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Canonical perturbation theory for
highly excited dynamics

Marc Joyeux and Dominique Sugny

Abstract: This article proposes an unified presentation of recent results dealing with
canonical perturbation theory (also called the contact transformation method in the quantum
mechanical context), which shows how the theory is best handled for investigating the highly
excited dynamics of small molecules. The following systems are successively addressed:
(i) semi-rigid molecules (one electronic surface, one minimum), (ii) floppy molecules (one
electronic surface, several minima), and (iii) non-Born–Oppenheimer dynamics (several
interacting electronic surfaces). The perturbative Hamiltonians obtained from the proposed
procedures are checked against exact calculations performed on ab initio surfaces (HCP and
HCN) and model Hamiltonians.

PACS No.: 31.15Md

Résumé : Cet article propose une présentation unifiée de résultats récents portant sur la
théorie des perturbations canoniques (aussi appelée la méthode des transformations de
contact en mécanique quantique), qui ont montré comment utiliser au mieux les divers
degrés de liberté de la théorie pour étudier la dynamique de molécules très excitées. On
s’intéresse successivement aux systèmes suivants : (i) les molécules semi-rigides (une
seule surface électronique, un seul minimum), (ii) les molécules souples (une seule surface
électronique, plusieurs minima) et (iii) la dynamique non-Born–Oppenheimer (plusieurs
surfaces électroniques couplées). Les Hamiltoniens perturbatifs que l’on obtient par les
procédures décrites dans cet article sont comparés à des calculs quantiques exacts portant sur
des surfaces d’énergie potentielle ab initio (pour HCP et HCN) et des Hamiltoniens modèles.

1. Introduction

Physicists were not able to compute the exact spectra of all but the most simple systems until recently,
because the exact quantum energy levels and wave functions are obtained from the diagonalization of
(usually) large Hamiltonian matrices. Fortunately, theoretical tools were developed very early, and they
allow a precise determination of quantum spectra at low energies without having recourse to direct
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diagonalization. These tools are known as perturbation methods. Their role in the development of
quantum mechanics was emphasized by Kemble: “In quantum mechanics …perturbation methods are
of fundamental importance due to the fact that so few problems can be rigorously solved by direct
attack” [1]. The oldest perturbation theory is known as the Rayleigh–Schrödinger’s method [2]. It was,
however, quickly recognized that this method requires “tedious summations over a large number of
intermediate states and that there is a large degree of cancellation in the final algebraic reductions”
[3]. Beyond first-order theory, another method, known as canonical perturbation theory (CPT) (or the
contact transformation method), is better suited for the purpose of practical calculations. CPT was first
introduced in physics by Van Vleck to investigate spin multiplets and σ -type doubling in the spectra of
diatomic molecules [4] and was applied 10 years later by Wilson and Howard [5], Shaffer and Nielsen
[6], and Shaffer et al. [7] to the vibration–rotation problem in polyatomic molecules. The 1951 review
paper by Nielsen [8] can be considered as a pillar of high-resolution spectroscopy.

Modern computers and algorithms make it possible to calculate, variationally, the whole rovibra-
tional spectrum of triatomic molecules from the ground state up to the dissociation threshold and more
(several hundreds of converged states) while, roughly, the first 100 states of tetratomic molecules and the
first 10 states of pentatomic molecules are becoming gradually amenable to calculations. This, however,
does not diminish the practical importance of CPT, for two principal reasons. First, variational calcula-
tions are still not routine and remain reserved for specialists. In contrast, the perturbative computation
of the spectrum of molecules with up to five atoms requires little programming effort and CPU time.
This point of view was recently investigated in detail by Sibert and co-workers [9–12]. Moreover, the
perturbative Hamiltonian obtained from CPT is expressed in terms of as complete as possible a set of
good quantum numbers, so that this Hamiltonian is a very convenient starting point for understanding
the dynamics of a molecule, especially when subjected to a semiclassical analysis (see, for example,
refs. 13 and 14; for recent reviews see refs. 15 and 16). The main constraint to a still more widespread
use of CPT in the domain of molecular physics is probably the long-standing idea that CPT is suitable
for studying only the low-lying states of an uncoupled electronic surface of a semi-rigid molecule. The
aim of this article is to report on some recent advances that show that this is certainly not the case.
More precisely, it will be shown how CPT must be handled to adapt to (i) highly excited vibrational
states of molecules with a single equilibrium position (semi-rigid molecules), (ii) highly excited vibra-
tional states of molecules with several equilibrium positions (floppy molecules), and (iii) highly excited
vibrational states of molecules with several coupled electronic surfaces.

Part of the results presented below have already been published elsewhere [13,14,17–20]. However,
a classical Birkhoff–Gustavson’s perturbation method [21–24] was used in refs. 13, 14, 17, and 18
to study the highly excited states of semi-rigid and floppy molecules, respectively, while the study
of coupled electronic surfaces in refs. 19 and 20 is necessarily based on the quantum mechanical
Van Vleck perturbation method [1,4,9,25–29]. As Birkhoff–Gustavson’s and Van Vleck’s methods are
conceptually rather different (although they lead to comparable results), all calculations were performed
again according to Van Vleck’s formalism for the sake of a clearer presentation and to emphasize more
firmly the important points of the procedure. Moreover, we have just derived a more elegant and
powerful method for studying floppy molecules than the one presented in refs. 14 and 18, while the
method for studying coupled electronic surfaces presented in refs. 19 and 20 could be simplified without
loss of precision. These new procedures are presented in Sects. 4 and 5 as they were not given in refs. 13,
14, 17, and 18.

The remainder of this article is organized as follows. The principles of Van Vleck’s CPT are recalled
in Sect. 2. How this theory is best handled for studying the highly excited vibrational dynamics of
various systems is the subject of the next three sections: semi-rigid molecules are discussed in Sect. 3,
floppy molecules in Sect. 4, and molecules with interacting electronic surfaces in Sect. 5. Finally, some
points that deserve further attention are briefly mentioned in Sect. 6.
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2. The principles of Van Vleck’s perturbation theory

Canonical perturbation methods rely on the fact that, given a unitary transformationU , a Hamiltonian
H and its transform K

K = UHU−1 (2.1)

have the same spectrum. Note, however, that the wave functions ψ of H and φ of K are obviously not
identical, but are instead related through

φ = Uψ (2.2)

CPT consists of a series of unitary transformations like (2.1) that are aimed at finding the best set of
conjugate coordinates (i.e., position coordinates and conjugate momenta) to express the Hamiltonian.
Note that these transformations usually involve the mixing of coordinates and momenta. The “best” set of
conjugate coordinates depends largely on the context. For people like us who are interested in dynamical
studies and particularly in semiclassical analyses [13–16], the best set of conjugate coordinates is the
one for which the non-integrable part of the final Hamiltonian is as small as possible; this part is
usually discarded for the purpose of semiclassical studies. Roughly speaking, the best set of conjugate
coordinates is approximate actions and angles of the initial Hamiltonian. People like Sibert and co-
workers, who are more concerned with the calculation of spectra and eigenvector-related properties
[9–12,28], are usually less demanding; their goal is to find a set of conjugate coordinates for which
the Hamiltonian matrix factorizes into blocks of easily diagonalizable size, while the terms coupling
the blocks should become as small as possible before they are neglected. As will be described in some
detail in the next sections, the power of CPT lies in the existence of simple algorithms for transforming
gradually from the initial set of conjugate coordinates to the final one.

