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The bound state spectrum of HOBr up to the dissociation limit:
Evolution of saddle-node bifurcations

Tarek Azzam and Reinhard Schinkea)
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Based on an accurate potential energy surface@J. Chem. Phys.113, 4598~2000!# we calculatedca.
700 bound state energies and wave functions of nonrotating HOBr using the filter-diagonalization
method. Similar to HOCl, a 1:2 anharmonic resonance between the HOBr bending and the OBr
stretching mode determines the general structure of the level spectrum. One of the results of this
resonance is a saddle-node bifurcation at which a new class of states~‘‘dissociation states’’! comes
into existence, which advance along the HO–Br dissociation path. Because the resonance condition
at low energies is better fulfilled for HOBr, the bifurcation occurs at considerably lower energies
than for HOCl. The results of the quantum mechanical calculations are interpreted in terms of
classical periodic orbits~continuation/bifurcation diagram! and a semiclassical analysis based on a
spectroscopic Hamiltonian, which is fitted to the exact energy levels and also taking into account the
wave functions. ©2003 American Institute of Physics.@DOI: 10.1063/1.1569914#
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I. INTRODUCTION

In recent years, the vibrational spectra of several
atomic molecules have been investigated in great detai
quantum mechanical, classical, and semiclassical metho1

The vibrational energies and wave functions from the bott
of the potential well up to very high energies, in seve
cases even above the dissociation threshold, have been
lyzed. Examples are HCP2,3 and DCP,4 HCO5 and DCO,6 and
HOCl.7,8 Such systematic studies reveal the evolution of
spectrum with energy and the development of special
tures like bifurcations, for example. The analysis of the cl
sical phase space in terms of periodic orbits~PO!9,10 and
continuation/bifurcation~C/B! diagrams11 has been very
helpful in understanding the quantum mechanical spectr12

In many cases, additional insight has been obtained from
semiclassical investigation of approximate, yet accur
spectroscopic Hamiltonians.7,13–15 Knowledge of the struc-
ture of the spectrum, and especially the shape of the co
sponding wave functions, at energies close to the disso
tion limit is also important for understanding the lifetime
resonance states in the continuum.16–19

The bound-state spectrum of HOCl has been thoroug
studied. Accurate potential energy surfaces~PES! have been
constructed8,20–22 and all bound state energies and wa
functions have been calculated and assigned, when

a!Electronic mail: rschink@gwdg.de
9640021-9606/2003/118(21)/9643/10/$20.00
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possible.7,8 Classical and semiclassical analyses have a
been performed.7,8,23The key feature of HOCl is a 1:2 Ferm
~anharmonic! resonance between the HOCl bending and
OCl stretching coordinate. The resonance is only appro
mately fulfilled at low energies, but becomes more and m
valid with increasing energy. As a consequence, a sad
node~SN! bifurcation exists at relatively high energies, th
is, a new family of quantum mechanical states appe
which does not exist at low energies. The OH stretch
mode is only weakly coupled to the other two degrees
freedom.

Hypobromous acid, HOBr, is very similar to HOCl, ex
cept that the mass of the dissociating atom, Br, is appro
mately 2.25 times heavier than Cl. The difference of t
reduced mass associated with the dissociation coordinate
lead, together with a slightly different PES, to a variation
the frequency ratios and therefore to a different resona
pattern in the spectrum of vibrational states. Although
HOBr spectrum is very similar to the spectrum of HOC
there are some interesting changes, which will be highligh
in the present article.

The present study is based on the calculated PES
Peterson.24 Peterson also calculated the vibrational energ
up to the dissociation threshold. However, a detailed an
sis, especially of the various bifurcations and the types
wave functions existing in the high-energy regime, has
been undertaken. This is the topic of the present study.
article is organized in the following way: The computation
3 © 2003 American Institute of Physics
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details of the quantum mechanical calculations are descr
in Sec. II. Subsequently, the quantum mechanical spectru
described in a more phenomenological way in Sec. III a
the main observations are explained in terms of the struc
of the classical phase space in Sec. IV. The semiclass
analysis of a spectroscopic Hamiltonian fit to the quant
mechanical spectrum provides additional insight and is
scribed in Sec. V. Finally, a brief summary closes this arti
in Sec. VI.

