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Based on an accurate potential energy surfdc€hem. Physl13 4598(2000] we calculatecta.

700 bound state energies and wave functions of nonrotating HOBr using the filter-diagonalization
method. Similar to HOCI, a 1:2 anharmonic resonance between the HOBr bending and the OBr
stretching mode determines the general structure of the level spectrum. One of the results of this
resonance is a saddle-node bifurcation at which a new class of €tdiesciation states) comes

into existence, which advance along the HO—Br dissociation path. Because the resonance condition
at low energies is better fulfilled for HOBYr, the bifurcation occurs at considerably lower energies
than for HOCI. The results of the quantum mechanical calculations are interpreted in terms of
classical periodic orbitécontinuation/bifurcation diagraand a semiclassical analysis based on a
spectroscopic Hamiltonian, which is fitted to the exact energy levels and also taking into account the
wave functions. ©2003 American Institute of Physic§DOI: 10.1063/1.1569914

I. INTRODUCTION possible’® Classical and semiclassical analyses have also
been performed®?The key feature of HOCl is a 1:2 Fermi

In recent years, the vibrational spectra of several tri-anharmonit resonance between the HOCI bending and the
atomic molecules have been investigated in great detail bpC| stretching coordinate. The resonance is only approxi-
quantum mechanical, classical, and semiclassical methodsmately fulfilled at low energies, but becomes more and more
The vibrational energies and wave functions from the bottomyalid with increasing energy. As a consequence, a saddle-
of the potential well up to very high energies, in severalnode(SN) bifurcation exists at relatively high energies, that
cases even above the dissociation threshold, have been ang- a new family of quantum mechanical states appears,
lyzed. Examples are HEPand DCP, HCO® and DCO}and  which does not exist at low energies. The OH stretching
HOCL."® Such systematic studies reveal the evolution of thenode is only weakly coupled to the other two degrees of
spectrum with energy and the development of special feafreedom.
tures like bifurcations, for example. The analysis of the clas- Hypobromous acid, HOBY, is very similar to HOCI, ex-
sical phase space in terms of periodic orti®0)*' and  cept that the mass of the dissociating atom, Br, is approxi-
continuation/bifurcation(C/B) diagram$' has been very mately 2.25 times heavier than Cl. The difference of the
helpful in understanding the quantum mechanical spettra. reduced mass associated with the dissociation coordinate will
In many cases, additional insight has been obtained from thaq, together with a slightly different PES, to a variation of
semiclassical investigation of approximate, yet accuratgne frequency ratios and therefore to a different resonance
spectroscopic Hamiltoniars:*~** Knowledge of the struc- pattern in the spectrum of vibrational states. Although the
ture of the spectrum, and especially the shape of the corrg10By spectrum is very similar to the spectrum of HOCI,
sponding wave functions, at energies close to the dissocianere are some interesting changes, which will be highlighted
tion limit is also important for understanding the lifetime of i, ine present article.
resonance states in the continutfrn® The present study is based on the calculated PES of

The bound-state spectrum of HOCI has been thoroughlpetersor?* Peterson also calculated the vibrational energies
studied. Acczlérgge potential energy surfaCBES have been ;¢4 the dissociation threshold. However, a detailed analy-
const.ructeﬁi ~“and all bound state energies and wavegjs especially of the various bifurcations and the types of
functions have been calculated and assigned, whenevgf, e functions existing in the high-energy regime, has not
been undertaken. This is the topic of the present study. The
dElectronic mail: rschink@gwdg.de article is organized in the following way: The computational
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details of the quantum mechanical calculations are describegbund stateg708 than for HOCI (827). All of the 708

in Sec. Il. Subsequently, the quantum mechanical spectrum sound states have been visually inspected and about 650 of
described in a more phenomenological way in Sec. Ill andhem could be reasonably assigned in the same way as thor-
the main observations are explained in terms of the structureughly discussed by Wei@t al® for HOCI. A list of all

of the classical phase space in Sec. IV. The semiclassicéound states and assignments are published electronitally.
analysis of a spectroscopic Hamiltonian fit to the quantuma few assignments differ from thea. 90 assignments previ-
mechanical spectrum provides additional insight and is deeusly given by Petersaif.In what follows,v;, v,, andvs
scribed in Sec. V. Finally, a brief summary closes this articleare the HO stretching, the bending, and the OBr stretching

in Sec. VI. guantum numbers, respectively. The OH stretching mode is
rather weakly coupled to the other two modes. It is therefore
Il. COMPUTATIONAL DETAILS possible to consider the spectra for individual values pf

