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Molecular vibrations of the molecule HCN/CNH are examined using a combination of a minimum
energy patiMEP) Hamiltonian and high order canonical perturbation the@#T), as suggested

in a recent worfD. Sugny and M. Joyeux, J. Chem. Ph¥42 31(2000]. In addition, the quantum

analog of the classical CPT is presented and results obtained therefrom are compared to the classical
ones. The MEP Hamiltonian is shown to provide an accurate representation of the original potential
energy surface and a convenient starting point for the CPT. The CPT results are subsequently used
to elucidate the molecular dynamics: It appears that the isomerization dynamics of HCN/CNH is
very trivial, because the three vibrational modes remain largely decoupled up to and above the
isomerization threshold. Therefore, the study of the three-dimensional HCN/CNH system can be
split into the study of several one-dimensional bending subsystems, one for each value of the
numbersy, andv; of quanta in the CH and CN stretches. In particular, application of high order
CPT to the most precise availabkb initio surface provides simple expressiofguadratic
polynomialg for the calculation of the heights of the isomerization barrier and of the CNH
minimum above the HCN minimum for each valuewgf andv;. © 2000 American Institute of
Physics[S0021-96080)00441-4

I. INTRODUCTION and deeper study of the dynamics of the system, especially

. ) ) ) . . when associated with the so-called EBKEinstein—
Studies of the highly excited vibrational dynamics and

b3 " e 3 Brillouin—Keller) semiclassical quantization rulé%.®
spectroscopy of HC, ' HOCl' HCCH," and DCF have There are basically two methods for obtaining resonance
demonstrated and highlighted the complementary aspects. gamiltonians:(i) by a fit of effective parameters to a set of

otential energy surfaces and resonance Hamiltonians for in- o o
P 9y measured or calculated transition frequencies,(@nthe use

terpr_etlng expenmen_tal results. In this context, a resonancey high order canonical perturbation thed@PT). There are
Hamiltonian is one in which one or two low order reso-

nances between the normal modes are responsible for thseeveral variants of the latter approach. They include the

.. 45
prominent features of the quantum and classical dynamicg_”gm‘r’lI guantum approach dge to Van Vietk, the clas-
over a wide energy range. For example, a 1:2 Ferm?'cal method developed by Birkh8ffand later extended by

resonandd® accounts for most of the dynamics of &7 Gustavsorﬁ‘f_‘49 or the_g;ore_ recent classical procedures
CS,, 1822 substituted metharé;1423-25HCP -2 DCP/ and based on Lie algebrd %6 While a fit is often simpler tq
HOCI* while the dynamics of Q(Refs. 26—28and HS? is perform than CPT, the I:?ltter procedyre appears more rehable:\
governed by a 2:2 Darling—Dennison resonaifcé?H,0 is whenever the perturbation expansion converges, because it
a slightly more complex case, because both the Fermi an@voids the plague of multiple solutions, which can never be
Darling—Dennison resonances must be taken into account féptally banned with the fitting procedure. For this reason, this
an accurate descriptioii; >® even though the principle fea- Paper describes the construction of resonancelike Hamilto-
ture, the local modes, are due to the Darling—Dennison resg¥ans using CPT.
nance aloné®? These Hamiltonians remain an active area  Until very recently, explicit high order CPT calculation
of investigation, even when accurate surfaces are availabléchemes have been known only for motion around a single
because resonance Hamiltonians have a set of good quantuminimum, so that only rigid molecules, like GHand its
numbers and classical constants of the motion explicitlyjdeuterated analod8,CF,,*°> H,CO,>"*8isotopic derivatives
built-in, whereas the only conserved quantity in global sur-of water®®®° C,H,,°%¢* C0,,1*1%¢° 50,5 HCPE or AlF,
faces, which take all resonances into account, is energynd Si3,63 could be investigated. It is to be noted that HCN
These conserved quantities allow, in turn, for a much simplehas been studiet;?*®*but only far below the isomerization
barrier, which occurs at about 15 000 chabove the ground
aElectronic mail: Marc.Joyeux@uif-grenoble.fr state, so that the influence of the CNH well could safely be
YElectronic mail: sibert@chem.wisc.edu neglected. In contrast, we have shown recénttjat CPT
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can also be used for floppy molecules in an energy rang®wering operators for the stretch degrees of freedom, and
broad enough so that more than one equilibrium positiorthe expansion coefficients are functions of the bending de-
have to be taken into account. A detailed calculation schemgrees of freedom. The stretches are then treated using Van
was provided, which was shown to work for simple models.Vleck perturbation theory, however, since the coefficients no
The first purpose of the present paper is to extend that studpnger commute, recurrence formulas are needed to handle
and to demonstrate the efficiency of this procedure for realthe operator ordering problem, which even in the case of a
istic surfaces; we do this using the HCN/CNH as a prototypesingle equilibrium position is of fundamental importance for
demonstrating that a single perturbation Hamiltonian can repractical computational purpos&We also present a more
produce the spectrum over a large energy range. general approach in which we express the bend dependent

Having demonstrated the validity of the resonancecoefficients in a matrix representation.

Hamiltonian we then use it to investigate the dynamics in ~ The remainder of this article is organized as follows:

both the HCN and CNH wells up to and above the isomer-Section Il describes the derivation of the classical perturba-
ization barrier. The surface designed many years ago btjve Hamiltonian. The expansion of the exact Hamiltonian in

Murrell, Carter, and Halonéh (hereafter called the MCH mixed series is presented in some detail and the ordering
surface, as well as theb initio surface computed more re- problem is discussed in relation with the convergence of the
cently by Bowman and co-worké¥s(hereafter called the perturbation series. The two approaches for the quantum me-
BGBLD surface will be investigated. Although not very ac- chanical version of the modified CPT, which are based either
curate, especially at high energies, the MCH surface has ne@n operator or matrix representations, are next developed in
ertheless been used in most calculations performed up to dafec. lll. The results obtained from the classical and quantal
on the HCN/CNH systerff 8% We studied it precisely for perturbative Hamiltonians are compared at the end of the
the sake of comparison with other approximate methods. Same section. Section IV contains a discussion of the dynam-