II. COMPUTATIONAL DETAILS

Except if otherwise noted, energies~in eV! are quoted
with respect to the global minimum of the PES. The calc
lations are similar to those for HOCl8 and only differ in the
parameters of the three-dimensional grid. The usual Ja
coordinatesR, r, andg appropriate for HO–Br are employed
The bound states are calculated by the filter diagonaliza
~FD! technique, as developed by Neuhauser, Taylor,
Mandelshtam.25–27All in all, a total of 708 bound states ha
been calculated with 20 energy windows. While the lowe
energy window was chosen to have a width of 1 eV,
highest-energy window covered a region of only 0.02 eV

The wave functions are represented on a discr
variable-representation~DVR! grid.28 For the highest-energy
windows theR grid is chosen to extend from 2.5a0 to 10.0a0

with 225 potential-optimized points.29 As for HOCl8 70
Gauss–Legendre quadrature points30 are found sufficient for
the angular grid, whereg ranges from 0° to 180°. The choic
of the r grid is more intricate. An inspection of the minima
energy path of the potential alongr reveals a second sma
potential well that extends from 3.3a0 to 7.5a0 with a mini-
mum at 2.658 eV~with respect to the HOBr minimum! for
r 54.86a0 . It corresponds to the HBrO isomer. Test calcu
tions have shown that it is necessary to include this m
mum on the grid, especially for the high overtone states
the OH stretching coordinate, and therefore the grid inr is
chosen to extend from 1a0 to 7.5a0 with 74 potential-
optimized points. As a consequence, the three-dimensi
grid is very large. Apart from the lowest-energy window
which had a smaller range inR than reported above
(2.5a0– 6a0), there areN51 165 500 grid points. Eliminat-
ing all points from the grid, which have a potential ener
higher thanVcut54.4 eV, reduces the grid toN5323 435.
Convergence in the highest-energy window requires 210
Chebychev iterations.

The vibrational energies calculated in this study ag
very well with those calculated by Peterson using
truncation/recoupling technique.24 The differences are of the
order of only few tenths of a cm21 for the low and the me-
dium energy range and generally of the order of one cm21

for the highest bound states.

III. PHENOMENOLOGICAL DESCRIPTION
OF THE QUANTUM MECHANICAL SPECTRUM

The dissociation energy for HOBr isD0517 210 cm21

~Ref. 24, Table III!, slightly smaller than that for HOCl
which is D0519 290 cm21 ~Ref. 31!. As a consequence
there are—despite the heavier mass of Br—slightly l
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bound states~708! than for HOCl ~827!. All of the 708
bound states have been visually inspected and about 65
them could be reasonably assigned in the same way as
oughly discussed by Weißet al.8 for HOCl. A list of all
bound states and assignments are published electronica32

A few assignments differ from theca. 90 assignments previ
ously given by Peterson.24 In what follows,v1 , v2 , andv3

are the HO stretching, the bending, and the OBr stretch
quantum numbers, respectively. The OH stretching mod
rather weakly coupled to the other two modes. It is theref
possible to consider the spectra for individual values ofv1

separately. We begin with the spectrum forv150 and make
a few comments forv1Þ0 at the end of this section.

A. The bending and the HO–Br stretching progression

The calculated transition energies for the fundamen
are 3615.0, 1162.8, and 620.2 cm21. Similar to HOCl, the
OBr stretching and the bending modes form a 1:2 anh
monic resonance, with twice the stretching frequency be
approximately equal to the bending frequency. The misma
is merely 78 cm21, as compared to 206 cm21 for HOCl.8 As
a consequence of the resonance, for a given value ofv1 the
eigenenergies can be grouped into polyads@v1 ,P#, with P
52v21v3 being the polyad number. Since 2v3 is greater
thanv2 , at low energies the states of the fast mode,g, are
located at the bottom of the polyad and the states of the s
mode,R, are at the top.

Changes in the structure of polyads and the wave fu
tions are caused by the 1:2 anharmonic resonance. At
energies, polyads are compact and well separated. Bec
of the better fulfillment of the resonance condition for HO
as compared to HOCl, the energy gap between the low
and the highest state in a polyad is smaller for HOBr. Ne
ertheless, with increasing energy the polyads become w
in energy and fromP519 onward polyads withv150 over-
lap.

Figure 1, depicting all wave functions of polyad@0,12#,
illustrates the low-energy behavior of the wave function
The relatively strong curvature for the wave function of sta
~0,0,12! clearly manifests the 1:2 resonance. At very lo
energies, the (0,0,v3) states more or less are aligned alo
the dissociation coordinateR. However, due to the resonanc
with the bending states, they acquire increasingly more be
ing character and thereby avoid the dissociation path, as
ready clearly seen in Fig. 1. As a consequence, the frequ
cies, i.e., the energy differences between neighboring sta
for the (0,v2,0) and (0,0,v3) progressions become almo
identical for P'7 – 8 as seen in Fig. 2~b!. Sincev2 is in
closer resonance to 2v3 for HOBr, the curvature of the
(0,0,v3) wave functions is larger—for the same polyad—f
HOBr than for HOCl.