. . . separately. We begin with the spectrum fq=0 and make
. Except if otherwise notgd,_ energigs eV) are quoted a few comments fov;#0 at the end of this section.
with respect to the global minimum of the PES. The calcu-

lations are similar to those for HOE&nd only differ in the A. The bending and the HO-Br stretching progression

parameters of the three-dimensional grid. The usual Jacobi  The calculated transition energies for the fundamentals
coordinates?, r, andy appropriate for HO—Br are employed. 16 36150, 1162.8, and 620.2 ch Similar to HOCI, the
The bound states are calculated by the filter diagonalizatiogyg, stretching and the bending modes form a 1:2 anhar-
(FD) techmqu;a_,ﬂas developed by Neuhauser, Taylor, anghqnic resonance, with twice the stretching frequency being
Mandelshtanf>"*"All in all, a total of 708 bound states has approximately equal to the bending frequency. The mismatch
been calculated with 20 energy windows. While the Iowest-Is merely 78 cm’, as compared to 206 crh for HOCIE As
energy window was chosen to have a width of 1 eV, thea consequence of the resonance, for a given valug ofie
highest-energy window covered a region of only 0.02 eV. eigenenergies can be grouped into polyks,P], with P

The wave functions are represented on a discrete—:202+va being the polyad number. Sincas3 is greater
variable-representatiofDVR) grid?® For the highest-energy than w,, at low energies the states of the fast mogieare

W@ndows theRgrin is ch_os_en to ex_tend from Agto 10.Ga located at the bottom of the polyad and the states of the slow
with 225 potential-optimized poinfS. As for HOCE 70 mode. R, are at the top

t(?]auss—l_legen_gre (rq]uadrature pfcﬁﬁmgof?urig Osoufgﬁlenthfqr Changes in the structure of polyads and the wave func-
€ angular grid, wherg-ranges from U= to - 1N CNOICE 45 are caused by the 1:2 anharmonic resonance. At low

of ther gn:jhls f”t‘;’re m:nc?tef. Al\n |nspect||on of the Ln'n'm‘il energies, polyads are compact and well separated. Because
energy path of the potential alomgreveals a second Small ot yha petter fulfillment of the resonance condition for HOBr

potentl?lzwfseélstha& e'ﬁ]ends frotmt :htitol—r O&I;O W'.th. a T&m' as compared to HOCI, the energy gap between the lowest
mum at <. eviwith respect 1o the F minimumor - and the highest state in a polyad is smaller for HOBr. Nev-

r=4.86,. It corresponds to the HBrO isomer. Test calcula- L . :
. o . " erthel h h I
tions have shown that it is necessary to include this m|n|-fert eless, with increasing energy the polyads become wider

mum on the grid, especially for the high overtone states otn energy and fronP=19 onward polyads wite,=0 over-
the OH stretching coordinate, and therefore the grid ia
chosen to extend fromdy to 7.58, with 74 potential-
optimized points. As a consequence, the three-dimension
grid is very large. Apart from the lowest-energy windows,
which had a smaller range iR than reported above
(2.589—6ay), there areN=1 165500 grid points. Eliminat-
ing all points from the grid, which have a potential energy
higher thanV ,=4.4 eV, reduces the grid thl=323435.

Figure 1, depicting all wave functions of poly§@,12],

illustrates the low-energy behavior of the wave functions.

he relatively strong curvature for the wave function of state

(0,0,12 clearly manifests the 1:2 resonance. At very low

energies, the (0,03) states more or less are aligned along

the dissociation coordinate However, due to the resonance
with the bending states, they acquire increasingly more bend-
Convergence in the highest-energy window requires 210 oot9 character and there_by avoid the dissociation path, as al-
ready clearly seen in Fig. 1. As a consequence, the frequen-

Chebychev iterations. S : . :
y cies, i.e., the energy differences between neighboring states,

The vibrational energies calculated in this study agre .
very well with those calculated by Peterson using a?g;r;[tr:sal(?grzlgf)wélii (géaé?ger?r%gﬁ;sz;;ss?ﬁggle i:‘m%t

truncation/recoupling techniqu& The differences are of the
ping q closer resonance toa® for HOBr, the curvature of the

order of only few tenths of a cit for the low and the me- . :
dium energy range and generally of the order of one tm (0,0p3) wave functions is larger—for the same polyad—for
for the highest bound states. HOBr than for HOC.:" "
At higher energies there are two additional developments

Il PHENOMENOLOGICAL DESCRIPTION of the bending and stretching progressions worth mention-

: ing. First, starting withv,=11, the pure bending overtone
OF THE QUANTUM MECHANICAL SPECTRUM states (Q,,0) develop a node along thHe coordinate and

The dissociation energy for HOBr B,=17210cm®  appear more like (0,,1). One example(0,12,0, is de-