The principal problem one is confronted with when han-ics of the HCN/CNH molecule in terms of the one-
dling a realistic surface, instead of the simple models studiedimensional bending pseudopotentials derived from the per-
in Ref. 65, consists in obtaining a workable expansion of thdurbative Hamiltonian. At last, the complementary aspects of
initial Hamiltonian. Indeed, since explicit calculations in- €xact quantum calculations and perturbative ones are empha-
volve repeated differentiation, CPT cannot be applied disized in Sec. V.
rectly to the realistic surface and a more manageable ap-
proximation thereof must first be dgrived._ As shown in Ref.“_ CLASSICAL DERIVATION OF THE PERTURBATION
65, mixed expansions, where oscillatorlike modesostly HAMILTONIAN
stretching degrees of freedgrare expanded in polynomes
and hindered-rotor-like onegmostly bending degrees of We begin this section by describing our method for ex-
freedom in trigonometric functions, are well suited for the panding the classical Hamiltonian about the minimum en-
application of CPT to systems with more than one equilib-ergy path in a set of coordinates that allows us to implement
rium position. Inspired by the pioneering work of Marcus, the perturbative transformations. Having presented the
Miller and co-workers, and othefé>°we will demonstrate Hamiltonian, we address the issue of assigning an order to
that expansion of the initial surface around the “reactioneach term in the perturbative expansion. We conclude this
pathway,” or “minimum energy path,” which links the ex- section by presenting the results of the CPT.
trema qf the surface, not only provides accurate.potentiaA_ Expansion of the exact Hamiltonian
expansions but manageable and accurate expressions for the
kinetic energy. The practical calculatiofidded Taylor ex- Defining the Jacobi coordinatesR, andy as the inter-
pansions followed by Fourier expansionsvolved in the atomic CN distance, the length betwedrand the center of
derivation of the kinetic and potential energy, will be de-MassG of CN, and theHGC angle, respectively, the “ex-
scribed in some detail, because the success of the whoft” classical Hamiltonian is expressed in the form
procedure relies thereon. H=T+V,

The final purpose of this paper is to provide a quantum
version of the classical scheme presented in the preceding
article®® In that work, Birkhoff—-Gustavson CP*;*°which
consists of a series of classical canonical transformations,
was applied to a classical Hamiltonian. The resulting reso- ¥~ Y(":R.%)-
nance Hamiltonian was then quantized according to approxiHere the potential energy surfadqr,R,vy) is either the
mate quantization rules, such as that due to Weyl, in order tMCH or BGBLD surface. In the expression of the kinetic
study the molecular eigenstates. In this paper we show thanergy T, wi=21/mc+1/my and w,=1/my+ 1/(mc+my),
one can also start with a quantum Hamiltonian and apply avherem,, mc, andmy are the masses of the H, C, and N
series of unitary transformations, in the spirit of canonicalatoms, respectively. The last term in the expressioi &f
Van Vleck’s perturbation theory?*°* We consider two ap- due to the angular momentup), about the axis with least
proaches. In the first approach, we follow a scheme similar totnoment of inertial, which is close to the body-fixed CN
the one McCoy, Burleigh, and Sib&tused in rotation— axis. Although the rotationless molecule studied in this work
vibration problems. We expand the Hamiltonian as a sum otloes satisfyJ=p, =0, this term cannot be neglected because
terms that are functions of harmonic oscillator raising andof the singularity at equilibrium. Indeed, the moment of in-
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ertial vanishes aty=0 andy=, so thatp)z(ll is undeter- dimensional Taylor series with respect for for a two-
mined for these values of. From the numerical point of dimensional grid of pointsAR,y) regularly spaced around
view, the vibrational angular momentum is responsible forthe MEP. The coefficient€ (AR, y) =(d°V/d(Ar)P)ar.,)
the fact that Legendre polynomes will be used instead of thef the Taylor series are tabulated as a functioA & and v.
simpler exponential basis to diagonalize the bending probFor each value o, the coefficient<C, for increasing values
lem. of AR are then fitted by a polynomial in terms AR, and
Although CPT can formally be applied to any kind of the fitted coefficients are tabulated as a functionyof his
Hamiltonian, its use is nevertheless practically restricted tdast table is finally used to expand the fitted coefficients in
relatively simple expressions, because the calculation procé=ourier series with respect tg leading to the same expan-
dure requires repeated differentiation. In the case of rigicsion as in Eq(2.4). Note, however, that the exponeqtn
molecules with a single equilibrium configuration, the first Eq. (2.4) cannot be larger than the order of the fitted poly-
step therefore consists in expandifigndV in Taylor series  nomial for the BGBLD surface. Moreover, care was taken so
around the equilibrium position. In the case of systems withas to choose the two-dimensional grid of points and the order
several equilibrium configurations, however, more sophisti-of the fitted polynomial in a region where the final perturba-
cated expansions must be used. Following previousion Hamiltonian remains stable upon reasonable variations
work,”®81 mixed polynomial/trigonometric expansions, thereof. The range—0.29<AR<0.69 and a sixth-order
which have been shown to work well for simpler mod®ls, polynomial were found to be convenient.
are used for the HCN/CNH system. These mixed expressions Let us now turn to the kinetic energy. The first step
are obtained through a two-step series expan@iaglor ex-  consists in rewriting the vibrational angular momentum en-
pansion followed by Fourier expansjoaround the mini- ergy in the most useful forf
mum energy patiMEP), as will now be described briefly.

The MEP, which is sometimes also called the “reaction 1 2_}(ﬂ+&) pf( E+ 1 i’ y
pathway,”®Lis defined as the line on which the potential 21 "x 2| r?  R?/sirf y | 2 4 wiR  puof
energyV is minimum with respect to the two stretching co- 2+ E“L iR
ordinatesr and R. It is obtained as a set of points 2.5
E?’rMEP(Y)’RMEP(Y)]' whereryep and Ryep are solutions Upon expansion of Eq(2.5 in the neighborhood of the
MEP, it is clear that the only term which does not vanish
(&V) _ 0V) _ everywhere for the nonrotating molecule, &0) is
—| ={=| =0. (2.2) X
ar , JR )

1w P2

This line starts from the HCN zero-energy point, goes §(r_2 Q)ﬁ (2.6
through the saddle located at 12 168 ¢niMCH surface or

16866 cm* (BGBLD surface, and then goes down to the due to the singularity aty=0. The coefficient in front of
CNH secondary minimum located at 3911 _ClﬂfMCH sur- p;/SIr’I2 vin Eq.(2.6) is the same as the coefficient in front of
face or 5202 cm* (BGBLD surfacé. The MEP is used to P’ in Eq. (2.1). The kinetic energy for the nonrotating mol-

define a coordinate transformation, according to ecule can therefore be rewritten in terms of the momenta
Par. Par, P,, @andp, conjugate toAr, AR, y andy, re-
Ar(y)=r—rvep(7), spectively, in the form
AR()=R—Rygsl ). 3 1n
. . T= 2 g2+ = ppplet = | By 22
For the MCH surfaceV is next expanded in a two- 2 H1ParT 5 M2Par™ 5| 2 RZ)

dimensional Taylor series with respectAs and AR for a
one-dimensional grid of values afranging from—1r to r, (
and the coefficientC, 4(y)=(d""V/a(Ar)Pa(AR)9), of
the Taylor series are tabulated as a functionyofAt last,

these tables are used to expand numerically each coefficienf'e @Pove-described procedure for expanding the potential
C,.q in a Fourier series with respect §9 so that the potential €"€r9Y " the neighborhood of the MEP is next applied to

energy is finally rewritten in the form each one of the six coefficients in front pk,,p3g,..., SO
that kinetic energy is finally rewritten in the form

