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The vibrational spectrum of deuterated phosphaethyP€P) is analyzed in terms of
quantum-mechanical variational calculations, classical mechgmec®dic orbitg, and an effective
Hamiltonian model. The quantum mechanical and classical calculations are performed with a new,
spectroscopically accurate potential energy surface. The spectrum is governed by a 2:1 DC
stretch : CP stretch anharmonic resonance, which already exists for the fundamentals. The bending
degree of freedom is to a large extent decoupled. It is shown that several bifurcations in the classical
phase space profoundly influence the quantum spectrum. For example, a new progression, which
does not exist at very low excitation energies, comes into existence at intermediate energies. In
contrast to HCP, the pure bending states gradually evolve along the isomerization path with
increasing bending quantum number. ZD00 American Institute of Physics.

[S0021-960600)00120-3

I. INTRODUCTION performed with a potential energy surfa@ES,*** which
did not allow direct comparison with the experimental data.

As a consequence of the coupling between the varioug, completely new PES has been calculated diy initio
internal modes, which typically increases with energy, themethods, which has the required accurkt¥he calculated
vibrational spectrum of even a triatomic molecule can be-energy levels agree very nicely with the measured ones, up
come quite intricaté=® In many cases, anharmonic reso- to high energies, and in particular reproduce the experimen-
nances and the resulting mixing between zero-order stat@slly observed isomerization stats.
determine the structure of the energy spectrum even at low |n the present article we analyze the spectrum of DCP
energies™’ As a consequence of anharmonic resonancegsing this new PES. Because of the drastic change of one of
nonlinear dynamics effects such as bifurcations may dtcurthe atomic masses, the DCP spectrum is completely different
which leave distinct hallmarks in the quantum-mechanicakrom the HCP level spectruf?. Instead of the CP stretch:
energy spectrum. The investigation of these and related ebend resonance, a 2:1 DC stretch:CP stretch resonance
fects reveals a lot of information about the intramoleculargoverns the DCP Spectrum_ Furthermore, the bifurcations oc-
dynamics of small molecules, in particular, and nonlinearcyrring in DCP are of different types than observed for HCP.

dynamics in general. o Unfortunately there are no experimental results, except for
~ In a series of recent papers we analyzed, inspired byhe Jowest levels, to compare the theoretical predictions with.
high-resolution stimulated-emission-pumpi(®EP spectro- The article is organized in the following way: In Sec. Il

scopic measurements at high-transition enerjiée, vibra-  getails of the numerical calculations will be briefly de-
tional spectrum of HCPY** a molecule with a pronounced  scriped. The quantum-mechanical results and the develop-
2:1 CP stretch : bend resonance. The most interesting featurgent of the polyad structure from low to high energies are
in the spectrum of HCP is the occurrence of a saddle-nodg,yestigated in Sec. Ill. Additional clues of the quantum-
bifurcation at relatively high energies, at which a new kindyechanical eigenvalue spectrum are provided by an analysis
of states, which does not exist at low energies, is abruptlyy ihe classical phase-space structure and an effective Hamil-
born. The existence of these “isomerization” states, as theygian model, which will be presented in Secs. IV and V,
are ca!ledl,z has blgen confirmed in subsequent experimentgsspectively. The pure bending states are briefly discussed in
by Ishikawaet al.” However, the early calculations were gec v, All calculations, except where otherwise stated, are
performed for nonrotating DCPJE Q). Energies are mea-
dElectronic mail: rschink@gwdg.de sured with respect to the potential minimum for linear DCP.
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TABLE |. Comparison of calculated and measured transition enetgies  sured data. In what follows;; andv; are the DC stretch and
and rotational constant (in cm ) for DCP-. the CP stretch mode, respectively, anfl is the bending

AE B mode with| indicating the vibrational angular momentum
guantum number(The real meaning of these assignments,
especially at higher energies, will be discussed in the next
(0,0,0) 0 0 0.567 0.572 section) The agreement between the measured and the cal-

(v, ,v'2 ,U3) Theory Experimerit Theory Experiment

(0,1,0) 525.8 525.22 8 : culated energies is excellent. It must be underlined, that the
(0.2,0) 1087.2 10387.50 0574 0.569 originally calculated PES had been modified very slightly in
(0.2,0) 1053.5 1052.93 order to compensate an underestimation of the CP stretching
(0,0,1) 1228.7 1231.40 0.569 0.564 ) 0 121411, X I
(1,0°,0) 2419.5 2419.43 0.570 0.563 requency by 16 cm™ in HCP:“*" The corresponding scal-
(1,14,0) 2937.5 2935.64 ing factor was not adjusted to minimize the error for the
(2,0,0) 4790.2 4789.05 0.570 0.559 fundamental, rather it was chosen so that good overall agree-
(1,0,2) 4837.0 4832.275 0.567 0.557

ment over a large energy region was obtained.

aReferences 18 and 20. In view of the excellent agreement for many energy lev-
els of HCP* and the agreement seen in Table | for DCP, we
are confident that the calculated DCP levels are well suited

Il. CALCULATIONS for guiding future SEP studies at higher excitation energies.

