plays the role of a ‘‘spectator.’’ We will first consider th
spectrum forv250; changes of the general structure wi
v2.0 will be discussed below.

In Fig. 1~a! we show the energy spectrum forv250 for
polyad quantum numbersP58 –16. While the lower polyads
are well separated, starting withP515 the polyads overlap
which makes the assignment more and more cumberso
All wave functions belonging to polyads@@0,6## –@@0,9## are
depicted in Fig. 2. With a few exceptions, to be discuss
below, the assignment in terms of quantum numbersv1 and
v3 is straightforward. The quantum numberv1 counts the
number of nodes along the ‘‘left’’ and ‘‘right’’ side lines o
the wave function andv3 counts the number of nodes alon
the lower ‘‘arc’’ @see, for example, wave function~2,0,4!#. It
should be underlined thatv3 must be enumerated at th
‘‘outer’’ line of nodes, as explicitly indicated in the figure
because the number counted along the ‘‘inner’’ line may
smaller. This occurs particularly at higher excitations. As
will show below, the curves along which the number
nodes are counted correspond to particular periodic orbit
the classical phase space. The curvature of the (0,0,v3) wave
functions is a result of the strong mixing between the t
stretching degrees of freedom; it increases with increas
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TABLE II. Energies and assignments of the first 100 states of DCP.

No. (v1 ,v2 ,v3) E @eV# DE @cm21# No. (v1 ,v2 ,v3) E @eV# DE @cm21#

1 0 0 0 0.295 17 0.00 51 1 0 4 1.193 15 7242.58
2 0 2 0 0.423 76 1037.17 52 1 10 0 1.204 80 7336.6
3 0 0 1 0.447 51 1228.68 53 0 0 6 1.207 13 7355.3
4 0 4 0 0.549 99 2055.22 54 0 10 2 1.218 73 7448.8
5 0 2 1 0.576 18 2266.51 55 1 8 1 1.236 30 7590.6
6 1 0 0 0.595 15 2419.44 56 0 8 3 1.250 22 7702.9
7 0 0 2 0.600 29 2460.91 57 2 6 0 1.252 70 7722.9
8 0 6 0 0.674 17 3056.84 58 1 6 2 1.266 33 7832.8
9 0 4 1 0.702 16 3282.52 59 0 16 0 1.268 84 7853.0

10 1 2 0 0.721 54 3438.88 60 0 6 4 1.280 05 7943.5
11 0 2 2 0.728 67 3496.34 61 2 4 1 1.282 66 7964.5
12 1 0 1 0.745 13 3629.13 62 1 4 3 1.294 04 8056.3
13 0 0 3 0.752 70 3690.16 63 3 2 0 1.297 41 8083.5
14 0 8 0 0.796 48 4043.29 64 0 14 1 1.302 68 8125.9
15 0 6 1 0.825 96 4281.09 65 0 4 5 1.308 09 8169.6
16 1 4 0 0.845 12 4435.61 66 2 2 2 1.309 56 8181.5
17 0 4 2 0.854 27 4509.36 67 1 2 4 1.319 41 8260.9
18 1 2 1 0.871 84 4651.11 68 1 12 0 1.321 36 8276.6
19 0 2 3 0.880 83 4723.62 69 3 0 1 1.323 52 8294.0
20 2 0 0 0.889 08 4790.13 70 2 0 3 1.330 44 8349.9
21 1 0 2 0.894 88 4836.93 71 0 2 6 1.334 63 8383.6
22 0 0 4 0.904 69 4916.08 72 0 12 2 1.336 44 8398.3
23 0 10 0 0.917 02 5015.51 73 1 0 5 1.341 59 8439.8
24 0 8 1 0.947 81 5263.82 74 1 10 1 1.354 03 8540.2
25 1 6 0 0.966 72 5416.34 75 0 0 7 1.357 44 8567.7
26 0 6 2 0.977 71 5505.03 76 0 10 3 1.369 24 8662.8
27 1 4 1 0.995 39 5647.62 77 2 8 0 1.370 23 8670.8
28 0 4 3 1.006 05 5733.56 78 0 18 0 1.382 92 8773.2
29 2 2 0 1.012 91 5788.88 79 1 8 2 1.385 62 8794.9
30 1 2 2 1.021 64 5859.34 80 0 8 4 1.400 47 8914.7
31 0 2 4 1.032 58 5947.53 81 2 6 1 1.401 69 8924.6
32 0 12 0 1.035 89 5974.28 82 1 6 3 1.414 87 9030.8
33 2 0 1 1.037 39 5986.32 83 3 4 0 1.415 74 9037.8
34 1 0 3 1.044 21 6041.32 84 0 16 1 1.417 70 9053.7
35 0 0 5 1.056 19 6138.00 85 0 6 5 1.429 80 9151.3
36 0 10 1 1.067 80 6231.64 86 2 4 2 1.431 16 9162.2
37 1 8 0 1.086 59 6383.19 87 1 14 0 1.436 26 9203.4
38 0 8 2 1.099 18 6484.72 88 1 4 4 1.442 21 9251.3
39 1 6 1 1.116 78 6626.62 89 3 2 1 1.445 26 9275.9
40 0 6 3 1.129 14 6726.35 90 0 14 2 1.452 44 9333.9
41 2 4 0 1.133 71 6763.20 91 2 2 3 1.455 48 9358.4
42 1 4 2 1.145 10 6855.10 92 4 0 0 1.456 13 9363.6
43 0 14 0 1.153 16 6920.07 93 0 4 6 1.458 70 9384.4
44 0 4 4 1.157 39 6954.19 94 1 2 5 1.467 34 9454.0
45 2 2 1 1.161 74 6989.30 95 3 0 2 1.469 10 9468.2
46 1 2 3 1.170 81 7062.40 96 1 12 1 1.470 04 9475.8
47 3 0 0 1.176 14 7105.38 97 2 0 4 1.476 09 9524.6
48 0 2 5 1.183 71 7166.48 98 0 2 7 1.484 70 9594.0
49 2 0 2 1.184 62 7173.77 99 2 10 0 1.485 81 9603.0
50 0 12 1 1.186 06 7185.44 100 0 12 3 1.486 70 9610.1
t