Lengyel suggested to Kemble [1] that the transformation U should be given the form

U = exp(iS) (2.3)

where S is Hermitian, and this form has been widely adopted since then. We instead prefer to use a
slightly different form for U , namely,

U = exp(S) (2.4)

where S is anti-Hermitian, because (2.4) leads to real coefficients for all the computed series (see below),
while (2.3) leads to purely imaginary ones. Let us recall that the exponential of an operator is defined
as

exp(S) =
∞∑
k=0

1

k!S
k = 1 + S + S2

2
+ S3

6
+ ... (2.5)

The reason for writing U in the form of (2.4) is twofold. First, the inverse transformation is just
U−1 = exp(−S). Moreover, if S is small enough, as must be the case for every perturbation procedure,
then, according to (2.5), the transformation consists of identity plus corrections, the importance of
which decreases with power. The perturbation procedure, therefore, consists in finding a series of anti-
Hermitian operators S(k), such that

H(1) = exp(S(1)) H (0) exp(−S(1))

H (2) = exp(S(2)) H (1) exp(−S(2))
...

H (s) = exp(S(s)) H (s−1) exp(−S(s))
...

(2.6)
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where H(0) = H is the initial Hamiltonian and s = 1, 2, . . . is the perturbation order. Simple algebra
shows that the transformation at any order s can be rewritten in the most useful form

H(s) = H(s−1) + [S(s), H (s−1)] + 1

2 ! [S
(s), [S(s), H (s−1)]]

+ 1

3 ! [S
(s), [S(s), [S(s), H (s−1)]]] + . . . (2.7)

where square brackets denote the commutator of two operators, i.e., [A,B] = AB−BA. Equation (2.7)
is known as the Campbell–Hausdorf formula.At this point, it should be clear that high-order perturbative
calculations can only be performed for relatively simple expressions of the initial Hamiltonian, because
the evaluation of the nested commutators in (2.7) rapidly becomes cumbersome for too-complex ex-
pressions. This is why the first step of most of the perturbative calculations dealing with semi-rigid
molecules usually consists of a Taylor expansion of the exact Hamiltonian in the neighborhood of the
equilibrium position. Nonetheless, there is some freedom in the form of expansion that is chosen as input
Hamiltonian in perturbative calculations. Trigonometric expansions are, for example, also amenable to
perturbative calculations [14,18,30–35]. It will be shown in Sect. 4 that mixed polynomial–trigonometric
expansions are best suited for studying the vibrational dynamics of floppy molecules. A further remark
concerns kinetic energy. Indeed, it is well known that the exact quantum expression for kinetic energy
contains extra-potential terms compared with the symmetrized classical expression [36]. These terms
might be rather lengthy to calculate, while their influence on eigenvalues and eigenvectors is expected to
remain small, usually less than 1 cm−1 [37]. Not to let perturbative calculations become unnecessarily
complex, we chose to neglect these extra-potential terms systematically, that is, to simply expand and
symmetrize the classical expression for kinetic energy.

The principal flexibility of CPT consists of the choice of the operator S(s) at each order s of the
perturbation procedure. Although not mandatory [20], this choice is usually guided by the introduction
of an artificial book-keeping parameter λ, the “meaning of which is to show the order of magnitude
of the product of two or more operators having various orders of magnitudes and group the products
accordingly” [29] (λ is set to 1 at the end of the calculations). More precisely, each interpolation
Hamiltonian H(s) is expanded in the form

H(s) =
∑
k

λkH(s,k) (2.8)

while the transformation at order s gives

H(s) = exp
(
λsS(s)

)
H(s−1) exp(−λsS(s)) (2.9)

After expansion according to Campbell–Hausdorf’s formula, one gets, by equating the powers of λ

if k < s, H(s,k) = H(s−1,k)

if k = s, H (s,s) = H(s−1,s) +
[
S(s), H (0,0)

]
if k > s, H(s,k) = H(s−1,k) +

∑
m

1

n ! [S
(s), ... [S(s)︸ ︷︷ ︸

n times

, H (s−1,m)] ... ]
(2.10)

(in the last equation, the summation runs over all the integers m, for which there exists another integer n
larger than or equal to 1, such thatm+ns = k). The first equation in (2.10) shows that the transformation
at order s does not affect the terms of order smaller than s. The second equation in (2.10) is used to
determine the operator S(s), by requiring that H(s,s) contains only the physically important terms
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of H(s−1,s) or, equivalently, that the second term in the right-hand side of this equation cancels the
Hermitian subset R(s−1) of H(s−1,s), which contains the physically unimportant terms. Consequently,
the operator S(s) is obtained as the solution of

[S(s), H (0,0)] = −R(s−1) (2.11)

while the sum of the physically important terms up to order s, that is,

K(s) =
s∑

k=0

H(s,k) =
s∑

k=0

H(k,k) (2.12)

is called the perturbative Hamiltonian of order s. Although some authors call K(s) the effective Hamilto-
nian of order s, we prefer to reserve this latter terminology for Hamiltonians that are formally similar to
the perturbative Hamiltonians but whose coefficients have been obtained from fits against experimental
data rather than from CPT.

It is important to realize that the choice of H(0,0) is of crucial importance, because the possibility of
solving (2.11) with reasonable effort is governed by this choice. The remaining adjustment possibilities
of the procedure in (2.8)–(2.11) are (i) the partition of the initial Hamiltonian H(0) = H into each of
the H(0,k)’s and (ii) the choice of the terms of H(s−1,s) that should be put into R(s−1) to be cancelled
by the transformation at order s. How these adjustments are best performed for studying the highly
excited vibrational dynamics of molecules with a single or several equilibrium positions as well as the
dynamics on coupled electronic surfaces will be the subjects of the next three sections.

3. Application to semi-rigid molecules

This section is devoted to the application of CPT for the study of the highly excited vibrational
dynamics of molecules with a single equilibrium position. Use of CPT for analyzing the low-energy
portion of the spectrum has already attracted much attention (see, for example, refs. 3, 5–8, 27), while
its application to the intermediate-energy spectrum has principally been investigated by Sibert and co-
workers [9–12,28,38–43], Reinhardt and co-workers [44–48], and Sohlberg and Shirts [49]. We shall,
therefore, lay emphasis on the specificity of high-energy perturbative calculations, i.e., the need for a
careful choice of terms to be put in the successive R(s−1)’s to insure convergence up to high orders of
theory. As in refs. 13 and 17, the ab initio surface for HCP and the associated rotationless bound states
calculated by Schinke and co-workers [50,51] will be used for the purpose of illustration.