The energies of the first hundred levels including their as-

_ o signments are listed in Table Il. The data for the lowest
We have performed quantum-mechanical variational calthoysand states are available electronicZly.

culations for determining the vibrational energies as well as

the corresponding wave functions. The coordinates used at- QUANTUM MECHANICAL SPECTRUM, WAVE

the Jacobi coordinatd® (the distance between the center-of- FUNCTIONS, AND ASSIGNMENTS

mass of CP and Dr (the CP separationand y (the angle We have visually inspected the lowest five hundred vi-
between the two vectoi® andr with v= 180° Correspond_ brational wave functions in order to achieve an Unambiguous
ing to linear DCP. The Hamiltonian is represented in a assignment and to elucidate how the spectrum develops with
highly contracted—truncateithree-dimensionai3D basis as  increasing energy. Above state No. 500 only selected pro-
described in detail in Ref. 16. The variational program re-gressions have been followed to higher energies.

quires basically two parameters: The eneligy; up to which A Polyad structure for  v,=0

all internally contracted basis functions are included and the

A. Numerical details

maximal distance in the dissociation coordina®g,.. All The spectrum of DCP is governed by a 2:: 1 anharmonic
other parameters are chosen automatically. The results réesonanceig)etween modeg and v3™ [E(,02)~ E(1.00)
ported below are obtained witE.=4.536 eV andR,, =415 M 'l As a result, it is structured in terms of

—6.36,. The size of the primary direct-product basis for Polyads$® [[v,,P]] with “polyad quantum number’P
these parameters is 322770, whereas the dimension of tie2v1+vs. The bending degree of freedom is—at least in
contracted—truncated basis is only 12 087. In order to asse§3€ low and intermediate energy regimes—relatively weakly
the accuracy of the variational calculations we performecfOupled to the two stretching degrees of freedom and merely
additional calculations foE.,=4.486 and 4.636 eV. The Plays the role of a “spectator.” We will first consider the
convergence is best for the pure bending states and less s&Rectrum foru,=0; changes of the general structure with
isfactory for the pure CP stretch progression. The uncertairz=>0 Will be discussed below.
ties for the energies of the CP stretch progression are esti- N Fig. 1(a) we show the energy spectrum fes=0 for
mated to be 0.1, 3, and 14 crhfor the first 100, 500, and Polyad quantum numbef=_8-16. While the lower polyads
1000 states, respectively, which corresponds to 4, 8, and 1€ well separated, stgrting with= 15 the polyads overlap,
quanta of the DC stretch coordinate. Most states are signifi¥hich makes the assignment more and more cumbersome.
cantly better converged; the average error is more than orfll wave functions belonging to polyad$0,6]]-[[0,9]] are
order of magnitude smaller. The qualitative behavior of thedepicted in Fig. 2. With a few exceptions, to be discussed
wave functions is the same for all three calculations andpek_)W- the_ assignment in terms of quantum numberand
therefore, we are confident that the main conclusions of thés iS straightforward. The quantum numbey counts the
present work are not affected by convergence problems. humber of nodes along the “left” and “right” side lines of

In order to determine the rotational constants for some ofl1€ wave function and; counts the number of nodes along

the lowest levels we also performed calculationsXerl as ~ the lower “arc” [see, for example, wave functid@,0,4]. It
described in Ref. 14. should be underlined that; must be enumerated at the

“outer” line of nodes, as explicitly indicated in the figure,
because the number counted along the “inner” line may be
smaller. This occurs particularly at higher excitations. As we
Unlike HCP, the experimental information on the will show below, the curves along which the number of

vibration—rotation spectrum of DCP is spar@ee Ref. 17 nodes are counted correspond to particular periodic orbits in
and references thergirMerely the transition energies of the the classical phase space. The curvature of they),vave
lowest states are knowfi-?° In Table | we compare the functions is a result of the strong mixing between the two
calculated term values and rotational constants with the meatretching degrees of freedom; it increases with increasing

B. Comparison with experimental data



J. Chem. Phys., Vol. 112, No. 20, 22 May 2000 Vibrational spectrum of DCP 8857

TABLE Il. Energies and assignments of the first 100 states of DCP.

No (v1,02,03) E[eV] AE [em™ 1] No. (v1,02,03) E [eV] AE [em™ 1]
1 000 0.295 17 0.00 51 104 1.19315 7242.58
2 020 0.42376 1037.17 52 1100 1.204 80 7336.60
3 001 0.447 51 1228.68 53 006 1.207 13 7355.37
4 040 0.549 99 2055.22 54 0102 1.218 73 7448.89
5 021 0.576 18 2266.51 55 181 1.236 30 7590.60
6 100 0.595 15 2419.44 56 083 1.250 22 7702.94
7 002 0.600 29 2460.91 57 260 1.252 70 7722.91
8 060 0.674 17 3056.84 58 162 1.266 33 7832.85
9 041 0.702 16 3282.52 59 0160 1.268 84 7853.09
10 120 0.721 54 3438.88 60 064 1.280 05 7943.52
11 022 0.728 67 3496.34 61 241 1.282 66 7964.54
12 101 0.74513 3629.13 62 143 1.294 04 8056.36
13 003 0.752 70 3690.16 63 320 1.297 41 8083.55
14 080 0.796 48 4043.29 64 0141 1.302 68 8125.98
15 061 0.825 96 4281.09 65 045 1.308 09 8169.64
16 140 0.84512 4435.61 66 222 1.309 56 8181.50
17 042 0.854 27 4509.36 67 124 1.31941 8260.91
18 121 0.871 84 4651.11 68 1120 1.321 36 8276.65
19 023 0.88083 4723.62 69 301 1.32352 8294.06
20 200 0.889 08 4790.13 70 203 1.33044 8349.91
21 102 0.894 88 4836.93 71 026 1.334 63 8383.68
22 004 0.904 69 4916.08 72 0122 1.336 44 8398.31
23 0100 0.917 02 5015.51 73 105 1.34159 8439.88
24 081 0.947 81 5263.82 74 1101 1.354 03 8540.22
25 160 0.966 72 5416.34 75 007 1.357 44 8567.70
26 062 097771 5505.03 76 0103 1.369 24 8662.81
27 141 0.995 39 5647.62 77 280 1.37023 8670.81
28 043 1.006 05 5733.56 78 0180 1.382 92 8773.22
29 220 1.01291 5788.88 79 182 1.38562 8794.97
30 122 1.021 64 5859.34 80 084 1.400 47 8914.74
31 024 1.03258 5947.53 81 261 1.401 69 8924.61
32 0120 1.035 89 5974.28 82 163 1.414 87 9030.88
33 201 1.037 39 5986.32 83 340 1.41574 9037.86
34 103 1.044 21 6041.32 84 0161 1.41770 9053.70
35 005 1.056 19 6138.00 85 065 1.429 80 9151.30
36 0101 1.067 80 6231.64 86 242 1.43116 9162.27
37 180 1.086 59 6383.19 87 1140 1.436 26 9203.40
38 082 1.099 18 6484.72 88 144 1.442 21 9251.36
39 161 1.116 78 6626.62 89 321 1.445 26 9275.97
40 063 1.129 14 6726.35 90 014 2 1.452 44 9333.93
41 240 1.13371 6763.20 91 223 1.455 48 9358.41
42 142 1.14510 6855.10 92 400 1.456 13 9363.69
43 0140 1.15316 6920.07 93 046 1.458 70 9384.40
44 044 1.157 39 6954.19 94 125 1.467 34 9454.09
45 221 1.16174 6989.30 95 302 1.469 10 9468.28
46 123 1.17081 7062.40 96 1121 1.470 04 9475.84
47 300 1.176 14 7105.38 97 204 1.476 09 9524.65
48 025 1.18371 7166.48 98 027 1.484 70 9594.06
49 202 1.184 62 7173.77 99 2100 1.485 81 9603.04
50 0121 1.186 06 7185.44 100 0123 1.486 70 9610.18

