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Investigation of the vibrational dynamics of the HCN ÕCNH isomers
through high order canonical perturbation theory
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Molecular vibrations of the molecule HCN/CNH are examined using a combination of a minimum
energy path~MEP! Hamiltonian and high order canonical perturbation theory~CPT!, as suggested
in a recent work@D. Sugny and M. Joyeux, J. Chem. Phys.112, 31~2000!#. In addition, the quantum
analog of the classical CPT is presented and results obtained therefrom are compared to the classical
ones. The MEP Hamiltonian is shown to provide an accurate representation of the original potential
energy surface and a convenient starting point for the CPT. The CPT results are subsequently used
to elucidate the molecular dynamics: It appears that the isomerization dynamics of HCN/CNH is
very trivial, because the three vibrational modes remain largely decoupled up to and above the
isomerization threshold. Therefore, the study of the three-dimensional HCN/CNH system can be
split into the study of several one-dimensional bending subsystems, one for each value of the
numbersv1 andv3 of quanta in the CH and CN stretches. In particular, application of high order
CPT to the most precise availableab initio surface provides simple expressions~quadratic
polynomials! for the calculation of the heights of the isomerization barrier and of the CNH
minimum above the HCN minimum for each value ofv1 andv3 . © 2000 American Institute of
Physics.@S0021-9606~00!00441-4#
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I. INTRODUCTION

Studies of the highly excited vibrational dynamics a
spectroscopy of HCP,1–3 HOCl,4 HCCH,5,6 and DCP7 have
demonstrated and highlighted the complementary aspec
potential energy surfaces and resonance Hamiltonians fo
terpreting experimental results. In this context, a resona
Hamiltonian is one in which one or two low order res
nances between the normal modes are responsible fo
prominent features of the quantum and classical dynam
over a wide energy range. For example, a 1:2 Fe
resonance8,9 accounts for most of the dynamics of CO2,

10–17

CS2,
18–22 substituted methane,12–14,23–25HCP,1–3 DCP,7 and

HOCl,4 while the dynamics of O3 ~Refs. 26–28! and H2S
29 is

governed by a 2:2 Darling–Dennison resonance.30–32H2O is
a slightly more complex case, because both the Fermi
Darling–Dennison resonances must be taken into accoun
an accurate description,33–35 even though the principle fea
ture, the local modes, are due to the Darling–Dennison re
nance alone.13,28 These Hamiltonians remain an active ar
of investigation, even when accurate surfaces are availa
because resonance Hamiltonians have a set of good qua
numbers and classical constants of the motion explic
built-in, whereas the only conserved quantity in global s
faces, which take all resonances into account, is ene
These conserved quantities allow, in turn, for a much simp

a!Electronic mail: Marc.Joyeux@ujf-grenoble.fr
b!Electronic mail: sibert@chem.wisc.edu
7160021-9606/2000/113(17)/7165/13/$17.00
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and deeper study of the dynamics of the system, espec
when associated with the so-called EBK~Einstein–
Brillouin–Keller! semiclassical quantization rules.36–38

There are basically two methods for obtaining resona
Hamiltonians:~i! by a fit of effective parameters to a set
measured or calculated transition frequencies, and~ii ! the use
of high order canonical perturbation theory~CPT!. There are
several variants of the latter approach. They include
original quantum approach due to Van Vleck,39–45 the clas-
sical method developed by Birkhoff46 and later extended by
Gustavson,47–49 or the more recent classical procedur
based on Lie algebra.50–56 While a fit is often simpler to
perform than CPT, the latter procedure appears more reli
whenever the perturbation expansion converges, becau
avoids the plague of multiple solutions, which can never
totally banned with the fitting procedure. For this reason, t
paper describes the construction of resonancelike Ham
nians using CPT.

Until very recently, explicit high order CPT calculatio
schemes have been known only for motion around a sin
minimum, so that only rigid molecules, like CH4 and its
deuterated analogs,44 CF4,

45 H2CO,57,58 isotopic derivatives
of water,58,59 C2H2,

60,61 CO2,
15,16,60 SO2,

58 HCP,62 or AlF3

and SiF3
1,63 could be investigated. It is to be noted that HC

has been studied,57,60,64but only far below the isomerization
barrier, which occurs at about 15 000 cm21 above the ground
state, so that the influence of the CNH well could safely
neglected. In contrast, we have shown recently65 that CPT
5 © 2000 American Institute of Physics
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can also be used for floppy molecules in an energy ra
broad enough so that more than one equilibrium posit
have to be taken into account. A detailed calculation sche
was provided, which was shown to work for simple mode
The first purpose of the present paper is to extend that s
and to demonstrate the efficiency of this procedure for re
istic surfaces; we do this using the HCN/CNH as a prototy
demonstrating that a single perturbation Hamiltonian can
produce the spectrum over a large energy range.

Having demonstrated the validity of the resonan
Hamiltonian we then use it to investigate the dynamics
both the HCN and CNH wells up to and above the isom
ization barrier. The surface designed many years ago
Murrell, Carter, and Halonen66 ~hereafter called the MCH
surface!, as well as theab initio surface computed more re
cently by Bowman and co-workers67 ~hereafter called the
BGBLD surface! will be investigated. Although not very ac
curate, especially at high energies, the MCH surface has
ertheless been used in most calculations performed up to
on the HCN/CNH system.68–83 We studied it precisely for
the sake of comparison with other approximate methods

The principal problem one is confronted with when ha
dling a realistic surface, instead of the simple models stud
in Ref. 65, consists in obtaining a workable expansion of
initial Hamiltonian. Indeed, since explicit calculations i
volve repeated differentiation, CPT cannot be applied
rectly to the realistic surface and a more manageable
proximation thereof must first be derived. As shown in R
65, mixed expansions, where oscillatorlike modes~mostly
stretching degrees of freedom! are expanded in polynome
and hindered-rotor-like ones~mostly bending degrees o
freedom! in trigonometric functions, are well suited for th
application of CPT to systems with more than one equi
rium position. Inspired by the pioneering work of Marcu
Miller and co-workers, and others,84–90 we will demonstrate
that expansion of the initial surface around the ‘‘reacti
pathway,’’ or ‘‘minimum energy path,’’ which links the ex
trema of the surface, not only provides accurate poten
expansions but manageable and accurate expressions fo
kinetic energy. The practical calculations~gridded Taylor ex-
pansions followed by Fourier expansions!, involved in the
derivation of the kinetic and potential energy, will be d
scribed in some detail, because the success of the w
procedure relies thereon.

The final purpose of this paper is to provide a quant
version of the classical scheme presented in the prece
article.65 In that work, Birkhoff–Gustavson CPT,46–49which
consists of a series of classical canonical transformatio
was applied to a classical Hamiltonian. The resulting re
nance Hamiltonian was then quantized according to appr
mate quantization rules, such as that due to Weyl, in orde
study the molecular eigenstates. In this paper we show
one can also start with a quantum Hamiltonian and app
series of unitary transformations, in the spirit of canoni
Van Vleck’s perturbation theory.39–45 We consider two ap-
proaches. In the first approach, we follow a scheme simila
the one McCoy, Burleigh, and Sibert58 used in rotation–
vibration problems. We expand the Hamiltonian as a sum
terms that are functions of harmonic oscillator raising a
e
n
e
.
dy
l-
,
-

e
n
-
y

v-
ate

-
d
e

i-
p-
.