Y

_O'ver  JRwep 2 p)z( 2.7
(9,}/ Ar . .

v—pzq’n Vp.qn(ATP(AR)% cogny). (2.4) _ N B s
T= 2 (Ar)P(AR)%cosny)| Toy nPi, + Tig nPir
A similar expansion is obtained for the BGBLD poten- Pan
tial energy surface, although a slightly different procedure is )
needed, because the spline interpolation alongRticeordi- +Toan
nate used by Bowman and co-work¥rsnakes the Taylor
expansion with respect to this coordinate inadequatge
that the spline interpolation along thecoordinate is com-
paratively of little consequence since only discrete values of
y are useyl Consequentlyy is instead expanded in a one- X{T i nParPy+ Ty aParP,)- (2.9

2

2 X
+ =5
Py™ Sir? Y

4
+Tg),t)q,npArpAR

+ > (Ar)P(AR)%sin(ny)
p.q.n
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40 T T T T | ] p2 m
- (a - H= a 115 p2+ = ) cogngy), (2.9
%20_ ( ) ’ k% kImnl1l3| P2 Si? q, {nd), (2.9
§ 18 et bl L ,.*LT where the indices 1-3 describe the CN-stretch, the bend, and
| -10 | - the CH-stretch normal modes, respectively, apé the ac-
5-20 - T tion integral of thekth (k=1,3) normal mode
55—30 - -

-40 | 1 1 ! 1 1 . == 2+ 2 (2 10)

0 2000 4000 6000 8000 10000 k=7 (Pict G- :
40 T T T T T Note that the coordinates for the stretch degrees of freedom
(modes 1 and)3are dimensionless normal coordinates, while

the coordinateq, is an anglelike coordinate expressed in
radians. The numerical values for thg, , , parameters in
Eq. (2.9 are too lengthy to reproduce here, however they
are available on the World Wide Web at http:/
www.chem.wisc.edutsibert/hcn or by request to one of the

authors.
0 2000 4000 6000 8000 10000 The expression in Eq(2.9) is obtained under the as-

0F | | : : : = sumption that all of the nonlinear resonances between the
_30F (c) three normal modes are negligible. The numerical results
© 2} presented in the following show that this assumption is valid
R 10 - . TN in the case of HCN/CNH, at least up to the isomerization
! _18 i e barrier and within the accuracy of a few cih(see the fol-
Lﬂg-zo - lowing). For higher energy values or better precision, it

:?18 i . . . . . might be necessary to take one or several resonances into

account, as in Ref. 92, which leads to somewhat more com-
0 2000 4000 6000 8000 10000 . . . . .
E plex expressions. It is nevertheless interesting to notice that
var the Hamiltonian in Eq(2.9) is formally very close to the
FIG. 1. Energy difference between the variational energies reported by Bakesonance Hamiltonians mentioned in Sec. |, in that it de-
cic for the first 111 states of the MCH surfa@ef. 66 and(a) those of the  pends on a single angle, namealy. However, this angular
mixed expansion in Eq$2.4) and(2.8), (b) those obtained from sixth-order dependence is due here to the need to take into account two
quantum canonical perturbation theory, degthose of Eq.(2.9) obtained .
from sixth-order classical canonical perturbation theory. wells instead of a resonance between two normal modes. Let
us further note, that for quantum mechanical purposes, each
classical term is symmetrized according to Weyl’s rule

It should be noted that the derivativesr@fzp andRygp With 5 )2( m
respect toy need only be known at discrete valuesyofso | P2™ i g cosgndy)
that explicit expressions for these functions are not required. om e
The derivatives are instead calculated numerically, together 1 m 2 Py
with the values of ygp andRyep, as the MEP is determined 22m E ( )( ( P2+ Sir? q2>
at the very beginning of the procedure. s ek

It is worthwhile to test the accuracy of this expansion. % 2 X 21
This allows us to test the combined effects of the classical cosndz)| P2+ sir‘ q, ' (219
MEP transformations and the expansion of the potential. W
do this by variationally calculating, for the MCH surface, the
eigenvalues of the Hamiltonian of EgR.4) and (2.8) and
comparing them to those of BasitThe results are given in
Fig. 1(a). Below 7000 cm® above the zero-point energy the
largest difference is 2 cnt and below 11700 cm, the
largest error is 5 cmt. In general, however, the error is

?For a good discussion of the problems raised by the quan-
tization and symmetrization of a classical Hamiltonian, see
e.g., Ref. 93.

The reader is referred to the preceding arfitfer the
explicit application of classical CPT and to Sec. lll for a
description of the quantum version of it. The ordering prob-
éem will nevertheless be discussed here in more detail, be-

ause the statements made in Ref. 65 need be somewhat
moderated. The major statement in Ref. 65 is that the lowest
order termH, of the Hamiltonian must contain only the sum
of the quadratic terms dealing with the oscillatorlike degrees
of freedom (here the two stretching modesThis point is
absolutely compulsofy so that, for the HCN/CNH system,

Having obtained the expansions of E¢®.4) and(2.8), H, is defined as the sum of the terms with 5, V5,0, and
one must assign an order to each term and apply CPT iy ; oin Eq. (2.4, plus the terms wittT$) ; and T ;in Eq.
order to put the perturbation Hamiltonian in the form (2.8). It was next suggested in Ref. 65 that all of the other

eigenvalues of the classical Hamiltonian. This step is de®
scribed in Sec. IlI.

