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Vibrational dynamics up to the dissociation threshold:
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This work is aimed at extending recent studies dealing with the highly excited vibrational dynamics
of HOCl @J. Chem. Phys.111, 6807~1999!; J. Chem. Phys.112, 77 ~2000!#, by taking advantage of
the fact that the OH-stretch remains largely decoupled from the two other degrees of freedom up to
and above the dissociation threshold. The molecule is thus reduced to a two-dimensional~2D!
system by freezing the OH bond length to its equilibrium value. All of the calculated bound states
of the 2D system, as well as the first 40 resonances, can be assigned with a Fermi polyad quantum
number. The bifurcation diagram of the principal families of periodic orbits~POs! is extended to
higher energies compared to 3D studies. In particular, the birth of ‘‘inversion’’ states~states
exploring two equivalent wells connected through the linear HOCl configuration! is related to a
period-doubling bifurcation of the families of bending POs, while ‘‘dissociation’’ states~states for
which the energy flows back and forth along the dissociation pathway! are shown to lie on top of
three successive families of POs born at saddle-node bifurcations. Based on the derivation of a
classical analogue of the quantum Fermi polyad number, the energies of particular quantum states
and classical POs are plotted on the same diagram for the 2Dab initio surface and are shown to
agree perfectly. In contrast, comparison of classical Poincare´ surfaces of section and quantum
Husimi distributions suggests that the classical dynamics of 2D HOCl is much more chaotic than the
quantum dynamics. This observation is discussed in terms of the quantum/classical correspondence,
and particularly of the vague tori introduced by Reinhardt. It is nevertheless shown that quantum
and classical mechanics agree in predicting a slow intramolecular vibrational energy redistribution
~IVR! between the OCl stretch and the bend degrees of freedom. ©2000 American Institute of
Physics.@S0021-9606~00!00945-4#
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I. INTRODUCTION

Recent theoretical and computational studies of the
namics of LiCN,1,2 HCP,3–6 HOCl,7,8 C2H2,

9,10 DCP,11 and
SO2

12 have clearly shown the benefit of classical analy
for revealing and understanding the information relative
highly excited vibrational dynamics contained in fitted orab
initio quantum mechanical spectra. In particular, classical
furcations~that is, in general, the sudden birth of new fam
lies of fundamental periodic orbits! were shown to be re
sponsible for the appearance of new families of quant
states, which are precursors of fundamental processes,
as isomerization1–6,9,10and dissociation.7,8

In particular, HOCl has recently been the subject
much interest, both from the experimental13–20 and
theoretical7,8,21–29points of view. Potential energy surface
~PESs! with near spectroscopic accuracy, suitable for ac
rate calculation of high-energy vibrations and dynamics st
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ies, have been developed.8,21,26,27The wave functions of all
bound states up to the HOCl→HO1Cl dissociation threshold
at D0519 290 cm21 above the ground state~there are more
than 800 of them! were visually inspected, in order to assig
the states and to elucidate how the spectrum develops
energy.7,8 It was shown that the dominant feature is a 2
anharmonic resonance between the bending mode and
OCl stretching motion. This resonance is responsible fo
saddle-node bifurcation, which occurs at about 13 000 cm21

above the ground state for states with no excitation in the
stretch. The family of stable periodic orbits~POs! born at
this bifurcation closely follows the dissociation pathway
to very high energies, while the family of POs, which fo
lows this pathway at lower energies, progressively cur
and avoids dissociation.7,8 Consequently, the ‘‘new’’ quan-
tum states which appear above 13 000 cm21 and which lie on
top of the new family of POs, were called ‘‘dissociation
states in Ref. 8. It was furthermore shown that all of t
0 © 2000 American Institute of Physics
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features observed in theab initio spectrum up to 98% of the
dissociation energy, including the bifurcation and the birth
the dissociation states, could be reproduced with excel
accuracy by a fitted Fermi resonance Hamiltonian, that i
Hamiltonian which takes into account only the 2:1 resona
between the bending and the OCl degrees of freedom.7 This
Fermi resonance Hamiltonian was used to rationalize
shape of the quantum wave functions in terms of the posi
of the state in the quantum Fermi polyads.7

The goal of the present work is to take advantage of
facts ~i! that the OH stretch remains fairly decoupled fro
the two other degrees of freedom up to the dissociation lim
as shown by the very long dissociation time constant~in the
range 10–100 ns! measured upon excitation of HOCl in th
OH stretch degree of freedom,15–20and~ii ! that the OH bond
length fluctuates only very little~between 0.9637 and 0.972
Å! along the minimum energy path~MEP! all the way from
equilibrium to dissociation. As a consequence, the O
stretch degree of freedom is easily decoupled from the b
and the OCl stretch by freezing the OH bond length to
value in the free OH radical (r 50.9702 Å), thereby reduc
ing the problem to a two-dimensional~2D! one. In turn, this
allows for a deep insight into the vibrational dynamics
HOCl up to the dissociation threshold. Compared to the p
vious 3D studies,7,8 it will be shown that valuable additiona
information is gained with respect to the following thre
points.

The first point deals with POs and the bifurcatio
thereof. Plotting the energies of POs as a function of
Fermi polyad number~the polyad number is the total numb
of quanta in the coupled degrees of freedom! proved to be an
essential tool for understanding the shape of the quan
wave functions of HCP,6 HOCl,7 and DCP.11 For a triatomic
molecule, however, a classical analogue of the polyad qu
tum number can be defined rigorously for the POs of
Fermi resonance Hamiltonian, but not for those of theab
initio surface. Therefore, these figures were plotted for
Fermi resonance Hamiltonian fitted against the levels of
ab initio PES—not for theab initio surface itself. In contras
to the 3D case, it will be shown that it is possible to rigo
ously define a polyad number for the POs of the 2Dab initio
surface. Moreover, since the dynamics is not obscured by
residual small couplings with the OH stretch,8 the search for
the fundamental families of POs can be pursued to hig
energies, so that we shall be able to address the que
whether the PO born at the saddle-node bifurcation at 13
cm21 scars all of the dissociation states up to the thresh
or whether there exists a cascade of such bifurcations.