-

al
the

le

ng

s,
-
i-
to
at
a
l

to

f
d

lowering operators for the stretch degrees of freedom,
the expansion coefficients are functions of the bending
grees of freedom. The stretches are then treated using
Vleck perturbation theory, however, since the coefficients
longer commute, recurrence formulas are needed to ha
the operator ordering problem, which even in the case o
single equilibrium position is of fundamental importance f
practical computational purposes.44 We also present a mor
general approach in which we express the bend depen
coefficients in a matrix representation.

The remainder of this article is organized as follow
Section II describes the derivation of the classical pertur
tive Hamiltonian. The expansion of the exact Hamiltonian
mixed series is presented in some detail and the orde
problem is discussed in relation with the convergence of
perturbation series. The two approaches for the quantum
chanical version of the modified CPT, which are based eit
on operator or matrix representations, are next develope
Sec. III. The results obtained from the classical and qua
perturbative Hamiltonians are compared at the end of
same section. Section IV contains a discussion of the dyn
ics of the HCN/CNH molecule in terms of the one
dimensional bending pseudopotentials derived from the p
turbative Hamiltonian. At last, the complementary aspects
exact quantum calculations and perturbative ones are em
sized in Sec. V.

II. CLASSICAL DERIVATION OF THE PERTURBATION
HAMILTONIAN

We begin this section by describing our method for e
panding the classical Hamiltonian about the minimum e
ergy path in a set of coordinates that allows us to implem
the perturbative transformations. Having presented
Hamiltonian, we address the issue of assigning an orde
each term in the perturbative expansion. We conclude
section by presenting the results of the CPT.

A. Expansion of the exact Hamiltonian

Defining the Jacobi coordinatesr, R, andg as the inter-
atomic CN distance, the length betweenH and the center of
massG of CN, and theHGC angle, respectively, the ‘‘ex-
act’’ classical Hamiltonian is expressed in the form

H5T1V,

T5
1

2
m1pr

21
1

2
m2pR

21
1

2 S m1

r 2 1
m2

R2D pg
21

1

2I
px

2, ~2.1!

V5V~r ,R,g!.

Here the potential energy surfaceV(r ,R,g) is either the
MCH or BGBLD surface. In the expression of the kinet
energy T, m151/mC11/mN and m251/mH11/(mC1mN),
wheremH , mC, andmN are the masses of the H, C, and
atoms, respectively. The last term in the expression ofT is
due to the angular momentumpx about the axis with leas
moment of inertiaI, which is close to the body-fixed CN
axis. Although the rotationless molecule studied in this wo
does satisfyJ5px50, this term cannot be neglected becau
of the singularity at equilibrium. Indeed, the moment of i



f
fo
th
ob

of
t

oc
gi
s

it
st
ou
s,
,
io

.
on
ial
o-
s

e

e

-

cie
l

n-
i

o
-

in
-

ly-
so
der
a-
ons

p
n-

sh

f
l-
nta

ntial
to
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ertia I vanishes atg50 andg5p, so thatpx
2/I is undeter-

mined for these values ofg. From the numerical point o
view, the vibrational angular momentum is responsible
the fact that Legendre polynomes will be used instead of
simpler exponential basis to diagonalize the bending pr
lem.

Although CPT can formally be applied to any kind
Hamiltonian, its use is nevertheless practically restricted
relatively simple expressions, because the calculation pr
dure requires repeated differentiation. In the case of ri
molecules with a single equilibrium configuration, the fir
step therefore consists in expandingT andV in Taylor series
around the equilibrium position. In the case of systems w
several equilibrium configurations, however, more sophi
cated expansions must be used. Following previ
work,78–81 mixed polynomial/trigonometric expansion
which have been shown to work well for simpler models65

are used for the HCN/CNH system. These mixed express
are obtained through a two-step series expansion~Taylor ex-
pansion followed by Fourier expansion! around the mini-
mum energy path~MEP!, as will now be described briefly
The MEP, which is sometimes also called the ‘‘reacti
pathway,’’89–91 is defined as the line on which the potent
energyV is minimum with respect to the two stretching c
ordinates r and R. It is obtained as a set of point
@g,r MEP(g),RMEP(g)#, wherer MEP and RMEP are solutions
of

S ]V

]r D
g

5S ]V

]RD
g

50. ~2.2!

This line starts from the HCN zero-energy point, go
through the saddle located at 12 168 cm21 ~MCH surface! or
16 866 cm21 ~BGBLD surface!, and then goes down to th
CNH secondary minimum located at 3911 cm21 ~MCH sur-
face! or 5202 cm21 ~BGBLD surface!. The MEP is used to
define a coordinate transformation, according to

Dr ~g!5r 2r MEP~g!,
~2.3!

DR~g!5R2RMEP~g!.

For the MCH surface,V is next expanded in a two
dimensional Taylor series with respect toDr and DR for a
one-dimensional grid of values ofg ranging from2p to p,
and the coefficientsCp,q(g)5(]p1qV/](Dr )p](DR)q)g of
the Taylor series are tabulated as a function ofg. At last,
these tables are used to expand numerically each coeffi
Cp,q in a Fourier series with respect tog, so that the potentia
energy is finally rewritten in the form

V5 (
p,q,n

Vp,q,n~Dr !p~DR!q cos~ng!. ~2.4!

A similar expansion is obtained for the BGBLD pote
tial energy surface, although a slightly different procedure
needed, because the spline interpolation along theR coordi-
nate used by Bowman and co-workers67 makes the Taylor
expansion with respect to this coordinate inadequate~note
that the spline interpolation along theg coordinate is com-
paratively of little consequence since only discrete values
g are used!. Consequently,V is instead expanded in a one
r
e
-

o
e-
d
t

h
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s
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s

nt

s

f

dimensional Taylor series with respect toDr for a two-
dimensional grid of points (DR,g) regularly spaced around
the MEP. The coefficientsCp(DR,g)5(]pV/](Dr )p)(DR,g)

of the Taylor series are tabulated as a function ofDR andg.
For each value ofg, the coefficientsCp for increasing values
of DR are then fitted by a polynomial in terms ofDR, and
the fitted coefficients are tabulated as a function ofg. This
last table is finally used to expand the fitted coefficients
Fourier series with respect tog, leading to the same expan
sion as in Eq.~2.4!. Note, however, that the exponentq in
Eq. ~2.4! cannot be larger than the order of the fitted po
nomial for the BGBLD surface. Moreover, care was taken
as to choose the two-dimensional grid of points and the or
of the fitted polynomial in a region where the final perturb
tion Hamiltonian remains stable upon reasonable variati
thereof. The range20.29<DR<0.69 and a sixth-order
polynomial were found to be convenient.