As explained in Sect. 2, the classical ab initio Hamiltonian (expressed in terms of curvilinear internal
coordinates [17]) is first expanded in a Taylor series in the neighborhood of the equilibrium position and
then symmetrized. The polynomial obtained is then rewritten in terms of conjugate sets of dimensionless
normal coordinates (pj , qj ) by using Wilson et al.’s GF method [52] (qj is the position coordinate and
pj = −i∂/∂qj is its conjugate momentum). The goal of this linear canonical transformation is to rewrite
the quadratic part of the expansion as a sum of uncoupled harmonic oscillators (see (3.4) below). One
next converts the Hamiltonian to creation and annihilation operators, according to

qj = 1√
2
(a+

j + aj )

pj = i√
2
(a+

j − aj )

(3.1)

for nondegenerate coordinates, like the CH stretch (mode j = 1) and the CP stretch (mode j = 3) of
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HCP, and

q2
j = a+

jgajg + a+
jdajd + a+

jga
+
jd + ajgajd + 1

p2
j = a+

jgajg + a+
jdajd − a+

jga
+
jd − ajgajd + 1

qjpj = i (a+
jga

+
jd − ajgajd)

(3.2)

for doubly degenerate coordinates, like the bend (mode j = 2) of HCP. In (3.2), the operators ajd and ajg
are defined as (ajx − i ajy)/

√
2 and (ajx + i ajy)/

√
2, respectively, while the subscripts d and g stand for

“droit” (right) and “gauche” (left), because application of ajd (respectively, ajg) increases (repectively,
decreases) by � the vibrational angular momentum. It should be recalled that the commutation relations
involving these operators gives

[ai, aj ] = 0

[ai, a+
j ] = δij

(3.3)

where δij is Kronecker’s symbol and i and j take the values 1, 2g, 2d, and 3 for HCP. One then proceeds
to the partition of the initial Hamiltonian by putting each term with total degree k + 2 in H(0,k), so that

H(0,0) =
∑
j

ωj (a
+
j aj )

H (0,k) =
∑

‖m+n‖=k+2

h(0)mn

∏
j

(a+
j )

mj (aj )
nj (k ≥ 1)

(3.4)

where theωj ’s are the fundamental frequencies, m = (m1,m2, . . .) and n = (n1, n2, . . .) are two vectors

of positive integers, ‖m + n‖ is the sum m1 + n1 +m2 + n2 + . . ., and h
(0)
mn’s are real coefficients that

satisfy h
(0)
mn = h

(0)
nm. With this definition of H(0,0), the solution of (2.11) turns out to be very simple.

Indeed, if the Hermitian subsetR(s−1) ofH(s−1,s) to be cancelled at order s of the perturbation procedure
is of the form

R(s−1) =
∑

‖m+n‖=s+2

c(s−1)
mn

∏
j

(a+
j )

mj (aj )
nj (3.5)

where c
(s−1)
mn are real coefficients, then the solution of (2.11) is just

S(s) =
∑

‖m+n‖=s+2

c
(s−1)
mn∑

j

(mj − nj )ωj

∏
j

(a+
j )

mj (aj )
nj (3.6)

(note that S(s) is indeed anti-Hermitian). We now have at hand all the theoretical tools for applying CPT
to the study of highly excited dynamics of semi-rigid molecules. Let us, however, emphasize, as noted
by Sibert [9], that “a crucial feature of the computational procedure is that all the operators be expressed
in a single form”. Like Sibert, we have chosen to write all the creation operators first, as in (3.4)–(3.6).

Evaluation of the commutators in (2.10) requires that many terms of the form (a+
j )

mj (aj )
nj (a+

j )
m′
j (aj )

n′
j

be rewritten in standard form. This is readily accomplished by using Sibert’s formula given in eq. (2.11)
of ref. 9.

The principal point one can play with to favor the convergence of the perturbation series is the
choice, at each order s of the perturbation procedure, of the terms of H(s−1,s) to keep in H(s,s) or,
conversely, to put in R(s−1) to be cancelled. Examination of (3.6) shows that terms of H(s−1,s) with
m = n must necessarily be kept in H(s,s) for the denominator not to diverge. The simplest perturbative
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Fig. 1. Plot of the arithmetic average error between the energies of the eigenstates of HCP obtained from “exact”
variational calculations [50,51] and from perturbative ones versus perturbation order s. The results for the Dunham
expansions of (3.8) are indicated by squares, those for the Fermi-resonance Hamiltonians of (3.10) by lozenges, and
those for the Hamiltonians with three resonances by circles. These latter Hamiltonians include the Fermi resonance
2ω2 −ω3 ≈ 0, its first harmonics 4ω2 −2ω3 ≈ 0, and the additional resonance 2ω2 ≈ 0. Included in the calculations
are the first 323 states of HCP, with energies up to 17 700 cm−1 above the quantum mechanical ground state, i.e.,
more than 75% of the energy of the CPH saddle. These levels contain up to v2 = 30 quanta of excitation in the
bend degree of freedom.

Hamiltonian is obtained by putting all the other terms in R(s−1). After s transformations, one is thus
left with a perturbative Hamiltonian of the form

K(s) =
∑

‖m‖≤s/2+1

h(s)mm

∏
j

(a+
j )

mj (aj )
mj (3.7)

Upon linear expansion of each (a+
j )

mj (aj )
mj operator in terms of the (a+

j aj )
mj ones, the perturbative

Hamiltonian can be written

K(s) = K
(s)
D =

∑
j

ν
(s)
j (a+

j aj ) +
∑
j≤k

x
(s)
jk (a

+
j aj )(a

+
k ak) + . . . (3.8)

where the right-hand side of (3.8) contains terms with total degree up to s + 2. This is just the well-
known Dunham polynomial expansion. Since a+

j aj
∣∣vj 〉 = vj

∣∣vj 〉, the Dunham expansion is diagonal
in the direct product basis of harmonic oscillators. The convergence properties of the series of Dunham
Hamiltonians are illustrated in Fig. 1, where the arithmetic average error between the energies of the
exact states of HCP [50,51] and those obtained from perturbation procedure are plotted as a function of
the perturbation order s. Included in the calculations are the first 323 states of HCP, with energies up to
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17 700 cm−1 above the quantum mechanical ground state, which is more than 75% of the energy of the
CPH saddle. These levels contain up to 30 quanta of excitation in the bend degree of freedom. It can be
seen from Fig. 1 that perturbation calculations diverge for orders s larger than 3, although the average
arithmetic error at order s = 3 is still as large as 159 cm−1.