(Ref. 24, Table I}, slightly smaller than that for HOCI, picted in Fig. 3d). In view of the classical periodic orbit
which is D;=19290cm® (Ref. 31). As a consequence, analysis in Sect. IV, this behavior is the consequence of a
there are—despite the heavier mass of Br—slightly lesperiod-doubling(PD) bifurcation for the family of bending
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FIG. 2. (a) Energy differences between neighboring states of the pure pro-
gressions (1,0g) (filled circles, (1v,,0) (open circley and (1,0y3)p
(open triangles as functions of energy. The transition frequencies of the
1.19491 eV bending progression are divided by twib) The same as iffa), but forv,
’ =0. The filled triangles are for the S statés. Frequencies of the classical

periodic orbits belonging to various families as indicated. The frequencies of
the[y]-type POs are divided by two, whereas the frequencies ofRid\]
family are multiplied by two. The classical frequencies are shifted by 0.23
eV, the zero-point energy of thg mode, to higher energies. See the text for
fnore details. Note, that the vertical scalga@his different from the vertical
Scales in(b) and(c).

R

FIG. 1. Wave functions for polya®=12. The y axis ranges from 0° to
179° and theR axis ranges from 2d&, to 5a,. All wave function plots
depicted in this article, if not stated otherwise, have been obtained from
plotting routine, which allows us to rotate 3-D objects in space. Shown is
one particular contoue(R,r,y) =sin y¥(Rr,1/% with the value ofe being

the same in one figure. The plots are viewed along #pds, in the direction
perpendicular to the plane spannedfgndy. Shading emphasizes the 3-D  Fig. 3(€). Note the very different angular behavior of the
character of the wave functions. states shown in Figs.(@ and 3e). Again, this development

of the quantum mechanical wave functions parallels the ex-
istence of a PD bifurcation of the classical periodic orbits
that scar the (0,0g) states. A similar change ha®t been

POs. “Pure” bending states lik,6,0 in Fig. 1 do not exist observed for HOC.

for v,=11. However, this new kind of bending states does®
not extend to much higher energi€8,13,0 is the last mem-
ber of the bending progression, as seen in Fidp).2The
change of the character of the bending states is also reflected As thoroughly described for HOGIthe regular pattern

by a slight change of the frequency around 1.7 eV in Figfound for the lower polyads gradually changes as energy
2(b) corresponding taw,=11-12. The same effect occurs increases. States of the regular progressions in the middle of
also in HOCI, but at slightly higher polyads. Second, in aa polyad disappear and are replaced by states with a new
similar fashion, around®=30 the purev; overtone states kind of wave functions. This is already observed R+ 11
(0,0p3), which at these high energies basically manifest exand an example is seen in Fig. 1 for 1.193 eV, state
citation along the angular coordinate, also acquire excitatiorf0,0,12};; this state would have the expected normal assign-
in the direction ofR. An example,(0,0,30, is depicted in ment(0,4,4, which, however, is difficult to recognize from

B. Dissociation states
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FIG. 3. Contour plots of wave functions for different types of quantum 1797 and theR axis ranges from 2, to 53,. For more detalls see Fig. 1.

mechanical states as functionsPandy. The HO coordinate is integrated

over. The solid lines represent corresponding classical periodic orbits calcu- . . .
lated at comparable energies. top is even more clearly seen in Fig. 5 for polyj@d30], for

which the corresponding bending staff,15,0, does not

exist anymore, as discussed above. The states in the middle
the level of the wave function contour used in Fig. 1. Asof the [0,30] polyad could be equally well assigned as D
energy increases the wave functions of the new states gradstates or according to the normal assignment. Actually, the
ally become straighter and align along the dissociation coormissing of the pure bending states at high excitation makes
dinateR. Therefore, they have been termed dissociatldh  the very high polyads appear somehow simpler than the
states in Ref. 8. Since the D states stretch along the dissocipelyads at intermediate energies. Due to the better fulfillment
tion path, they are more anharmonic than the§@) and of the resonance condition, the D states come to existence
(0,0p3) progressiongsee Fig. 2b)] and quickly drop below much earlier for HOBr than for HOCI and therefore there are
the regular states. F&= 20 there are already three clear-cut many more such states for HOBr.
D states below th€0,10,0 bending statdFig. 4); three of The progression of D states is terminated—or
the regular states are missing for this polyé9,2, (0,8,9, interrupted—atP = 35, that is, the next states, (0,0,3&nd
and(0,7,6. The number of states per polyadP-{ 1)/2 for  (0,0,37), do not exist, at least not in the form found for the
odd P and (P+2)/2 for evenP—remains unchanged, how- lower polyads. The wave functions for states (0,0,3dhd
ever. (0,0,35), still look as expected, i.e., like (0,0,39)n Fig. 5,