.

r
r

it
,

-
ion
n

ing.
e-
do

he

est
quantum numberv3. The overtones (v1,0,0) are always a
the bottom of the polyad and the states (0,0,v3) mark the top
of a polyad. This ordering was different for the old PES15

Combination states like~1,0,5!, ~1,0,7!, or ~2,0,5! can be
easily identified. The (v1,0,0) wave functions retain thei
general shape up to high energies; their main characte
excitation of the DC stretch bond distance and therefore
reasonable to term them DC stretching states. The (0,0v3)
states also preserve their general structure asv3 increases,
only the ‘‘curvature’’ in the (R,r )-plane becomes more pro
nounced. Already the lowest member of this progress
(0,0,1), shows excitations of both the DC and the CP bo
is
is

,
d,

so that a classification as CP stretching states is mislead
Most states up toP520 or so can be assigned as d

scribed in Fig. 2. However, there exist a few states, which
not clearly fall into the two classes (v1,0,0) and (0,0,v3) or
combinations of them, but which form a different class. T
states (v1,0,v1) with v153,4, . . . (P59,12, . . . ) are the
clearest examples~middle column of Fig. 3!. They gradually
develop a new type of shape with increasingv1. Their
‘‘backbone’’ is strongly curved in the (R,r )-plane, too, but
in the opposite direction than observed for the (0,0,v3)
states. While the assignment (3,0,3) for the second low
state in polyadP59 is still meaningful, as plotting of the
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wave function with a lower contour level shows, interpre
tion of the wave function shown forP518 as~6,0,6! does
not make sense. The assignments~5,0,5!, ~6,0,6! etc., reflect
the positions of these states in the spectrum rather than
shapes of their wave functions. The classical analysis of
phase space indicates that these particular states are re
to a class of periodic orbits, which essentially describe m
tion in the CP stretch coordinater ~see Sec. IV!, and there-
fore, we will alternatively assign them as (0,0,v3)r in order
to distinguish them from the (0,0,v3) states. The number o
nodes along the backbones of the (0,0,v3)r wave functions is
identical withP.

States of the form (v1,0,v1) exist only for polyad quan-
tum numbers, which are multiples of 3. Wave functions w
the character of the (0,0,v3)r states do exist also for the othe
polyads, however, thenv1 and v3 must differ by one, i.e.,
v12v3561 ~see the first and third columns in Fig. 3!.
However, at comparable energies these states have a
pronounced (0,0,v3)r character than the states withv15v3.

In order to illustrate the variations of wave function
within a complete polyad, we depict in Fig. 4 the wave fun
tions of all states belonging to@@0,18##, one of the highest
polyads, that has been completely assigned. With increa
energy the intra- and inter-polyad coupling steadily increa
with the result that more and more wave functions
strongly mixed, for example~8,0,2!.

It is astounding, that not the states (0,0,v3)r but the
(0,0,v3) levels are the counterparts of the DC stretch
states (v1,0,0). The (0,0,v3)r wave functions have stron
excitation inr and relatively little excitation inR and, there-
fore, they do complement the (v1,0,0) states, which show
strong excitation inR and only slight displacements inr. In
contrast, the (0,0,v3) wave functions have relatively stron
excitation in both R and r. It is also astonishing that th

FIG. 1. Energy-level spectrum for~a! v250 and ~b! v254. The special
states (0,0,v3)r for v250 are indicated by dashed lines@~3,0,2!, ~3,0,3!,
~3,0,4!, etc.#. Energy is measured with respect to the minimum of the P
-

he
e
ted
-

ess

-

ng
s

e

(0,0,v3)r states become pronounced only in the higher po
ads, while they are not clearly discernible in the lower po
ads. The semiclassical analysis of an effective Hamilton
will provide explanations for these riddles~Sec. V!.