When looking at the shape of the wave functions [50,51] and at the fundamental frequencies of HCP
(ω1 = 3479 cm−1, ω2 = 650 cm−1, and ω3 = 1256 cm−1), one realizes that this early divergence of
the perturbation series is probably due to a Fermi resonance between the bend (mode 2) and the CP
stretch (mode 3). One says that the fundamental frequencies are approximately resonant if there exist
two vectors m∗ and n∗ of positive integers, such that∑
j

(m∗
j − n∗

j )ωj ≈ 0 (3.9)

According to (3.6), the operators S(s) and the perturbation series diverge if the terms of H(s−1,s)

such that m − n = ±(m∗ − n∗) are put in R(s−1) when the resonance condition of (3.9) is satisfied.
Therefore, these terms must necessarily be kept in H(s,s). After linear expansion of each (a+

j )
mj (aj )

mj

operator in terms of the (a+
j aj )

mj ones, the perturbative Hamiltonian is thus obtained in the form

K(s) = K
(s)
D + K

(s)
R

K
(s)
R =


∏

j

(a+
j )

m∗
j





k(s) +

∑
j

k
(s)
j (a+

j aj ) +
∑
j�k

k
(s)
jk (a

+
j aj )(a

+
k ak) + ...





∏

j

(aj )
n∗
j


 (3.10)

where K
(s)
D is the Dunham expansion of (3.8) and the right-hand side of the second equation again

contains terms with total degree up to s + 2. It is of course possible to take two (or more) resonances
simultaneously into account. When doing so, the perturbative Hamiltonian K(s) consists of the Dunham
expansion K

(s)
D plus two (or more) resonance terms K

(s)
R . It should, however, be kept in mind that

each additional linearly independent resonance destroys one good quantum number and consequently
increases the size of the matrices to be diagonalized. Moreover, from the dynamical point of view,
the Hamiltonians with two (or more) independent resonances are at least partially chaotic, while those
with zero or one resonance are completely integrable and, therefore, best suited for the purpose of
semiclassical investigations.

Because of the degeneracy of the bending motion, the Fermi resonance 2ω2 − ω3 ≈ 0 be-
tween the bend (mode 2) and the CP stretch (mode 3) of HCP is described by the vectors m∗ =
(m∗

1,m
∗
2g,m

∗
2d ,m

∗
3) = (0, 1, 1, 0) and n∗ = (n∗

1, n
∗
2g, n

∗
2d , n

∗
3) = (0, 0, 0, 1). Since both v1 (the num-

ber of quanta in the CH stretch) and P = v2 + 2v3 (P is called the polyad number) are good quantum
numbers for the Fermi-resonance Hamiltonian (i.e., the perturbative Hamiltonian with the 2ω2 −ω3 ≈ 0
resonance), the eigenstates are obtained from the diagonalization of very small matrices of size P/2+1
[13,15,53]. The convergence properties of the series of Fermi-resonance Hamiltonians are illustrated in
Fig. 1. It can be seen that they perform much better than the Dunham expansions because convergence
is obtained up to 8th order of the theory. At this order, the average arithmetic error is 11.2 cm−1. A
closer examination of exact and perturbative energies reveals that a vast majority of states are accurately
reproduced by the Fermi-resonance Hamiltonian, while a dozen states with v2 ≥ 22 have considerably
larger errors that range up to 394 cm−1.

A systematic search for additional resonances must next be undertaken to improve the calculation of
the states with the largest values of v2. Note that, according to (3.6), it is not necessarily the resonances
with the smallest values of

∑
j (m

∗
j − n∗

j )ωj that prove to be important, but instead those with the largest

values of c(s−1)
mn /

∑
j (m

∗
j − n∗

j )ωj . It turns out that excellent results are obtained upon simultaneous
introduction in the perturbative Hamiltonian of the first harmonics 4ω2−2ω3 ≈ 0 of the Fermi resonance,
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Fig. 2. Plot of the difference between exact and perturbative quantum energies for the first 323 states of HCP at
9th (top plot) and 11th (bottom plot) order of the theory versus energy of each state. The perturbative Hamiltonians
take the three resonances 2ω2 − ω3 ≈ 0, 4ω2 − 2ω3 ≈ 0, and 2ω2 ≈ 0 into account. At order s = 9, the error for
the lowest state of polyad [v1, P ] = [0, 30], which is calculated at 95 cm−1, lies out of the plotting range. At order
s = 11, the errors for the lowest state of polyads [0,26], [0,28], [0,30], and [1,24], as well as for the second lowest
state of polyad [0,30], which are calculated at 36, 111, 191, 20, and 51 cm−1, respectively, lie out of the plotting
range.

which is characterized by the vectors m∗ = (0, 2, 2, 0) and n∗ = (0, 0, 0, 2), and the 2ω2 ≈ 0 resonance
with vectors m∗ = (0, 1, 1, 0) and n∗ = (0, 0, 0, 0). When taking the three resonances into account,
there is only one good quantum number left, namely, v1, the number of quanta in the CH stretch, but the
size of the matrices to diagonalize still remains very small compared with exact quantum calculations.
As can be checked in Fig. 1, the convergence properties of the three-resonance Hamiltonians are again
substantially better than those of the Fermi-resonance Hamiltonians. As shown in the upper panel of
Fig. 2, an average error as small as 2.45 cm−1 is obtained at order s = 9, with only one error larger than
20 cm−1, that for the state with the maximum number of quanta (v2 = 30) in the bend. Comparison
of the two panels of Fig. 2 further shows that the errors for most states are again substantially reduced
when s increases from s = 9 to 11. Unfortunately, the errors for the four states with the largest values
of v2 diverge again, so that the average error remains nearly constant. The divergence for the states with
the largest values of v2 is here principally because the polynomial Taylor expansion fails to correctly
reproduce the potential-energy surface for the largest values of the bending angle.

It is interesting to note that convergence properties very close to those of the three-resonance Hamil-
tonians are obtained when computing the eigenstates of the Fermi-resonance Hamiltonians, but with
the parameters ν(s)j , x(s)jk , . . ., k

(s), k(s)j , . . . of the three-resonance Hamiltonians [17]. The semiclassical
analysis of this latter Fermi-resonance Hamiltonian provides unparalleled insight into the highly excited
vibrational dynamics of HCP and particularly into the saddle-node bifurcation, which is the first step
of the HCP↔CPH isomerization process [13,15,16,53].
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Fig. 3. Contour plot of typical potential-energy surface of a floppy molecule. The black dots at γ = 0◦ and 180◦

denote the two equilibrium positions, while the black dot around γ = 95◦ indicates a saddle. The dotted line is
the minimum energy path, which connects the three extrema. The coordinate γ (vertical axis in degrees) is called
a reactive coordinate and the coordinate R (horizontal axis in Angstroms) an inactive one.

4. Application to floppy molecules

This section is devoted to the application of CPT to the study of the highly excited vibrational
dynamics of floppy molecules. The procedure described below is an improved version of the work
published in refs. 14 and 18. As in this earlier work, the ab initio surface for HCN computed by Murrell
et al. [54] and the corresponding rotationless bound states calculated by Bacic [55] will be used for the
purpose of illustration.