guantum numbev ;. The overtonesy(;,0,0) are always at so that a classification as CP stretching states is misleading.
the bottom of the polyad and the states (@;p,mark the top Most states up td®=20 or so can be assigned as de-
of a polyad. This ordering was different for the old PES. scribed in Fig. 2. However, there exist a few states, which do
Combination states liké€1,0,5, (1,0,7, or (2,0,5 can be not clearly fall into the two classe®{,0,0) and (0,Q;3) or
easily identified. The ;,0,0) wave functions retain their combinations of them, but which form a different class. The
general shape up to high energies; their main character states ¢,,0p04) with v,=3,4,... P=9,12...) are the
excitation of the DC stretch bond distance and therefore it iglearest example@niddle column of Fig. 3 They gradually
reasonable to term them DC stretching states. They$),0, develop a new type of shape with increasing. Their
states also preserve their general structure asmcreases, “backbone” is strongly curved in theR,r)-plane, too, but
only the “curvature” in the R,r)-plane becomes more pro- in the opposite direction than observed for the @,
nounced. Already the lowest member of this progressionstates. While the assignment (3,0,3) for the second lowest
(0,0,1), shows excitations of both the DC and the CP bondstate in polyadP=9 is still meaningful, as plotting of the
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FIG. 1. Energy-level spectrum fdi) v,=0 and(b) v,=4. The special @ o l/‘ p'//
states (0,@,3), for v,=0 are indicated by dashed lin¢€3,0,2, (3,0,3, R 4/ _-';// 9 é’/
,0,9, etc]. Energy is measured with respect to the minimum of the .
(3,0,9, etcl]. E d with t to th f the PES (5,0,0 3,0,1) (4,0,0) (1]
E=117614 eV | |[E=1.32352¢eV | |E=1.45613 eV | |E =1.60277 ¢V

. . . T
wave function with a lower contour level shows, interpreta-

tion of the wave function shown foP=18 as(6,0,6 does
plots depicted in this article, if not stated otherwise, have been obtained

not make sense. The assignmei®®,5, (6,0,6 etc., reflect ; _ . o
the positions of these states in the spectrum rather than tf{?m a plott_lng routine, which allolvs_to rotate 3D2 ob_Jects in space. Shown
) - . . one particular contoug(R,r,y) =sin W (Rr,y)|* with the value ofe
shapes of their wave functions. The classical analysis of thSeing the same in a particular figure. The plots are viewed along one coor-
phase space indicates that these particular states are relatiythte axis, in the direction perpendicular to the plane of the other two
to a class of periodic orbits, which essentially describe mo¢oordinates. S_hading emphasizes the 3D character Qf the wave functions.
tion in the CP stretch coordinate(see Sec. 1Y, and there- The top par_1e| in the s_econc_i column show§ the poter_mal energy surface and
. ] : » S representative periodic orbits of th&] (mainly R motion) and the[R1]
fore, we will alternatively assign them as (@), in order  (motion along bothR andr) families. TheR axis ranges from 2.20, to
to distinguish them from the (0#);) states. The number of 5.50, and ther axis ranges from 2.2 to 3.9G,.
nodes along the backbones of the (050, wave functions is
identical with P.
States of the formy(;,04) exist only for polyad quan-
tum numbers, which are multiples of 3. Wave functions with(0,0p3), states become pronounced only in the higher poly-
the character of the (0#;), states do exist also for the other ads, while they are not clearly discernible in the lower poly-
polyads, however, then; andv; must differ by one, i.e., ads. The semiclassical analysis of an effective Hamiltonian
vi—v3==*1 (see the first and third columns in Fig).3 will provide explanations for these riddi¢Sec. \J.
However, at comparable energies these states have a less Actually, careful inspection of the wave functions re-
pronounced (0,03), character than the states with=uv . veals that the wave functions lik,0,2, (3,0,3 (Fig. 2) or
In order to illustrate the variations of wave functions (3,0,4 (Fig. 3) are mixtures of the (0,03) and the (0,Q;3),
within a complete polyad, we depict in Fig. 4 the wave func-wave functions. For examplé€4,0,9 in Fig. 3 is clearly a
tions of all states belonging 14 0,18]], one of the highest mixture of (0,0,13) and (4,0,5 and similarly (5,0,8 is a
polyads, that has been completely assigned. With increasinguperposition of wave functions (0,0,16nd (5,0,6 as a
energy the intra- and inter-polyad coupling steadily increaseblow-up of the wave functions undoubtedly shows. Thus, the
with the result that more and more wave functions arg(0,0p3), wave functions do exist in the low-energy part of
strongly mixed, for examplé3,0,2. the spectrum, but they are interwoven with the (@;pwave
It is astounding, that not the states (04), but the functions and therefore obscured. The degree of this mixing
(0,0p3) levels are the counterparts of the DC stretchingseems to decrease with increasing energy, so that the
states ¢4,0,0). The (0,Q;3), wave functions have strong (0,0p3), character becomes more distinct. The wave func-
excitation inr and relatively little excitation irR and, there- tion for state (0,0,18)is the best example in Fig. 3.
fore, they do complement the {,0,0) states, which show This qualitative behavior may become understandable in
strong excitation irR and only slight displacements mIn  terms of the energy dependent transition frequencies, i.e.,
contrast, the (0,05) wave functions have relatively strong energy differences between adjacent levels, of the three pro-
excitation inboth Randr. It is also astonishing that the gressions ,,0,0), (0,0y3), and (0,0y3),, respectively