The second point deals with vibrational chaos. It is ge
erally believed that the closer to the dissociation thresh
the larger the portion of phase space invaded by chaotic
jectories. Very close to the threshold one expects an es
tially fully chaotic dynamics. Such an expectation seems
be reasonable for 2D HOCl, where the dissociating degre
freedom~the OCl stretch! is coupled to the other degree o
freedom~the bend! by a strong Fermi resonance. Howeve
the fact that theab initio spectrum can be reproduced up
98% of the dissociation energy with an integrable Fer
resonance Hamiltonian7 suggests the opposite, i.e., that t
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dynamics is essentially regular. This is a question wh
clearly deserves further investigation, since it appears ra
unlikely that chaos develops in the small energy range~the
last 2% of the dissociation energy! not encompassed by th
resonance Hamiltonian. It must be realized that, while cl
sical chaos is difficult to investigate in detail in 3D, the stu
of the 2D problem is made simple by the existence of glo
Poincare´ surfaces of section.

The last point deals with the intramolecular vibration
energy redistribution~IVR! between the dissociating degre
of freedom~the OCl stretch! and the other one~the bend!.
Conclusions regarding possible bottlenecks, that is, dyna
cal barriers hindering the energy from flowing between
various modes, were not expected at the beginning of
study. However, such conclusions arose naturally while p
ting Poincare´ surfaces of section to check the extent of v
brational chaos. It will be shown that the study of 2D HO
provides a clear illustration of how broken tori might act
efficient barriers preventing the spreading of energy,
though the overall dynamics looks completely chaotic.

The remainder of this article is organized as follows. T
principal features of the 2Dab initio potential energy sur-
faces and the main results of the quantum calculations
summarized in Sec. II. Periodic orbits, bifurcations, and d
sociation states are the focus of Sec. III, while the last s
tion ~Sec. IV! is devoted to a discussion of quantum regul
ity vs classical chaos and of IVR.

II. PES AND QUANTUM STATES

Petersonet al.,26 have fitted a global PES againstab ini-
tio points calculated at the multireference configuration
teraction ~CI! level using large correlation-consistent bas
sets. This PES was subsequently adjusted using a pertu
tive inversion procedure to reproduce the 22 experiment
known vibrational energies, as well as the rotational co
stants for nine low energy states.27 This latest version of the
PES was used throughout the present work. Since the ‘‘o
surface used in the previous 3D study7 was fitted to the same
ab initio data~but a smaller number of points! both PESs are
of course very similar and expected to give results in go
agreement. A contour plot of the 2D surface, where the
bond length~the Jacobi coordinater! is kept fixed atr
50.9702 Å, is displayed in Fig. 1. Horizontal and vertic
axes are the Jacobi coordinateR @R is the distance betwee
the Cl atom and the center of mass~G! of the OH moiety#
and the cosine of the Jacobi angleg ~g is the OGCl
angle, which is zero at the linear HOCl configuration!, re-
spectively. The surface is symmetric with respect to theg
50 andg5p axes. The minimum of the 2D surface@taken
as the zero energy point~ZEP!# is found atR51.7043 Å and
g51.3184 rad, that is, only 8.1 cm21 above the absolute
~3D! minimum at R51.7038 Å, g51.3174 rad, andr
50.9638 Å. Dissociation takes place atE520 296.3 cm21

above the ZEP. Also indicated in the figure are the th
saddle points observed below the dissociation thresh
which are due to conical intersections with excited electro
surfaces21 and are located, respectively, atR51.6517 Å and
g50 ~E516 105.2 cm21 above the ZEP!, R53.4972 Å and
g5p (E519 840.5 cm21!, and R53.3134 Å andg50 (E
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520 011.9 cm21). Finally, let us mention for completenes
that HOCl has an isomer, HClO, below the dissociation
ergy to OH1Cl and that quantum calculations have be
performed for this isomer.26 The barrier separating both iso
mers is however above the dissociation threshold of HC
and it is too high and broad for HClO to play any role in t
dissociation of HOCl.

Vibrational variational calculations were performed u
ing a truncation/recoupling method described in detail
Ref. 22. The basis used for constructing the 2D Hamilton
matrix consists of the direct product of 220 1D radial fun
tions extending from 2 to 15 bohr and 60 1D angular fun
tions. The 1D functions were obtained by diagonalization
suitable 1D Hamiltonians in discrete variable representat
Resonance widths/dissociation rates for 2D states above
sociation threshold~end of Sec. III B! were computed using
the complex L2 method with optical potential.23 The 2D
quantum ground state is found atE5987.2 cm21 above the
ZEP. Except when explicitly noted, all the energies in t
remainder of this article are given relative to the quant
ground state, in order to facilitate the comparison with
3D results. The wave functions of all the 355 bound states
well as the first 40 resonances up to 175 cm21 above the
threshold, were examined visually and assigned a quan
polyad numberP. The energy range, in which the wave fun
tions can be uniquely assigned, is thus considerably la
than in the 3D studies, where the assignment procedure
to be stopped about 400 cm21 below the threshold. Let us
recall thatP is an approximate quantum number forab initio
states, which is defined according to