B. The ordering problem
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terms of the Hamiltonian be put iRl;, in order to avoid 16000

possible errors due to an improper ordering. Although a good A < PESSISIMN

suggestion for the simpler models handled in Ref. 65, this 14000 & ""A,‘W

proved to be unmanageable for the HCN/CNH system, be- w

cause the calculations far exceed ¢gmoderr) computer ca- OO

pabilities. 12000
The problematic aspect of the ordering is for the terms = ‘

dealing with the hindered-rotor-like modésere the bending § 10000 ‘

degree of freedojn because the termg, , , cosfy) do not ) ’ \

monotonously decrease with increasing values.dh con- £ 8000 p ’

trast, the usual ordering of CPT is expected to work for the . Voo ]

two stretching degrees of freedom. Therefore, an order 2 was 6000 - CNH

arbitrarily assigned to all of the casy) terms, each monome

with total degreen+2 was put inH,, and all the spurious 4000

terms inH, (cf. the previous paragraphvere moved from

Ho to H4. This ordering, which lies halfway between the TeN

almost total lack of ordering suggested in the preceding 2000505 10 15 20 25 30

article®® and the too rigid ordering assumed in the torsional angleq, (radians)

problem?*~*° has the merit to fulfill all the requirements: _ _
The ordering of bending terms is avoided, computer time ang!G: 2- Plot, as a function df,, of the Vo, pseudopotential and the prob-

d tronalv reduced. and quantum mecha abilities | ¥ (q,)|? sin(@y) for the complete spectrum with;=v5=0, ac-
memory ne.e sares g_y ! q 3 r_&)rding to the MCH surface. Energy values on the left-hand scale refer to
cal calculations are numerically stable as the size of the basige plot ofv, , and are given relative to the minimum of the potential energy

of Legendre polynomes for the bend degree of freedom isurface. The scale is the same for all the probability plots and the baseline
increased from 51 to 71. for each plot coincides, on the vertical axis, with the energy of the state.

. . Note that the probability is zero a,=0 andq,= 7 because of the sigf)
The last point to be tackled is that of the length of the, althoughy,— 0 anda,~ 7 are not nodes of the wave functian(a,).

Fourier transforms. In particular, what is the maximum valu€rherefore, 0 andr must not be taken into account for the assignment of the
Nmax Of NN EQs.(2.4) and(2.8)? It turns out that the HCN/ levels, which just amounts to counting the number of nodes.

CNH results are improved when,,,, is increased up to

about 18. Results then remain stable for larger values of

Nmax- 1herefore, all the classical numerical results presente

: . . . . ) gffected by the “shoulder’(actually a second shallow mini-
in this article were obtained withm,,=18. Moreover, it y ( y

. . ) mum) in the CNH well(see Fig. 2, whereas the presence of
proved to be important in the course of calculations to drOpthis shoulder prevented the study of the CNH well in Ref. 77

all the terms withn larger thammax in order, once more, tp and limited it to the energy range below the energy of the
keep the number of terms in the perturbation calcuIat|on§hould(_}r in Ref. 81

manageable. It was thoroughly checked that this truncation

i 4 Concerning the MCH surface, the most comprehensive
has a negligible effect on the final results.

and reliable list of assigned quantum levels published up to
date is that of Bacié® This list contains all the states below
11770 cm? above the ground statd11 states regardless
We are now in the position to check the accuracy of theof whether they are localized in the HCN or CNH wells or
perturbation scheme through the comparison of levels obdelocalized over the two wells. The list contains two such
tained by replacind, andl; by v,+1/2 andv;+1/2, re- states withv;=v;=0. At fourth order of theory, the rms and
spectively, in Eqs(2.9—(2.11) with those obtained from ex- maximum errors between exact and perturbation calculations
act quantum calculations. The comparison obviously dealare 30.6 and 77.4 cHl, respectively, for these 111 levels.
with levels that have been assigned the same quantum nurithe errors change to 22.4 and 82.5 ¢nat fifth order, and
bersv,, v,, andvz. While the assignment procedure might 9.4 and 50.6 cm' at sixth order. At higher orders, the
be somewhat tedious for exact quantum states, it is vergsymptotic perturbation series diverges and the errors in-
simple for the perturbation ones, because the numbeanid  crease. Note that such a divergence is a common property to
v 4 of quanta in the two stretching degrees of freedom remaimll of the asymptotic series. Moreover, with the exception of
good quantum numbers. Therefore, one only has to inspeééw trivial cases, it is impossible to prediet priori (i.e.,
visually one-dimensional wave functions and to count theprior to performing the calculatiopsit what order the series
number of nodes along thgp coordinate between 0 anlin starts to diverge and one just has to hope, as for HCN/CNH
order to assign the last quantum numberand the localiza- and the cases studied in Refs. 15, 16, 44, 45, 57—64, that it
tion flag (localized in the HCN well, localized in the CNH converges up to a sufficiently high order for the perturbative
well, or delocalizedl This point is clearly illustrated in Fig. expression at that order to be sufficiently precise. As was
2, which displays the probability as a function@f for the  also observed in the simpler models presented in Ref. 65,
states withv;=v3=0 in the MCH surface, the baseline for most of the average error is due to a very limited number of
each plot being locate@n the vertical axisat the energy of states. For example, if states 81, 86, 98, and 104, which are
the state. It is worth noting that the assignment of statesssigned as (0,22,8)4, (1,16,0knn, (0,44,01 and
obtained from our perturbative Hamiltonian is absolutely not(0,14,1),cy, respectively, are not taken into account, then

C. Results
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the rms error at sixth order drops down to 5.9¢rand the  1ll. QUANTUM MECHANICAL VERSION OF THE
maximum one to 20.9 cit. As in Ref. 65, these larger MODIFIED CPT
errors observed for a few states are due to small resonances, The quantum mechanical version of the perturbative

which are not taken into account by the perturbation Hamilyeaiment of the molecular vibrations is based on Van Vieck
tonian(see Sec. Y. The perturbation Hamiltonian is accurate perturbation theory. We take as our starting point the Hamil-
enough to confirm, for example, that levels 76, 80, 106, andonian of Eqs(2.4) and(2.8). As such we have not attempted
110 must be assigned to (3,6,@k, (0,6,2)4cn,  to implement the quantum analog of the expansion about the
(3,8,0)4cn, and (0,8,2)cn, respectively, as proposed by MEP. This greatly simplifies the perturbative calculation, yet
Bentley, Huang, and Wyalff, whereas a reliable assignment allows us to test the accuracy of the perturbative aspect of
could not be arrived at in Ref. 75. Moreover, level 98 isthe calculation, which is the focus of this section of the pa-

without any doubt a delocalized state with 44 quanta in thd?€r- To obtain the initial quantum Hamiltonian, we rewrite
bending degree of freedom. the classical Hamiltonian faf=0 in terms of the coordinate

An indication of how the perturbation Hamiltonian per- Z=.COS(7) and 'tS. conjugate momentumz, sgttlng Py=0.
. L . . ... This transformation leads to a unitary Jacobian. We then set
forms at higher energies is provided by a comparison wit

- p,=—ifdldz. This approximate procedure leads to a non-
the exact states computed by Bentley, Huang, and Wf/att. Hermitian Hamiltonian, so the resulting Hamiltonian must be