FIG. 2. All wave functions in polyadf[0,6]]1-[[0,9]]. All wave function
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E = 229875 eV E = 2.43442 eV E = 2.56895 eV FIG. 5. (a) Transition energies, i.e., energy differences between neighboring
= levels, for the three progressions,(0,0) (divided by 2, (0,0p3), and
P=17 - P=18 P=19, “. (0,0p3), (divided by 3. Each symbol is plotted at the energy of the upper
X \\l&”’ ‘.\\u"”, ﬁ'”{f“"g‘/ state.(b) Frequencies of the periodic orbits of the familég (divided by
R o '{\\ t AL 2), [R1], [R2], and[r]. Stable(unstable branches are indicated by solid
& J , . (dashedl curves. The two dots mark the bifurcations discussed in the text.
(6,0,5) (6,0,6)/(0,0,18)r| |(6,0,7)
E =2.69852 eV E = 2.82985 eV E =2.95975 eV
r (v1,0p,) depicted in Fig. 88). The energies for thev(,0,0)

FIG. 3. Wave functions of statew){,0p,), etc. See the text for more progression a':e divided by 2 because (,Jf the 2 :-1-resonance
details. The first panel shows the potential energy surface and a represen@d the energies of the (0v@), progression are divided by
tive periodic orbit of ther] family. TheR axis ranges from 2.2Q, to 5.5(, 3, because there is only one entry for every third polyad. The
and ther axis ranges from 2.2 to 3.9(,. See Fig. 2 for more details. transition frequency for the bending mode is considerably
smaller(1037 cm * for the lowest transitionand not shown
in Fig. 5a).

At low energies, the transition frequencies for all three
progressions are very close together, which implies that here
the mixing of modes is strongest. Due to the different anhar-

- [ L -
S . ;‘ 5’ i ; § ; ...,,;3},;;"3": monig[ties of th_e thr_ee progrgssions, the gap between the
™ o,z:ﬁ‘,»'?."'" L ;;;gf' transition energies widens. This means that the energy range,
(0,0,18) (1,0,16) (2,0,14) (3,0,12) over which a polyad spreads, increases with enéfgy. 1),
F=205882¢V | |[E=292745 eV | |E=2.89979 eV | |E =2.87637 ¢V which in turn may explain, why the mixing between the
P’ - states (0,@,3) and (0,0y3), gradually diminishes in the
ﬁf'{{@; v:\\“‘“"”’ .‘@2 f,’//,; higher polyads. In Fhis respect, there is one detalil Worth men-
;;:,j, ; S tioning: The transition energy of the (0,Q) progression
(7,0,4) (6,0,6)/(0,0,18)¢| | (5,0,8) (4,0,10) firstincreaseswith v 5 rather than decreases as expected for a
E=282031eV | |[E=2.82085eV | |[E=284335cV | |E =285710 eV vibrational progression. This indicates that tB¢D,1) state is
not a true member of the (03, progression and the wave
{,Cﬂfe!{"g’,y' (//J/ function (not shown hereactually confirms this. Thé0,0,1)
R ‘::;’;9” Z wave function fits better into the (0iQ), progression, rather
(8,0,2) (9,0,0) than the (0,0)yl) series.
E=278670 eV | |E =2.75087 eV It is interesting to compare Fig. 5 with the equivalent

r plots for HCP[Fig. 9a) in Ref. 12 and HOCI[Fig. 5(c) in
Ref. 24, another system which is characterized by a 1:2
resonance. In HCP the gap between the two relevant transi-

FIG. 4. All wave functions of polyadl[0,18]]. See Figs. 2 and 3 for more
details.
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tion energies remains almost constant over a large enerdy. ANALYSIS OF CLASSICAL PHASE SPACE
interval and therefore the degree of mixing does not change
much. For HOCI, on the other hand, the difference betwee
the transition energies is relatively large at low energies bu
decreases.vyltE, because one mode has a significantly Iarggr nd special trajectories therein, so-called periodic orbits
anharmonicity than the other mode. As a consequence, wit 09.2526pQs are classified as stable or unstable depending

increasing excitation the system is gradually tuned into th%n the eigenvalues of the monodromy mafri€or many

resonance. _ systems it has been demonstrated that the backbones of
Since the (0,@), states_ d_o not natu_ra_lly fit |_nto the guantum-mechanical wave functions closely follow certain
(v1,0P=2v,) level scheme,“|t IS not surprising to find, that 116 POZ DCP is a particularly illuminating system for
their energies lead to_ some “distortions” in the Intra'p_OIyadiIIustrating the close correspondence between the phase-
energy spacing, that is the energy spadindetween neigh- space structure and the quantum-mechanical spectrum, all

boring levels inside a particular polyad. This is clearly seen, : :
- L e way from the bottom of the potential well up to high
in Fig. 1, where the levels of the (0iQ), states are indicated energie¥s P P 9

by dashed lines. Plotting; as a function of the index Near the bottom of the potential well there are three