FIG. 1. Contour plot of the 2D PES of HOCl. The OH bond length~the
Jacobir coordinate! is kept fixed at the dissociation valuer 50.9702 Å. The
horizontal axis is the Jacobi coordinateR in Angstroms~R is the distance
between the Cl atom and the center of massG of the OH moiety!. The
vertical axis is the cosine of the Jacobi angleg ~g is the OGCl angle, which
is zero at the linear HOCl configuration!. The figure is symmetric with
respect to theg50 andg5p axes. Equipotential lines are regularly spac
between 1000 and 20 000 cm21 above the minimum, with increments o
1000 cm21. The black dots indicate the positions of the minimum and
three saddle points. Also plotted are the@R#, @D#, and @DD# POs at 6500,
14 000, and 19 000 cm21 above the ground state, respectively. These are
three families of stable POs, which successively scar the dissociation s
~see text!.
-

-

n
-
-
f
n.
is-

e
as

m

er
ad

p52v21v3 , ~2.1!

wherev2 and v3 denote the number of quanta in the be
and OCl stretch degrees of freedom, respectively. Use oP,
instead of the more usualv2 and v3 quantum numbers, is
made necessary by the Fermi resonance, which couples
OCl stretch and the bend degrees of freedom (v2'2v3).
Let us also mention that the bound state with highest num
of quanta in the OCl stretch is no. 354, which is located o
11.9 cm21 below the threshold and is the lowest member
polyadP546.

An example of how well the states of the 2D surfa
compare with those of the full 3D calculation is provided
Fig. 2. This figure shows the wave functions in th
@R,cos(g)# plane for the 16 states belonging to polyadP
530 and compares readily with Fig. 4 of Ref. 7 and Fig. 9
Ref. 8. It is seen that these three figures are rather similar
principal difference being that the states with clear bend
character are the 3rd and 5th lowest ones according to the
surface, but the 7th and 9th lowest ones according to the
surface. This difference merely reflects the fact that the
ergy of the families of bending-type POs varies somew
inside a given polyad when going from 3D to 2D. This
however, of little consequence since the majority of quant
states is scarred by the other families of stable periodic or
~cf. next section!.

As for the 3D study,7 the ab initio spectrum could be
reproduced up to 98% of the dissociation energy with
Fermi resonance Hamiltonian: the first 320 bound sta
~with up to 40 quanta in the OCl stretch! were fitted with an
effective Hamiltonian containing 32 parameters, leading
rms and maximum errors of 4.8 and 19.9 cm21, respectively.
In addition to these 320 bound states, most higher levels
also well predicted by the Fermi resonance Hamiltonian,
exceptions being the states extending along the dissocia
pathway. It was furthermore checked that the wave functi
of the 2D Fermi resonance Hamiltonian compare well w
the 2Dab initio ones, just as in Figs. 4 and 5 of Ref. 7. Th
discussion concerning chaos in Sec. IV A relies on the e
tence of this integrable resonance Hamiltonian. In contr
with the 3D calculations, however, the detailed study of
2D resonance Hamiltonian does not yield new informat
compared to the 2D study employing theab initio 2D sur-
face. Therefore, the 32 fitted parameters are not given h

III. PERIODIC ORBITS, BIFURCATIONS, AND
DISSOCIATION STATES

In this section, we first recall what a ‘‘fundamental fam
ily’’ of POs is and we show how a classical version of th
quantum polyad number can be defined for such POs.
then study the bifurcation diagram for these POs in conn
tion with the shape of the quantum wave functions, parti
larly emphasising the so-called dissociation states, wh
closely follow the dissociation pathway.

A. Fundamental families of POs: Definition of a
classical polyad number

The POs of the 2Dab initio surface were located usin
two-point boundary value solvers, as described in Sec. I

e
tes
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FIG. 2. Wave functions in the
@R,cos(g)# plane for the 16 states be
longing to polyadP530, according to
2D calculations. This figure compare
readily with Fig. 4 of Ref. 7 and Fig. 9
of Ref. 8, which display the same
wave functions obtained, however
from 3D calculations. The energy rela
tive to the quantum ground state is in
dicated for each wave function. Also
shown on top of the correspondin
wave functions are the@D# stable PO,
which scars the lowest quantum stat
the @4B# stable PO, which scars the
7th lowest state, the@B* # unstable
PO, which scars the 9th lowest stat
and the@R# stable PO, which scars the
highest state.
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Ref. 30. It is to be noted that onlyprincipal families of POs
were sought for, that is, those families of POs which rea
correspond to distinct molecular motions. Excluded from
search were the POs arising from the destruction of ratio
tori due to nonintegrable couplings~that is, all the couplings
besides Fermi resonance! and their replacement by familie
of stable and unstable POs.31,32 The reason for discarding
these latter POs, which do scar some quantum wave fu
tions ~see Figs. 6 to 10 of Ref. 31!, is that they cause the
bifurcation diagram to become very complex, without pr
viding much additional insight into the molecular dynamic
Indeed, POs born from the destruction of rational t
are merely linear combinations of the fundamental famil
of POs ~see, for example, Figs. 1 and 2 of Ref. 31! and
quantum wave functions scarred by such POs can often
described in terms of the principal families of POs. For e
ample, the second highest state of polyadP530 (E
518 019.93 cm21), shown in Fig. 2, can be thought of eithe
as a state scarred by a PO born from the destruction of a
rational torus, or as a state displaying one node perpendic
to the @R#PO.