Let us now turn to the kinetic energy. The first ste
consists in rewriting the vibrational angular momentum e
ergy in the most useful form79

1

2I
px

25
1

2S m1

r 2 1
m2

R2D px
2

sin2 g S 1

2
1A1

4
2

sin2 g

21
m1R

m2r
1

m2r

m1R
D .

~2.5!

Upon expansion of Eq.~2.5! in the neighborhood of the
MEP, it is clear that the only term which does not vani
everywhere for the nonrotating molecule (px50) is

1

2 S m1

r 2 1
m2

R2D px
2

sin2 g
, ~2.6!

due to the singularity atg50. The coefficient in front of
px

2/sin2 g in Eq. ~2.6! is the same as the coefficient in front o
pg

2 in Eq. ~2.1!. The kinetic energy for the nonrotating mo
ecule can therefore be rewritten in terms of the mome
pDR , pDr , pg , and px conjugate toDr , DR, g and x, re-
spectively, in the form

T5
1

2
m1pDr

2 1
1

2
m2pDR

2 1
1

2 S m1

r 2 1
m2

R2D
3S S pg2

]r MEP

]g
pDr2

]RMEP

]g
pDRD 2

1
px

2

sin2 g D . ~2.7!

The above-described procedure for expanding the pote
energy in the neighborhood of the MEP is next applied
each one of the six coefficients in front ofpDr

2 ,pDR
2 ,..., so

that kinetic energy is finally rewritten in the form

T5 (
p,q,n

~Dr !p~DR!q cos~ng!H Tp,q,n
~1! pDr

2 1Tp,q,n
~2! pDR

2

1Tp,q,n
~3! S pg

21
px

2

sin2 g D 1Tp,q,n
~4! pDrpDRJ

1 (
p,q,n

~Dr !p~DR!q sin~ng!

3$Tp,q,n
~5! pDrpg1Tp,q,n

~6! pDRpg%. ~2.8!
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It should be noted that the derivatives ofr MEP andRMEP with
respect tog need only be known at discrete values ofg, so
that explicit expressions for these functions are not requi
The derivatives are instead calculated numerically, toge
with the values ofr MEP andRMEP, as the MEP is determine
at the very beginning of the procedure.

It is worthwhile to test the accuracy of this expansio
This allows us to test the combined effects of the class
MEP transformations and the expansion of the potential.
do this by variationally calculating, for the MCH surface, t
eigenvalues of the Hamiltonian of Eqs.~2.4! and ~2.8! and
comparing them to those of Basic.75 The results are given in
Fig. 1~a!. Below 7000 cm21 above the zero-point energy th
largest difference is 2 cm21 and below 11 700 cm21, the
largest error is 5 cm21. In general, however, the error i
much smaller. A key step in this comparison is obtaining
eigenvalues of the classical Hamiltonian. This step is
scribed in Sec. III.

B. The ordering problem

Having obtained the expansions of Eqs.~2.4! and ~2.8!,
one must assign an order to each term and apply CP
order to put the perturbation Hamiltonian in the form

FIG. 1. Energy difference between the variational energies reported by
cic for the first 111 states of the MCH surface~Ref. 66! and~a! those of the
mixed expansion in Eqs.~2.4! and~2.8!, ~b! those obtained from sixth-orde
quantum canonical perturbation theory, and~c! those of Eq.~2.9! obtained
from sixth-order classical canonical perturbation theory.
d.
er

.
al
e

e
-

in

H5 (
k,l ,m,n

ak,l ,m,nI 1
kI 3

l S p2
21

px
2

sin2 q2
D m

cos~nq2!, ~2.9!

where the indices 1–3 describe the CN-stretch, the bend,
the CH-stretch normal modes, respectively, andI k is the ac-
tion integral of thekth (k51,3) normal mode

I k5
1

2
~pk

21qk
2!. ~2.10!

Note that the coordinates for the stretch degrees of freed
~modes 1 and 3! are dimensionless normal coordinates, wh
the coordinateq2 is an anglelike coordinate expressed
radians. The numerical values for theak,l ,m,n parameters in
Eq. ~2.9! are too lengthy to reproduce here, however th
are available on the World Wide Web at http
www.chem.wisc.edu/;sibert/hcn or by request to one of th
authors.

The expression in Eq.~2.9! is obtained under the as
sumption that all of the nonlinear resonances between
three normal modes are negligible. The numerical res
presented in the following show that this assumption is va
in the case of HCN/CNH, at least up to the isomerizati
barrier and within the accuracy of a few cm21 ~see the fol-
lowing!. For higher energy values or better precision,
might be necessary to take one or several resonances
account, as in Ref. 92, which leads to somewhat more c
plex expressions. It is nevertheless interesting to notice
the Hamiltonian in Eq.~2.9! is formally very close to the
resonance Hamiltonians mentioned in Sec. I, in that it
pends on a single angle, namelyq2 . However, this angular
dependence is due here to the need to take into account
wells instead of a resonance between two normal modes.
us further note, that for quantum mechanical purposes, e
classical term is symmetrized according to Weyl’s rule

S p2
21

px
2

sin2 q2
D m

cos~nq2!

→ 1

22m (
k50

2m S m
k D S S p2

21
px

2

sin2 q2
D k/2

3cos~nq2!S p2
21

px
2

sin2 q2
D m2k/2D . ~2.11!

~For a good discussion of the problems raised by the qu
tization and symmetrization of a classical Hamiltonian, s
e.g., Ref. 93.!

The reader is referred to the preceding article65 for the
explicit application of classical CPT and to Sec. III for
description of the quantum version of it. The ordering pro
lem will nevertheless be discussed here in more detail,
cause the statements made in Ref. 65 need be some
moderated. The major statement in Ref. 65 is that the low
order termH0 of the Hamiltonian must contain only the su
of the quadratic terms dealing with the oscillatorlike degre
of freedom ~here the two stretching modes!. This point is
absolutely compulsory65 so that, for the HCN/CNH system
H0 is defined as the sum of the terms withV2,0,0, V0,2,0, and
V1,1,0 in Eq. ~2.4!, plus the terms withT0,0,0

(1) andT0,0,0
(2) in Eq.

~2.8!. It was next suggested in Ref. 65 that all of the oth

a-
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terms of the Hamiltonian be put inH1 , in order to avoid
possible errors due to an improper ordering. Although a g
suggestion for the simpler models handled in Ref. 65,
proved to be unmanageable for the HCN/CNH system,
cause the calculations far exceed our~modern! computer ca-
pabilities.

The problematic aspect of the ordering is for the ter
dealing with the hindered-rotor-like modes~here the bending
degree of freedom!, because the termsVp,q,n cos(ng) do not
monotonously decrease with increasing values ofn. In con-
trast, the usual ordering of CPT is expected to work for
two stretching degrees of freedom. Therefore, an order 2
arbitrarily assigned to all of the cos(ng) terms, each monome
with total degreen12 was put inHn , and all the spurious
terms inH0 ~cf. the previous paragraph! were moved from
H0 to H1 . This ordering, which lies halfway between th
almost total lack of ordering suggested in the preced
article65 and the too rigid ordering assumed in the torsio
problem,94–101 has the merit to fulfill all the requirements
The ordering of bending terms is avoided, computer time
memory needs are strongly reduced, and quantum mech
cal calculations are numerically stable as the size of the b
of Legendre polynomes for the bend degree of freedom
increased from 51 to 71.