This study reports eigenvalues up to 22 000 ¢rabove the symmetrized according to Weyl's rulef. Eq. (2.13)] dis-
quantum ground state. It turns out that the average and maxiyssed in Sec. |1 B, where this procedure produces a Hermit-
mum errors at sixth order of perturbation for the 56 levelsian Hamiltonian. Two simple examples, which illustrate the
computed between 12000 and 16000 ¢mabove the net effect of these transformations, are

ground state are not larger than 16.1 and 47.3ciihese

errors increase up to 28.1 and 73.5 Cnior the 69 levels p2:>_ﬁ2_a(1_z2)i:‘r,

between 16 000 and 20 000 cibut are still not larger than 7
43.2 and 104.8 cm' for the next 44 levels between 20 000 i% J 9
and 22000 cm’. These unexpectedly good results must — PySINy= =% (1-2%) 2 g(l—zz) :
however be put in perspective, since all of the levels reported

by Bentley, Huang, and Wy&ftare localized in the HCN As discussed in Sec. Il, the eigenvalues of this final quantum

well, whereas larger errors might be expected for the delol_—|ami|tonian are compared to those of B&Sin Fig. 1(a).

. g ... As this figure demonstrates, the combined errors introduced
calized states, which have a larger number of quanta in the™ . . oo . ;
. Ih using the classical MEP Hamiltonian, described in Sec. Il,
bending degree of frgedom. ) ) and the classical to quantum transformations, described in
At last, let us point out that CPT is mu;:hsgslmpler than s section, lead to errors that are sufficiently small that for
the so-called “weak-mode representatio"®® whereas g study it is not worth trying to calculate the small quan-
our results are nevertheless more accuflieone to two  tum corrections that a more rigorous treatment would pro-
orders of magnitudethan those reported in Refs. 78—83. If vide.
we understand this work correctly, this might be due princi-  As in the classical calculations, the Hamiltonian is ex-
pally to the fact that the expansion orders used by thespanded as
authors are too small. CPT is also much more accurate than
the adiabatic approximation in the discrete variable
representatioi! and as accurate as the same approximatiorwhere the order of terms follows the scheme described in
once nonadiabatic corrections have been perfoffredith ~ Sec. IIB. The Hamiltonian, as given by E(B.2), is the

the advantage that two good quantum numbers are exp|icit|§tarting point for the quantum calculations. It is transformed
built-in from the very beginning. using Van Vleck perturbation theory following the approach

For the BGBLD surface, states obtained from the Ioertur_that McCoy, Burleigh, and Sibert implemented in their treat-

bation Hamiltonian were compared to the first 175 exacfhent of rotation—vibration interaction®. Following that

quantum states up to 14 984 thabove the ground state work theH, are expanded as
reported in Tables Il and Il of Ref. 6(be careful, however,
as there are some misprints in these tgbl&his list com-
prises all the states in the HCN and CNH wells up to the first _ _ .
delocalized state. At fourth and fifth order of perturbationWherem_(ml’m3). andn=(ny,ny) (the indexes 1 and 3
theory, the rms and maximum errors are 38.0 and 144 refer to the stretching degrees of freedoifhis is the same

et = ; ) (f)orm as is used in a pure vibrational problem, however, in
cm ", and 33.8 and 135.1 cm, respectively. At sixth order, o yotation—vibration study the expansion coefficiedfé)

the perturbation expansion diverges and the errors increasgye functions of the angular momentum raising and lowering
Once again, the accuracy of the perturbation Hamiltonian igperators. Hence in carrying out the transformations, Mc-
satisfying good, especially as it can be estimated that theoy, Burleigy, and Sibett followed the same procedure as

greatest part of the error arises from the fitting procedurdor the purely vibrational problem, with the caveat that they
used to replace the spline interpolation. needed to incorporate the noncommutativity of the expansion

(3.9

H=Hg+AH;+N\2H,+..., (3.2

H/=§ 2 clil(ai)™(a)"(ag)™(az)™, (3.3
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coefficients into the Van Vleck transformations. This wasthat the number of termil required in the expansion of Eq.
most conveniently achieved by expressing the angular ma3.8) does depend on the representation. We have chosen to
mentum operators as harmonic oscillator raising and lowerwork with |i) that are eigenfunctions of the pure bend part of
ing operators following the work of Schwing&f the Hamiltonian contained iH,. TheM =36 lowest energy

In the present study we considered two approaches thétend eigenfunctions obtained using a basis of 65 Legendre
follow the general outline of the work of McCoy, Burleigh, functions is sufficient.
and Siberf® In the first approach thé:ﬁn/n) are expressed as Comparing the two methods of E(B.4) and Eq.(3.8),
functions of the bending degree of freedom. More specifiwe find that the fourth-order results are independent of

cally whether we use the operator or the matrix approach. How-
M, M j ever, at sixth order we find that the operator approach is
cl)= ! C(/)ijzii_ (3.4 unstable. We are not sure why instabilities arise. However,

n . .

the matrix elements of termgd'/9z! evaluated in a Leg-

his f has the ad hat. in th | endre basis are extremely difficult to calculate due to large
This format has the advantage that, in the commutator algg, \nq off errors. It was for this reason that the terms needed
bra required in Van Vleck perturbation theory, one needs tQ, o o qered as in Eq3.7)

take products of terms of the above form and then reorder

) . . The comparison of the sixth-order quantum and classical
them back into the original form using

perturbative results are shown in Figgbjland Xc), respec-

h n’  min(m’,n) , tively. Numerical results for states with zero quanta in the
d d n'm’! . .
"= > . stretch degrees of freedom are shown in Table I. Given the
9z az" k=0 kl(n=k)!(m'—k)! similar levels of agreement, as demonstrated by the figures,
N we conclude that the quantum corrections are small com-
¢ ZzM' +m—k ? (3.5 pared to the convergence of the perturbative expansions.
gz tn-k’ ' This comparison is complicated by that fact that the classical

limit of the quantum perturbation theory is a Lie transform,
and in the presence of resonances Lie transforms and
Birkhoff—Gustavson do not yield equivalent results. Hence
the differences between Figs(bl and Xc) arise from both
quantum corrections and the differences between Birkhoff—
H, =2 Dim(a)™(a))™(ag)™(as)™. (3.6 Gustavson versus Lie transforms. There is no reason those
" two approaches should give the same answer. In systems
Equation(3.6) gives the bend Hamiltonian for each set of the where there is weaker stretch—bend coupling, and thus better
m, andms quantum numbers. As such our approach is simi-<convergence in the perturbative treatment, one can argue that
lar in spirit to the method of mixed diagonalization, intro- one should include the quantum corrections, however, in the
duced by Hernande€?® in which one constructs an effective present case, this is clearly not true. Thus the remainder of
Hamiltonian operator acting on a reduced dimensional spacine paper focuses entirely on the results of the Birkhoff—
using the similarity transformations of canonical Van Vleck Gustavson CPT.
perturbation theory.
In principle, the eigenvalues of the Hamiltonian of Eq. IV. THE VIBRATIONAL DYNAMICS OF HCN /CNH
(3.6) are most easily determined in a Legendre basis. It Th f thi tion is 1o int t the feat
should be noted, however, that it was necessary to reorder, € purpose ol this section 1S 1o nterpret the Teatures