shows clea‘r‘ _mn?’lma, Wh'ch are (_:aused by the @p, types of stable POs, the so-called principal families. They are
states_. The “dips” are as_soglated_wnh a separatrix caused b enoted byfR], [r], and[ y], respectively, because the cor-
a particular unstable periodic ortiee Sec. V. responding POs basically describe motions along the three
coordinate axes. Instead of showing individual POs we
present in Fig. &) the corresponding frequencies as func-
tions of the energycontinuation—bifurcation diagraih?®9.
Because the bending mode is more or less decoupleh order to simplify the presentation, the frequency for the
from the other two degrees of freedom, the general structury] family is not shown. In accordance with the quantum-
in terms of polyads is essentially preserveddgr-0. How-  mechanical results in Fig. (8 the frequencies of the
ever, the separation is not perfect and therefore differencddR]-type orbits are divided by two. The trajectories of the
between the spectra far,=0 andv,#0 do exist. This is [R] and[r] families (as well as th¢ R1] and[ R2] manifolds
exemplified in Fig. 1), where the spectrum fay,=4 is  discussed belowlie in the (R,r)-plane, i.e.,y=180°.
compared with the ,=0 spectrum. The energetic breadth of Despite the simplicity of the PES around the equilib-
comparable polyads is slightly larger fes=4. More impor-  rium, the structure of the classical phase space is already
tant, however, the spacings inside the polyads is noticeablguite involved even at very low energies. THR]-type POs
different forv,=0 and 4, pointing towards a different dy- become unstable in a period-doubling bifurcation already at
namics. an energy of 0.061 eV. At the same time a new class of POs,
The wave functions fov ,=2 and 4 look quite similar to termed[R1] in what follows, is born; the corresponding or-
thev,=0 wave functions, except for the additional nodes inbits are stable. Shortly after the first bifurcation, fiRg-type
the bending coordinatéFigures equivalent to Figs. 2 and 3 POs become stable again in a second period doubling bifur-
but for v,=2 and 4 are available electronicafff). The as-  cation (E=0.626 eV}, in which another class of orbitsR2],
signments with quantum numberg andv; is analogous as is created. ThéR2] orbits are unstable and do not influence
described above. However, the special statesg),0play a  the quantum wave functions. After the second bifurcation the
minor role as compared i0,= 0; they start at higher polyads [R] trajectories remain stable up to high energies. [R&]
and are less pronounced. For example, fgr=2 the first POs remain stable until a third bifurcation Bt 2.920 eV
indication of a (0,Q;3), state occurs aP=13 and the first destabilizes them. Thig ]-type POs are stable from low to
clear-cut example appearsRt 16. Forv,=4 there are no very high energies. Incidentally we note, that the bifurcation
distinct (0,0y3), wave functions up t&®=16. These obser- of the[R] family, at which the stablgR1] orbits are born, is
vations are in good qualitative accord with the semiclassicahlso predicted by the old HCP PES, however, at significantly
analysis of the resonance Hamiltonian in Sec. V. At highethigher energie®® As a consequence of this rather late ap-
energies, the wave functions become more and more complpearance of thER1] trajectories the corresponding spectrum
cated and unique assignments are generally difficult, exceps remarkably different from the spectrum discussed in the
for special cases. The spectra for still higher bending quanpresent work.
tum numbers have not been analyzed in detail, but the semi- The classical continuation—bifurcation diagram looks
classical analysis predicts them to be similar to the=4  qualitatively very similar to the quantum-mechanical transi-
spectra. tion energies. A direct comparison is not quite straightfor-
The minor peculiarity of the (0,,v3), States leads to a ward, because of the different ways in which the various
more gradual energy spacing between neighboring levels ineurves are plotted in Figs.(® and 8b). In the quantum-
particular polyad as is clearly seen in Figbilfor v,=4 as  mechanical representation each point corresponds to the en-
compared tw,=0. A; does show a minimum Js however, ergy of the upper level, whereas in the classical picture the
this minimum is less pronounced than f@s=0. Thus, al- nominal energy is the total energy of the trajectories. A
though the bending degree of freedom is only weaklyquantitative comparison must also include modifications in
coupled to the other two modes, the spectra for differenbrder to correct for zero-point energies, which has not been
values ofv, exhibit noticeable differences. done. Nevertheless, the good qualitative agreement suggests

The structure of the quantum-mechanical spectrum and
articularly the shapes of the wave functions can be eluci-
ated in terms of the structure of the classical phase space

B. Polyad structure for v,=2 and 4
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that the statesu(;,0,0), (0,0y5), and (0,0y3), correspond to TABLE Ill. Parameters of the effective Hamiltonian model.
the POs of th¢R], [R1], and[r] families, respectively. This Standard Standard
correspondence is also confirmed by the POs and their scaparameter Value deviation Parameter  Value deviation
ring of the complementary wave fgnctlons. In Fig. 2. we de- o) 24940412 37552 yors 00482 0.0080
pict POs for the[R] and [R1] families and even without 539.1611  0.5725  Yus 0.2535  0.0564
overlaying them to the wave functions it is clear that they o, 1237.0955  1.7274  ya33 —0.2447  0.0490
guide the (1,0,0) and (0,Q@;3) wave functions, respectively.  Xu1 —24.0769 17791  zyy 0.0510  0.0149
Likewise, in Fig. 3 we show POs of the] type and it is X12 —11.1041  0.2866 7y, 0.0806  0.0105
obvious that they scar the (0,@), wave functions. X13 ~46276  0.6920 -z, - —0.0055  0.0005
) i L X 35142  0.0825 2z, 0.0280  0.0086
A question, which we do not have an answer for within - —06753 02721  Zym —0.0014  0.0001
the classical framework, is, why quantum mechanics follows x, —2.2082 05279  Zy; —0.0067  0.0012
predominately th¢ R1] branch rather than tHe] branch of Y —0.8896  0.2913  Zp; —-0.0132  0.0026
POs. Ther]-type POs belong to a principal family and they Y1 —04928  0.0906  Z3; 0.0092  0.0014
are stable. In other words, there is no obvious reason, why Y= _8'212; 8‘8132 i 15'2;‘;2 Odlf??gs
the wave functions should not follow them. Wave functions 3)222 03655 00505 s 01212 00157
with clear-cut CP stretch behavior come into existence only vy,,, —0.2167  0.0470  puq —0.2990  0.0252
at higher energies. An explanation is provided by the semi- Yz 0.0884  0.0040

classical analysis of the effective Hamiltonian model de-
scribed in the next section.