The appearance of the D states corresponds to a SN hiier example. However, the lowest states for polyfdS6]
furcation in the classical phase space. However, while thand[0,37] depicted in the upper row of Fig. 6 look different.
birth of the analogous periodic classical trajectories happensheir backbones have the structure of an inverted S and
at a particular sharp energy, the development of the D-statiherefore we will call them “S states” in what follows. They
wave functions extends over a wider energy regime. As menare similar to the D states in that they also stretch along the
tioned before, the third state from the bottom of polyaddissociation path, certainly more so than thev¢M) or the
[0,12] in Fig. 1 can be either assigned @s4,4 accordingto  (0,0p3) states. However, in contrast to the D states, the S
the normal assignment at lower energies or, alternatively, astates, more precisely the backbones of their wave functions,
(0,0,12),. The same holds true for the fifth and the sixth do not exceed the linR~6a,; instead of proceeding to the
state of polyad0,20] in Fig. 4. If there were not the bending HO—Br asymptotic channel, they are deflected into the re-
state(0,10,0, the D states at the bottom of the polyad would gion of large angles.
gradually convert into the normal states at the top of the  With [0,38] the “normal” D states reappear and coexist
polyad. The smooth transformation from the bottom to thewith the S states in the same polyad, as illustrated in the
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three lowest rows of Fig. 6. For example, the states (0,8,38) states that allow the system to dissociate. In the third region,

and (0,0,38) are the lowest members of th@,38] polyad. It ~ ranging from about 2.1 toa. 2.3 eV, the general appearance

is clearly seen that the S states do not extend along the di§ecomes simpler again due to the missing of the bending

sociation path as far as the comparable D states. Because tpi@tes. The (0,0g) states at the top of a polyade gradually

S states ultimately avoid the dissociation path, they are les®utate into the D states at the bottom. Finally, due to the

anharmonic than the D statfSig. 2(b)]. As a consequence, appearance of the S states as well as the generally increasing

the density of D states is higher than the density of S stategnixing between states, the spectrum becomes more complex

Both, the D and the S states persist up to the dissociatiodgain at higher energies. This division into four energy re-

threshold and beyond; the clear nodal structure of the gions is also supported by the classical phase space structure

states, however, becomes increasingly blurred with increagnd the number of stable POs in the respective regions of the

ing energy[state (0,0,39) in Fig. 6, for examplg¢ A devel-  spectrum.

opment somehow similar to the one described for HOBr has

been found before for a two-dimensional model of HOCI, in

which the HO coordinate was fixéd.The analysis of the v1#0

classical phase space provides an explanation of the unusual The OH stretching mode is, for two reasons, to a large

behavior observed for HOBr. extent separated from the two degrees of freedom involved
In view of Fig. 2b) we can roughly divide the,=0  in the Fermi resonance. First, the potential coupling between

spectrum into four regions according to the number of pro+, on the one hand, ari@andy, on the other, is very weak.

gressions. In the first region, extending to about 1.1 eV, therSecond, the fundamental frequency is considerably larger

are only the bending and the HOBr stretching progressionghan the other two fundamental frequencies. As a result, the

and the spectrum is simple. The second region extends froolyads forv,=1 are qualitatively similar to those far;

1.1 eV to about 2.1 eV and is comparatively complicated;=0; they are merely shifted to higher energies by roughly

here, the two basic progressions are supplemented by ttike OH excitation energisee Fig. 2a) for v;=1]. For ex-

progression of D states, which rapidly move from the middleample, the birth of the D states fop =1 takes place about

of the polyad to the lower end with increasing polyad quan-4000 cmi* above the onset of the corresponding D states for

tum number. The D states continue the low-energy branch af ;=0.

the (0,0y3) states to high energies. Actually, it are the D As already discussed by Peteré8m 1:3 resonance be-

C. Polyad structure for
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corresponding POs for HOBr are depicted in Fig. 3. The
finding of POs and their continuation in energy has been
amply described in previous applicatiofts®3¢

The C/B diagram of HOBr, which is very similar to the
one for HOCP is shown in Fig. 2). Here, we plot the
frequency associated with each periodic orhit<(2#/T,
whereT is the periodl as a function of the total energy of the
systemE. This frequency, multiplied byi, can be compared
with the energy differences of adjacent overtone levels in the
quantum mechanical study depicted in Fi¢)2All classical
curves are shifted by 0.23 eV to higher energies, the quantum
mechanical zero-point energy of the HO stretching mode.
For a triatomic molecule, there are three principal families of
POs, which, in correspondence to the three normal modes,
are denoted ag], [y], and[R], respectively, because at low
energies the POs basically describe motions along the three
coordinate axes. Thig], [y], and[R] families of POs corre-
spond to the,0,0), (Ovp,,0), and (0,Q;3) progressions of
the quantum mechanical states, as illustrated in Fi¢m. 3
and 3c) for [y] and[R], respectively.