The last point to be tackled is that of the length of t
Fourier transforms. In particular, what is the maximum va
nmax of n in Eqs.~2.4! and ~2.8!? It turns out that the HCN
CNH results are improved whennmax is increased up to
about 18. Results then remain stable for larger values
nmax. Therefore, all the classical numerical results presen
in this article were obtained withnmax518. Moreover, it
proved to be important in the course of calculations to d
all the terms withn larger thannmax in order, once more, to
keep the number of terms in the perturbation calculati
manageable. It was thoroughly checked that this trunca
has a negligible effect on the final results.

C. Results

We are now in the position to check the accuracy of
perturbation scheme through the comparison of levels
tained by replacingI 1 and I 3 by v111/2 andv311/2, re-
spectively, in Eqs.~2.9!–~2.11! with those obtained from ex
act quantum calculations. The comparison obviously de
with levels that have been assigned the same quantum n
bersv1 , v2 , andv3 . While the assignment procedure mig
be somewhat tedious for exact quantum states, it is v
simple for the perturbation ones, because the numbersv1 and
v3 of quanta in the two stretching degrees of freedom rem
good quantum numbers. Therefore, one only has to ins
visually one-dimensional wave functions and to count
number of nodes along theq2 coordinate between 0 andp in
order to assign the last quantum numberv2 and the localiza-
tion flag ~localized in the HCN well, localized in the CNH
well, or delocalized!. This point is clearly illustrated in Fig
2, which displays the probability as a function ofq2 for the
states withv15v350 in the MCH surface, the baseline fo
each plot being located~on the vertical axis! at the energy of
the state. It is worth noting that the assignment of sta
obtained from our perturbative Hamiltonian is absolutely n
d
is
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affected by the ‘‘shoulder’’~actually a second shallow mini
mum! in the CNH well~see Fig. 2!, whereas the presence o
this shoulder prevented the study of the CNH well in Ref.
and limited it to the energy range below the energy of
shoulder in Ref. 81.

Concerning the MCH surface, the most comprehens
and reliable list of assigned quantum levels published up
date is that of Bacic.75 This list contains all the states belo
11 770 cm21 above the ground state~111 states!, regardless
of whether they are localized in the HCN or CNH wells
delocalized over the two wells. The list contains two su
states withv15v350. At fourth order of theory, the rms an
maximum errors between exact and perturbation calculat
are 30.6 and 77.4 cm21, respectively, for these 111 levels
The errors change to 22.4 and 82.5 cm21 at fifth order, and
9.4 and 50.6 cm21 at sixth order. At higher orders, th
asymptotic perturbation series diverges and the errors
crease. Note that such a divergence is a common proper
all of the asymptotic series. Moreover, with the exception
few trivial cases, it is impossible to predicta priori ~i.e.,
prior to performing the calculations! at what order the serie
starts to diverge and one just has to hope, as for HCN/C
and the cases studied in Refs. 15, 16, 44, 45, 57–64, th
converges up to a sufficiently high order for the perturbat
expression at that order to be sufficiently precise. As w
also observed in the simpler models presented in Ref.
most of the average error is due to a very limited number
states. For example, if states 81, 86, 98, and 104, which
assigned as (0,22,0)CNH, (1,16,0)CNH, (0,44,0)D and
(0,14,1)HCN, respectively, are not taken into account, th

FIG. 2. Plot, as a function ofq2 , of theV0.0 pseudopotential and the prob
abilities uC(q2)u2 sin(q2) for the complete spectrum withv15v350, ac-
cording to the MCH surface. Energy values on the left-hand scale refe
the plot ofV0.0 and are given relative to the minimum of the potential ener
surface. The scale is the same for all the probability plots and the bas
for each plot coincides, on the vertical axis, with the energy of the st
Note that the probability is zero atq250 andq25p because of the sin(q2)
term, althoughq250 andq25p are not nodes of the wave functionC(q2).
Therefore, 0 andp must not be taken into account for the assignment of
levels, which just amounts to counting the number of nodes.



r
c
i

te
n

y
nt
is
th

r-
it
tt

a
el

0
s

rte

lo
th

an

If
ci
es
th
ble
io

cit

u
ac
e
,

rs
on
4

,
a

n
th
ur

ive
ck
il-

d
the
et
t of
a-
te

set
n-
be

mit-
he

tum

ced
II,

d in
for
n-
ro-

x-

in

ed
ch
at-

in

ing
c-

s
ey
ion

7170 J. Chem. Phys., Vol. 113, No. 17, 1 November 2000 Sugny, Joyeux, and Sibert
the rms error at sixth order drops down to 5.9 cm21 and the
maximum one to 20.9 cm21. As in Ref. 65, these large
errors observed for a few states are due to small resonan
which are not taken into account by the perturbation Ham
tonian~see Sec. V!. The perturbation Hamiltonian is accura
enough to confirm, for example, that levels 76, 80, 106, a
110 must be assigned to (3,6,0)HCN, (0,6,2)HCN,
(3,8,0)HCN, and (0,8,2)HCN, respectively, as proposed b
Bentley, Huang, and Wyatt,77 whereas a reliable assignme
could not be arrived at in Ref. 75. Moreover, level 98
without any doubt a delocalized state with 44 quanta in
bending degree of freedom.

An indication of how the perturbation Hamiltonian pe
forms at higher energies is provided by a comparison w
the exact states computed by Bentley, Huang, and Wya77

This study reports eigenvalues up to 22 000 cm21 above the
quantum ground state. It turns out that the average and m
mum errors at sixth order of perturbation for the 56 lev
computed between 12 000 and 16 000 cm21 above the
ground state are not larger than 16.1 and 47.3 cm21. These
errors increase up to 28.1 and 73.5 cm21 for the 69 levels
between 16 000 and 20 000 cm21 but are still not larger than
43.2 and 104.8 cm21 for the next 44 levels between 20 00
and 22 000 cm21. These unexpectedly good results mu
however be put in perspective, since all of the levels repo
by Bentley, Huang, and Wyatt77 are localized in the HCN
well, whereas larger errors might be expected for the de
calized states, which have a larger number of quanta in
bending degree of freedom.

At last, let us point out that CPT is much simpler th
the so-called ‘‘weak-mode representation,’’78–83 whereas
our results are nevertheless more accurate~by one to two
orders of magnitude! than those reported in Refs. 78–83.
we understand this work correctly, this might be due prin
pally to the fact that the expansion orders used by th
authors are too small. CPT is also much more accurate
the adiabatic approximation in the discrete varia
representation,74 and as accurate as the same approximat
once nonadiabatic corrections have been performed74—with
the advantage that two good quantum numbers are expli
built-in from the very beginning.