At higher energies there are two additional developme
of the bending and stretching progressions worth menti
ing. First, starting withv2511, the pure bending overton
states (0,v2,0) develop a node along theR coordinate and
appear more like (0,v2,1). One example,~0,12,0!, is de-
picted in Fig. 3~d!. In view of the classical periodic orbi
analysis in Sect. IV, this behavior is the consequence o
period-doubling~PD! bifurcation for the family of bending
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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9645J. Chem. Phys., Vol. 118, No. 21, 1 June 2003 Bound state spectrum of HOBr
POs. ‘‘Pure’’ bending states like~0,6,0! in Fig. 1 do not exist
for v2>11. However, this new kind of bending states do
not extend to much higher energies.~0,13,0! is the last mem-
ber of the bending progression, as seen in Fig. 2~b!. The
change of the character of the bending states is also refle
by a slight change of the frequency around 1.7 eV in F
2~b! corresponding tov2511– 12. The same effect occu
also in HOCl, but at slightly higher polyads. Second, in
similar fashion, aroundP530 the purev3 overtone states
(0,0,v3), which at these high energies basically manifest
citation along the angular coordinate, also acquire excita
in the direction ofR. An example,~0,0,30!, is depicted in

FIG. 1. Wave functions for polyadP512. Theg axis ranges from 0° to
179° and theR axis ranges from 2.5a0 to 5a0 . All wave function plots
depicted in this article, if not stated otherwise, have been obtained fro
plotting routine, which allows us to rotate 3-D objects in space. Show
one particular contoure(R,r ,g)5singuC(R,r,gu2, with the value ofe being
the same in one figure. The plots are viewed along ther axis, in the direction
perpendicular to the plane spanned byR andg. Shading emphasizes the 3-
character of the wave functions.
Downloaded 16 May 2003 to 152.77.252.195. Redistribution subject to A
s

ted
.

-
n

Fig. 3~e!. Note the very different angular behavior of th
states shown in Figs. 3~d! and 3~e!. Again, this developmen
of the quantum mechanical wave functions parallels the
istence of a PD bifurcation of the classical periodic orb
that scar the (0,0,v3) states. A similar change hasnot been
observed for HOCl.

B. Dissociation states

As thoroughly described for HOCl,8 the regular pattern
found for the lower polyads gradually changes as ene
increases. States of the regular progressions in the midd
a polyad disappear and are replaced by states with a
kind of wave functions. This is already observed forP511
and an example is seen in Fig. 1 for 1.193 eV, st
(0,0,12)D ; this state would have the expected normal assi
ment ~0,4,4!, which, however, is difficult to recognize from

a
is

FIG. 2. ~a! Energy differences between neighboring states of the pure
gressions (1,0,v3) ~filled circles!, (1,v2,0) ~open circles!, and (1,0,v3)D

~open triangles! as functions of energy. The transition frequencies of t
bending progression are divided by two.~b! The same as in~a!, but for v1

50. The filled triangles are for the S states.~c! Frequencies of the classica
periodic orbits belonging to various families as indicated. The frequencie
the @g#-type POs are divided by two, whereas the frequencies of the@R1A#
family are multiplied by two. The classical frequencies are shifted by 0
eV, the zero-point energy of thev1 mode, to higher energies. See the text f
more details. Note, that the vertical scale in~a! is different from the vertical
scales in~b! and ~c!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the level of the wave function contour used in Fig. 1.
energy increases the wave functions of the new states gr
ally become straighter and align along the dissociation co
dinateR. Therefore, they have been termed dissociation~D!
states in Ref. 8. Since the D states stretch along the diss
tion path, they are more anharmonic than the (0,v2,0) and
(0,0,v3) progressions@see Fig. 2~b!# and quickly drop below
the regular states. ForP520 there are already three clear-c
D states below the~0,10,0! bending state~Fig. 4!; three of
the regular states are missing for this polyad:~0,9,2!, ~0,8,4!,
and ~0,7,6!. The number of states per polyad—(P11)/2 for
odd P and (P12)/2 for evenP—remains unchanged, how
ever.

The appearance of the D states corresponds to a SN
furcation in the classical phase space. However, while
birth of the analogous periodic classical trajectories happ
at a particular sharp energy, the development of the D-s
wave functions extends over a wider energy regime. As m
tioned before, the third state from the bottom of poly
@0,12# in Fig. 1 can be either assigned as~0,4,4! according to
the normal assignment at lower energies or, alternatively
(0,0,12)D . The same holds true for the fifth and the six
state of polyad@0,20# in Fig. 4. If there were not the bendin
state~0,10,0!, the D states at the bottom of the polyad wou
gradually convert into the normal states at the top of
polyad. The smooth transformation from the bottom to

FIG. 3. Contour plots of wave functions for different types of quantu
mechanical states as functions ofR andg. The HO coordinater is integrated
over. The solid lines represent corresponding classical periodic orbits c
lated at comparable energies.
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top is even more clearly seen in Fig. 5 for polyad@0,30#, for
which the corresponding bending state,~0,15,0!, does not
exist anymore, as discussed above. The states in the m
of the @0,30# polyad could be equally well assigned as
states or according to the normal assignment. Actually,
missing of the pure bending states at high excitation ma
the very high polyads appear somehow simpler than
polyads at intermediate energies. Due to the better fulfillm
of the resonance condition, the D states come to existe
much earlier for HOBr than for HOCl and therefore there a
many more such states for HOBr.