The[r] POs continue to exist up to very high energies,
far above the threshold, and they are stable for the entire
energy regime studied; they are not further discussed in what
follows. The[y] principal family of POs, in contrast, shows
a PD bifurcation[y1A], at an energy of about 1.5 elthe
zero-point energy OH being includedBeyond the[y1A]

PD, the[y] POs are singly unstable and at higher energies
become even doubly unstable. In HOCI, thg principal
family of POs exhibited an early SN bifurcation because of a
resonance with the mode. This is not found for HOBr. The
[v1A] family, born at the PD bifurcation, is initially stable,
but quickly becomes complex unstable. The POs of[ &R
family are also stable up to very high energies. They turn to
singly unstable at about 2.3 eV, giving birth to a new family
of periodic orbits with double periodR1A]. Similar to the

[y] principal family, there is no early SN bifurcation, as was
found for HOCI. The[R1A] POs are initially stable, turn to
complex unstable, and finally to doubly unstable. Examples
of [y], [¥1A], [R], and[R1A] POs are depicted in Figs(s3,
3(d), 3(c), and 3e), respectively, together with correspond-
tween t_he OH stret_ch and the bend affects the Spe?““m f%g guantum mechanical wave functions for similar energies.
v1=3, i.e,, states likey;,0,0) and ¢,—1,3,0) are mixed. 45 cjear that thg y1A] POs scar the high-overtone bending

This mixing becomes stronger and stronger with increasin%tates with 1%v,<13. Likeweise, thdR1A] POs scar the
v, since the separation between these two progressions b§ 2 | '

I ith | . It Its | ery high (0,0y ;) states. The effect of the period doubling is
comes smafler with increasing energy. ft resutts In many Ung oo when one compardsy] with [y1A] and [R] with
certain assignments at higher energies. In particular, the pu

t tat 0,0 turbed than th 1Al
overtone sta e5v(1, ,0) are more perturbe an the corre- POs that correspond to the D states in the quantum spec-
sponding states in HOCI.

trum come into existence at a first saddle-nod&N)
bifurcation®” SN1A, around 1 eV. The comparison with a
D-state wave function for a comparable energy in Figdp) 3
The correspondence between the morphology of quarclearly demonstrates the correspondence. As energy in-
tum eigenfunctions and structures of the classical phasereases, a resonance betwéemandr sets in, leading to a
space has been studied extensively in the pa&tThe foun-  structural change of the SN1A POs and the change of the
dation of the phase space structure are periodic ofBiBs, slope of the corresponding frequency cufvdowever, the
stable as well as unstable orfeS.By following the POs as dissociation-type POs are continued in a second SN bifurca-
they evolve with energy, one constructs a continuationtion, SN2A. We can see in Fig. 2 that this scenario is re-
bifurcation (C/B) diagram‘* In many applications, it has peated as energy increases. All SN frequency curves exhibit
been demonstrated that the stable POs scar the quantum nibe same qualitative pattern as the one[ R, that is, a short
chanical wave function& Examples of wave functions and branch with a relatively large anharmonicity—which appears

FIG. 6. Wave functions of a selection of S and D states in polya¢is)|
through[0,41]. The y axis ranges from 20° to 179° and tReaxis ranges
from 2.5q, to 7.58,. For more details see Fig. 1.

IV. ANALYSIS OF THE CLASSICAL PHASE SPACE
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to be the extrapolation of the low-energy segment of(fRe V. SEMICLASSICAL ANALYSIS
family—and a second branch for which the slope is very

small, approximately the same slope as for the high-energ . . _ .
part of the[R] family. ?/rom the semiclassical analysis of a Fermi resonance model,

The dissociation-type POs that scar the D states belonﬁhmh is simple enough to be integrable and therefore ame-

to the more anharmonic branches of the SNIA frequenc able to semiclassical studies, that is, one-dimensional quan-
. B{ization, but nevertheless reproduces the exact quantum spec-
curves and their general structure does not change much y

. Pmrmrklwll. nly th nergy region cl
to about SN7A. However, from the SN7A family onward um rema ably we o 'y the e ergy region close FO
. hean ..~ threshold, i.e., region four in our classification in Sec. Il is
these POs do change and acquire an “S”-type form similar ' . L .
) . . not described by the effective Hamiltonian model. Similar
to the wave functions of the S states described in Sec. Il B

. ; studies have recently been performed for HEP° DCP;
Figure 3f) shows an example for the SN9A family. Natu- and HOCT (see also Ref. )1

rally, these are the POs that correspond to the S quantum -
states. The detailed analysis of the high-energy SNiA bifurA. Resonance Hamiltonian model

cations clearly shows that the S-type POs belong to the fami-  aAg for HOCI, the Fermi resonance Hamiltonian for

lies of SNIA POs. In this sense, one can consider the S stat$oBy has the following nonvanishing matrix elements in the
as the continuation of the lower-energy D states, despite thgjirect product harmonic oscillator basis,

quite different anharmonicity.