with n;=v;, n,=v,+1, andng=v3+ 3. Since onlyJ=0
states are investigated, the vibrational angular momentum
constant is zerdand therefore omittedn Eqgs.(2) and (3).
More details and more insight into the dynamics comesThe Fermi resonance Hamiltonian has two conserved quan-
from a model, which is very simple, but which neverthelesstities, i.e., the number of quanta in the bending degree of
reproduces the quantum-mechanical level spectrum and tHeeedom,v,, and the polyad quantum numbé,
wave functions remarkably well. The main asset of this  The constant®;, X, Vi, Zijkm, K, Aj, andu;; can be
model is the possibility of a semiclassical analysis, whichobtained either from high-order canonical perturbation
would be very difficult for the exact classical Hamiltonian. theory, as was done in Ref. 33, or from a fit of the quantum-
Similar studies have been recently performed for HSP3!  mechanical energy levels, as was done in Refs. 23, 31, and
and HOC# so that only a few details of the actual calcula- 32 as well as in the present study. A total of 533 assigned
tions are reported here. The interested reader is referred tevels are taken into account in the fitting procedure. They
Refs. 30—32 for more explanations. include all levels up to No. 48117292 cm! above the
The starting point is the observation that a simple Dun-ground state, corresponding up to 38 quanta in the bending
ham expansiofEq. (2) below] is unable to correctly repro- degree of freedoiand all additional levels with,=0 up to
duce the quantum-mechanical spectrum, whereas this is polsio. 996(21 922 cm  above the ground state, corresponding
sible when a more refined model is used, which takes intaip to 20 quanta in the CP strejcifhe 533 transition ener-
account the 2:1 Fermi resonance between the DC stretch ames are reproduced with a rnisot-mean-squajeerror of
the CP stretch modes. More precisely, the Fermi resonance26 cm ! and a maximum error of 24.71 ¢m using a set
Hamiltonian is written as of 31 parameters, which are listed in Table Ill together with
H=Hp+ He ) their standard deviations. Mo_st in."nporFant, h.o_wever, is the
' fact, that the resonance Hamiltonian, in addition to the en-
ergy values, also reproduces satisfactorily the exact quantum
wave functions, as can be seen by comparing the approxi-
mate ones for polyafl 0,18]] in Fig. 6 with those in Fig. 4.
The tilting of the coordinate axes between the two represen-
tations reflects the nonlinear relationship between the Jacobi
coordinates R,r) used in the exact calculations and ftlab-
strac} normal coordinatesq;,qs) employed in the model
(2)  Hamiltonian. The approximate wave functions have a
built-in symmetry, which is not present in the exact Hamil-
tonian. Also, interpolyad coupling is not accounted for by the
effective Hamiltonian. Nevertheless, the generic structures of
the wave functions are accurately described. In particular, the
peculiar behavior of the wave function for level No. 797—
(0,0,18) in the terminology used above—is clearly repro-
duced.
The classical counterpart for the quantum Hamiltonian
3 in Egs.(1)—(3) is given by

V. EFFECTIVE HAMILTONIAN MODEL

The Dunham part is defined as

(v1,02,03/Hplv1,02,03)

ZE wini-i-z Xijninj+_z yijkninjnk
i <] i<j<k

+ >

i<j<ksm

ZijkmNiNj NNy,

with n;=v,+3, n,=v,+1, andng=v3+ 3 and the Fermi
off-diagonal term is given by

(v1.02,03HElv1—1vo,v312)

:[Ul(03+1)(U3+2)]1/2 k+2| )\ini+i2j ,ui]-ninj
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#788 (1) [ #797(6)]

#120)] FIG. 6. Two-dimensional contour plots of the approxi-

mate wave functions for polyafd 0,18]] as obtained
from the resonance Hamiltonian. The number in each
panel indicates the number in the complete spectrum
and the number in bracket indicates the ordering inside
the polyad {=0 for the highest level The curves rep-
resent the corresponding periodic orbits for the various
families as indicated.

Just above the zero-energy po{@EP) one finds two fami-
Ho= Z wi|i+i2<, Xij|i|j+i<z<k Yijliljlk lies of stable POs with the same DC and CP stretching char-
- = acteristics as described in Sec. IV and which are, therefore,
12 termed[R] and[r ], respectively. A first bifurcation occurs at
+i§j;k€m Zijkml il 1l m+ 21771 3c0L 01— 203) P=—1.29 corresponding to an energy of 261 cmabove
the ZEP. This period-doubling bifurcation ispéchfork bi-
furcation in the terminology of elementary bifurcatiolis®
At this first bifurcation, PF1, thgR]-type POs become un-
stable and the family of stablegR1] POs is created. AP
=2.96, corresponding to 5437 crhabove the ZEP, a sec-
ond pitchfork bifurcation, PF2, occurs, where te]-type
POs become stable again while a family of unstable POs,
[R2], is created. These results are in very good agreement

with the full classical results obtained from the original PES,

where® is conjugate td andy is conjugate td, He IS Seen \ypich jead to bifurcations at 494 and 5049 chebove the
to depend on a single angle, nameélyAs a consequenceé,; potential minimum

and| are constants of motion. When the total enekgy, According to the semiclassical quantization rules in Eq.