Actually, careful inspection of the wave functions r
veals that the wave functions like~2,0,2!, ~3,0,3! ~Fig. 2! or
~3,0,4! ~Fig. 3! are mixtures of the (0,0,v3) and the (0,0,v3)r

wave functions. For example,~4,0,5! in Fig. 3 is clearly a
mixture of (0,0,13)r and ~4,0,5! and similarly ~5,0,6! is a
superposition of wave functions (0,0,16)r and ~5,0,6! as a
blow-up of the wave functions undoubtedly shows. Thus,
(0,0,v3)r wave functions do exist in the low-energy part
the spectrum, but they are interwoven with the (0,0,v3) wave
functions and therefore obscured. The degree of this mix
seems to decrease with increasing energy, so that
(0,0,v3)r character becomes more distinct. The wave fu
tion for state (0,0,18)r is the best example in Fig. 3.

This qualitative behavior may become understandabl
terms of the energy dependent transition frequencies,
energy differences between adjacent levels, of the three
gressions (v1,0,0), (0,0,v3), and (0,0,v3)r , respectively

.

FIG. 2. All wave functions in polyads@@0,6## –@@0,9##. All wave function
plots depicted in this article, if not stated otherwise, have been obta
from a plotting routine, which allows to rotate 3D objects in space. Sho
is one particular contoure(R,r ,g)5singuC(R,r,g)u2 with the value ofe
being the same in a particular figure. The plots are viewed along one c
dinate axis, in the direction perpendicular to the plane of the other
coordinates. Shading emphasizes the 3D character of the wave func
The top panel in the second column shows the potential energy surface
representative periodic orbits of the@R# ~mainly R motion! and the@R1#
~motion along bothR and r ) families. TheR axis ranges from 2.20a0 to
5.50a0 and ther axis ranges from 2.20a0 to 3.90a0.
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FIG. 3. Wave functions of states (v1,0,v1), etc. See the text for more
details. The first panel shows the potential energy surface and a repres
tive periodic orbit of the@r# family. TheR axis ranges from 2.20a0 to 5.50a0

and ther axis ranges from 2.20a0 to 3.90a0. See Fig. 2 for more details.

FIG. 4. All wave functions of polyad@@0,18##. See Figs. 2 and 3 for more
details.
(v1,0,v1) depicted in Fig. 5~a!. The energies for the (v1,0,0)
progression are divided by 2 because of the 2 : 1 resona
and the energies of the (0,0,v3)r progression are divided by
3, because there is only one entry for every third polyad. T
transition frequency for the bending mode is considera
smaller~1037 cm21 for the lowest transition! and not shown
in Fig. 5~a!.

At low energies, the transition frequencies for all thr
progressions are very close together, which implies that h
the mixing of modes is strongest. Due to the different anh
monicities of the three progressions, the gap between
transition energies widens. This means that the energy ra
over which a polyad spreads, increases with energy~Fig. 1!,
which in turn may explain, why the mixing between th
states (0,0,v3) and (0,0,v3)r gradually diminishes in the
higher polyads. In this respect, there is one detail worth m
tioning: The transition energy of the (0,0,v3) progression
first increaseswith v3 rather than decreases as expected fo
vibrational progression. This indicates that the~0,0,1! state is
not a true member of the (0,0,v3) progression and the wav
function ~not shown here! actually confirms this. The~0,0,1!
wave function fits better into the (0,0,v3)r progression, rather
than the (0,0,v1) series.

It is interesting to compare Fig. 5 with the equivale
plots for HCP@Fig. 9~a! in Ref. 12# and HOCl@Fig. 5~c! in
Ref. 24#, another system which is characterized by a 1
resonance. In HCP the gap between the two relevant tra

ta-

FIG. 5. ~a! Transition energies, i.e., energy differences between neighbo
levels, for the three progressions (v1,0,0) ~divided by 2!, (0,0,v3), and
(0,0,v3)r ~divided by 3!. Each symbol is plotted at the energy of the upp
state.~b! Frequencies of the periodic orbits of the families@R# ~divided by
2!, @R1#, @R2#, and @r #. Stable~unstable! branches are indicated by soli
~dashed! curves. The two dots mark the bifurcations discussed in the te
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tion energies remains almost constant over a large en
interval and therefore the degree of mixing does not cha
much. For HOCl, on the other hand, the difference betw
the transition energies is relatively large at low energies
decreases withE, because one mode has a significantly lar
anharmonicity than the other mode. As a consequence,
increasing excitation the system is gradually tuned into
resonance.

Since the (0,0,v3)r states do not naturally fit into th
(v1,0,P22v1) level scheme, it is not surprising to find, th
their energies lead to some ‘‘distortions’’ in the intra-poly
energy spacing, that is the energy spacingD i between neigh-
boring levels inside a particular polyad. This is clearly se
in Fig. 1, where the levels of the (0,0,v3)r states are indicated
by dashed lines. PlottingD i as a function of the indexi
shows clear minima, which are caused by the (0,0,v3)r

states. The ‘‘dips’’ are associated with a separatrix cause
a particular unstable periodic orbit~see Sec. V!.