For the BGBLD surface, states obtained from the pert
bation Hamiltonian were compared to the first 175 ex
quantum states up to 14 984 cm21 above the ground stat
reported in Tables II and III of Ref. 67~be careful, however
as there are some misprints in these tables!. This list com-
prises all the states in the HCN and CNH wells up to the fi
delocalized state. At fourth and fifth order of perturbati
theory, the rms and maximum errors are 38.0 and 14
cm21, and 33.8 and 135.1 cm21, respectively. At sixth order
the perturbation expansion diverges and the errors incre
Once again, the accuracy of the perturbation Hamiltonia
satisfying good, especially as it can be estimated that
greatest part of the error arises from the fitting proced
used to replace the spline interpolation.
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III. QUANTUM MECHANICAL VERSION OF THE
MODIFIED CPT

The quantum mechanical version of the perturbat
treatment of the molecular vibrations is based on Van Vle
perturbation theory. We take as our starting point the Ham
tonian of Eqs.~2.4! and~2.8!. As such we have not attempte
to implement the quantum analog of the expansion about
MEP. This greatly simplifies the perturbative calculation, y
allows us to test the accuracy of the perturbative aspec
the calculation, which is the focus of this section of the p
per. To obtain the initial quantum Hamiltonian, we rewri
the classical Hamiltonian forJ50 in terms of the coordinate
z5cos(g) and its conjugate momentumpz , setting px50.
This transformation leads to a unitary Jacobian. We then
pz52 i\]/]z. This approximate procedure leads to a no
Hermitian Hamiltonian, so the resulting Hamiltonian must
symmetrized according to Weyl’s rule@cf. Eq. ~2.11!# dis-
cussed in Sec. II B, where this procedure produces a Her
ian Hamiltonian. Two simple examples, which illustrate t
net effect of these transformations, are

pg
2⇒2\2

]

]z
~12z2!

]

]z
5T̂,

~3.1!

pg sing⇒ i\

2 H ~12z2!
]

]z
1

]

]z
~12z2!J .

As discussed in Sec. II, the eigenvalues of this final quan
Hamiltonian are compared to those of Basic75 in Fig. 1~a!.
As this figure demonstrates, the combined errors introdu
in using the classical MEP Hamiltonian, described in Sec.
and the classical to quantum transformations, describe
this section, lead to errors that are sufficiently small that
this study it is not worth trying to calculate the small qua
tum corrections that a more rigorous treatment would p
vide.

As in the classical calculations, the Hamiltonian is e
panded as

Ĥ5H01lH11l2H21..., ~3.2!

where the order of terms follows the scheme described
Sec. II B. The Hamiltonian, as given by Eq.~3.2!, is the
starting point for the quantum calculations. It is transform
using Van Vleck perturbation theory following the approa
that McCoy, Burleigh, and Sibert implemented in their tre
ment of rotation–vibration interactions.58 Following that
work theH l are expanded as

H l 5(
m

(
n

Cmn
~ l !~a1

1!m1~a1!n1~a3
1!m3~a3!n3, ~3.3!

where m5(m1 ,m3) and n5(n1 ,n3) ~the indexes 1 and 3
refer to the stretching degrees of freedom!. This is the same
form as is used in a pure vibrational problem, however,
the rotation–vibration study the expansion coefficientsCmn

(l )

are functions of the angular momentum raising and lower
operators. Hence in carrying out the transformations, M
Coy, Burleigy, and Sibert58 followed the same procedure a
for the purely vibrational problem, with the caveat that th
needed to incorporate the noncommutativity of the expans
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coefficients into the Van Vleck transformations. This w
most conveniently achieved by expressing the angular
mentum operators as harmonic oscillator raising and low
ing operators following the work of Schwinger.102

In the present study we considered two approaches
follow the general outline of the work of McCoy, Burleigh
and Sibert.58 In the first approach theCmn

(l ) are expressed a
functions of the bending degree of freedom. More spec
cally

Cmn
~ l !5(

i 51

Mz

(
j 51

M p

cmn
~ l !i j zi

] j

]zj . ~3.4!

This format has the advantage that, in the commutator a
bra required in Van Vleck perturbation theory, one needs
take products of terms of the above form and then reor
them back into the original form using

zm
]n

]zn zm8
]n8

]zn8
5 (

k50

min~m8,n!
n!m8!

k! ~n2k!! ~m82k!!

3zm81m2k
]n81n2k

]zn81n2k
. ~3.5!

As in the classical perturbation theory, the final Hamiltoni
has the same form as the original Hamiltonian in Eq.~3.2!
but now, in analogy to Eq.~2.9!, we have

H l 5(
m

Dmm
~ l ! ~a1

1!m1~a1!m1~a3
1!m3~a3!m3. ~3.6!

Equation~3.6! gives the bend Hamiltonian for each set of t
m1 andm3 quantum numbers. As such our approach is si
lar in spirit to the method of mixed diagonalization, intr
duced by Hernandez,103 in which one constructs an effectiv
Hamiltonian operator acting on a reduced dimensional sp
using the similarity transformations of canonical Van Vle
perturbation theory.

In principle, the eigenvalues of the Hamiltonian of E
~3.6! are most easily determined in a Legendre basis
should be noted, however, that it was necessary to reo
the above bend terms; so instead of the termsDmn

(l ) consisting
of a sum of terms of the form of Eq.~3.4!, they are expresse
as

Dmn
~ l !5(

i , j
dmn

~ l !i j ~zi T̂j1T̂jzi !, ~3.7!

where T̂ is defined in Eq.~3.1!. This form leads to trivial
expressions for the matrix elements, since the matrix
ments ofT̂ are diagonal with respect to the Legendre bas

The second approach is to expand theCmn
(l ) of Eq. ~3.3!

in a matrix representation for the bending degree of freed
as

Cmn
~ l !5(

i 51

M

(
j 51

M

u i &cmn
~ l !i j ^ j u. ~3.8!

This representation has the advantage that the reorderin
terms is replaced by matrix multiplication. Although in prin
ciple our result is independent of the representation, we
o-
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that the number of termsM required in the expansion of Eq
~3.8! does depend on the representation. We have chose
work with ui& that are eigenfunctions of the pure bend part
the Hamiltonian contained inH1 . TheM536 lowest energy
bend eigenfunctions obtained using a basis of 65 Legen
functions is sufficient.

Comparing the two methods of Eq.~3.4! and Eq.~3.8!,
we find that the fourth-order results are independent
whether we use the operator or the matrix approach. H
ever, at sixth order we find that the operator approach
unstable. We are not sure why instabilities arise. Howev
the matrix elements of termszi] j /]zj evaluated in a Leg-
endre basis are extremely difficult to calculate due to la
round off errors. It was for this reason that the terms nee
to be ordered as in Eq.~3.7!.

The comparison of the sixth-order quantum and class
perturbative results are shown in Figs. 1~b! and 1~c!, respec-
tively. Numerical results for states with zero quanta in t
stretch degrees of freedom are shown in Table I. Given
similar levels of agreement, as demonstrated by the figu
we conclude that the quantum corrections are small co
pared to the convergence of the perturbative expansi
This comparison is complicated by that fact that the class
limit of the quantum perturbation theory is a Lie transform
and in the presence of resonances Lie transforms
Birkhoff–Gustavson do not yield equivalent results. Hen
the differences between Figs. 1~b! and 1~c! arise from both
quantum corrections and the differences between Birkho
Gustavson versus Lie transforms. There is no reason th
two approaches should give the same answer. In syst
where there is weaker stretch–bend coupling, and thus b
convergence in the perturbative treatment, one can argue
one should include the quantum corrections, however, in
present case, this is clearly not true. Thus the remainde
the paper focuses entirely on the results of the Birkho
Gustavson CPT.