andl, are fi>§ed, it follows.that] is a function ofys only and (7), the study of the polyads for a fixed bending quantum
one can define the quantity numberv,=0 requires examination of the POs with=1
1 instead ofl ,=0 as done above. The general behavior of the
Jdy. (6) bifurcation diagram is found to be very similar to the classi-
cal case foll ,=0, that is, the family of stable POER1], is
The Einstein—Brillouin—Kelle(EBK) semiclassical quanti- created in a first pitchfork bifurcation PF1 Rt — 1.43(620
zation ruled* state, that each guantum state is associatedm~1 gbove the ZEP while the family of unstable POs,
with a unique classical trajectorfcalled the “quantizing”  [R2], originates at a second pitchfork bifurcation PF2Pat
trajectory, so that =2.35 (5224 cm* above the ZEP The inset of Fig. 7
l— _ 3 shows the energie&with respect to the ground vibrational
2—Uz+1, =P+ 2, (7) . .
state of the four different types of POs as functions of the
and J=*1/2,=3/2, etc. The advantage of studying the ap-polyad quantum numbeP. In order to make details more
proximate classical resonance Hamiltonian rests on the posliscernible, we plot in the main part of the figure the ener-
sibility to discuss POs in a four-dimensional phase space agies relative to the energy of th&]-type POs. It is seen that
functions of the conserved quantitiés and | (or alterna- for values ofP larger than four or so thgR]- and[ R1]-type
tively the quantum numbets, andP) rather than in the full POs constitute the lower and the upper bounds of the classi-
six-dimensional phase space as done in Sec. IV. This prcezally accessible region. This is the reason why the states
vides a more detailed picture. close to the low- and the high-energy ends of the polyads are
The classical results reported in Sec. IV are retrieved bycarred by thdR] and the[R1] POs, respectively, rather
seeking the POs fdr,=0, that isv,= —1; in these calcula- than the[r] trajectories. On the other hand, the and[R2]
tions no energy is put into the bending degree of freedomPOs remain always close to each other and ttrelative

X k+ 2 Nili+ 2wl | @
i I<j

where thel; and ¢; are the zero-order action-angle variables
of theith normal mode. Using the new coordinates

b1
I=2l1+15, J=2l;, O=¢;, ¥=7—¢3, (9

2w #e[0,7]
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T T T T T T T T scarred along thgR] or the[R1] POs; they form the main
2300 — 2° [T AT )] ] body of the polyad and are assigned as,0v3;) as de-
2100 - 20 E/1000 (em ) ] — scribed in Sec. Ill. Staté=6, located on the tiny branch,
< 1900 - 15} - 4 which has positive values gf and which extends frorr] to
E 1700 = 10F ] ] [R2], is scarred along thér] orbits. It corresponds to the
£ 1500 - 5L ] J stqtes tgrmed (0,0;), above. The fact that the quantizing
S 1300 ol ] 4 trajectories for the latter are comprised between the PDs
2 1100 & ST TRATETRTRRR ] and[R2] exp!ams, why the states (Oug)r_arg always lo-
E g00 L 2 2 6101418 5 cated approximately at the same place inside the quantum
2 F 1 polyad. Moreover, the very slow growth of the gap between
B 700 — B the energies of thir] and the R2] trajectories is the reason,
% 500 - ] why states scarred along tiig] POs are observed only for
300 [~ 7 rather large values oP and why their quantity in each
100 - 7] polyad is so small.
-100 'PF1  PF2 - At last, it should be noted that tHé:2] family of un-

R A N P O A A A v e R R e A Stable POs iS responsib|e for the d|p in the energy gap be_
20 2 4 6 8 10121416 16 20 tween neighboring levels belonging to the same polyad. This
quantum polyad number P phenomenon, which has been discussed in detail for
1,12,30,31 24 .
FIG. 7. The energies of the various periodic orbits as functions of the polyad_.'CP1 . and HOCI™" is due to the fE.iCt. that the deriva-
numberP relative to the ground-state levéhse) or relative to the energy ~ tive of 7 with respect to energy goes to infinity at the energy
of the[R]-type periodic orbifmain body of the figure PF1 and PF2 mark  of the[ R2] family, so that the spacing is smaller close to the
the two pitchfork bifurcations. Solid lines are used for stable orbits and ; e
dashed lines for unstable ones. The filled circles indicate the energies for th%nerg.y Of[RZ] an.d larger far away .from It'. .Thls Is clearly
states of thd[0,18]] polyad. seen in Fig. 8. Since the branch with positive values7of
which contains the quantizing trajectories associated with the
- o . . . (0,0p3), states, is so narrow and contains so few stéies
positions inside the classically accessible region do not varyhost one in the energy range studiettie fluctuating pattern
much asP increases from about 10-20. The important pointfoynd for HCP! does not occur for DCP arfiR2] is, there-
is that the quantum states, which are scarred byrflamily  fore, associated with a simple minimum in the plot of the
of POs, are expected to lie between the energies ofrthe  energy gap inside a polyad.
and the[R2] POs. This is actually confirmed in Fig. 8, Let us now briefly consider the polyads with=2. For
which shows the action integral as a function of energy for  {hese polyads, the bifurcation diagrams differ considerably
polyad[[0,18]]. The dots indicate the positions of the quan-f.om those forv,=0. Forv,=2, the same pitchfork bifur-
tizing trajectories which, according to the EBK quantization ation PF1 as fow,=0 is found, atP=—1.45 or 1654
rules, correspond to half-integer values @f the number -1 ghove the ZEP. However, the second pitchfork bifur-
above each point indicates the positionf that particular  c4tion, PF2, is associated with thlestructionof the stable
.sta'te in the polyad. as in Fig. 6 and the vertlgal dashed Ilnefsam”y of POs[R1], which is born at PF1, rather than the
indicate the energies of the four POs for this polyad. Eachyeation of the unstable famijR2]. As a result, there exist
st_ate Iocat_ed on either one of the two main brancﬂtiwsg only two families of stable POs up to about 16 000 ¢m
with negative values off) is seen to have a wave function 406 the ground state, which &if@] and[r]. Therefore,
guantum wave functions are scarred by only two different
POs in this energy range. Note, however, that [thetype
POs forv,=2 have the same structure as fiel] POs