B. Polyad structure for v 2Ä2 and 4

Because the bending mode is more or less decou
from the other two degrees of freedom, the general struc
in terms of polyads is essentially preserved forv2.0. How-
ever, the separation is not perfect and therefore differen
between the spectra forv250 andv2Þ0 do exist. This is
exemplified in Fig. 1~b!, where the spectrum forv254 is
compared with thev250 spectrum. The energetic breadth
comparable polyads is slightly larger forv254. More impor-
tant, however, the spacings inside the polyads is notice
different for v250 and 4, pointing towards a different dy
namics.

The wave functions forv252 and 4 look quite similar to
thev250 wave functions, except for the additional nodes
the bending coordinate.~Figures equivalent to Figs. 2 and
but for v252 and 4 are available electronically.21! The as-
signments with quantum numbersv1 andv3 is analogous as
described above. However, the special states (0,0,v3)r play a
minor role as compared tov250; they start at higher polyad
and are less pronounced. For example, forv252 the first
indication of a (0,0,v3)r state occurs atP513 and the first
clear-cut example appears atP516. Forv254 there are no
distinct (0,0,v3)r wave functions up toP516. These obser
vations are in good qualitative accord with the semiclass
analysis of the resonance Hamiltonian in Sec. V. At hig
energies, the wave functions become more and more com
cated and unique assignments are generally difficult, ex
for special cases. The spectra for still higher bending qu
tum numbers have not been analyzed in detail, but the se
classical analysis predicts them to be similar to thev254
spectra.

The minor peculiarity of the (0,v2 ,v3)r states leads to a
more gradual energy spacing between neighboring levels
particular polyad as is clearly seen in Fig. 1~b! for v254 as
compared tov250. D i does show a minimum vsi; however,
this minimum is less pronounced than forv250. Thus, al-
though the bending degree of freedom is only wea
coupled to the other two modes, the spectra for differ
values ofv2 exhibit noticeable differences.
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IV. ANALYSIS OF CLASSICAL PHASE SPACE

The structure of the quantum-mechanical spectrum
particularly the shapes of the wave functions can be elu
dated in terms of the structure of the classical phase sp
and special trajectories therein, so-called periodic orb
~POs!.25,26POs are classified as stable or unstable depen
on the eigenvalues of the monodromy matrix.8 For many
systems it has been demonstrated that the backbone
quantum-mechanical wave functions closely follow certa
stable POs.27 DCP is a particularly illuminating system fo
illustrating the close correspondence between the ph
space structure and the quantum-mechanical spectrum
the way from the bottom of the potential well up to hig
energies.

Near the bottom of the potential well there are thr
types of stable POs, the so-called principal families. They
denoted by@R#, @r #, and@g#, respectively, because the co
responding POs basically describe motions along the th
coordinate axes. Instead of showing individual POs
present in Fig. 5~b! the corresponding frequencies as fun
tions of the energy~continuation–bifurcation diagram28,29!.
In order to simplify the presentation, the frequency for t
@g# family is not shown. In accordance with the quantum
mechanical results in Fig. 5~a! the frequencies of the
@R#-type orbits are divided by two. The trajectories of th
@R# and@r# families ~as well as the@R1# and@R2# manifolds
discussed below! lie in the (R,r )-plane, i.e.,g5180°.

Despite the simplicity of the PES around the equili
rium, the structure of the classical phase space is alre
quite involved even at very low energies. The@R#-type POs
become unstable in a period-doubling bifurcation already
an energy of 0.061 eV. At the same time a new class of P
termed@R1# in what follows, is born; the corresponding o
bits are stable. Shortly after the first bifurcation, the@R#-type
POs become stable again in a second period doubling b
cation (E50.626 eV!, in which another class of orbits,@R2#,
is created. The@R2# orbits are unstable and do not influen
the quantum wave functions. After the second bifurcation
@R# trajectories remain stable up to high energies. The@R1#
POs remain stable until a third bifurcation atE52.920 eV
destabilizes them. The@r #-type POs are stable from low t
very high energies. Incidentally we note, that the bifurcat
of the @R# family, at which the stable@R1# orbits are born, is
also predicted by the old HCP PES, however, at significan
higher energies.15 As a consequence of this rather late a
pearance of the@R1# trajectories the corresponding spectru
is remarkably different from the spectrum discussed in
present work.