IV. THE VIBRATIONAL DYNAMICS OF HCN ÕCNH

The purpose of this section is to interpret the featu
observed in the quantum spectrum on the basis of
quantum-classical correspondence. Although the wave fu
tions of the perturbation Hamiltonian in Eqs.~2.9!–~2.11!
will be used for the purpose of illustration, recent work1–4,7

confirms that the wave functions obtained from exact qu
tum calculations display the same features as the pertu
tion ones. Therefore, one can be confident that the con
sions, drawn for the perturbation Hamiltonian, hold for t
ab initio surface. The two tools, which will be used exte
sively throughout this section, are~i! the Einstein–Brillouin–
Keller ~EBK! semiclassical quantization rules,36–38 and ~ii !
classical one-dimensional~1D! pseudopotentials.

A. Semiclassical quantization rules and 1D
pseudopotentials

The EBK semiclassical quantization rules state that,
an integrable system, each quantum state is associated w
classical trajectory~called a ‘‘quantizing’’ trajectory! with
quantized action integrals~action integrals can be understoo
as generalized momenta, which remain constant along c
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TABLE I. Energy values of the pure bending states (v15v350) of HCN/CNH up to 11 770 cm21 above the
ground state, according to the MCH surface~Ref. 66!. The variational values computed by Bacic~Ref. 75! are
reported in column 7. The values obtained from sixth-order semiclassical~SC! and quantum mechanical~QM!
canonical perturbation theory are reported in columns 5 and 6, respectively. The labels HCN, CNH, an
column 4 indicate whether the state is localized in the HCN well or the CNH well or is delocalized over th
wells.

v1 v2 v3 Well
SC energy

~cm21!
QM energy

~cm21!
Bacic
~cm21!

Bacic-SC
~cm21!

Bacic-QM
~cm21!

0 0 0 HCN 0.00 0.00 0.00 0.00 0.00
0 2 0 HCN 1 419.70 1 418.87 1 418.30 21.40 20.57
0 4 0 HCN 2 809.20 2 807.78 2 806.40 22.80 21.38
0 0 0 CNH 3 810.50 3 809.53 3 808.00 22.50 21.53
0 6 0 HCN 4 164.80 4 162.43 4 160.90 23.90 21.53
0 2 0 CNH 4 753.19 4 752.79 4 750.90 22.29 21.89
0 8 0 HCN 5 482.21 5 477.94 5 477.30 24.91 20.64
0 4 0 CNH 5 627.12 5 627.19 5 625.30 21.82 21.89
0 6 0 CNH 6 326.97 6 328.72 6 327.50 0.53 21.22
0 8 0 CNH 6 645.97 6 647.41 6 649.30 3.33 1.89
0 10 0 HCN 6 754.75 6 748.42 6 750.00 24.75 1.58
0 10 0 CNH 7 048.40 7 045.56 7 047.80 20.60 2.24
0 12 0 CNH 7 540.27 7 535.46 7 538.50 21.77 3.04
0 12 0 HCN 7 973.97 7 965.81 7 971.20 22.77 5.39
0 14 0 CNH 8 096.86 8 089.33 8 093.80 23.06 4.47
0 16 0 CNH 8 701.45 8 692.04 8 697.50 23.95 5.46
0 14 0 HCN 9 128.19 9 118.11 9 129.00 0.81 10.89
0 18 0 CNH 9 340.87 9 330.36 9 340.90 0.03 10.54
0 20 0 CNH 10 000.00 9 989.05 9 987.60 212.4 21.45
0 16 0 HCN 10 195.40 10 185.11 10 202.20 6.80 17.09
0 22 0 CNH 10 656.70 10 645.80 10 619.80 236.90 226.00
0 42 0 D 11 099.40 11 099.02 11 099.00 20.40 20.02
0 44 0 D 11 308.40 11 297.97 11 257.70 250.70 240.27
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sical trajectories!. More precisely, for the perturbatio
Hamiltonian in Eqs.~2.9!–~2.11!, the quantizing trajectory
associated with the (v1 ,v2 ,v3) quantum state satisfies

I 15v11 1
2,

I25
1

2p R
q2P@2p,p#

p2dq25v211, ~4.1!

I 35v31 1
2,

where I 1 and I 3 , which appear in Eq.~2.9!, are defined in
Eq. ~2.10!. Finding the quantizing trajectory associated w
the quantum state (v1 ,v2 ,v3) therefore amounts to replacin
I 1 and I 3 with v111/2 and v311/2 in Eq. ~2.9! and in
searching for the energy, such that the path integral ofp2dq2

between2p andp is equal tov211. Because there are tw
wells, located around the HCN and CNH equilibrium co
figurations, respectively, this search leads most of the t
~for localized states! to two solutions, which differ widely in
their initial conditions.

Upon combination of the expression of the Hamiltoni
in Eq. ~2.9! with the EBK quantization rules in Eq.~4.1!, it is
seen that the full three-dimensional problem can be split
one 1D problem for each pair of stretching quantum numb
(v1 ,v3): The particle with position and momentum coord
natesq2 and p2 , respectively, is considered to move in
pseudopotentialVv1,v3

(q2), with a pseudo-kinetic energ
Tv1,v3

(p2 ,q2), where
-
e

o
rs

Vv1 ,v2
~q2!5 (

k,l ,n
ak,l ,0,nS v11

1

2D kS v31
1

2D l

cos~nq2!,

~4.2!

Tv1 ,v2
~p2 ,q2!5 (

k,l ,mÞ0,n
ak,l ,m,nS v11

1

2D kS v31
1

2D l

3S p2
21

px
2

sin2 q2
D m

cos~nq2!.