The typical potential-energy surface of floppy molecules is shown in Fig. 3. It is characterized by
the existence of at least two equilibrium positions, which are separated by saddle points. A “minimum
energy path” (MEP), also called a “reaction pathway”, connects the different equilibrium positions and
the saddles. In Fig. 3, the equilibrium positions are the two black dots at γ = 0◦ and 180◦, the saddle is
the black dot at about γ = 95◦, and the reaction pathway is the dotted line. The perturbative Hamiltonian
we are looking for must accurately reproduce the states of the initial Hamiltonian in both wells up to and
above the isomerization barrier. It is clearly seen in Fig. 3 that the vibrational degrees of freedom can be
separated into two different families. The first family includes those coordinates whose variation leads
from one well to another well and which will, therefore, be called “reactive coordinates”. The second
family includes all the other coordinates whose variation remains localized in one well and which will
henceforth be described as “inactive coordinates”. Coordinate γ of Fig. 3 is a reactive coordinate, while
R is an inactive one. In most cases, the dynamics of small floppy molecules involves a single reactive
coordinate (generally an angle) and several inactive ones. For example, the two Jacobi coordinates r

and R behave as inactive coordinates for the HCN ↔ CNH isomerization reaction, while the Jacobi
angle γ is the reactive coordinate (r is the CN bond length, R the distance between H and the center of
mass G of CN, and γ the HGN angle).

There exist at least two reasons why the procedure described in the previous section cannot be used
to study the dynamics of floppy molecules. First, the Taylor expansion in the neighborhood of one
equilibrium position is expected to describe correctly the corresponding well, but certainly not two (or
more) of them. Moreover, treating a reactive mode as if it were an harmonic oscillator is bound to fail,
since it behaves much more like a hindered rotor in the neighborhood of the isomerization saddle and like
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a free rotor largely above the saddle. Inspired by the previous works of Marcus [56–58], Miller and co-
workers [59–61], and Chapuisat and co-workers [62–66], we have found that an excellent approximation
of the ab initio Hamiltonian is obtained from a mixed expansion of the ab initio Hamiltonian around the
MEP. The first step for obtaining this expansion consists of a canonical transformation, according to

qj → q0
j (γ ) + zj

∂

∂γ
→ ∂

∂γ
−

∑
j

dq0
j (γ )

dγ

∂

∂zj

(4.1)

where a single reactive coordinateγ has been assumed and the index j is restricted to inactive coordinates
qj , that is, to j = 1 (CN stretch) and j = 3 (CH stretch) in the case of the HCN molecule. q0

j (γ ) is
the value of qj on the MEP for each particular value of γ . The Hamiltonian obtained is then Taylor-

expanded relative to zj ’s and zj the deviation of qj from q
(0)
j (γ ) for this particular value of γ and

Fourier-expanded relative to the reactive coordinate γ (for more details on the technical procedure, see
ref. 18). Practically, the ab initio Hamiltonian for the HCN ↔ CNH system [54] was Fourier expanded
up to cos(10γ ). The expression obtained was next rewritten in terms of powers of cos γ . Note that all
the powers of cos γ that appear in the course of the calculations must be retained, even when larger than
10, for the perturbative Hamiltonian to remain Hermitian. With the initial partition described below,
the maximum power of cos γ increases like 10(s − 2). After conversion of the zj ’s and their conjugate
momenta to creation–annihilation operators (cf. (3.1)–(3.2)), the initial Hamiltonian is thus of the form

H(0) =
∑

M,P,N,m,n

h
(0)
MPNmn(cos γ )MσP (J 2)N

∏
j

(a+
j )

mj (aj )
nj (4.2)

where j is restricted to inactive coordinates. The h(0)MPNmn’s are real coefficients. σ denotes the operator
sin γ ∂

∂γ
. The associated exponent P can take only the values 0 and 1 (note that P has nothing to do

with the polyad number defined in Sect. 3). J 2 stands for the operator

J 2 = − 1

sin γ

∂

∂γ
sin γ

∂

∂γ
− 1

(sin γ )2

∂2

∂ϕ2 (4.3)

where ϕ is the rotation angle around the axis of inertia with smallest momentum. The matrix elements
of these operators in the basis of the spherical functions |0,m〉 = Ym

0 (γ, ϕ) are easily obtained from

J 2|0,m〉 = 0(0 + 1) |0,m〉

σ |0,m〉 = 0

√
(0 − m + 1)(0 + m + 1)

(20 + 1)(20 + 3)
|0 + 1,m〉 − (0 + 1)

√
(0 − m)(0 + m)

(20 − 1)(20 + 1)
|0 − 1,m〉

cos γ |0,m〉 =
√
(0 − m + 1)(0 + m + 1)

(20 + 1)(20 + 3)
|0 + 1,m〉 +

√
(0 − m)(0 + m)

(20 − 1)(20 + 1)
|0 − 1,m〉

(4.4)

The form of H(0) in (4.2) is thus particularly suitable for energy level calculations and will be
preserved for each H(s) by the successive transformations. Note that the major advantage of the method
presented here lies precisely in the fact that states with different values of the vibrational angular
are treated simultaneously and on the same footing, while the older version of refs. 14 and 18 required
additional hard work for the states with m > 0. As for semi-rigid molecules, it is of practical importance
to express all the operators in a single standard form, which is chosen to be that of (4.2). Evaluation of the
commutators in (2.10) then requires that many terms of the form (cos γ )MσP (J 2)N(cos γ )M

′
σP ′

(J 2)N
′
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be rewritten in the standard form. We did not try to derive a general formula, like Sibert for creation–
annihilation operators [9]. Each product is instead iteratively recast in the normal form by using the
following fundamental relations:

J 2(cos γ )M = (cos γ )MJ 2 + 2M(cos γ )M−1σ + M(M + 1)(cos γ )M − M(M − 1)(cos γ )M−2

J 2(cos γ )Mσ = (cos γ )MσJ 2 + 2(M + 1)(cos γ )M+1J 2 − 2M(cos γ )M−1J 2

+ M(M + 1)(cos γ )Mσ − M(M − 1)(cos γ )M−2σ

σ(cos γ )M = (cos γ )Mσ + M(cos γ )M+1 − M(cos γ )M−1

σ(cos γ )Mσ = (cos γ )M+2J 2 − (cos γ )MJ 2 + M(cos γ )M+1σ − M(cos γ )M−1σ

(4.5)

A crucial question concerns the partition of the initial Hamiltonian H(0) into the various H(0,k)’s and
particularly the terms to be put into H(0,0). Since the resolution of (2.11) turns out to be quite difficult
if H(0,0) depends on the reactive coordinate, H(0,0) must be chosen to contain only the sum of the
harmonic oscillators associated with the inactive modes, that is

H(0,0) =
∑
j

ωj (a
+
j aj ) (4.6)

where the index j is, however, restricted to inactive coordinates. When doing so, the solution of (2.11)
is very similar to (3.5)–(3.6). Indeed, if