The progression of D states is terminated—
interrupted—atP535, that is, the next states, (0,0,36)D and
(0,0,37)D , do not exist, at least not in the form found for th
lower polyads. The wave functions for states (0,0,34)D and
(0,0,35)D still look as expected, i.e., like (0,0,30)D in Fig. 5,
for example. However, the lowest states for polyads@0,36#
and@0,37# depicted in the upper row of Fig. 6 look differen
Their backbones have the structure of an inverted S
therefore we will call them ‘‘S states’’ in what follows. The
are similar to the D states in that they also stretch along
dissociation path, certainly more so than the (0,v2,0) or the
(0,0,v3) states. However, in contrast to the D states, the
states, more precisely the backbones of their wave functi
do not exceed the lineR'6a0 ; instead of proceeding to th
HO–Br asymptotic channel, they are deflected into the
gion of large angles.

With @0,38# the ‘‘normal’’ D states reappear and coexi
with the S states in the same polyad, as illustrated in

u-

FIG. 4. Wave functions for polyadP520. Theg axis ranges from 20° to
179° and theR axis ranges from 2.5a0 to 5a0 . For more details see Fig. 1
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FIG. 5. Wave functions for polyad
P530. The ~vertical! g axis ranges
from 20° to 179° and the~horizontal!
R axis ranges from 2.5a0 to 5.5a0 . For
more details see Fig. 1.
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three lowest rows of Fig. 6. For example, the states (0,0,3D

and (0,0,38)S are the lowest members of the@0,38# polyad. It
is clearly seen that the S states do not extend along the
sociation path as far as the comparable D states. Becaus
S states ultimately avoid the dissociation path, they are
anharmonic than the D states@Fig. 2~b!#. As a consequence
the density of D states is higher than the density of S sta
Both, the D and the S states persist up to the dissocia
threshold and beyond; the clear nodal structure of the
states, however, becomes increasingly blurred with incre
ing energy@state (0,0,39)S in Fig. 6, for example#. A devel-
opment somehow similar to the one described for HOBr
been found before for a two-dimensional model of HOCl,
which the HO coordinate was fixed.23 The analysis of the
classical phase space provides an explanation of the unu
behavior observed for HOBr.

In view of Fig. 2~b! we can roughly divide thev150
spectrum into four regions according to the number of p
gressions. In the first region, extending to about 1.1 eV, th
are only the bending and the HOBr stretching progressio
and the spectrum is simple. The second region extends f
1.1 eV to about 2.1 eV and is comparatively complicat
here, the two basic progressions are supplemented by
progression of D states, which rapidly move from the mid
of the polyad to the lower end with increasing polyad qua
tum number. The D states continue the low-energy branc
the (0,0,v3) states to high energies. Actually, it are the
Downloaded 16 May 2003 to 152.77.252.195. Redistribution subject to A
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states that allow the system to dissociate. In the third reg
ranging from about 2.1 toca. 2.3 eV, the general appearanc
becomes simpler again due to the missing of the bend
states. The (0,0,v3) states at the top of a polyade gradua
mutate into the D states at the bottom. Finally, due to
appearance of the S states as well as the generally increa
mixing between states, the spectrum becomes more com
again at higher energies. This division into four energy
gions is also supported by the classical phase space stru
and the number of stable POs in the respective regions o
spectrum.

C. Polyad structure for v 1Å0

The OH stretching mode is, for two reasons, to a la
extent separated from the two degrees of freedom invol
in the Fermi resonance. First, the potential coupling betw
r, on the one hand, andR andg, on the other, is very weak.24

Second, the fundamental frequency is considerably la
than the other two fundamental frequencies. As a result,
polyads forv1>1 are qualitatively similar to those forv1

50; they are merely shifted to higher energies by roug
the OH excitation energy@see Fig. 2~a! for v151]. For ex-
ample, the birth of the D states forv151 takes place abou
4000 cm21 above the onset of the corresponding D states
v150.

As already discussed by Peterson,24 a 1:3 resonance be
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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9648 J. Chem. Phys., Vol. 118, No. 21, 1 June 2003 Azzam et al.
tween the OH stretch and the bend affects the spectrum
v1>3, i.e., states like (v1,0,0) and (v121,3,0) are mixed.
This mixing becomes stronger and stronger with increas
v1 since the separation between these two progressions
comes smaller with increasing energy. It results in many
certain assignments at higher energies. In particular, the
overtone states (v1,0,0) are more perturbed than the corr
sponding states in HOCl.