The classical continuation–bifurcation diagram loo
qualitatively very similar to the quantum-mechanical tran
tion energies. A direct comparison is not quite straightf
ward, because of the different ways in which the vario
curves are plotted in Figs. 5~a! and 5~b!. In the quantum-
mechanical representation each point corresponds to the
ergy of the upper level, whereas in the classical picture
nominal energy is the total energy of the trajectories.
quantitative comparison must also include modifications
order to correct for zero-point energies, which has not b
done. Nevertheless, the good qualitative agreement sugg
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that the states (v1,0,0), (0,0,v3), and (0,0,v3)r correspond to
the POs of the@R#, @R1#, and@r# families, respectively. This
correspondence is also confirmed by the POs and their s
ring of the complementary wave functions. In Fig. 2 we d
pict POs for the@R# and @R1# families and even withou
overlaying them to the wave functions it is clear that th
guide the (v1,0,0) and (0,0,v3) wave functions, respectively
Likewise, in Fig. 3 we show POs of the@r# type and it is
obvious that they scar the (0,0,v3)r wave functions.

A question, which we do not have an answer for with
the classical framework, is, why quantum mechanics follo
predominately the@R1# branch rather than the@r# branch of
POs. The@r #-type POs belong to a principal family and the
are stable. In other words, there is no obvious reason,
the wave functions should not follow them. Wave functio
with clear-cut CP stretch behavior come into existence o
at higher energies. An explanation is provided by the se
classical analysis of the effective Hamiltonian model d
scribed in the next section.

V. EFFECTIVE HAMILTONIAN MODEL

More details and more insight into the dynamics com
from a model, which is very simple, but which neverthele
reproduces the quantum-mechanical level spectrum and
wave functions remarkably well. The main asset of t
model is the possibility of a semiclassical analysis, wh
would be very difficult for the exact classical Hamiltonia
Similar studies have been recently performed for HCP12,30,31

and HOCl32 so that only a few details of the actual calcul
tions are reported here. The interested reader is referre
Refs. 30–32 for more explanations.

The starting point is the observation that a simple Du
ham expansion@Eq. ~2! below# is unable to correctly repro
duce the quantum-mechanical spectrum, whereas this is
sible when a more refined model is used, which takes
account the 2:1 Fermi resonance between the DC stretch
the CP stretch modes. More precisely, the Fermi resona
Hamiltonian is written as

H5HD1HF . ~1!

The Dunham part is defined as

^v1 ,v2 ,v3uHDuv1 ,v2 ,v3&

5(
i

v ini1(
i< j

xi j ninj1 (
i< j <k

yi jkninjnk

1 (
i< j <k<m

zi jkmninjnknm , ~2!

with n15v11 1
2, n25v211, andn35v31 1

2 and the Fermi
off-diagonal term is given by

^v1 ,v2 ,v3uHFuv121,v2 ,v312&

5@v1~v311!~v312!#1/2S k1(
i

l ini1(
i< j

m i j ninj D ,

~3!
ar-
-

s

y

ly
i-
-

s
s
he
s
h

to

-

os-
to
nd
ce

with n15v1 , n25v211, andn35v31 3
2. Since onlyJ50

states are investigated, the vibrational angular momen
constant is zero~and therefore omitted! in Eqs.~2! and ~3!.
The Fermi resonance Hamiltonian has two conserved qu
tities, i.e., the number of quanta in the bending degree
freedom,v2, and the polyad quantum number,P.

The constantsv i , xi j , yi jk , zi jkm , k, l i , andm i j can be
obtained either from high-order canonical perturbati
theory, as was done in Ref. 33, or from a fit of the quantu
mechanical energy levels, as was done in Refs. 23, 31,
32 as well as in the present study. A total of 533 assign
levels are taken into account in the fitting procedure. Th
include all levels up to No. 481~17 292 cm21 above the
ground state, corresponding up to 38 quanta in the bend
degree of freedom! and all additional levels withv250 up to
No. 996~21 922 cm21 above the ground state, correspondi
up to 20 quanta in the CP stretch!. The 533 transition ener
gies are reproduced with a rms~root-mean-square! error of
4.26 cm21 and a maximum error of 24.71 cm21 using a set
of 31 parameters, which are listed in Table III together w
their standard deviations. Most important, however, is
fact, that the resonance Hamiltonian, in addition to the
ergy values, also reproduces satisfactorily the exact quan
wave functions, as can be seen by comparing the appr
mate ones for polyad@@0,18## in Fig. 6 with those in Fig. 4.
The tilting of the coordinate axes between the two repres
tations reflects the nonlinear relationship between the Ja
coordinates (R,r ) used in the exact calculations and the~ab-
stract! normal coordinates (q1 ,q3) employed in the mode
Hamiltonian. The approximate wave functions have
built-in symmetry, which is not present in the exact Ham
tonian. Also, interpolyad coupling is not accounted for by t
effective Hamiltonian. Nevertheless, the generic structure
the wave functions are accurately described. In particular,
peculiar behavior of the wave function for level No. 797—
(0,0,18)r in the terminology used above—is clearly repr
duced.

The classical counterpart for the quantum Hamilton
in Eqs.~1!–~3! is given by

TABLE III. Parameters of the effective Hamiltonian model.