At this point, it is worth mentioning that it is not alway
easy to distinguish, from the numerical point of view, b
tween POs arising from the destruction of rational tori a
fundamental families of POs born at a saddle-node bifur
tion. Nonetheless, the examination of the shape of the
might give a sound indication regarding its origin. For e
ample, some POs which are reported in the bifurcation d
gram of the 3Dab initio surface of HOCl~Fig. 5 of Ref. 8!
have little influence on quantum wave functions. Since th
POs do not appear in the bifurcation diagram for the co
sponding 3D Fermi resonance Hamiltonian~Fig. 7 of Ref. 7!,
the suspicion naturally arises that these additional POs m
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originate from the destruction of rational tori. A first ex
ample is the PO labeled@g# shown in Fig. 11~a! and 11~b! of
Ref. 8. According to this figure,@g# is clearly the linear com-
bination of one time@ g̃# ~the fundamental PO along the ben
degree of freedom! plus three times@r # ~the fundamental PO
along the OH stretch degree of freedom!. Therefore,@g#
probably originates from the destruction of the degener
2D rational torus33 with no motion along the OCl stretch an
a 3:1 rational ratio between the classical frequencies ass
ated with the OH stretch and the bend degrees of freed
Similarly, the@R#PO shown in Figs. 11~c! and 11~d! of Ref.
8 probably originates from the destruction of the degene
2D torus with no motion along the bend and a 5:1 ratio
ratio between the classical frequencies associated with
OH and OCl stretches. Although the cascade of POs lab
@Di # in Fig. 5 of Ref. 8 are not plotted in configuration spac
it is plausible that they also originate from the destruction
degenerate 2D rational tori with no motion along the bend
coordinate. If one withdraws these POs from the bifurcat
diagram of the 3Dab initio surface~Fig. 5 of Ref. 8!, then it
displays just the same POs as the bifurcation diagram of
3D Fermi resonance Hamiltonian~Fig. 7 of Ref. 7!, which
looks simpler although it contains all the necessary inform
tion for understanding the shape of quantum wave functio

As stated in the introduction, a classical version of t
quantum polyad numberP is easily derived for each PO o
the 2Dab initio surface. Indeed, as shown by a comparis
with the Fermi resonance Hamiltonian, for which the qua
tum polyad numberP and its classical counterpart can b
defined exactly,7 P is simply proportional, in 2D systems, t
the total action integral along the PO:
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P522N
1

2p\ R
PO

pRdR1pgdg2
3

2
. ~3.1!

N depends on whether the PO is born as an essentially b
(N521) or OCl stretch (N50) motion and increases b
one each time the PO undergoes a period-doubling bifu
tion. More precisely,N is equal to21 for the POs labeled
@B# and @B* # in the remainder of this article, to 0 for th
POs labeled@R#, @2B#, @D#, @D* #, and@DD#, and to 1 for
the POs labeled@2R#, @4B#, and@2D#. The 3/2 term is the
sum of Maslov indexes and must be substracted accordin
the Einstein–Brillouin–Keller~EBK! semiclassical quantiza
tion rules.34–36

B. Bifurcation diagram, ‘‘inversion’’ and
‘‘dissociation’’ states

Using Eq.~3.1!, one is able to plot the energies of th
POs as a function of the~classical! polyad numberP. Be-
cause of the Fermi resonance, however, the energies o
the POs are almost degenerate and the resulting plot is
clear. A better solution therefore consists in plotting the
ergies of the POs relative to the energy of one of the PO
to some other reference, which stays close to the bottom
the polyad. In the 3D study,7 the reference was taken as th
energy of the pure bend PO of the Fermi resonance Ha
tonian. This choice is no longer convenient here, because
studied polyad range extends up toP546, instead ofP
538 for the 3D study, and the separation between the p
bend PO and the bottom of the polyad increases~because of
the very strong anharmonicity of the dissociation states! by
several thousands of cm21 betweenP538 and P546. A
better reference for the present study is found to be

Eav~P!5114.591728.038P25.612 45P2

20.032 4305P3

10.002 550 35P420.000 044 7972P5, ~3.2!

when expressed in cm21 above the ground state. The plot
Eav as a function ofP is given in the small insert of Fig. 3
The main part of Fig. 3 shows the energies of the POs r
tive to Eav as a function ofP. Solid lines denote stable PO
and doted lines unstable ones. The large black dots lab
~a! to ~f! indicate the bifurcations and will be discussed b
low. It is worth emphasizing again that, for each value ofP,
the classically accessible region, as well as the quan
states belonging to polyadP, are always bordered by the tw
outermost stable POs. For the sake of illustration, the
levels belonging to polyadP530 are shown as a column o
small black dots. The quantum state nearest to a PO is
erally ‘‘scarred’’ by this particular PO, that is, the PO acts
a ‘‘necklace’’ on which the ‘‘pearls’’ of the quantum wav
function are threaded.

Let us now discuss in detail the principal families of PO
and their bifurcations. The PO, which coincides with the O
stretch normal mode close to the ZEP, is called@R#. This is
the PO with highest energy throughout the investiga
polyad range. Therefore, it is expected to scar the high
state in each polyad, as can be verified in Fig. 2, where
@R#PO is plotted on top of the wave function of the highe
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state of polyadP530. This PO follows the dissociation
pathway up to approximatelyP515 ~about 10 000 cm21

above the ground state!. For higher polyads, however,@R#
progressively acquires a pronounced ‘‘horseshoe’’ sha
thereby avoiding the dissociation pathway. This evolution
very clear upon comparison of Figs. 1 and 2, where@R# is
plotted at 6500 cm21 and 18 200 cm21, respectively. This
behavior is in good agreement with the 3D results.7,8 The
present 2D study further points out a period-doubling bif
cation@the black dot labeled~d! in Fig. 3#, which takes place
aroundP530.6 andE518 600 cm21. The stable PO born a
this bifurcation, which is called@2R# to remind that it essen
tially consists of the@R#PO covered twice, becomes itse
unstable only about 200 cm21 above the bifurcation. In con
trast, the unstable@R#PO, which is not shown in Fig. 3
could be followed up toP543 andE525 000 cm21, that is,
largely above the dissociation threshold. Although chaos w
be studied more specifically in the next section, let us m
tion that this period-doubling bifurcation and the early des
bilization of @2R# reveal that the remaining small island o
regular motion centered around@R# is completely and defi-
nitely destroyed by chaos. Perhaps, there exists a whole
cade of such period-doubling bifurcations, the regular isla
becoming, however, smaller and smaller and escaping c
ful numerical research.