Although a cascade of SN bifurcations similar to SN1A,
SN2A, etc. has been found for other molecul$©CPE and
HCP?28 for example, this is the first time to see that the less
anharmonic segments of the curves actually influence three- + > Vi, (1)
dimensional quantum mechanical states. The early appear- i<j<k
ance of the D states in HOBr, as compared to HOCI, leave _
more opportunity for these subtle classical effects to develoglhereni =vit+1/2, and
before the dissociation threshold is reached. (v1,02,03/H|v1,v,— 13+ 2)

At the energy of 2.35 eV, a new series of SN bifurcations
sets in, which are denoted as SN1B, SN2B, etc. in Fig). 2 = o(v3+1)(va+2)| k+ 2 kini+ > ki
(not all of them are shownThe projection of a representa- i i<]
tive PO in the R,y) plane is shown in Fig. @); its energy 2)
lies on the more-anharmonic part of the last branch depicted o
in Fig. 2(c). It looks similar to the lower-energy SNiA POs, With n1=v1+1/2, n;=v5, and ng=v3+3/2. The indices
but extends far into the dissociation channel. It is this type of-—3 have the same meaning as before in the quantum study.
POs that carries the molecule toward the HO—Br dissociatior"nn this model the OH stretch quantum number and_the polyad
channel. Their anharmonicity is higher than for the SNiA-numb(':'r are good guantum numbers for the Fermi resonance

type POs and the frequency quickly becomes smaller anEIamlltonlan, whereas they are only approximate quantum

smaller with increasing energy. This is in accord with thenumbers In an exact treatment.

. . . . The parameter®;, Xi, Viik,---» K K;,..., of Egs. (1)
corresponding quantum mechanical states, that is, the hlgrz]a_nd(Z) were adjusted so 'éhat tJhe eigenvalues and wave func-
energy branch of the D statgsig. 2(b)]. Both, the quantum ) 9

mechanical and the classical frequency curves suagest thti?ns of the Fermi resonance Hamiltonian accurately repro-
d y 99 guce those of the exact Hamiltonian. The first 592 bound

Additional insight into the dynamics of HOBr comes

<U11U2103|H|U1102av3>:2 wini+i2<j Xijnin;

ininj+ee ],

) , it, that is, all states up to more than 95%
POs, respectively. The present study as well as previous ongg yho gissociation threshold. These states include up to 30
fqr gther tnatqmlc molecules, for which we have carried Othuanta in the OB stretching degree of freedom. With a set of
similarly detailed analyse¥, lead us to conclude that the 28 parameter® the exact energies of these 592 states are
appearance of a cascade of SN bifurcations, as the diSSOCiPe'produced with a root mean square error of 7.66 tand a
tion (or isomerizatioh limit is approached, is @ common mayimum error of 41.9 cit. The largest errors are system-
effect. atically observed for states with large values of bethand

The classical PO examination explains most of thevzl which indicates that some small—but systematic—
changes in the quantum mechanical spectrum. For examplggypling between the OH stretch and the bend is active in the
the change of the bending statesu()0) aroundv,=11isa real Hamiltonian, which, however, is not taken into account
consequence of the PD bifurcation of thg] POs and the py the Fermi resonance Hamiltonian. Except for the apparent
“following” of the quantum wave functions th¢ylA] POs.  symmetry in theg, coordinate, caused by the approximate
Shortly after the PD bifurcation theylA] POs become un-  linear relationship between Jacobi and normal coordinates,
stable and, accordingly, the pure bending wave functionshe semiclassical wave functions compare well with the exact
cease to exist. Likewise, the interruption of the D-state proones. The wave functions for the 16 states belonging to
gression close to the threshold, the appearance of the @olyad[v,,P]=[0,30] can be obtained electronicalfyand
states, and the re-emerging of the D states parallels the cassmpared with the exact wave functions for the same polyad
cades of SNIA and SNiB periodic orbits. in Fig. 5.
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FIG. 7. Energies of the periodic orbits, obtained from the effective Hamil- § 0
tonian, as functions of the polyad numirfor v,=0. In the small insert, B 20 (@ 3
the energies are plotted relative to the quantum mechanical ground state. In 4/ |
the main figure, the energies are plotted relative to the energy of the pure :[D] ]
bending periodic orbit[y]. The heavy dots marked SN1, SN2, and PD B[ i
indicate the two saddle-node and the period-doubling bifurcations, respec- -8 = . ‘ . ' : L : —=
tively. Stable periodic orbits are indicated by the solid lines, while unstable 17200 17600 18000 18400 18800
periodic orbits are represented by the dashed curves. The vertically arranged energy E above the minimum (cm™")
small dots forP=30 indicate the quantum mechanical energy levels. See
the text for more details. FIG. 8. The action integral” as a function of the absolute energyfor

polyads[v,,P]=[0,7], [0,14], and[0,30]. The vertical lines indicate the
energies of the various periodic orbits. The quantum mechanical states be-