_(1) r discussed fow,=0. In addition, a first tanger(or saddle-
P node bifurcation is found atP=13.04 or 16068 cm'
= - above the ground state, where a stable and an unstable family
Eﬂ B of POs are simultaneously created. The orbits of the stable
= 5[ branch have the characteristic of fhrg-type POs discussed
é —ar for v,=0 above. This is in accord with the quantum wave
= ~6¢ functions obtained from the full Hamiltonian, which show a
s 7 first member of the (0,2;,), progression not befor®=13
-8 corresponding to about 16 000 cfhabove (0,0,0¥?
-9r ] Forv,=4, pitchfork bifurcations are no longer observed
Y A R R A A R B A Rt and the first tangent bifurcation is found Bt=16.46 or
19800 20400 21000 21600 20700 cm'! above the ground state. This is also in agree-
energy E above ground state (cm-1) ment with the analysis of the quantum wave functions: For

=4, up to polyad[[4,1 the highest member of this
FIG. 8. Action integral7 as function of energy for polyad 0,18]]. The V2 P polyad([ 6l ( g

filled circles mark the quantizing periodic orbits and the vertical dashedeIyad has. an energy of ,20 246 Cllr) Cle,ar_CUt (0’412)f
lines denote the energies of the four periodic orbits. The numbers Wave functions do not exidt. Polyads with values ob,

=0,1, ... irdicate the ordering of the quantum levels inside the polyad. larger than four behave as for,=4, save for the
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~32 quanta of the bending mode. It is checked that the POs
scar the (Q;,,0) wave functiongfirst panel in Fig. 9. At a

first bifurcation the[ B]-type orbits become unstable and a
new stable family comes into existence. However, the new
stable POs quickly become unstable, too, and a cascade of
additional bifurcations sets in. With other words, the struc-
ture of the classical phase space becomes quite complex,
which makes it appear reasonable, why the higher overtones
of the pure bending progressiom,(>40 or sQ are per-
turbed.

Incidentally we note that the rotational consta,
calculated as the expectation value of the inverse of the mo-
ment of inertia using thd=0 wave functions, steadily in-
creases up to,~44, as it is expected for linear molecules
ike HCP and DCP. In contrast, the same quantity for HCP

FIG. 9. Selected wave functions of the pure bending progression. The verl—

tical axes range from 2.2Q to 5.5(, and the horizontal axes range from degreasesvith v, except for the lowest bending exgitations.
180° to 80°. The first panel shows the potential energy surface and a repFhis decrease for HCP results from the obstruction of the

resentative periodic orbit of thie] family.

pure bending motion and the increasingly growing admixture

of CP stretch motion.

increase of the energy at which the first tangent bifurcatioq/u

sets in with increasing .
@
VI. PURE BENDING PROGRESSION

One of the main features in the vibrational spectrum of
HCP is the strong mixing between the CP stretch mode and
the bending mode due to a 1:2 anharmonic resonance. As a
result of this mixing, the states of the (9,0) progression,
which at low energies have mainly the character of bending
motion, gradually acquire more and more CP stretching be-
havior and as a consequence avoid the minimum energy path)
from the HCP side to the CPH side of the PES. The wave
functions of all members of the @@,,0) progression for
HCP are confined to displacements of 40°-50° away from
the equilibrium angle, although larger displacements are
definitely energetically accessible. States, which do follow
the minimum energy path along the isomerization coordinate
are born at relatively high energies in a saddle-node
bifurcation?

The bending dynamics in DCP is completely different.
The bending mode is not involved in an anharmonic reso-
nance with onéor both of the other two modes, but is more
or less separated. As a consequence, there is no reason for
the wave functions of the bending progressimi to evolve
along the minimum energy path in the bending coordinate
And that is exactly what is seen in Fig. 9, where we depict
the wave functions for various bending states up te- 50
corresponding to about 20 000 chabove the ground state. )
Up to aboutv,=34 the wave functions do not show distor-
tions and are easy to locate in the spectrum. At higher ener-
gies, the bending states become more difficult to assign and
the wave functions show gradually more admixtures of other
states, which also shows up in noticeable deviations of
[E(0,02+2,0)_ E(O,UZ,O)] from a smooth line. The reason is the
increased density of states and the resulting coupling be-
tween all three modes.

This is in qualitative accord with the classical
continuation—bifurcation diagram. The bending family of
POs,[B], is stable up to about 2 eV, which corresponds to

SUMMARY

The vibrational energy level spectrum of DCP has been
determined by quantum-mechanical variational calcula-
tions using an accurate potential energy surface. In order
to assign the spectrum, all wave functions of the first five
hundred states and selected wave functions at even
higher energies have been visually inspected. The agree-
ment of the calculated transition energies and rotational
constants with the few available experimental data is ex-
cellent.

Unlike the HCP spectrum, which is governed by a 2:1
HC stretch : bend anharmonic resonance, the spectrum of
DCP is determined by a 2:1 HC stretch: CP stretch
resonance. The resonance condition is best fulfilled at
the lowest energies; however, because of the anharmo-
nicity of the DC stretch mode, the mismatch between the
two stretching(transition frequencies increases with in-
creasing energy. The bending degree of freedom is to a
large extent decoupled from the other two modes. As a
consequence of the resonance and the weak coupling be-
tween the bend and the two stretches, the energies are
organized in terms of polyads for a particular bending
quantum number. The assignment in terms of three
quantum numbers is straightforward up to about 1.75 eV
above the minimum energy. Then, a new class of wave
functions gradually comes into existence, which does not
fit into the scheme developed at lower energies.
Analysis of the classical phase space—using the full
Hamiltonian—in terms of periodic orbits and their con-
tinuation with increasing energy explains some of the
features seen in the quantum-mechanical spectrum. For
example, it is rationalized, that the wave functions of the
two main stretching progressions;1(0,0) and (0,@;3),
follow two distinct types of stable periodic orbitpR]
and[R1], respectively. The latter are created in a very
early bifurcation of théR] family, ~0.6 eV above mini-
mum. The “new” states, termed (010;),, are shown to
follow periodic orbits, which essentially correspond to
CP stretching motion.
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