Parameter Value
Standard
deviation Parameter Value

Standard
deviation

v1 2494.0412 3.7552 y223 20.0482 0.0080
v2 539.1611 0.5725 y233 0.2535 0.0564
v3 1237.0955 1.7274 y333 20.2447 0.0490
x11 224.0769 1.7791 z1111 0.0510 0.0149
x12 211.1041 0.2866 z1112 0.0806 0.0105
x13 24.6276 0.6920 z1222 20.0055 0.0005
x22 23.5142 0.0825 z1233 0.0280 0.0086
x23 20.6753 0.2721 z2222 20.0014 0.0001
x33 22.2082 0.5279 z2233 20.0067 0.0012
y111 20.8896 0.2913 z2333 20.0132 0.0026
y112 20.4928 0.0906 z3333 0.0092 0.0014
y113 20.5407 0.0734 k 12.3422 0.1690
y122 0.2167 0.0175 l1 0.5786 0.1363
y123 20.3655 0.0505 l3 0.1212 0.0157
y133 20.2167 0.0470 m11 20.2990 0.0252
y222 0.0884 0.0040
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FIG. 6. Two-dimensional contour plots of the approx
mate wave functions for polyad@@0,18## as obtained
from the resonance Hamiltonian. The number in ea
panel indicates the number in the complete spectr
and the number in bracket indicates the ordering ins
the polyad (i 50 for the highest level!. The curves rep-
resent the corresponding periodic orbits for the vario
families as indicated.
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Hcl5(
i

v i I i1(
i< j

xi j I i I j1 (
i< j <k

yi jk I i I j I k

1 (
i< j <k<m

zi jkmI i I j I kI m12I 1
1/2I 3 cos~w122w3!

3S k1(
i

l i I i1(
i< j

m i j I i I j D , ~4!

where theI i andw i are the zero-order action-angle variabl
of the i th normal mode. Using the new coordinates

I 52I 11I 3 , J52I 1 , Q5w3 , c5
w1

2
2w3 , ~5!

whereQ is conjugate toI andc is conjugate toJ, Hcl is seen
to depend on a single angle, namelyc. As a consequence,I 2

and I are constants of motion. When the total energyE, I,
andI 2 are fixed, it follows thatJ is a function ofc only and
one can define the quantity

J5
1

2p R
cP[0,p]

J dc . ~6!

The Einstein–Brillouin–Keller~EBK! semiclassical quanti
zation rules34 state, that each quantum state is associa
with a unique classical trajectory~called the ‘‘quantizing’’
trajectory!, so that

I 25v211, I 5P1 3
2 , ~7!

andJ561/2,63/2, etc. The advantage of studying the a
proximate classical resonance Hamiltonian rests on the
sibility to discuss POs in a four-dimensional phase spac
functions of the conserved quantitiesI 2 and I ~or alterna-
tively the quantum numbersv2 andP) rather than in the full
six-dimensional phase space as done in Sec. IV. This
vides a more detailed picture.

The classical results reported in Sec. IV are retrieved
seeking the POs forI 250, that isv2521; in these calcula-
tions no energy is put into the bending degree of freedo
d

-
s-

as

o-

y

.

Just above the zero-energy point~ZEP! one finds two fami-
lies of stable POs with the same DC and CP stretching c
acteristics as described in Sec. IV and which are, theref
termed@R# and@r #, respectively. A first bifurcation occurs a
P521.29 corresponding to an energy of 261 cm21 above
the ZEP. This period-doubling bifurcation is apitchfork bi-
furcation in the terminology of elementary bifurcations.35,36

At this first bifurcation, PF1, the@R#-type POs become un
stable and the family of stable@R1# POs is created. AtP
52.96, corresponding to 5437 cm21 above the ZEP, a sec
ond pitchfork bifurcation, PF2, occurs, where the@R#-type
POs become stable again while a family of unstable P
@R2#, is created. These results are in very good agreem
with the full classical results obtained from the original PE
which lead to bifurcations at 494 and 5049 cm21 above the
potential minimum.

According to the semiclassical quantization rules in E
~7!, the study of the polyads for a fixed bending quantu
numberv250 requires examination of the POs withI 251
instead ofI 250 as done above. The general behavior of
bifurcation diagram is found to be very similar to the clas
cal case forI 250, that is, the family of stable POs,@R1#, is
created in a first pitchfork bifurcation PF1 atP521.43~620
cm21 above the ZEP!, while the family of unstable POs
@R2#, originates at a second pitchfork bifurcation PF2 atP
52.35 ~5224 cm21 above the ZEP!. The inset of Fig. 7
shows the energies~with respect to the ground vibrationa
state! of the four different types of POs as functions of th
polyad quantum numberP. In order to make details more
discernible, we plot in the main part of the figure the en
gies relative to the energy of the@R#-type POs. It is seen tha
for values ofP larger than four or so the@R#- and@R1#-type
POs constitute the lower and the upper bounds of the cla
cally accessible region. This is the reason why the sta
close to the low- and the high-energy ends of the polyads
scarred by the@R# and the@R1# POs, respectively, rathe
than the@r# trajectories. On the other hand, the@r# and@R2#
POs remain always close to each other and their~relative!
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positions inside the classically accessible region do not v
much asP increases from about 10–20. The important po
is that the quantum states, which are scarred by the@r# family
of POs, are expected to lie between the energies of the@r#
and the @R2# POs. This is actually confirmed in Fig. 8
which shows the action integralJ as a function of energy fo
polyad@@0,18##. The dots indicate the positions of the qua
tizing trajectories which, according to the EBK quantizati
rules, correspond to half-integer values ofJ; the number
above each point indicates the positioni of that particular
state in the polyad as in Fig. 6 and the vertical dashed li
indicate the energies of the four POs for this polyad. Ea
state located on either one of the two main branches~those
with negative values ofJ) is seen to have a wave functio