R(s−1) =
∑

M,P,N,m,n

c
(s−1)
MPNmn(cos γ )MσP (J 2)N

∏
j

(a+
j )

mj (aj )
nj (4.7)

then the solution of (2.11) is just

S(s) =
∑

M,P,N,m,n

c
(s−1)
MPNmn∑

j

ωj (mj − nj )
(cos γ )MσP (J 2)N

∏
j

(a+
j )

mj (aj )
nj (4.8)

where the index j is again restricted to inactive modes. There is more freedom for the ordering of the
other terms. We found that a good choice, which warrants both rapid calculations and convergence
up to high orders, consists in putting each term with indices M , P , N , m and n into H(0,k), where
k = ‖m + n‖+P + 2N − 2 if M = 0 and k = ‖m + n‖+P + 2N if M > 0. An exception obviously
occurs for the pure bending terms J 2 and cosM(γ ) , which are put into H(0,1) instead of H(0,0). Each
H(0,k) is symmetrized after partition has been completed. Be careful that σ is not exactly antisymmetric,
but satisfies instead

σ+ = −σ − 2 cos γ (4.9)

One now has all the necessary tools handy for studying floppy molecules. The question that naturally
arises concerns the form of the perturbative Hamiltonian, that is, of the terms of H(s−1,s) to keep in
H(s,s) or, conversely, to put in R(s−1) to be cancelled by the perturbation procedure. The simplest
perturbative Hamiltonian is the one for which the number of quanta in each inactive mode remains a
good quantum number. It is obtained by putting each term with indices M , P , N , m, and n ( m �= n )
into R(s−1). After linear expansion of each (a+

j )
mj (aj )

mj operator in terms of the (a+
j aj )

mj ones, the
perturbative Hamiltonian is thus obtained in the form

K(s) =
∑

M,P,N,m

k
(s)
MPNm(cos γ )MσP (J 2)N

∏
j

(a+
j aj )

mj (4.10)
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Fig. 4. Plot of the arithmetic average error between the energies of the eigenstates of HCN obtained from exact
variational calculations [55] and from perturbative calculations versus perturbation order s. The perturbative Hamil-
tonian, defined in (4.10), is formally a one-dimensional Hamiltonian (in the reactive coordinate γ ) parametrized by
the number of quanta in the CH and CN stretches. Included in the calculations are the first 111 states of the HCN ↔
CNH system, with energies up to 11 770 cm−1 above the quantum mechanical ground state, that is, slightly above
the isomerization saddle for pure bending states. These levels contain up to v2 = 44 quanta of excitation in the
bend degree of freedom.

Equation (4.10) is the counterpart of the Dunham expansion of (3.8) for floppy molecules. The
convergence properties of this perturbative series are illustrated in Fig. 4, where the arithmetic average
error between the energies of the exact states of HCN [55] and those obtained from the perturbative
Hamiltonians of (4.10) are plotted as a function of the perturbation order s. Included in the calculations
are the first 111 states of the HCN ↔ CNH system, with energies up to 11 770 cm−1 above the quantum
mechanical ground state, that is, slightly above the barrier to linearity for pure bending states (two states
are almost uniformly delocalized over the two wells). Note that we stopped comparison with exact
quantum results at this energy because of the lack of reliable quantum results for larger values of the
bend quantum number and not because of an abrupt degradation of the accuracy of the perturbative
Hamiltonian. It can be seen in Fig. 4 that the perturbation series converges rapidly up to order s = 6
before remaining stationary at orders s = 7 and 8. At order s = 6, very small |0,m〉 bases with
0 � 0 � 48 and m = 0 result in computed perturbative energies, which vary by less than 10−3 cm−1

upon further increase of the basis size. It can furthermore be checked in Fig. 5 that the error between the
energies of exact and perturbative (6th order) quantum states increases smoothly with energy, although
a few pairs of more resonantly coupled states are observed at the highest energies, i.e., close to the
isomerization saddle for pure bending states.

The perturbative Hamiltonian of (4.10) is formally a one-dimensional system (in the reactive co-
ordinate) parametrized by the number of quanta vj = a+

j aj in the inactive modes j = 1 (CN stretch)
and j = 3 (CH stretch). An illustration thereof is provided in Fig. 6, which shows the pseudo-potential
curve and the probability density for the pure bending states of HCN. The pseudo-potential curve is
obtained by setting J , σ , v1 = a+

1 a1, and v3 = a+
3 a3 to zero in (4.10). Being one-dimensional, the

perturbative Hamiltonian is necessarily integrable (i.e., non-chaotic). From the physical point of view,
it is interesting to note that the “exact” HCN ↔ CNH system remains very close to the integrable
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Fig. 5. Plot of the difference between exact and perturbative quantum energies for the first 111 states of HCN at
6th order of the theory versus energy of each state. The perturbative Hamiltonian is that of (4.10).

Fig. 6. Plot of the pseudo-potential (thick line) and the probability density (thinner lines) for the pure bending
states (v1 = v3 = 0) of the HCN ↔ CNH system versus bending angle γ . These results are obtained by applying
6th-order CPT to the ab initio surface of Murrell et al. [54]. The energies on the vertical axis are plotted relative to
the minimum of the potential-energy surface. The vertical scale is the same for all probability plots and the baseline
for each plot coincides, on the vertical axis, with the energy of the corresponding state.

perturbative Hamiltonian, even in the region close to the saddle where classical dynamics is known to
be largely chaotic. A similar situation was encountered while studying the dynamics of HOCl close to
the dissociation threshold [67]. It was indeed found that an integrable Fermi-resonance Hamiltonian
accurately reproduces the dynamics of the exact system in this largely chaotic region of the phase space
(see also refs. 16, 23, 44–49).
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5. Application to non-Born–Oppenheimer dynamics

This section is devoted to the application of CPT to the study of non-Born–Oppenheimer dynamics,
that is, of vibrationally excited molecules on coupled electronic surfaces. The procedure described
below is a simplified version of the work published in ref. 19. A still different scheme is presented in
ref. 20 but will not be discussed in this article because it does not follow the general lines of Sect. 2.
As in refs. 19 and 20, a simple model with two 2-dimensional diabatic electronic surfaces coupled by
a linear term will serve for the purpose of illustration, although the conclusions derived from refs. 19
and 20 have recently been used to get a precise model of the conical intersection in NO2 [68].