The PO, which coincides with the bend normal mo

FIG. 3. ~Small inset! plot of the reference energyEav in Eq. ~3.2! as a
function of P. ~Overall figure! plot of the energy of the POs relative toEav

as a function of the classical polyad numberP defined in Eq.~3.1!. Solid and
dotted lines stand for stable and unstable POs, respectively. Large black
labeled~a! to ~f! indicate where bifurcations take place. The 16 levels b
longing to the quantum polyadP530 are shown as a column of small blac
dots and the 47 dissociation states fromP50 to P546 as a line of small
open circles.
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close to the ZEP, is called@B#. As in the 3D case, it under
goes a period-doubling bifurcation aroundP521 and E
512 500 cm21. This is the black dot labeled~a! in Fig. 3.
The bend PO is unstable above the period-doubling bifu
tion and is called@B* # to emphasize this point.@B* # is up to
17 000 or 18 000 cm21, however, only slightly unstable, s
that some quantum states are scarred by@B* # up to this
energy regime. This is clearly seen in Fig. 2, where
@B* #PO is plotted on top of the wave function of the 9
lowest quantum state of polyadP530, which is located at
about 17 450 cm21. The stable PO born at the bifurcation
called@2B# and displays, like@R#, a horseshoe shape in th
@R,cos(g)# plane. While@B# remains the PO with the lowes
energy inside a given polyad up to this bifurcation,@2B# and
@B* # penetrate the core of the polyad shortly above the
furcation and are subsequently replaced by the@D#PO ~to be
discussed in the following paragraphs! at the bottom of the
polyad. This is the reason, why states scarred by bend
type POs are the bottom ones in each polyad belowP524
and then move higher in the polyad, i.e., the@D# states fall
below the bending states, because of their large anharmo
ity. This is again in good agreement with the 3
calculations.7,8 The examination of the 2D dynamics show
that @2B# further undergoes a second period-doubling bif
cation at aboutP527 andE515 500 cm21, corresponding
to the black dot labeled~c! in Fig. 3. At this energy,@2B#
crosses theg50 axis close to the saddle-point with lowe
energy and penetrates the equivalent well with negative
ues ofg. The motion along the stable PO born at this bifu
cation ~which is called@4B#! consists of a@2B#PO in the
well with g.0 followed by a second@2B#PO in the well
with g,0. If one realizes that the@4B#PO connects two
equivalent equilibrium positions through the linear HOCl u
stable configuration, then it is clear that quantum sta
scarred by@4B# should be called ‘‘inversion’’ states. The 7t
lowest state of polyadP530 shown in Fig. 2 is an exampl
of such an inversion state. However, the number of invers
states in the spectrum of HOCl is limited to a few~4 or 5!,
since the@4B#PO becomes unstable very soon above
bifurcation, aroundP530 andE517 400 cm21. Here again,
the destabilization of the@4B#PO indicates that the last is
land of regular motion around@4B# is being definitely de-
stroyed by chaos.

As in the 3D calculations, a first saddle-node bifurcati
is found to take place aroundP521 andE512 800 cm21.
This is the black point labeled~b! in Fig. 3. The stable PO
born at this bifurcation is called@D#, because it follows the
dissociation pathway in a broad energy range. Very rapi
aroundP523, @D# becomes the lowest limit of the acce
sible energy range and is therefore expected to scar the w
function of the state with lowest energy in each polyad. T
can be verified in Fig. 2, where the@D#PO is plotted on top
of the wave function of the lowest state of polyadP530.
Quantum states scarred by@D# were called dissociation
states in the 3D work,8 in order to emphasize their role in th
dissociation dynamics. In the 2D system,@D# further under-
goes a period-doubling bifurcation close toP534 and E
517 500 cm21. This is the black point labeled~e! in Fig. 3.
The stable PO born at this bifurcation, which for obvio
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reasons is called@2D#, becomes in turn unstable short
above the bifurcation, slightly belowP537 and E
518 500 cm21. The reason for this period-doubling bifurca
tion and the early destabilization of@2D# is once more the
chaotic invasion of the last island of regular motion arou
@D#. The unstable@D#PO ~called @D* #! remains slightly
unstable up to about 18 400 cm21, while the Lyapunov ex-
ponent increases dramatically for higher energies.

The investigation of the quantum/classical corresp
dence through the study of fundamental families of POs
however still not finished. Indeed, looking at the wave fun
tions of the lowest state of polyadsP536 to P539, which
are reproduced in Fig. 4, it appears that something new n
essarily happens between polyadsP537 andP538: In con-
trast with the lowest levels of polyadsP536 andP537,
which are clearly scarred by@D* #, the nodal lines of the
wave functions of the lowest levels of polyadsP538 and

FIG. 4. Wave functions in the@R,cos(g)# plane for the lowest state o
polyads P536 to P539. Plotted on top of the wave functions are th
unstable@D* # PO and the stable@DD# PO.
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P539, as well as higher polyads~see, for example, Fig. 7!,
clearly do not resemble the@D* #PO, although they stretch
along the dissociation pathway. This figure suggests th
second saddle-node bifurcation occurs in this polyad ra
for the 2D system. This additional saddle-node bifurcation
actually found aroundP536.5 andE518 300 cm21. It is
indicated with the black dot labeled~f! in Fig. 3. The stable
PO born at this bifurcation, which is called@DD#, remains
stable~or only very slightly unstable! up to P'43 andE
519 100 cm21, that is, less than 200 cm21 below the disso-
ciation threshold, and replaces@D#, @D* #, and@2D# at the
low energy end of the polyads.