FIG. 7. The energies of the various periodic orbits as functions of the po
numberP relative to the ground-state level~inset! or relative to the energy
of the @R#-type periodic orbit~main body of the figure!. PF1 and PF2 mark
the two pitchfork bifurcations. Solid lines are used for stable orbits a
dashed lines for unstable ones. The filled circles indicate the energies fo
states of the@@0,18## polyad.

FIG. 8. Action integralJ as function of energy for polyad@@0,18##. The
filled circles mark the quantizing periodic orbits and the vertical das
lines denote the energies of the four periodic orbits. The numbei
50,1, . . . indicate the ordering of the quantum levels inside the polyad
ry
t

-

s
h

scarred along the@R# or the @R1# POs; they form the main
body of the polyad and are assigned as (v1,0,v3) as de-
scribed in Sec. III. Statei 56, located on the tiny branch
which has positive values ofJ and which extends from@r# to
@R2#, is scarred along the@r# orbits. It corresponds to the
states termed (0,0,v3)r above. The fact that the quantizin
trajectories for the latter are comprised between the POs@r#
and @R2# explains, why the states (0,0,v3)r are always lo-
cated approximately at the same place inside the quan
polyad. Moreover, the very slow growth of the gap betwe
the energies of the@r# and the@R2# trajectories is the reason
why states scarred along the@r# POs are observed only fo
rather large values ofP and why their quantity in each
polyad is so small.

At last, it should be noted that the@R2# family of un-
stable POs is responsible for the dip in the energy gap
tween neighboring levels belonging to the same polyad. T
phenomenon, which has been discussed in detail
HCP11,12,30,31and HOCl,24 is due to the fact that the deriva
tive of J with respect to energy goes to infinity at the ener
of the@R2# family, so that the spacing is smaller close to t
energy of@R2# and larger far away from it. This is clearl
seen in Fig. 8. Since the branch with positive values ofJ,
which contains the quantizing trajectories associated with
(0,0,v3)r states, is so narrow and contains so few states~at
most one in the energy range studied!, the fluctuating pattern
found for HCP31 does not occur for DCP and@R2# is, there-
fore, associated with a simple minimum in the plot of t
energy gap inside a polyad.

Let us now briefly consider the polyads withv2>2. For
these polyads, the bifurcation diagrams differ considera
from those forv250. For v252, the same pitchfork bifur-
cation PF1 as forv250 is found, atP521.45 or 1654
cm21 above the ZEP. However, the second pitchfork bifu
cation, PF2, is associated with thedestructionof the stable
family of POs @R1#, which is born at PF1, rather than th
creation of the unstable family@R2#. As a result, there exis
only two families of stable POs up to about 16 000 cm21

above the ground state, which are@R# and @r #. Therefore,
quantum wave functions are scarred by only two differe
POs in this energy range. Note, however, that the@r #-type
POs for v252 have the same structure as the@R1# POs
discussed forv250. In addition, a first tangent~or saddle-
node! bifurcation is found atP513.04 or 16 068 cm21

above the ground state, where a stable and an unstable fa
of POs are simultaneously created. The orbits of the sta
branch have the characteristic of the@r #-type POs discussed
for v250 above. This is in accord with the quantum wa
functions obtained from the full Hamiltonian, which show
first member of the (0,2,v2)r progression not beforeP513
corresponding to about 16 000 cm21 above (0,0,0).21

For v254, pitchfork bifurcations are no longer observe
and the first tangent bifurcation is found atP516.46 or
20 700 cm21 above the ground state. This is also in agre
ment with the analysis of the quantum wave functions: F
v254, up to polyad@@4,16## ~the highest member of this
polyad has an energy of 20 246 cm21) clear-cut (0,4,v2)r

wave functions do not exist.21 Polyads with values ofv2

larger than four behave as forv254, save for the
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increase of the energy at which the first tangent bifurcat
sets in with increasingv2.