IV. ANALYSIS OF THE CLASSICAL PHASE SPACE

The correspondence between the morphology of qu
tum eigenfunctions and structures of the classical ph
space has been studied extensively in the past.1,2,12The foun-
dation of the phase space structure are periodic orbits~POs!,
stable as well as unstable ones.9,33 By following the POs as
they evolve with energy, one constructs a continuati
bifurcation ~C/B! diagram.11 In many applications, it has
been demonstrated that the stable POs scar the quantum
chanical wave functions.34 Examples of wave functions an

FIG. 6. Wave functions of a selection of S and D states in polyads@0,36#
through@0,41#. The g axis ranges from 20° to 179° and theR axis ranges
from 2.5a0 to 7.5a0 . For more details see Fig. 1.
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corresponding POs for HOBr are depicted in Fig. 3. T
finding of POs and their continuation in energy has be
amply described in previous applications.11,35,36

The C/B diagram of HOBr, which is very similar to th
one for HOCl,8 is shown in Fig. 2~c!. Here, we plot the
frequency associated with each periodic orbit (v52p/T,
whereT is the period! as a function of the total energy of th
system,E. This frequency, multiplied by\, can be compared
with the energy differences of adjacent overtone levels in
quantum mechanical study depicted in Fig. 2~b!. All classical
curves are shifted by 0.23 eV to higher energies, the quan
mechanical zero-point energy of the HO stretching mo
For a triatomic molecule, there are three principal families
POs, which, in correspondence to the three normal mo
are denoted as@r#, @g#, and@R#, respectively, because at low
energies the POs basically describe motions along the t
coordinate axes. The@r#, @g#, and@R# families of POs corre-
spond to the (v1,0,0), (0,v2,0), and (0,0,v3) progressions of
the quantum mechanical states, as illustrated in Figs.~a!
and 3~c! for @g# and @R#, respectively.

The @r# POs continue to exist up to very high energie
far above the threshold, and they are stable for the en
energy regime studied; they are not further discussed in w
follows. The@g# principal family of POs, in contrast, show
a PD bifurcation,@g1A#, at an energy of about 1.5 eV~the
zero-point energy OH being included!. Beyond the@g1A#
PD, the@g# POs are singly unstable and at higher energ
become even doubly unstable. In HOCl, the@g# principal
family of POs exhibited an early SN bifurcation because o
resonance with ther mode. This is not found for HOBr. The
@g1A# family, born at the PD bifurcation, is initially stable
but quickly becomes complex unstable. The POs of the@R#
family are also stable up to very high energies. They turn
singly unstable at about 2.3 eV, giving birth to a new fam
of periodic orbits with double period,@R1A#. Similar to the
@g# principal family, there is no early SN bifurcation, as w
found for HOCl. The@R1A# POs are initially stable, turn to
complex unstable, and finally to doubly unstable. Examp
of @g#, @g1A#, @R#, and@R1A# POs are depicted in Figs. 3~a!,
3~d!, 3~c!, and 3~e!, respectively, together with correspon
ing quantum mechanical wave functions for similar energi
It is clear that the@g1A# POs scar the high-overtone bendin
states with 11<v2<13. Likeweise, the@R1A# POs scar the
very high (0,0,v3) states. The effect of the period doubling
clear, when one compares@g# with @g1A# and @R# with
@R1A#.

POs that correspond to the D states in the quantum s
trum come into existence at a first saddle-node~SN!
bifurcation,37 SN1A, around 1 eV. The comparison with
D-state wave function for a comparable energy in Fig. 3~b!
clearly demonstrates the correspondence. As energy
creases, a resonance betweenR and r sets in, leading to a
structural change of the SN1A POs and the change of
slope of the corresponding frequency curve.8 However, the
dissociation-type POs are continued in a second SN bifu
tion, SN2A. We can see in Fig. 2 that this scenario is
peated as energy increases. All SN frequency curves ex
the same qualitative pattern as the one for@R#, that is, a short
branch with a relatively large anharmonicity—which appe
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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to be the extrapolation of the low-energy segment of the@R#
family—and a second branch for which the slope is ve
small, approximately the same slope as for the high-ene
part of the@R# family.

The dissociation-type POs that scar the D states be
to the more anharmonic branches of the SNiA freque
curves and their general structure does not change muc
to about SN7A. However, from the SN7A family onwa
these POs do change and acquire an ‘‘S’’-type form sim
to the wave functions of the S states described in Sec. II
Figure 3~f! shows an example for the SN9A family. Natu
rally, these are the POs that correspond to the S quan
states. The detailed analysis of the high-energy SNiA bi
cations clearly shows that the S-type POs belong to the fa
lies of SNiA POs. In this sense, one can consider the S st
as the continuation of the lower-energy D states, despite
quite different anharmonicity.