Thepx
2/sin2 q2 term is conserved in the right-hand side of t

second equation in Eq.~4.2!, despite the fact that only the
rotationless molecule (px50) is studied, in order to remem
ber that the basis of the Legendre polynomials must be u
in quantizing the bend degree of freedom. It is to be no
that the pseudopotential defined in Eq.~4.2! is formally close
to the effective bending potentials defined in the adiaba
approximation in the discrete variable representation.74

B. Quantum wave functions versus pseudopotentials

It will now be shown that the features observed in qua
tum wave functions can be interpreted in terms of t
pseudopotentials. Let us first look back at Fig. 2, where
probability for the bending states (v15v350) of the MCH
surface and the correspondingV0,0(q2) pseudopotential have
been superposed. As expected, the pseudopotential dis
two principal minima, associated with the linear HCN a
CNH configurations, respectively, separated by a maximu
The increase in the probability close to the classical turn
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point and the exponential decrease in the classically for
den region are clearly seen for all of the localized states.
the other hand, delocalized states display a larger probab
at the barrier as expected due to their low kinetic energy

A blow-up of the same figure in the energy range clo
to the top of the barrier is presented in Fig. 3. The last th
levels below the barrier are represented. They are assign
(0,22,0)CNH, (0,42,0)D , and (0,44,0)D , where the HCN,
CNH, and D indices mean that the state is localized in
HCN or CNH well, or delocalized, respectively. Whil
(0,22,0)CNH, which lies 655 cm21 below the barrier, is com-
pletely localized in the CNH well, (0,42,0)D , which lies 213
cm21 below the barrier, is clearly delocalized because o
small tunneling effect. The tunneling effect is so strong
(0,44,0)D , which lies only 4 cm21 below the barrier, that its
probability is very similar to that of a state located above
barrier. At this point, it is worth emphasizing that tunnelin
induced delocalization depends critically on the relative
sitions of the states in the HCN and CNH wells and might
efficient more than 1000 cm21 below the barrier. For ex-
ample, the probability for the states (4,16,0)HCN,
(4,20,0)CNH, and (4,22,0)CNH is plotted in Fig. 4, togethe
with the correspondingV4.0 pseudopotential. The tunnelin
effect is so small for (4,22,0)CNH, which is located 702
cm21 below the barrier, that it is best assigned as a locali
state. Somewhat unexpectedly, tunneling is much more
portant for the two other states, which lie as far as 1389
1401 cm21 below the barrier. These later states might as w
be described as delocalized ones. Such a strong tunn
effect so far below the top of the barrier is due to the fact t
the two states are almost degenerate, their separation b
as small as 11.5 cm21.

We emphasize that these conclusions with regard to

FIG. 3. Plot, as a function ofq2 , of theV0,0 pseudopotential and the prob
abilities uC(q2)u2 sin(q2) for the states (0,22,0)CNH , (0,42,0)D , and
(0,44,0)D , according to the MCH surface. Energy values on the left-ha
scale refer to the plot ofV0,0 and are given relative to the quantum grou
state. (0,22,0)CNH , (0,42,0)D , and (0,44,0)D are computed at 10 656.7
11 099.0, and 11 309.1 cm21 above the ground state, respectively, accord
to the perturbation Hamiltonian in Eq.~2.9!. All the probability plots are at
the same scale. For each plot, the baseline coincides, on the vertical
with the energy of the state.
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use of pseudopotentials in order to highlight the importan
of tunneling and its role in the mixing of molecular eige
states are illustrative, and only valid for interpreting the p
turbatively obtained wave functions. The inaccuracies
both the potential energy surface and the perturbative e
gies lead to inaccuracies in the pseudopotentials themse
Since these are used as a starting point in our analysis,
precludes us from making quantitative statements regard
the role of tunneling for the specific state of the real m
ecule.

The wave functions for the BGBLD surface have be
analyzed along the same lines. The most salient featur
the corresponding pseudopotentials is the fact that
‘‘shoulder’’ in the CNH well is much less pronounced fo
this surface than for the MCH one. This is clearly seen wh
comparing Figs. 2 and 5, the latter one displaying
pseudopotentialsV0.0 to V0,4. It is emphasized that all of the
surfaces, which have been calculated after the MCH o
agree with the BGBLD surface regarding the importance
the shoulder.67,104–106While the Vv1 ,0 pseudopotentials are
very similar to V0,0, the V0,v3

ones acquire in contrast a
unexpected oscillatory component asv3 increases. For val-
ues of v3 greater than 3, wave functions localized in th
additional wells are clearly observed. However, this happ
in energy and quantum number ranges where no exact q
tum levels are reported in Ref. 67 and no comparison w
experiment is available. Therefore, no conclusion can
drawn as to whether these oscillations are physically me
ingful; they may be an artifact of the BGBLD surface or th
perturbation procedure.

The maximum error between calculated and experim
tally observed transition energies being smaller than 82 cm21

for the 92 rotationless transitions observed up to more t

d

xis,

FIG. 4. Plot, as a function ofq2 , of theV4,0 pseudopotential and the prob
abilities uC(q2)u2 sin(q2) for the states (4,16,0)HCN , (4,20,0)CNH , and
(4,22,0)CNH , according to the MCH surface. Energy values on the left-ha
scale refer to the plot ofV4,0 and are given relative to the quantum groun
state. (4,16,0)HCN , (4,20,0)CNH , and (4,22,0)CNH are computed at 18 303.4
18 314.9, and 19 001.8 cm21 above the ground state, respectively, accordi
to the perturbation Hamiltonian in Eq.~2.9!. All the probability plots are at
the same scale. For each plot, the baseline coincides, on the vertical
with the energy of the state.
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23 000 cm21 above the ground state, the precision of t
BGBLD surface is good enough to be of use to experim
talists. Therefore, we find it worthwhile to provide simp
expressions for calculating the energies of the minima of
HCN and CNH wells and the top of the barrier for differe
values ofv1 andv3 . These expressions were obtained fro
a linear fit to the values calculated from the pseudopoten
and agree on average to better than 2 cm21 with them. We
calculate

EHCN55.8012067.17I 127.15I 1
213473.57I 3

15.89I 1I 3254.85I 3
2,

ECNH55173.2112057.11I 1211.65I 1
213701.70I 3

231.71I 1I 3245.40I 3
2, ~4.3!

Ebarrier516 861.3012006.77I 1211.62I 1
212697.52I 3

24.99I 1I 3210.68I 3
2,

where the energies are given relative to the bottom of
BGBLD surface and the action integralsI 1 and I 3 are ob-
tained from the quantum numbersv1 and v3 according to
Eq. ~4.1!.

C. Gaps between neighboring levels versus unstable
fixed points

As developed in some detail in the work of Svitak, Ro
and Kellman14 as well as in further studies,1–4,7,107,108the
plot of energy gaps between levels having two good quan
numbers in common usually displays a clear pattern in
neighborhood of unstable fixed points. In the case of HC
CNH, one expects that a ‘‘dip’’~that is, a local minimum!
indicates the position of the top of each barrier in the plot
the gaps between neighboring levels with the same value
v1 andv3 . It is seen in Fig. 6 that this is indeed the case
long as one does not consider simultaneously the levels
calized in the two different wells. More precisely, the botto
plot represents the gaps between neighboring levels withv1

FIG. 5. Plot, as a function ofq2 , of the V0,0, V0,1, V0,2, V0,3, and V0,4

pseudopotentials, according to the BGBLD surface. Energy values are g
relative to the minimum of the potential energy surface.
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5v350 in the MCH surface, where only the states localize
in the HCN well and the delocalized states are taken in
account. The dip indicates precisely the location of the top
the barrier to isomerization, which is materialized by th
vertical dashed line. The fact that the gaps on the hig
energy side of the barrier are roughly smaller by a factor of
when compared to the low-energy side just reflects the fa
that the density of states above the barrier is approximat
the sum of the density in each well and the individual de
sities are similar.