the above bend terms; so instead of the telbﬁﬁ consisting observed in the quantum spectrum on the basis of the
of a sum of terms of the form of E¢3.4), they are expressed quantum-classmal cor.responde.nce'. Although the wave func-
as e tions of the perturbation Hamiltonian in Eq&.9)—(2.11)

will be used for the purpose of illustration, recent work’
confirms that the wave functions obtained from exact quan-
tum calculations display the same features as the perturba-
tion ones. Therefore, one can be confident that the conclu-
where T is defined in Eq.3.1). This form leads to trivial sions, drawn for the perturbation Hamiltonian, hold for the
expressions for the matrix elements, since the matrix eleab initio surface. The two tools, which will be used exten-
ments of T are diagonal with respect to the Legendre basis Sively throughout this section, afe the Einstein—Brillouin—

The second approach is to expand €f&) of Eq. (3.3  Keller (EBK) semiclassical quantization rulé®;®8 and (i)
in a matrix representation for the bending degree of freedor§lassical one-dimensionglD) pseudopotentials.
as

As in the classical perturbation theory, the final Hamiltonian
has the same form as the original Hamiltonian in E342)
but now, in analogy to Eq2.9), we have

Din=2; di (2T +712), 3.7

A. Semiclassical quantization rules and 1D
pseudopotentials

M M
C%/&:Zl Zl li)eim (il (3.9 The EBK semiclassical quantization rules state that, for
S an integrable system, each quantum state is associated with a
This representation has the advantage that the reordering ofassical trajectory(called a “quantizing” trajectory with
terms is replaced by matrix multiplication. Although in prin- quantized action integralgction integrals can be understood
ciple our result is independent of the representation, we finés generalized momenta, which remain constant along clas-



7172 J. Chem. Phys., Vol. 113, No. 17, 1 November 2000 Sugny, Joyeux, and Sibert

TABLE I. Energy values of the pure bending states=v;=0) of HCN/CNH up to 11 770 cm'* above the
ground state, according to the MCH surfa&ef. 66. The variational values computed by Ba¢ief. 75 are
reported in column 7. The values obtained from sixth-order semiclag§i€aland quantum mechanice®M)
canonical perturbation theory are reported in columns 5 and 6, respectively. The labels HCN, CNH, and D in
column 4 indicate whether the state is localized in the HCN well or the CNH well or is delocalized over the two

wells.
SC energy QM energy Bacic Bacic-SC  Bacic-QM
vy vy U3 Well (cm™ (cm™ (cm™Y) (cm™Y) (cm™Y)
0 0 0 HCN 0.00 0.00 0.00 0.00 0.00
0 2 0 HCN 1419.70 1418.87 1418.30 —1.40 —-0.57
0 4 0 HCN 2809.20 2807.78 2806.40 —2.80 -1.38
0 0 0 CNH 3810.50 3809.53 3808.00 —2.50 —1.53
0 6 0 HCN 4164.80 4162.43 4160.90 —3.90 —-1.53
0 2 0 CNH 4753.19 4752.79 475090 —2.29 —1.89
0 8 0 HCN 5482.21 5477.94 547730 —4.91 —0.64
0 4 0 CNH 5627.12 5627.19 5625.30 —1.82 —1.89
0 6 0 CNH 6 326.97 6 328.72 6 327.50 0.53 —-1.22
0 8 0 CNH 6 645.97 6647.41 6649.30 3.33 1.89
0 10 0 HCN 6 754.75 6 748.42 6750.00 —4.75 1.58
0 10 0 CNH 7048.40 7 045.56 7047.80 —0.60 2.24
0 12 0 CNH 7540.27 7 535.46 7538.50 —1.77 3.04
0 12 0 HCN 7973.97 7965.81 7971.20 -—2.77 5.39
0 14 0 CNH 8096.86 8089.33 8093.80 —3.06 4.47
0 16 0 CNH 8701.45 8692.04 8697.50 —3.95 5.46
0 14 0 HCN 9128.19 9118.11 9129.00 0.81 10.89
0 18 0 CNH 9340.87 9330.36 9340.90 0.03 10.54
0 20 0 CNH 10 000.00 9 989.05 9987.60 —12.4 —1.45
0 16 0 HCN 10195.40 10185.11 10202.20 6.80 17.09
0 22 0 CNH 10 656.70 10 645.80 10619.80 —36.90 —26.00
0 42 0 D 11 099.40 11 099.02 11099.00 -0.40 —0.02
0 44 0 D 11 308.40 11 297.97 11257.70 —50.70 —40.27

k

sical trajectories More precisely, for the perturbation 1 !
Hamiltonian in Egs.(2.9—(2.11), the quantizing trajectory Vvl,vz(qZ):kil:n aklon| V1t 5| |vat 5| codnay),
associated with thev( ,v,,v3) quantum state satisfies h 4.2
1\k 1) '
li=v,+3, Tvl,vz(p21q2):kyl’m2#o'n ak,l,m,n(vl+ z) vst 5
1 p2 m
S AL @y X(p3+ m) cosnay).

The p)z(/sin2 g, term is conserved in the right-hand side of the
second equation in Ed4.2), despite the fact that only the
wherel; and I3, which appear in Eq(2.9), are defined in rotationless moleculep(,=0) is studied, in order to remem-
Eg. (2.10. Finding the quantizing trajectory associated with ber that the basis of the Legendre polynomials must be used
the quantum statev( ,v,,v3) therefore amounts to replacing in quantizing the bend degree of freedom. It is to be noted
I, and |3 with v;+1/2 andvz+1/2 in Eq. (2.9 and in that the pseudopotential defined in E4.2) is formally close
searching for the energy, such that the path integrabdf;,  to the effective bending potentials defined in the adiabatic
between— and 7 is equal tov,+ 1. Because there are two approximation in the discrete variable representaffon.