B. Periodic orbits and one-dimensional quantization longing to the normal and the new progression are indicated by the filled
) circles and the open diamonds, respectively. Note, that the horizontal energy

As in the analysis of the exact classical phase space, Seggeale for polyad$=7 andP=14 is expanded twice compared fo=30.
IV, the POs in the subspace4, ps,0d2,qs) of the dimension-
less coordinates, coupled by the Fermi resonance, are the key
for understanding the quantum spectrum of the resonanaerrespond to motion along the HOBr bergd) and the OBr
Hamiltonian. Once the classical constants of motion associstretch ;) coordinate, respectively. Periodic orbits that de-
ated with the good quantum numbarg and P have been scribe motion along the dissociation coordingteand that
guantized according to the Einstein—Brillouin—Kell&BK) correspond to the D states are born at the first SN bifurcation,
quantization rulefsee Eq(10) of Ref. 7], these POs are very SN1, atP=7.4 corresponding t&=4360cm ! above the
easily found as the fixed points of the one-dimensional clasguantum mechanical ground state; the families of stable and
sical counterpart of the Fermi resonance Hamiltodidn.  unstable POs are terméB] and[D*], respectively. Th¢D]
comparison to the exact classical approach, the semiclassidaD becomes the lower limit of the accessible phase space
analysis has the fundamental advantage that the POs are dgoundP~ 14 and eventually it scars the states located at the
termined for a particular polyafv,,P] instead of just en- bottom of the polyads. The net result of the migration of the
ergy. Consequently, in a semiclassical continuation{D] PO toward the low-energy end of the polyad and the
bifurcation diagram, the energies of the POs are plotted as @eformation of thgR] PO is that, starting withiP=15, the
function of P for a particular value ob,. Such a semiclas- states with a predominant bend character lie at the top of the
sical C/B diagram is shown in Fig. 7 far;=0. Because of polyad while those with predominant stretch character have
the resonance condition,=2w5, the energies of the POs dropped to the bottom of the polyddee Figs. 4 and)5
associated with a particular polyad, ,P] are almost degen- For the semiclassical quantization the plot of the action
erate(see the small insert in Fig.).7For a clearer represen- integral .7 as a function of energf is important Each
tation, the energies of the POs are therefore plotted witlyjuantum state is associated, through the EBK quantization
respect to the energy of the pure bend PO in the main part atiles, to a trajectory with a half-integer value of. Ex-
Fig. 7. It is emphasized that the energies of the quantunamples for three different polyads are depicted in Fig. 8. For
states belonging to a given polyad always lie between théow values ofP, for exampleP=7, there is only a single
energies of the two outermost stable POs. This is illustratetiranch, that is denoted k). The quantizing trajectories—
in Fig. 7, where the energies of the 16 states belonging tand therefore the quantum states—are indicated by the black
polyad[v,,P]=[0,30] appear as a stack of filled dots. dots in Fig. 8.