Similarly, the two dips observed in the middle plot, fo
which the states localized in the CNH well and the deloca
ized states have been taken into account, coincide precis
with the barrier separating the shallow well from the CNH
equilibrium configuration and the barrier to isomerization
Since the states in the two wells are largely uncorrelate
these clear pictures merge into the messy zig-zag patt
observed in the top plot when all of the levels~localized in
the HCN well, localized in the CNH well, and delocalized!

en

FIG. 6. Plot, as a function of their average energy, of the energy gap
tween two neighboring states withv15v350. Energy values on the hori-
zontal axis are given relative to the quantum ground state. Bottom plot: T
states localized in the CNH well have not been taken into account. Midd
plot: The states localized in the HCN well have not been taken into accou
Top plot: All the states have been taken into account. The solid and das
lines in the middle and bottom plots indicate the positions of the minima a
maxima of theV0,0 pseudopotential. See Sec. IV C for further explanation
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are taken into account. Such a zig-zag pattern, arising f
the superposition of two clear dips, has also been repo
for HCP.3 Nevertheless, there exists an important differen
between the two molecules. Indeed, in the case of HCN,
two sets of levels are separated by a potential barrier, so
it is very easy to put each experimentally observed stat
the correct set. In contrast, in the case of HCP, the two
of levels are separated by a much subtler dynamical sep
trix, which makes it difficult to decide whether an observ
state belongs to one or the other set of levels.

V. DISCUSSION

The perturbation Hamiltonian in Eq.~2.9! is the simplest
possible one for linear triatomic molecules with two equili
rium positions, because it assumes that the three vibrati
modes remain decoupled up to and above the isomeriza
threshold. In this respect, this Hamiltonian is the counterp
for floppy systems of the well-known Dunham expansio
Despite this simplicity, the eigenstates of the perturbat
Hamiltonian agree satisfyingly well with those of theab ini-
tio surface obtained from exact quantum calculations.
example, the rms error for all the states up to the isomer
tion threshold is smaller than 10 cm21 for the MCH surface.
Quite naturally, one might wonder~i! whether it is possible
to reduce this error by taking one~or a few! resonance~s! into
account, and~ii ! which resonance~s! is~are! most important
for reducing the error. Neither the Darling–Dennison re
nance between the CH and CN stretches suggested in
92, nor the Fermi resonance between the same degre
freedom, are likely to play a role in the dynamics of HC
CNH: Indeed, if they were important, then perturbati
theory would diverge at second order,62 while convergence is
observed up to sixth order. In contrast, examination of
states with the largest errors reveals that there probably
ists a 1:6 resonance between the CN stretch and the b
For example, the states (0,22,0)CNH and (1,16,0)CNH are cal-
culated at 10 656.7 and 10 819.8 cm21, respectively, for the
perturbation Hamiltonian, whereas exact values are 10 6
and 10 850.5 cm21 ~errors are236.9 and130.7 cm21, re-
spectively!. Therefore, it is very likely that a better agre
ment with exact quantum calculations would be obtained
this particular resonance were taken into account.

However, this calculation does not seem worthwhile.
deed, the purpose for applying CPT to triatomic molecu
for which exact quantum calculations are now feasible
certainly not to reproduce the results of exact calculatio
but rather to reveal the principal features of the dynamicsof
the studied molecules. The point is that classical or ex
quantum calculations performed on theab initio surface do
provide lots of details, but are paradoxically unable to giv
basic understanding of the studied molecule. Stated in o
words, the two methods are complementary, not compe
with one another. For example, use of an effective Ham
tonian showed that the 1:2 Fermi resonance between the
stretch and the bend is responsible for all the dynamics
HCP up to 80% of the energy of the isomerization sadd
and in particular for the birth of new wave functions~the
so-called ‘‘isomerization’’ states! at about 13 000 cm21
m
ed
e
e
at
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ra-
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above the ground state, which are the precursors of
isomerization reaction.1–3 Similarly, use of an effective
Hamiltonian showed that the 1:2 Fermi resonance betw
the OCl stretch and the bend is responsible for all the
namics of HOCl up to 98% of the energy of the dissociati
threshold, and in particular for the birth of new wave fun
tions ~the so-called ‘‘dissociation’’ states! at about 14 000
cm21 above the ground state, which are the precursors of
dissociation reaction.4 For HCN/CNH, the fundamental re
sult is that the dynamics could hardly be simpler, since
three normal modes remain largely decoupled up to
above the isomerization threshold. This important point
mained well hidden behind the intrinsic difficulties of exa
quantum calculations. Moreover, such fundamental qua
ties as the height of the isomerization barrier and of the C
minimum relative to the HCN minimum for each value ofv1

and v3 are easily obtained from the 1D bending pseudo
tentials@see Eq.~4.3!#, whereas there exists no rigorous wa
for deriving them from theab initio potential energy surface
Last but not least, there has been some controversy a
appeared that the classical phase space of HCN is lar
chaotic as low as a few thousands of cm21 above the CNH
minimum, whereas the quantum wave functions rem
much more regular.109–114 The present work is able to ex
plain this discrepancy by showing that, although chaotic,
ab initio Hamiltonian nevertheless remains exceedin
close ~an average 10 cm21 separation! from the separable
~and hence completely regular! perturbation Hamiltonian.

Taking the 1:6 resonance between the CN stretch and
bend into account would probably bring perturbation resu
closer to the quantum ones by a few cm21, but this would
also destroy two good quantum numbers, namelyv1 andv2 .
There would remain only one good quantum number left~the
number of quanta in the CH stretch degree of freedom!, so
that the fundamental result that HCN/CNH remains an
most separable system up to and above the isomeriza
threshold would paradoxically be more difficult to grab—ju
like in exact quantum calculations!

A last question deals with the applicability of the prese
method to more complicated systems: How would it wor
The answer is that the modified CPT should apply equa
well to all the systems with a well-defined minimum ener
path linking all the extrema of the surface, and for which
the other singularities of the surface take place at ener
much higher than the energy of the isomerization saddle.
question remains obviously open if one of these two con
tions is not fulfilled, that is, for example, if there are tw
‘‘families’’ of minima with two different MEPs, or if disso-
ciation along one of the coordinates takes place at ener
comparable to that of the isomerization saddle. We are c
rently working on these problems.

VI. SUMMARY

We have presented a study of the perturbative treatm
of the isomerization of HCN/CNH. The treatment requir
several significant extensions of the traditional perturbat
methods that are designed for dynamics about a single m
mum. First the potential was expressed in the appropr
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vibrational coordinates. The stretch–bend coupling was t
reduced by deriving a minimum energy path Hamiltonia
The eigenvalues of this Hamiltonian were compared to th
of the original Hamiltonian, and excellent agreement w
found in both wells. Both classical and quantum mechan
versions of the perturbation theory were presented. The
crepancies in the resulting eigenvalues are due to both q
tum corrections and use of Lie transforms versus Birkho
Gustavson normal forms. The results of both approac
agree equally well with the variational results, so the clas
cal calculations were used in the majority of the calculatio
Finally a key advantage of the perturbative method is tha
allows one to interpret the molecular eigenfunctions. W
gave several examples of this by constructing pseudopo
tials that enable us to elucidate the bending dynamics n
the threshold to isomerization.
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