Although a cascade of SN bifurcations similar to SN1
SN2A, etc. has been found for other molecules~HOCl8 and
HCP,38 for example!, this is the first time to see that the le
anharmonic segments of the curves actually influence th
dimensional quantum mechanical states. The early app
ance of the D states in HOBr, as compared to HOCl, lea
more opportunity for these subtle classical effects to deve
before the dissociation threshold is reached.

At the energy of 2.35 eV, a new series of SN bifurcatio
sets in, which are denoted as SN1B, SN2B, etc. in Fig. 2~c!
~not all of them are shown!. The projection of a representa
tive PO in the (R,g) plane is shown in Fig. 3~g!; its energy
lies on the more-anharmonic part of the last branch depic
in Fig. 2~c!. It looks similar to the lower-energy SNiA POs
but extends far into the dissociation channel. It is this type
POs that carries the molecule toward the HO–Br dissocia
channel. Their anharmonicity is higher than for the SNi
type POs and the frequency quickly becomes smaller
smaller with increasing energy. This is in accord with t
corresponding quantum mechanical states, that is, the h
energy branch of the D states@Fig. 2~b!#. Both, the quantum
mechanical and the classical frequency curves suggest
the high-energy D states and the SNiB POs are the cont
ation of the low-energy D states and the low-energy SN
POs, respectively. The present study as well as previous
for other triatomic molecules, for which we have carried o
similarly detailed analyses,39 lead us to conclude that th
appearance of a cascade of SN bifurcations, as the diss
tion ~or isomerization! limit is approached, is a commo
effect.

The classical PO examination explains most of
changes in the quantum mechanical spectrum. For exam
the change of the bending states (0,v2,0) aroundv2511 is a
consequence of the PD bifurcation of the@g# POs and the
‘‘following’’ of the quantum wave functions the@g1A# POs.
Shortly after the PD bifurcation the@g1A# POs become un
stable and, accordingly, the pure bending wave functi
cease to exist. Likewise, the interruption of the D-state p
gression close to the threshold, the appearance of th
states, and the re-emerging of the D states parallels the
cades of SNiA and SNiB periodic orbits.
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V. SEMICLASSICAL ANALYSIS

Additional insight into the dynamics of HOBr come
from the semiclassical analysis of a Fermi resonance mo
which is simple enough to be integrable and therefore a
nable to semiclassical studies, that is, one-dimensional q
tization, but nevertheless reproduces the exact quantum s
trum remarkably well. Only the energy region close
threshold, i.e., region four in our classification in Sec. III
not described by the effective Hamiltonian model. Simi
studies have recently been performed for HCP,2,13,40 DCP,4

and HOCl7 ~see also Ref. 1!.

A. Resonance Hamiltonian model

As for HOCl, the Fermi resonance Hamiltonian fo
HOBr has the following nonvanishing matrix elements in t
~direct product! harmonic oscillator basis,

^v1 ,v2 ,v3uHuv1 ,v2 ,v3&5(
i

v ini1(
i< j

xi j ninj

1 (
i< j <k

yi jkninjnk1¯ , ~1!

whereni5v i11/2, and

^v1 ,v2 ,v3uHuv1 ,v221,v312&

5Av2~v311!~v312!S k1(
i

kini1(
i< j

ki j ninj1¯ D ,

~2!

with n15v111/2, n25v2 , and n35v313/2. The indices
1–3 have the same meaning as before in the quantum s
In this model the OH stretch quantum number and the pol
number are good quantum numbers for the Fermi resona
Hamiltonian, whereas they are only approximate quant
numbers in an exact treatment.

The parametersv i , xi j , yi jk ,..., k, ki ,..., of Eqs. ~1!
and~2! were adjusted so that the eigenvalues and wave fu
tions of the Fermi resonance Hamiltonian accurately rep
duce those of the exact Hamiltonian. The first 592 bou
states of HOBr~out of the 708 calculated ones! were taken
into account in the fit, that is, all states up to more than 9
of the dissociation threshold. These states include up to
quanta in the OBr stretching degree of freedom. With a se
28 parameters,32 the exact energies of these 592 states
reproduced with a root mean square error of 7.66 cm21 and a
maximum error of 41.9 cm21. The largest errors are system
atically observed for states with large values of bothv1 and
v2 , which indicates that some small—but systematic
coupling between the OH stretch and the bend is active in
real Hamiltonian, which, however, is not taken into accou
by the Fermi resonance Hamiltonian. Except for the appa
symmetry in theq2 coordinate, caused by the approxima
linear relationship between Jacobi and normal coordina
the semiclassical wave functions compare well with the ex
ones. The wave functions for the 16 states belonging
polyad @v1 ,P#5@0,30# can be obtained electronically32 and
compared with the exact wave functions for the same pol
in Fig. 5.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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B. Periodic orbits and one-dimensional quantization