wells, located around the HCN and CNH equilibrium con-

figurations, respectively, this search leads most of the time ) _

(for localized statesto two solutions, which differ widely in B+ Quantum wave functions versus pseudopotentials

their initial conditions. It will now be shown that the features observed in quan-
Upon combination of the expression of the Hamiltoniantum wave functions can be interpreted in terms of the
in Eq. (2.9 with the EBK quantization rules in E¢4.1), itis  pseudopotentials. Let us first look back at Fig. 2, where the
seen that the full three-dimensional problem can be split intgyrobability for the bending states {=v3=0) of the MCH
one 1D problem for each pair of stretching quantum numbergurface and the correspondilg ((q,) pseudopotential have
(v1,v3): The particle with position and momentum coordi- been superposed. As expected, the pseudopotential displays
natesd, and p,, respectively, is considered to move in a two principal minima, associated with the linear HCN and
pseudopotentiaV, , (d2), with a pseudo-kinetic energy CNH configurations, respectively, separated by a maximum.
Tvl,u3(p27q2)1 where The increase in the probability close to the classical turning

_ 1
I3=v3+3
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FIG. 3. Plot, as a function af, of the V,, pseudopotential and the prob- F!G- 4. Plot, as 2 function ad,, of theV, o pseudopotential and the prob-
abilities |W(q,)|? sin(,) for the states (0,22,Qhy, (0,420), and  abiliies [W(dz)|*sin() for the states (4,16,Qky, (4,200kyy, and
(0,44,0),, according to the MCH surface. Energy values on the left-hand(4:22:0knn, according to the MCH surface. Energy values on the left-hand
scale refer to the plot 0¥, and are given relative to the quantum ground scale refer to the plot 0¥, and are given relative to the quantum ground
state. (0,22,0, (0,42,0),, and (0,44,0) are computed at 10 656.7, state. (4,16,0)cn, (4,20,0knH, and (4,22,03n are computed at 18 303.4,

11099.0, and 11 309.1 cthabove the ground state, respectively, according 18 314-9, and 19 001.8 C_’“"aPOV_e the ground state, respectively, according
to the perturbation Hamiltonian in E€2.9). All the probability plots are at O the perturbation Hamiltonian in E(.9). All the probability plots are at

the same scale. For each plot, the baseline coincides, on the vertical axi{'® same scale. For each plot, the baseline coincides, on the vertical axis,
with the energy of the state. with the energy of the state.

point and the exponential decrease in the classically forbidUS€ Of pseudopotentials in order to highlight the importance

den region are clearly seen for all of the localized states. ORf tunneling and its role in the mixing of molecular eigen-

the other hand, delocalized states display a larger probability{ates are illustrative, and only valid for interpreting the per-
at the barrier as expected due to their low kinetic energy. urbatively obtained wave functions. The inaccuracies in

A blow-up of the same figure in the energy range closeb_Oth the potgntial ene.rgy.surface and the pe_rturbative ener-
to the top of the barrier is presented in Fig. 3. The last thregi€s 1€ad to inaccuracies in the pseudopotentials themselves.
levels below the barrier are represented. They are assigned 8§c€ these are used as a starting point in our analysis, this
(0,22,0%nn, (0,42,0),, and (0,44,0), where the HCN, precludes us from making quantitative statements regarding
CNH, and D indices mean that the state is localized in théh€ role of tunneling for the specific state of the real mol-

HCN or CNH well, or delocalized, respectively. While €cule. _
(0,22,0)-1, Which lies 655 cr® below the barrier, is com- The wave functions for the BGBLD surface have been

pletely localized in the CNH well, (0,42,8) which lies 213 analyzed along .the same lines. The most salient feature of
cm ! below the barrier, is clearly delocalized because of "€ corresponding pseudopotentials is the fact that the
small tunneling effect. The tunneling effect is so strong for shoulder” in the CNH well is much less pronounced for

(0,44,0),, which lies only 4 cm™ below the barrier, that its this surface than for the MCH one. This is clearly seen when

probability is very similar to that of a state located above the®omparing Figs. 2 and 5, the latter one displaying the
barrier. At this point, it is worth emphasizing that tunneling- PSeudopotential¥/s o to Vo 4. It is emphasized that all of the
induced delocalization depends critically on the relative po-Surfaces, which have been calculated after the MCH one,
sitions of the states in the HCN and CNH wells and might be2dree with thflgGEGLD surface regarding the importance of
efficient more than 1000 cit below the barrier. For ex- the shouldef"**~®While the v, o pseudopotentials are
ample, the probability for the states (4,16,8), very similar toVq,, the Vou, Ones acquire in contrast an
(4,20,0xnH, and (4,22,09\y is plotted in Fig. 4, together unexpected oscillatory component ag increases. For val-
with the correspondiny/ 4 pseudopotential. The tunneling ues ofuv; greater than 3, wave functions localized in the
effect is so small for (4,22,Q\n, which is located 702 additional wells are clearly observed. However, this happens
cm™ ! below the barrier, that it is best assigned as a localizeih energy and quantum number ranges where no exact quan-
state. Somewhat unexpectedly, tunneling is much more imtum levels are reported in Ref. 67 and no comparison with
portant for the two other states, which lie as far as 1389 anéxperiment is available. Therefore, no conclusion can be
1401 cm ! below the barrier. These later states might as welldrawn as to whether these oscillations are physically mean-
be described as delocalized ones. Such a strong tunnelinggful; they may be an artifact of the BGBLD surface or the
effect so far below the top of the barrier is due to the fact thaperturbation procedure.
the two states are almost degenerate, their separation being The maximum error between calculated and experimen-
as small as 11.5 cit. tally observed transition energies being smaller than 82'cm
We emphasize that these conclusions with regard to théor the 92 rotationless transitions observed up to more than
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+5.894I 3—54_853' FIG. 6. Plot, as a function of their average energy, of the energy gap be-
tween two neighboring states with,=v;=0. Energy values on the hori-
Ecny=5173.2H2057.11,—11.69 i+ 3701.704 zontal axis are given relative to the quantum ground state. Bottom plot: The
states localized in the CNH well have not been taken into account. Middle
—31.71.1.—45.40 2 4.3 plot: The states localized in the HCN well have not been taken into account.
oLs ’ ' ' Top plot: All the states have been taken into account. The solid and dashed
Eparrie= 16 861.30- 2006.7T,— 11.62 i—i— 2697.52, lines in the middle and bottom plots indicate the positions of the minima and

maxima of theV, , pseudopotential. See Sec. IV C for further explanations.
—4.99,1;—10.683,

where the energies are given relative to the bottom of the . :
BGBLD surface and the action integrals and I are ob- % 8 IS B G TR T S
tained from the quantum numbers and vy according to

E account. The dip indicates precisely the location of the top of
g.(4.1). . ; o Y -
the barrier to isomerization, which is materialized by the

vertical dashed line. The fact that the gaps on the high-
energy side of the barrier are roughly smaller by a factor of 2
when compared to the low-energy side just reflects the fact