VI. PURE BENDING PROGRESSION

One of the main features in the vibrational spectrum
HCP is the strong mixing between the CP stretch mode
the bending mode due to a 1 : 2 anharmonic resonance.
result of this mixing, the states of the (0,v2,0) progression,
which at low energies have mainly the character of bend
motion, gradually acquire more and more CP stretching
havior and as a consequence avoid the minimum energy
from the HCP side to the CPH side of the PES. The wa
functions of all members of the (0,v2,0) progression for
HCP are confined to displacements of 40° –50° away fr
the equilibrium angle, although larger displacements
definitely energetically accessible. States, which do foll
the minimum energy path along the isomerization coordin
are born at relatively high energies in a saddle-no
bifurcation.12

The bending dynamics in DCP is completely differe
The bending mode is not involved in an anharmonic re
nance with one~or both! of the other two modes, but is mor
or less separated. As a consequence, there is no reaso
the wave functions of the bending progressionnot to evolve
along the minimum energy path in the bending coordinateg.
And that is exactly what is seen in Fig. 9, where we dep
the wave functions for various bending states up tov2550
corresponding to about 20 000 cm21 above the ground state
Up to aboutv2534 the wave functions do not show disto
tions and are easy to locate in the spectrum. At higher e
gies, the bending states become more difficult to assign
the wave functions show gradually more admixtures of ot
states, which also shows up in noticeable deviations
@E(0,v212,0)2E(0,v2,0)# from a smooth line. The reason is th
increased density of states and the resulting coupling
tween all three modes.

This is in qualitative accord with the classic
continuation–bifurcation diagram. The bending family
POs,@B#, is stable up to about 2 eV, which corresponds

FIG. 9. Selected wave functions of the pure bending progression. The
tical axes range from 2.20a0 to 5.50a0 and the horizontal axes range from
180° to 80°. The first panel shows the potential energy surface and a
resentative periodic orbit of the@B# family.
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;32 quanta of the bending mode. It is checked that the P
scar the (0,v2,0) wave functions~first panel in Fig. 9!. At a
first bifurcation the@B#-type orbits become unstable and
new stable family comes into existence. However, the n
stable POs quickly become unstable, too, and a cascad
additional bifurcations sets in. With other words, the stru
ture of the classical phase space becomes quite comp
which makes it appear reasonable, why the higher overto
of the pure bending progression (v2.40 or so! are per-
turbed.

Incidentally we note that the rotational constantBrot ,
calculated as the expectation value of the inverse of the
ment of inertia using theJ50 wave functions, steadily in-
creases up tov2'44, as it is expected for linear molecule
like HCP and DCP. In contrast, the same quantity for H
decreaseswith v2, except for the lowest bending excitation
This decrease for HCP results from the obstruction of
pure bending motion and the increasingly growing admixt
of CP stretch motion.

VII. SUMMARY

~1! The vibrational energy level spectrum of DCP has be
determined by quantum-mechanical variational calcu
tions using an accurate potential energy surface. In or
to assign the spectrum, all wave functions of the first fi
hundred states and selected wave functions at e
higher energies have been visually inspected. The ag
ment of the calculated transition energies and rotatio
constants with the few available experimental data is
cellent.

~2! Unlike the HCP spectrum, which is governed by a 2
HC stretch : bend anharmonic resonance, the spectrum
DCP is determined by a 2 : 1 HC stretch : CP stre
resonance. The resonance condition is best fulfilled
the lowest energies; however, because of the anhar
nicity of the DC stretch mode, the mismatch between
two stretching~transition! frequencies increases with in
creasing energy. The bending degree of freedom is
large extent decoupled from the other two modes. A
consequence of the resonance and the weak coupling
tween the bend and the two stretches, the energies
organized in terms of polyads for a particular bendi
quantum number. The assignment in terms of th
quantum numbers is straightforward up to about 1.75
above the minimum energy. Then, a new class of wa
functions gradually comes into existence, which does
fit into the scheme developed at lower energies.

~3! Analysis of the classical phase space—using the
Hamiltonian—in terms of periodic orbits and their co
tinuation with increasing energy explains some of t
features seen in the quantum-mechanical spectrum.
example, it is rationalized, that the wave functions of t
two main stretching progressions, (v1,0,0) and (0,0,v3),
follow two distinct types of stable periodic orbits,@R#
and @R1#, respectively. The latter are created in a ve
early bifurcation of the@R# family, ;0.6 eV above mini-
mum. The ‘‘new’’ states, termed (0,0,v3)r , are shown to
follow periodic orbits, which essentially correspond
CP stretching motion.
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~4! Even more subtle details of the quantum mechan
spectrum are explained by a semiclassical analysis
resonance Hamiltonian model, in which the paramet
are obtained by fitting the exact quantum-mechanical
ergies.

~5! Because the bending mode is not involved in a resona
with the stretching degrees of freedom, the correspo
ing wave functions, analyzed up to state~0,50,0!, do
follow the DCP/CPD isomerization path. This is in stri
ing disagreement with HCP, for which the states of t
progression (0,v2,0) avoid the isomerization path. Thu
DCP is probably a more suitable candidate for study
how isomerization shows up in a spectrum.
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