As in the analysis of the exact classical phase space,
IV, the POs in the subspace (p2 ,p3 ,q2 ,q3) of the dimension-
less coordinates, coupled by the Fermi resonance, are the
for understanding the quantum spectrum of the resona
Hamiltonian. Once the classical constants of motion ass
ated with the good quantum numbersv1 and P have been
quantized according to the Einstein–Brillouin–Keller~EBK!
quantization rules@see Eq.~10! of Ref. 7#, these POs are ver
easily found as the fixed points of the one-dimensional c
sical counterpart of the Fermi resonance Hamiltonian.1 In
comparison to the exact classical approach, the semiclas
analysis has the fundamental advantage that the POs ar
termined for a particular polyad@v1 ,P# instead of just en-
ergy. Consequently, in a semiclassical continuati
bifurcation diagram, the energies of the POs are plotted
function of P for a particular value ofv1 . Such a semiclas
sical C/B diagram is shown in Fig. 7 forv150. Because of
the resonance conditionv2.2v3 , the energies of the PO
associated with a particular polyad@v1 ,P# are almost degen
erate~see the small insert in Fig. 7!. For a clearer represen
tation, the energies of the POs are therefore plotted w
respect to the energy of the pure bend PO in the main pa
Fig. 7. It is emphasized that the energies of the quan
states belonging to a given polyad always lie between
energies of the two outermost stable POs. This is illustra
in Fig. 7, where the energies of the 16 states belonging
polyad @v1 ,P#5@0,30# appear as a stack of filled dots.

The C/B diagram in Fig. 7 is different from the on
depicted in Fig. 2~c! in that it shows the real energies of th
POs rather than frequencies. Nevertheless, the generic s
ture is very similar, except for very high polyads. For sm
values ofP one finds two stable POs,@g# and @R#, which

FIG. 7. Energies of the periodic orbits, obtained from the effective Ham
tonian, as functions of the polyad numberP for v150. In the small insert,
the energies are plotted relative to the quantum mechanical ground sta
the main figure, the energies are plotted relative to the energy of the
bending periodic orbit,@g#. The heavy dots marked SN1, SN2, and P
indicate the two saddle-node and the period-doubling bifurcations, res
tively. Stable periodic orbits are indicated by the solid lines, while unsta
periodic orbits are represented by the dashed curves. The vertically arra
small dots forP530 indicate the quantum mechanical energy levels. S
the text for more details.
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correspond to motion along the HOBr bend (q2) and the OBr
stretch (q3) coordinate, respectively. Periodic orbits that d
scribe motion along the dissociation coordinateq3 and that
correspond to the D states are born at the first SN bifurcat
SN1, atP57.4 corresponding toE54360 cm21 above the
quantum mechanical ground state; the families of stable
unstable POs are termed@D# and@D* #, respectively. The@D#
PO becomes the lower limit of the accessible phase sp
aroundP'14 and eventually it scars the states located at
bottom of the polyads. The net result of the migration of t
@D# PO toward the low-energy end of the polyad and t
deformation of the@R# PO is that, starting withP515, the
states with a predominant bend character lie at the top of
polyad while those with predominant stretch character h
dropped to the bottom of the polyad~see Figs. 4 and 5!.

For the semiclassical quantization the plot of the act
integral T as a function of energyE is important.1 Each
quantum state is associated, through the EBK quantiza
rules, to a trajectory with a half-integer value ofT . Ex-
amples for three different polyads are depicted in Fig. 8.
low values ofP, for exampleP57, there is only a single
branch, that is denoted by~a!. The quantizing trajectories—
and therefore the quantum states—are indicated by the b
dots in Fig. 8.

At the SN1 bifurcation the branch~a! of the action inte-
gral splits into two branches:~a! and~b!, and a third one,~c!,
appears, which extends between the energies of the@D# and
the @D* # POs ~seeP514 in Fig. 8!. The two branches~a!
and ~b! still support quantum states belonging to the norm

-

. In
re

c-
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e
FIG. 8. The action integralT as a function of the absolute energyE for
polyads@v1 ,P#5@0,7#, @0,14#, and @0,30#. The vertical lines indicate the
energies of the various periodic orbits. The quantum mechanical state
longing to the normal and the new progression are indicated by the fi
circles and the open diamonds, respectively. Note, that the horizontal en
scale for polyadsP57 andP514 is expanded twice compared toP530.
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progression characteristic for the low-energy region. Ho
ever, one state of this progression disappears each time
energy gap between the two branches becomes sufficie
wide to encompass an additional half-integer value ofT .
Each state disappearing from the normal progression
replaced by a member of the new progression of the dis
ciation states D. The D states are supported by branch~c!
born at the SN1 bifurcation. One additional dissociation st
appears in the quantum spectrum each time branch~c! wid-
ens sufficiently to encompass an additional half-integer va
of T .