As developed in some detail in the work of Svitak, Rose that the density of states above the barrier is approximately
and Kellman* as well as in further studiés*"1%"1%the  the sum of the density in each well and the individual den-
plot of energy gaps between levels having two good quantursities are similar.
numbers in common usually displays a clear pattern in the Similarly, the two dips observed in the middle plot, for
neighborhood of unstable fixed points. In the case of HCNivhich the states localized in the CNH well and the delocal-
CNH, one expects that a “dip’(that is, a local minimum ized states have been taken into account, coincide precisely
indicates the position of the top of each barrier in the plot ofwith the barrier separating the shallow well from the CNH
the gaps between neighboring levels with the same values @quilibrium configuration and the barrier to isomerization.
v, andvg. It is seen in Fig. 6 that this is indeed the case asSince the states in the two wells are largely uncorrelated,
long as one does not consider simultaneously the levels Idhese clear pictures merge into the messy zig-zag pattern
calized in the two different wells. More precisely, the bottomobserved in the top plot when all of the levélecalized in
plot represents the gaps between neighboring levelswith the HCN well, localized in the CNH well, and delocalized

C. Gaps between neighboring levels versus unstable
fixed points
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are taken into account. Such a zig-zag pattern, arising frommbove the ground state, which are the precursors of the
the superposition of two clear dips, has also been reporteidomerization reactioh.® Similarly, use of an effective
for HCP?2 Nevertheless, there exists an important differenceHamiltonian showed that the 1:2 Fermi resonance between
between the two molecules. Indeed, in the case of HCN, théhe OCI stretch and the bend is responsible for all the dy-
two sets of levels are separated by a potential barrier, so thaamics of HOCI up to 98% of the energy of the dissociation
it is very easy to put each experimentally observed state ithreshold, and in particular for the birth of new wave func-
the correct set. In contrast, in the case of HCP, the two setsons (the so-called “dissociation” stat¢sat about 14 000
of levels are separated by a much subtler dynamical separam * above the ground state, which are the precursors of the
trix, which makes it difficult to decide whether an observeddissociation reactioh.For HCN/CNH, the fundamental re-
state belongs to one or the other set of levels. sult is that the dynamics could hardly be simpler, since the
three normal modes remain largely decoupled up to and
above the isomerization threshold. This important point re-
V. DISCUSSION mained well hidden behind the intrinsic difficulties of exact
guantum calculations. Moreover, such fundamental quanti-
b- lies as the height of the isomerization barrier and of the CNH

rium positions, because it assumes that the three vibrationg?'g'mum relatl\_/le tobtth_e Hg';l mlntlrr?uTDfok: ea:jgh valuelqdf
modes remain decoupled up to and above the isomerizaticl}" t'vI3 are eIaE13| Zg alr;e rOTh € b ten iNg pseudopo-
threshold. In this respect, this Hamiltonian is the counterparﬁen 1a S_’[_See a(4.3], w ereas there exists no rigorous way
for floppy systems of the well-known Dunham expansion. or deriving them from theb initio potential energy surface.

Despite this simplicity, the eigenstates of the perturbatior*""lst but not least, therg has been some controvgrsy as it
Hamiltonian agree satisfyingly well with those of thb ini- appeared that the classical phase space of HCN is largely

tio surface obtained from exact quantum calculations. FthaOt'C as low as a few thousands of cabove the CNH

example, the rms error for all the states up to the isomerizal'n'mum, whereas the quantum wave functions remain

9-114 :
tion threshold is smaller than 10 crhfor the MCH surface. Much more regulat®**“The present work is able to ex-
Quite naturally, one might wondei) whether it is possible plain this discrepancy by showing that, although chaotic, the

to reduce this error by taking offer a few) resonanc) into ab initio Hamiltonian nevertheless remains exceedingly

account, andii) which resonande) is(are most important clozer(]an averagel %OI ot separ:tm%h I_romche _lstep_arable
for reducing the error. Neither the Darling—Dennison reso-(an ence completely regujgperturbation Hamiltonian.

nance between the CH and CN stretches suggested in R% Taking the 1:6 resonance between the CN stretch and the
c

The perturbation Hamiltonian in ER.9) is the simplest
possible one for linear triatomic molecules with two equili

92, nor the Fermi resonance between the same degrees nd into account would probably bring perturbation results

freedom, are likely to play a role in the dynamics of HCN/ oser to the quantum ones by a few chbut this would
CNH: Indeed, if they were important, then perturbationalso destroy two gpod guantum numbers, naneglando .
theory would diverge at second ord@mhile convergence is There would remain only one good guantum number(tei
observed up to sixth order. In contrast, examination of thé1umber of quanta in the CH stretch degree of fre_e):iom
states with the largest errors reveals that there probably e}bat the fundamental result that HCN/CNH remains an a_l-
ists a 1:6 resonance between the CN stretch and the bengoSt separable system_up to and abo_"? the |somer|z_at|0n
For example, the states (0,22, and (1,16,04y, are cal- t_ reghold would paradoxically _be more difficult to grab—just
culated at 10656.7 and 10819.8 chnrespectively, for the like in exact quantum calculations!

perturbation Hamiltonian, whereas exact values are 10619.8 A last question deals with the applicability of the present
and 10850.5 crmt (erroré are—36.9 and+30.7 cm® re- method to more complicated systems: How would it work?

spectively. Therefore, it is very likely that a better agree- The answer is that the modified CPT should apply equally

ment with exact quantum calculations would be obtained ifWeII tq a!l the systems with a well-defined minimum energy
this particular resonance were taken into account. path linking all the extrema of the surface, and for which all

However, this calculation does not seem worthwhile. In_the other singularities of the surface take place at energies

deed, the purpose for applying CPT to triatomic moleculesmuch higher than the energy of the isomerization saddle. The
’ guestion remains obviously open if one of these two condi-

for which exact quantum calculations are now feasible, is?_ . ¢ fulfilled. that is. f le. if th N

certainly not to reproduce the results of exact calcuIations‘,"fons.l!S r,l,o f utmiea, '?h L\?v %r.ﬁexan;p,\fél'a er(.ef g_re wo

but rather to reveal the principal features of the dynano€s ramilies - of minima wi O ditteren S, Or [T CIsso-
&iation along one of the coordinates takes place at energies

the studied molecules. The point is that classical or exa ble to that of the i i ati ddie. W
guantum calculations performed on thb initio surface do comparable 1o that of the Isomerization saddle. Ve are cur-
ently working on these problems.

provide lots of details, but are paradoxically unable to give d
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