If one defines dissociation states in a more general w
as being those states for which all the energy flows along
dissociation pathway, then their behavior can be summar
as follows.

~1! Up to P515, dissociation states are the highest le
in each polyad and are scarred by the@R#PO.

~2! Between polyadsP516 and P523, dissociation
states move from the top to the bottom of the polyads. T
often mix strongly with other states and are not scarred
any particular PO, except for the states belonging to poly
P522 andP523, which are scarred by@D#.

~3! BetweenP524 andP537, dissociation states ar
the lowest level in each polyad and are scarred by@D# ~up to
P534! and @D* # ~P535 to P537!.

~4! BetweenP538 andP543, dissociation states ar
the lowest level in each polyad and are scarred by@DD#.

~5! the remaining three bound dissociation states~be-
longing to polyadsP544 to P546! are the lowest level in
each polyad. Superposition of their wave functions with
@DD#PO at 19 100 cm21 shows that these states are n
scarred by@DD#, but more likely by another family~or sev-
eral families! of POs, which are born at saddle-node bifurc
tions~s! around or aboveP543 ~in the last 200 cm21 below
the dissociation threshold! and which stretch along the dis
sociation pathway up to larger and larger values ofR. How-
ever, we were unable to find these additional bifurcation

~6! Dissociation states can even be followed above
dissociation threshold. Not surprisingly, they correspond
the resonances with shortest lifetime, as can be expe
from the fact that all the energy flows along the dissociat
pathway. For example, the third and fourth resonances c
puted above the threshold, which can be assigned as the
est ‘‘levels’’ of polyads P547 and P548, respectively,
have computed lifetimes about one million times shorter th
the fifth resonance, which is assigned as the 10th lowest s
of polyadP534 ~see also the discussion in Refs. 8, 25, 2!.

The evolution of dissociation states is illustrated in Fig
1 and 3: The three families of POs which scar dissociat
states, namely@R#, @D#, and@DD#, are plotted in Fig. 1 on
top of the contour plot of the PES at energies of 65
14 000, and 19 000 cm21, respectively. This figure show
how each PO follows the dissociation pathway in a giv
energy range before curving and escaping it. All the dis
ciation states from the ground state (P50) up to the highest
bound dissociation state (P546) are further indicated with
small open circles in Fig. 3. The agreement between qu
tum results~open circles! and classical ones obtained fro
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Eq. ~3.1! ~solid lines! is seen to be perfect, except at very lo
energies, where the notion of dissociation states is not w
founded.

IV. VIBRATIONAL CHAOS AND IVR

In this section we first show, through the comparison
classical Poincare´ surfaces of section~SOSs! and quantum
Husimi distributions, that the classical dynamics of 2D HO
looks much more chaotic than the quantum dynamics. T
observation is discussed in terms of the quantum/class
correspondence. We then show that quantum and clas
mechanics nevertheless agree in predicting a slow intra
lecular vibrational energy redistribution~IVR! between dis-
sociation and nondissociation motions.

A. Quantum regularity vs. classical chaos

Poincare´ surfaces of section~SOSs! are a powerful tool
for studying chaos in 2D classical mechanics. The SO
drawn in the left column of Fig. 5 consist of the poin
(pg ,g) taken along several trajectories at those times
which R is equal to 1.70 Å andpR is positive. The energyE
relative to the quantum mechanical ground state is equa
14 000, 17 000, and 18 500 cm21 for the top, middle, and
bottom plots, respectively. The SOSs obtained from the sa
trajectories, but computed atg51.32 rad andpg.0 and
plotted in the (pR ,R) plane, are displayed in the right co
umn of the same figure. Regular~nonchaotic! dynamics is
signified when the SOS cuts the motion in one or seve
closed curves, since this implies that the motion is located
a torus. In contrast, areas filled with random-looking arra
of points indicate that tori no longer exist in these regio
and that the corresponding dynamics is therefore chaotic

Examination of the SOSs atE514 000 cm21 shows that
the two lowest bifurcations@points ~a! and ~b! in Fig. 3#,
which take place at about 12 500 and 12 800 cm21, respec-
tively, play a fundamental role in the appearance of vib
tional chaos, since the first macroscopic region filled w
chaotic trajectories clearly develops around the unstable
created at these bifurcations. Large islands of regular~or
almost regular! motion however still exist around eac
one of the stable POs, namely@R#, @2B# and @D#. At E
517 000 cm21, the bend PO@which is called@4B# above the
~c! bifurcation at 15 500 cm21# can still be found, but the
island of regular motion around it has almost totally va
ished; it is reminded that@4B# itself becomes unstable
around 17 400 cm21. The size of the regular island aroun
the @R#PO has also strongly decreased, while the size of
island around@D# remains mostly unchanged compared
E514 000 cm21. At E518 500 cm21, that is, about 800
cm21 below the dissociation threshold, all of the regular r
gions have disappeared, except for a very thin cresc
around @R#. This last crescent vanishes about 300 cm21

higher in energy and Poincare´ SOSs looks henceforth totall
chaotic.

The finding that chaos spreads over all the phase spa
these energies contrasts with the obvious regularity of m
of the ab initio quantum wave functions~cf. Fig. 2! and the
ability to reproduce theab initio spectrum with a fully inte-
grable~i.e., nonchaotic! Fermi resonance Hamiltonian up t
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FIG. 5. The left column displays Poin
carésurfaces of section in the (g,pg)
plane atR51.70 Å and the right col-
umn the corresponding SOSs in th
(R,pR) plane atg51.32 rad. The en-
ergy increases from 14 000 cm21

above the quantum mechanical groun
state ~top! to 17 000 cm21 ~middle!
and 18 500 cm21 ~bottom!. The large
black dots indicate where the stabl
POs cross the surfaces of section.
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19 900 cm21, that is, 400 cm21 below the dissociation
threshold. In order to make this discrepancy between qu
tum and classical mechanics more obvious, we plotted
Fig. 6 the Husimi distributions37–40 for the 16 states belong
ing to polyad P530, whose quantum wave functions a
displayed in Fig. 2. The Husimi distributionr for a given
wave functionC is a function of the coordinatesq5(R,g)
andp5(pR ,pg), such that37–40

r~C;p,q!5
1

~2p\!2 u^Fp,q ,C&u2. ~4.1!