As already discussed in the quantum mechanical p
the spectrum becomes simpler again aroundP'24. Within
the resonance Hamiltonian model the reason for this p
nomenon is that—as the consequence of two additio
bifurcations—the bending PO, which is located between@R#
and @D#, is destroyed. More precisely, forv150, HOBr un-
dergoes a PD bifurcation atP515.8, or E58800 cm21

above the quantum mechanical ground state. Here, the
bend PO@g# becomes unstable~@g* #! while the PO created a
the PD bifurcation remains stable~@2g#!, respectively. How-
ever, the PD bifurcation is very rapidly followed, atP
521.4, or E511 600 cm21, by a second SN bifurcation
SN2, where the unstable PO@D* # and the stable PO@2g# are
simultaneously destroyed. For polyads withP>22, the ac-
cessible classical phase space therefore extends betwee
@D# and the@R# stable POs, with the unstable@g* # PO play-
ing the role of the separatrix between the two types of m
tion. Moreover, branch~b! disappears in the action integr
T (E) at the bifurcation SN2. Consequently, forP>22, all
the members of the new progression are located below@g* #
on the ~c! branch, while all the surviving members of th
normal progression are located above@g* # on the~a! branch
~see the semiclassical wave functions forP530, Ref. 32!.
The facts that, first, only two stable POs remain for scar
wave functions and, second, members of the normal and
new progressions can no longer be interwoven, explain w
the high-energy polyads withP>22 appear simpler than th
polyads at intermediate energies.

Comparing the semiclassical results with the class
ones, the following observations are made:~i! There is agree-
ment for the saddle node bifurcations~denoted by SN1A in
the classical analysis and by SN1 in the semiclassical tr
ment! as well as for the energies of the PD bifurcations
the bending motion.~ii ! The effective Hamiltonian repro
duces only the first classical SN bifurcation, SN1A, and
principal high-slope branches of the successive SNiA bif
cations; the SNiAs withi .1 are due to resonances betwe
g and r, which are not taken into account in the effecti
Hamiltonian.~iii ! The SN2 bifurcation, which does not ap
pear in the classical CB diagram, probably correspond
the energy where the classical bend PO becomes doubly
stable. The R1A PD bifurcation in the classical treatment a
the occurrence of the S states is not described by the s
classical description; they occur at energies not taken
account in defining the effective Hamiltonian.

To conclude this section, we add that the polya
with v1>0 behave like those withv150, in the sense tha
the bifurcations take place at comparable values ofP.
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More precisely, in the energy range investigated w
the Fermi resonance Hamiltonian, the SN1 bifurcation
curs at P57.4 (E54360 cm21), P58.4 (E58540 cm21),
P58.7 (E512 160 cm21), and P510.0 (E516 173 cm21)
for v150, 1, 2, and 3, respectively, while the PD bifurcatio
occurs at P515.8 (E58800 cm21) and P520.7 (E
514 660 cm21) for v150 and 1, respectively.

VI. SUMMARY

~1! We have calculated all the bound states of HO
using a recently calculated potential energy surface and
filter diagonalization technique. All wave functions hav
been visually inspected and assigned when possible. Man
the states, even close to the dissociation threshold, ca
unambiguously assigned in terms of three quantum numb
The results are qualitatively compared to HOCl.

~2! Like for HOCl, the spectrum for HOBr is dominate
by a 1:2 anharmonic resonance that leads to an organiza
in terms of polyads@v1 ,P#. At low energies, the bending
states are at the bottom of the polyads, whereas the HO
stretching states are localized at the top. Due to the re
nance the HO–Br stretching states acquire more and m
bending character as energy increases.

~3! States, which advance along the HO–Br react
path, called D states, come into existence at relatively
energies, much earlier than in HOCl. They are born in
saddle-node bifurcation. The D states are the continuatio
the low-energy O–Br stretching states to high energies.

~4! Close to the threshold another kind of states app
which also penetrate far into the dissociation channel;
cause of their shape, they are termed S states. In contra
the D states, the S states are deflected away from the d
ciation channel at large HO–Br distances and therefore
hibit a considerably smaller anharmonicity than the D sta
They correspond to the less anharmonic branches of
high-energy SNiA bifurcations.

~5! The coexistence of the ‘‘regular’’ states character
tic for lower energies and the D states and the interleaving
these two types of states leads to a rather complicated pa
of the intrapolyad spectrum, just as for HOCl. However, t
intrapolyad structure becomes simpler at high energies,
cause the bending states disappear. This is different f
HOCl.

~6! The general evolution of the quantum mechani
states from low to high energies can be well explained
terms of the structure of the classical phase space, i.e.
various families of periodic orbits and the different types
saddle-node and period-doubling bifurcations. Additional
sight is obtained by the semiclassical analysis of an effec
Hamiltonian fitted to the quantum mechanical energies
wave functions.
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