The diabatic vibronic Hamiltonian of a molecular system with two coupled electronic surfaces can
be written as

H =
(

T + Ve Vc
Vc T + Vg

)
(5.1)

where T is the kinetic energy of the molecule and Vg, Ve, and Vc are the diabatic ground, excited, and
coupling surfaces, respectively. As in refs. 19 and 20, one takes

T = 1

2
ω1gp

2
1 + 1

2
ω2gp

2
2

Vg = 1

2
ω1gq

2
1 + 1

2
ω2gq

2
2

Ve = 4E + 1

2

ω2
1e

ω1g
(q1 − q10)

2 + 1

2

ω2
2e

ω2g
(q2 − q20)

2

Vc = λq1

(5.2)

that is, the ground and excited surfaces are the sum of two uncoupled harmonic oscillators with center
shift and frequency mismatch, while the coupling surface is just the linear term that is known to
dominate the conical intersection of NO2 and several other polyatomic molecules [69–74]. Note that
the Hamiltonian in (5.2) is written in terms of the normal coordinates of the ground electronic surfaceVg.
As in refs. 19 and 20, numerical values are ω1g = 1669 cm−1, ω2g = 759 cm−1, ω1e = 1000 cm−1, and
ω2e = 745 cm−1 for the fundamental frequencies of Vg and Ve, 4E = 9700 cm−1 for the energy shift
between the bottoms of the two surfaces, q10 = 0 and q20 = 2 for the center shift, and λ = 700 cm−1

for the diabatic coupling (except for q20, these values are close to those for the antisymmetric stretch
and bend degrees of freedom of NO2 in the two lowest electronic states). The contour plots of Vg and
Ve are displayed in Fig. 7. Note that the bottom of the excited surface Ve lies inside the ground-state
well. Figure 8 shows how the states of the uncoupled ground (circles) and excited (lozenges) surfaces
are shifted upon switching on the diabatic coupling. The vertical line locates the energy of the bottom
of Ve. It can be seen in this figure that the ground state of Vg is already shifted to lower energies by
more than 20 cm−1 and that shifts may reach about 500 cm−1 close to the bottom of Ve. This is because
each zero-order state of the uncoupled ground surface Vg is coupled through Vc to a large number of
high-energy zero-order states of the uncoupled excited surface Ve, so that switching on the diabatic
coupling Vc results in large shifts for all of the states of Vg and Ve, including those states of Vg located
far below the bottom of Ve. Nonetheless, these shifts appear to be quite regular, which indicates that, in
the investigated energy range, switching on the diabatic coupling Vc principally modifies the harmonic
frequencies and the anharmonicities in each well. The goal of the remainder of this section is to show
how these harmonic and anharmonic corrections are obtained from CPT.

For the sake of clarity, the case for n = 2 coupled electronic surfaces is handled explicitly here, but
the procedure extends readily to larger values of n. One defines a n2-dimensional basis (g, e, j+, j−)
of n × n matrices

g =
(

0 0
0 1

)
, e =

(
1 0
0 0

)
, j+ =

(
0 1
0 0

)
, j− =

(
0 0
1 0

)
(5.3)
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Fig. 7. Contour plots of the ground Vg (continuous lines) and the excited Ve (broken lines) diabatic surfaces of
(5.1) and (5.2). q1 and q2 are the dimensionless coordinates of the ground surface Vg. The contours range from
1500 to 18 000 cm−1 for Vg and from 10 500 to 18 000 cm−1 for Ve, with increments of 1500 cm−1. The two black
dots indicate the minimum of each surface. Note that the minimum of the excited electronic surface Ve lies inside
the well of the ground surface Vg. The thicker line indicates the crossing seam between the two surfaces.

where g and e are the projections on the ground and excited surfaces, respectively, and j+ and j− are
raising- and lowering-like operators. Each operator A is decomposed on this basis according to

A =
(

Ae A+
A− Ag

)
= Ag g + Aee + A+j+ + A−j− (5.4)

and the commutator C = [A,B] = AB − BA of two operators A and B can be written

Cg = [Ag,Bg] + A−B+ − B−A+
Ce = [Ae,Be] + A+B− − B+A−
C+ = A+Bg − B+Ag + AeB+ − BeA+
C− = A−Be − B−Ae + AgB− − BgA−

(5.5)

As for the dynamics on a single electronic surface, the initial Hamiltonian H of (5.1) and (5.2)
must be partitioned into H (0,0) plus higher order terms H (0,k) (k ≥ 1) and the rules for obtaining the
successive operators S(s) from the unwanted terms of H (s−1,s) must be found for each perturbation
order s, except that all operators are now matrix quantities. For the transformations of (2.6) to be unitary
ones, S(s)g and S

(s)
e must be anti-Hermitian, while S

(s)
+ and S

(s)
− must satisfy

S
(s)
+ = −S

(s)
−

+
(5.6)

where S
(s)
g , S(s)e , S(s)+ , and S

(s)
− are the components of S(s) in the (g, e, j+, j−) basis. These conditions

are automatically fulfilled by the procedure proposed below. Examination of the matrix version of (2.11)

[S(s),H (0,0)] = −R(s−1) (5.7)
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Fig. 8. Plot of the energy shifts of the states belonging to the ground (circles) and excited (lozenges) diabatic
surfaces caused by the coupling (through Vc) to the other surface versus absolute energy E of each state. The
vertical line indicates the energy of the bottom of the excited surface Ve (E = 9700 cm−1).

shows that H (0,0) must satisfy severe constraints for this equation to be easy to solve. The best choice
probably consists in taking

H (0,0) =
(ω1g

2
a+

1 a1 + ω2g

2
a+

2 a2

)
g +

(
δE + ω1g

2
a+

1 a1 + ω2g

2
a+

2 a2

)
e (5.8)

where

δE = 4E + ω1e + ω2e

2
− ω1g + ω2g

2
(5.9)

is the energy gap between the ground states of Vg and Ve, and the (a+
j , aj ) creation and annihilation op-

erators are obtained from the normal coordinates (pj , qj ) of the ground electronic surface Vg according
to (3.1). All other terms, which describe the diabatic coupling as well as the frequency mismatch and
the center shift between the two electronic surfaces, are put in H (0,1). Investigation of more complex
systems will probably require the ordering of (here missing) higher order terms of Vg, Ve, and Vc as
in the lower equation of (3.4). The fact that all operators are expressed in terms of the creation and
annihilation operators of the ground electronic surface Vg is the principal advantage of the formulation
presented in this article when compared with the first version given in ref. 19. Indeed, in this earlier
work, creation and annihilation operators referred to a virtual average surface (Vg + Ve)/2. Equation
(5.7) is very easy to solve when H (0,0) is taken as in (5.8). Indeed, if the Hermitian subset R(s−1) of
H (s−1,s) to be cancelled at order s of the perturbation procedure is of the form

R(s−1) = g
∑
m,n

a(s−1)
mn

∏
j

(a+
j )

mj (aj )
nj + e

∑
m,n

b(s−1)
mn

∏
j

(a+
j )

mj (aj )
nj

+ j+
∑
m,n

c(s−1)
mn

∏
j

(a+
j )

mj (aj )
nj + j−

∑
m,n

d(s−1)
mn

∏
j

(a+
j )

mj (aj )
nj (5.10)
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Fig. 9. Plot of the arithmetic average error between the exact energies of the model Hamiltonian of (5.1) and
(5.2) and those obtained from the perturbative Hamiltonian of (5.12) and (5.13) versus perturbation order s. The
perturbative Hamiltonian consists of two uncoupled Dunham expansions, one for the ground electronic surface and
another for the excited surface. Included in the calculations are the first 91 states of the system shown in Fig. 8,
with energies up to 14 000 cm−1 above the minimum of Vg. Among these 91 states, 81 are principally localized on
the Vg surface and 10 on the Ve surface. These states contain up to v2 = 16 quanta of excitation in mode 2.