In this equation,Fp,q is the minimum uncertainty wave
packet centered at (q,p), that is, it is the product of two 1D
functions of the form

Fp,q
1D ~q8!5

1

~2p~Dq!2!1/4

3expH 2
1

4~Dq!2 ~q82q!21
i

\
p~q82q!J .

~4.2!

TheDqs are the half-widths of the 1D minimum uncertain
wave packets, which are estimated according to

Dq5A\

2S ]2T

]p2D 1/4S ]V

]q2D 21/4

. ~4.3!
n-
in

For HOCl, one findsDR50.044 Å andDg50.050 rad. Fig-
ure 6 shows contour plots in the (g,pg) plane of the Husimi
distributions for the 16 states of polyadP530, whereR is
fixed at 1.70 Å andpR is chosen such that the total energyE
is equal to the energy of the corresponding quantum st
Each plot of Fig. 6 is therefore just the quantum equival
of a classical Poincare´ SOS drawn for a given quantum stat
which is the reason, why such plots are also known
‘‘quantum Poincare´ maps.’’39 Not surprisingly, Husimi dis-
tributions agree with wave functions in that they display
very regular behavior: the six lowest states of the polyad
dissociation states and their Husimi distributions are acco
ingly localized inside the ‘‘pit’’ of the ‘‘avocado,’’ which
surrounds the@D#PO; the next three states have a primar
bending nature andr is rightly localized on the circumfer-
ence of the ‘‘avocado,’’ along which trajectories close
@2B# and@4B# do loop; at last, the seven states with highe
energy are scarred by@R# andr is seen to be maximum in
the crescent surrounding@R#. For the states scarred by@D#
and @R# one can even count the number of nodes in
Husimi distributions in order to find the rank of the state
the polyad. It is worth noting how different the distribution
in Fig. 6 look compared to the chaotic ones shown in Fig
of Ref. 39. Indeed, the latter ones spread over the wh
accessible phase space and display very irregular nodal l
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FIG. 6. Plot of Husimi distributions in
the (g,pg) plane for the 16 levels be-
longing to polyadP516, whose wave
functions are shown in Fig. 2.R is
kept fixed to the equilibrium value
(R51.70 Å) and pR is chosen such
that the total energy be equal to th
energy of each quantum state. Husim
distributions plotted this way are jus
the quantum analogues of Poinca´
SOSs plotted in the left column o
Fig. 5.
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Although striking, the fact that classical dynamics loo
much more chaotic than quantum dynamics is not new
has been discussed in some detail by Davis,41,42 Reinhardt
and co-workers,43–48and Eckardtet al.49 According to Rein-
hardt and co-workers, who studied the Henon–Heiles s
face, this is due to the fact that quantizing tori would not
completely destroyed by nonlinear couplings, but consid
able ‘‘structure’’ ~local constants of motion! would instead
survive. This structure would be able to confine trajector
on a torus for many vibrational periods, except at so
places, where the motion would be highly complex on
d

r-
e
r-

s
e
e

scale of one~or less than one! vibrational period. In these
latter regions of complexity, nearby trajectories would se
rate exponentially and transitions between remnants of
would take place. This point is illustrated in Fig. 6 of Ref. 4
and Fig. 9 of Refs. 46 and 48. Stated in other words, class
mechanics agrees with quantum mechanics in finding a
dominantly regular dynamics, provided that the classical s
tem is investigated for time intervals not longer tha
roughly, the density of states. This observation is suffici
to reconcile classical and quantum mechanics, since the
respondence between the two of them is anyway not
te

-
y

-

FIG. 7. Plot of quantum wave func-
tions ~left! and Husimi distributions
~right! for states no. 346~top! and no.
350 ~bottom!. State no. 346 is located
67.6 cm21 below the dissociation
threshold and assigned as the sta
with highest energy in polyadP532.
State no. 350 is located 45.1 cm21 be-
low the dissociation threshold and as
signed as the state with lowest energ
in polyad P545. Remember that the
last bound state is no. 355. Husimi dis
tributions are plotted as in Fig. 6.
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pected to extend beyond the time corresponding to the d
sity of states.

Things are however very different for 2D HOCl at
18 500 cm21. In this energy region, the density of states
about 0.052 states/cm21, which corresponds to a time o
1700 fs, that is, about 50 periods of the unstable bend
PO(T534 fs), 30 periods of the stable@R#PO(T561 fs), or
10 periods of the stable@DD# dissociation PO(T5195 fs).
The point is, that examination of sequential SOSs shows
trajectories remaining confined on ‘‘vague’’ tori during th
large amount of time are clearly not the rule. In order to
a deeper insight into the remaining structure of the class
phase space, we additionally performed linear stabi
analyses along randomly chosen trajectories.50–52 The result
is that regular and chaotic dynamics usually alternate
roughly equivalent time intervals of about one vibration
period ~50–100 fs!. This is probably due to the fact that th
dynamics of HOCl is investigated in a comparatively high
energy region compared to the work dealing with t
Henon–Heiles surface, so that larger portions of vague
have been destroyed by chaos.