The C/B diagram in Fig. 7 is different from the one At the SN1 bifurcation the brandt®) of the action inte-
depicted in Fig. &) in that it shows the real energies of the gral splits into two branchesa) and(b), and a third one(c),
POs rather than frequencies. Nevertheless, the generic struppears, which extends between the energies ofDhend
ture is very similar, except for very high polyads. For smallthe [D*] POs(seeP=14 in Fig. 8. The two branchesa)
values of P one finds two stable PO$y| and[R], which  and(b) still support quantum states belonging to the normal
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progression characteristic for the low-energy region. How-More precisely, in the energy range investigated with
ever, one state of this progression disappears each time tlige Fermi resonance Hamiltonian, the SN1 bifurcation oc-
energy gap between the two branches becomes sufficientturs at P=7.4 (E=4360cm !), P=8.4(E=8540cm 1),
wide to encompass an additional half-integer value/af P=8.7(E=12160cm?), and P=10.0 E=16173cm?)
Each state disappearing from the normal progression iforv;=0, 1, 2, and 3, respectively, while the PD bifurcation
replaced by a member of the new progression of the dissasccurs at P=15.8 E=8800cm?) and P=20.7E
ciation states D. The D states are supported by braoch =14660cmt) for v,=0 and 1, respectively.
born at the SN1 bifurcation. One additional dissociation state
appears in the quantum spectrum each time braoctvid-
ens sufficiently to encompass an additional half-integer valugl' SUMMARY
of .7. (1) We have calculated all the bound states of HOBr
As already discussed in the quantum mechanical parusing a recently calculated potential energy surface and the
the spectrum becomes simpler again aroéd24. Within  filter diagonalization technique. All wave functions have
the resonance Hamiltonian model the reason for this phebeen visually inspected and assigned when possible. Many of
nomenon is that—as the consequence of two additionahe states, even close to the dissociation threshold, can be
bifurcations—the bending PO, which is located betwgeh  unambiguously assigned in terms of three quantum numbers.
and[D], is destroyed. More precisely, for;=0, HOBr un-  The results are qualitatively compared to HOCI.
dergoes a PD bifurcation aP=15.8, or E=8800cm! (2) Like for HOCI, the spectrum for HOBr is dominated
above the quantum mechanical ground state. Here, the pulsy a 1:2 anharmonic resonance that leads to an organization
bend PJ y] becomes unstablgy*]) while the PO created at in terms of polyadqv,,P]. At low energies, the bending
the PD bifurcation remains stab{g2y]), respectively. How- states are at the bottom of the polyads, whereas the HO-Br
ever, the PD bifurcation is very rapidly followed, &  stretching states are localized at the top. Due to the reso-
=21.4, orE=11600cm?, by a second SN bifurcation, nance the HO—Br stretching states acquire more and more
SN2, where the unstable HO*] and the stable P@vy] are  bending character as energy increases.
simultaneously destroyed. For polyads wii® 22, the ac- (3) States, which advance along the HO-Br reaction
cessible classical phase space therefore extends between tragh, called D states, come into existence at relatively low
[D] and the[R] stable POs, with the unstall¢* ] PO play- energies, much earlier than in HOCI. They are born in a
ing the role of the separatrix between the two types of mosaddle-node bifurcation. The D states are the continuation of
tion. Moreover, branclib) disappears in the action integral the low-energy O—Br stretching states to high energies.
J7(E) at the bifurcation SN2. Consequently, fBe=22, all (4) Close to the threshold another kind of states appear,
the members of the new progression are located by  which also penetrate far into the dissociation channel; be-
on the (c) branch, while all the surviving members of the cause of their shape, they are termed S states. In contrast to
normal progression are located abdyé&] on the(a) branch  the D states, the S states are deflected away from the disso-
(see the semiclassical wave functions =30, Ref. 32. ciation channel at large HO—Br distances and therefore ex-
The facts that, first, only two stable POs remain for scaringhibit a considerably smaller anharmonicity than the D states.
wave functions and, second, members of the normal and thEhey correspond to the less anharmonic branches of the
new progressions can no longer be interwoven, explain whyigh-energy SNiA bifurcations.
the high-energy polyads witR=22 appear simpler than the (5) The coexistence of the “regular” states characteris-
polyads at intermediate energies. tic for lower energies and the D states and the interleaving of
Comparing the semiclassical results with the classicathese two types of states leads to a rather complicated pattern
ones, the following observations are madgThere is agree-  Of the intrapolyad spectrum, just as for HOCI. However, the
ment for the saddle node bifurcatiofdenoted by SN1A in intrapolyad structure becomes simpler at high energies, be-
the classical analysis and by SN1 in the semiclassical treagause the bending states disappear. This is different from
mend as well as for the energies of the PD bifurcations forHOCI.
the bending motion(ii) The effective Hamiltonian repro- (6) The general evolution of the quantum mechanical
duces only the first classical SN bifurcation, SN1A, and thestates from low to high energies can be well explained in
principal high-slope branches of the successive SNiA bifurterms of the structure of the classical phase space, i.e., the
Cations; the SNiAs with>1 are due to resonances betweenvarious families of periOdiC orbits and the different types of
v and r, which are not taken into account in the effective saddle-node and periOd'dOUbling bifurcations. Additional in-
Hamiltonian. (iii ) The SN2 bifurcation, which does not ap- sight is obtained by the semiclassical analysis of an effective
pear in the classical CB diagram, probably corresponds t5|amiltoniar_1 fitted to the quantum mechanical energies and
the energy where the classical bend PO becomes doubly uM@ve functions.
stable. The R1A PD bifurcation in the classical treatment and
the occurrence of the S states is not desc_rlbed by the SeMkKNOWLEDGMENTS
classical description; they occur at energies not taken into
account in defining the effective Hamiltonian. Two of the authorgT.A. and R.S. gratefully acknowl-
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