then the solution of (5.7) is just

S(s) = g
∑
m,n

a
(s−1)
mn

9mn

∏
j

(a+
j )

mj (aj )
nj + e

∑
m,n

b
(s−1)
mn

9mn

∏
j

(a+
j )

mj (aj )
nj

+ j+
∑
m,n

c
(s−1)
mn

9mn − δE

∏
j

(a+
j )

mj (aj )
nj + j−

∑
m,n

d
(s−1)
mn

9mn + δE

∏
j

(a+
j )

mj (aj )
nj (5.11)

where 9mn = ∑
j

(mj − nj ) ωjg . The simplest perturbative Hamiltonian one can think of consists of

two Dunham expansions (one for the electronic ground state and one for the excited state) with no
coupling between the two surfaces, that is

K(s) = H(s)
g g + H(s)

e e (5.12)

where

K
(s)
ξ =

∑
j

ν
(s)

jξ (a+
j aj ) +

∑
j≤k

x
(s)
jkξ (a+

j aj )(a
+
k ak) + . . . (ξ = g, e) (5.13)

Such a perturbative Hamiltonian is obtained by keeping in H (s,s) only the g and e components of
H (s−1,s) such that m = n and by putting all the other components into R(s−1) to let them be cancelled
by the perturbation procedure at order s. Note that the maximum power in the right-hand side of (5.13)
increases here as 2s + 2 compared with s + 2 for the procedure for semi-rigid molecules with a single
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Fig. 10. Plot of the difference between exact and perturbative quantum energies for the first 91 states of the model
Hamiltonian of (5.1) and (5.2) at 10th order of the theory versus energy of each state. The perturbative Hamiltonian,
shown in (5.12) and (5.13), consists of two uncoupled Dunham expansions, one for the ground electronic surface
and another for the excited surface. The vertical line indicates the energy of the bottom of the excited electronic
surface Ve. Notice the sharp increase of the differences above this threshold.

electronic surface cf. (3.8)). The convergence properties of this perturbation series are illustrated in
Fig. 9 where the arithmetic average error between the energies of the states of the exact Hamiltonian in
(5.1) and (5.2) and those obtained from the perturbative Hamiltonians in (5.12) and (5.13) is plotted as
a function of the perturbation order s. Included in the calculations are the first 91 states of the system,
whose shifts induced by the diabatic coupling Vc are shown in Fig. 8. Eighty-one states out of these
91 are principally localized in the electronic ground state, while the remaining 10 states are principally
localized in the electronic excited state. It can be seen from Fig. 9 that the series converges exponentially
up to 10th order but diverges for s ≥ 11. The average error at order s = 10 is as small as 4.1 cm−1,
which is particularly impressive when we are reminded that states are shifted by up to 1000 cm−1 upon
switching on of Vc. The reason for the divergence at order s = 11 is easily understood when one looks
at Fig. 10, which shows the errors between the energies of exact and perturbative (10th order) quantum
states as a function of energy. Indeed, it is seen in this figure that errors remain negligible below the
energy of the bottom of Ve, which is indicated by a vertical line, while they increase sharply above this
energy. Examination of (5.11) shows that this divergence is most likely due to vibronic resonances, i.e.,
resonances between states of electronic ground and excited surfaces, which cause some of the9mn∓δE

denominators to become too small and the corresponding terms to diverge.

6. Conclusions

This article has focused on practical solutions for applying CPT to various situations encountered
at high vibrational energies (resonances, isomerization, and electronic couplings) and on numerical
examples, which demonstrate the efficiency of the proposed procedures. The question as to how the
perturbative Hamiltonians obtained are to be handled to extract the physical information encoded therein
has deliberately been skipped. The interested reader is referred, for example, to refs. 13–16 for more
information on this topic. Before concluding, we would like to mention a few points, which, to our
mind, deserve further attention.

First, it should be emphasized that an accurate initial expansion is a sine qua non condition for
successful perturbative calculations. For example, it was pointed out in Sect. 3 that convergence of
the perturbative series for HCP is limited to the 9th order, because of the poor accuracy of the Taylor
expansion at large bending angles (see Fig. 2). Here, this is of little consequence, since the average error
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is already as small as 2.4 cm−1. However, it sometimes happens that the Taylor expansion is too poor
an approximation to be amenable to perturbative calculations, although this remains an exception rather
than the rule. A striking example is the second potential-energy surface for HCP computed by Schinke
et al. [75] that is in better agreement with the experimental results than the first one [50,51] discussed
in Sect. 3. It turns out that the Taylor expansion computed from this second surface is such a bad
approximation that perturbative calculations based thereon are unable to reproduce the energies of all
but the lowest quantum states. This is all the more surprising as the dynamics encoded in both spectra are
rather similar [13,15,16,50,51,53]. It would, therefore, be interesting to find polynomial expressions that
would be more reliable than Taylor expansions for the purpose of subsequent perturbative calculations.

The second remark concerns dissociation, which has not been discussed in this article. Any realistic
description of the dissociation dynamics of triatomic molecules necessitates at least two large-amplitude
coordinates, namely, the dissociating stretch coordinate and the bend. One can think of a procedure sim-
ilar to that described in Sect. 4 where both the dissociating stretch (described by exponential functions)
and the bend (described by trigonometric functions) would be handled as reactive coordinates. Upon
application of the procedure described in Sect. 4, there would then remain only one good quantum
number left in the perturbative Hamiltonian that would quantize the inactive coordinate, i.e., the motion
along the non-dissociating stretch degree of freedom. Another more complex possibility, which would
however result in a larger number of good quantum numbers, would be to use Morse functions to de-
scribe the dissociating coordinate, as suggested recently by Child et al. [76]. Everything still has to be
done in this domain.

In the end, it is worth mentioning that while all physically “non-important” terms have systematically
been dropped from the perturbative Hamiltonian (cf. (2.12)) in this article, one is not obliged to do so.
When keeping all terms in the final Hamiltonian — or more precisely all terms up to a maximum
order much larger than the perturbation order s — one virtually recovers the exact Hamiltonian [20]
provided, of course, that the expansion is accurate enough (see above). The perturbative Hamiltonian,
however, has one great advantage compared with the initial one in that the physically non-important
terms are strongly reduced by the perturbation procedure. Consequently, the size of the matrices that
must be diagonalized to get converged eigenvalues can be substantially smaller for the perturbative
Hamiltonian than that for the initial one [20]. To find, with more limited numerical efforts, the exact
eigenvalues of systems, which lie today at the limit of usual diagonalization procedures, one can think
about applying this technique (i.e., CPT without neglect of physically important terms) to the MEP
expansion described in Sect. 4; the mixed Taylor–Fourier expansion is usually more precise and more
adaptable to the description of complex surfaces than the Taylor one alone. We plan to test this procedure
against the vibrational states of H2O2 [77,78] in the near future.
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