Conclusions regarding these comparisons between
classical and quantum vibrational dynamics of 2D HOCl j
below the dissociation threshold can therefore be expre
in three ways.~i! First, it can be considered that classic
mechanics is a valid approximation of quantum mechan
only over the time interval where classical mechanics lo
regular ~about one vibrational period!, that is, one to two
orders-of-magnitude shorter than the~commonly assumed!
density of states.~ii ! On the other hand, it can be remarke
that the principal features of the quantum states are gove
by the very small islands of regularity surrounding sta
POs and not by the much larger chaotic regions surround
these islands. Points~i! and~ii ! are fully consistent with Eck-
ardt et al.’s remark that ‘‘it suffices to stay in the vicinity o
a PO one period for quantum effects to beco
important.’’49 ~iii ! At last, it should be noticed that the cas
of 2D HOCl is exactly parallel to the case of HCN, for whic
some controversy arose as it appeared that the classica
namics is much more chaotic than the quant
dynamics.53–58 Most interestingly, it has been shown ve
recently that the HCN/CNH system, just like HOCl, remai
very close~an average 10 cm21 deviation! to an integrable
~i.e., nonchaotic! system up to the isomerization threshold59

In both cases, chaos therefore appears as a small fluctu
~a few cm21! around a basically integrable system, even
the case where chaos is fully developed and occupies al
available phase space. The studies dealing with HCN
HOCl suggest that quantum dynamics is largely unsensi
to the small chaotic fluctuation.

B. Intramolecular vibrational energy redistribution
„IVR…

In addition to displaying overall regularity, the Husim
distributions in Fig. 6 also show a very clear separation
the phase space into two domains, which are just the ‘‘p
and the ‘‘pulp’’ of the avocado. By comparison with th
quantum wave functions in Fig. 2 and the classical surfa
of section in Fig. 5, these two domains are clearly assig
n-
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to ‘‘dissociation’’ and ‘‘nondissociation’’ motions, respec
tively, where dissociation motion again means a motion
which all the energy flows back and forth along the dissoc
tion pathway. The separation of the quantum phase sp
into two domains persists up to the dissociation threshold
can be checked in Fig. 7. This figure shows the wave fu
tions ~left column! and the Husimi distributions~right col-
umn! for states no. 346 and 350, which are assigned as
highest state of polyadP532 and the lowest state of polya
P545, respectively. These states are located at 68 and
cm21 below the dissociation threshold~remember that the
last bound state is no. 355!. This figure shows that, even jus
a few tens of cm21 below the threshold, energy does not flo
easily from the dissociation pathway to perpendicular dir
tions and conversely.

This slow intramolecular vibrational energy redistrib
tion ~IVR! also appears very clearly when plotting sequen
SOSs as in Fig. 8. This figure shows the intersections w
the planeR51.70 Å of a single trajectory integrated fo
more than 1.4 ns at an energy of 18 500 cm21 above the
quantum ground state. Instead of plotting all of the 14 0
points on the same diagram, as in the left column of Fig

FIG. 8. Sequential Poincare´ surfaces of section in the (g,pg) plane at
18 500 cm21 above the quantum mechanical ground state. The eight
grams show the intersections with the planeR51.70 Å of a single trajectory
integrated for more than 1.4 ns. The total integration time is however s
into eight intervals, in order for the slow IVR process discussed in Sect
B to appear clearly. For the sake of clarity, the two equivalent wells c
nected through the linear HOCl configuration (g50) have been shown.
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the total integration time is however split into eight interva
in order for the slow IVR process to become obvious. T
figure shows that the trajectory spends a pretty large am
of time—in the range 30 to 500 ps—in each region of t
phase space~pit or pulp! before jumping into the other re
gion. Such an IVR time constant of about 100 ps is th
orders-of-magnitude larger than the average vibrational
riod ~about 100 fs! and two orders-of-magnitude larger tha
the density of states~about 1.7 ps!. Keeping with Reinhardt’s
idea of only partially destroyed tori, observation of such
long IVR time constant implies that, whereas most of the t
have already been substantially destroyed by chaos at 18
cm21 ~cf. Sec. IV A!, some of those located at the fronti
between the two regions are nevertheless still almost int
Linear stability analyses of trajectories launched close to
frontier were able to confirm this viewpoint. Moreover, th
explanation in terms of partially broken tori suggests that
average time for crossing the barrier should decrease rap
with energy, since the ‘‘porousness’’ of the tori increas
with energy. Plotting sequential SOSs similar to Fig. 8 at
energy E equal to 19 200 cm21, that is, 100 cm21 below the
dissociation threshold, proves that this is indeed the c
The increase of 700 cm21 in vibrational energy results in a
decrease of the time constant from the 30–500 ps rang
the 1–13 ps range.

Keeping in mind that the dissociation time constant
HOCl, when all the energy is deposited in the OH stre
degree of freedom~not taken into account in the present 2
study!, is in the range 10–100 ns,15–20 one sees that ther
exist at least two bottlenecks, which prevent energy fr
flowing freely between the three degrees of freedom and
responsible for the wide distribution of resonance wid
found in the quantal calculations:8,25,28the ~by far! narrowest
one separates the OH stretch from the other degrees of
dom, while the second bottleneck found in the present w
separates the OCl stretch~i.e., the dissociation motion! from
the bending motion. In order to have a complete picture
the IVR scheme in HOCl, there just remains to understa
whether energy escaping the OH stretch degree of free
preferentially flows into the OCl stretch or the bending on
It is to be noted that similar bottlenecks have also been
tected in OCS~Ref. 60! and HeI2 ~Ref. 61!, where distinction
is made between ‘‘intermolecular’’ bottlenecks~i.e., leading
to dissociation! and ‘‘intramolecular’’ bottlenecks~i.e., be-
tween nondissociation modes!. The reader is referred to thes
works for more detailed information.
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