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An effective model for the X 2A 1 – A 2B 2 conical intersection in NO 2

M. Joyeux,a) R. Jost, and M. Lombardi
Laboratoire de Spectrome´trie Physique (CNRS UMR 5588), Universite´ Joseph Fourier-Grenoble 1,
BP 87, 38402 St. Martin d’He`res Cedex, France

~Received 14 May 2003; accepted 25 June 2003!

We propose an efficient method for calculating the eigenstates and adjusting the parameters of an
effective Hamiltonian, which reproduces the experimentally observed energy levels of NO2 up to
11 800 cm21 above the quantum mechanical ground state, that is a few thousands of cm21 above the
X 2A1–A 2B2 conical intersection, with a rms error less than 4 cm21. This method principally relies
on the determination, through first-order perturbation theory, of an optimal basis for each surface,
which takes into account the nonresonant energy shifts experienced by the states of this surface. As
a result, the size of the matrix, which one has to build and diagonalize to converge the spectrum up
to 11 800 cm21, is of the order of 500–1000 instead of several tens of thousands. Thank to this
Hamiltonian, the analysis of the experimental spectrum up to 11 800 cm21 could be completed. A
detailed description of all states located above 9500 cm21 is proposed, those lying below 9500 cm21

being already known and tabulated. ©2003 American Institute of Physics.
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I. INTRODUCTION

The Born–Oppenheimer separation of electronic a
nuclear motions is a widely used approximation for interpr
ing molecular processes. Nonetheless, transitions betw
different electronic surfaces~non-Born–Oppenheimer, o
nonadiabatic, dynamics! represent a field of growing interes
in chemical physics, because they appear to govern a l
variety of fundamental processes, such as internal con
sion, intersystem crossing, electron transfer and phot
duced reactions. In this context, the conical intersection
tween the two lowest electronic surfaces of NO2, X 2A1 and
A 2B2 , has already attracted much attention from both
experimental~see Refs. 1–4, and references therein! and the-
oretical ~see Refs. 5–13, and references therein! points of
view. However, there still exists no model that satisfactor
reproduces the vibronic spectrum of NO2 in the region of the
conical intersection, i.e., around 10 000 cm21. We recently
made an attempt in this direction, by adjusting the para
eters of a diabatic effective Hamiltonian against the energ
of the lowest 283 vibronic states, which have now all be
observed experimentally.14 The associated vibronic state
which extend up to 11 400 cm21 above the quantum me
chanical ground state, consist of 276 states with predomin
X 2A1 ground electronic character and 7 states with predo
nant A 2B2 excited electronic character. These calculatio
were based on the observation, that the net effect of
diabatic coupling between the two surfaces can be divi
into two contributions, namely~i! a nonresonant coupling
which affects all of theX 2A1 vibrational states but is asso
ciated to very weak mixing coefficients and~ii ! a resonant
coupling, which is significant~below 11 400 cm21! for only
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few X 2A1 states, but induces a significant mixing of the
states with one ~or few! energetically close A 2B2

state~s!.15,16

The results obtained in this first work are perfectible
several ways. First, no effective Hamiltonian could be d
rived for the A 2B2 excited electronic surface, because w
did not calculate the energy shifts experienced by the st
of this surface following the nonresonant couplings with t
states of the ground electronic surface. Therefore, the exc
electronic surface was rather described as a list of disc
energies. Moreover, the calculation procedure was rather
proximate, since only very small matrices, corresponding
the resonantly coupled states of both electronic surfa
were diagonalized. At last, the overlap matrix elements u
in this first work were not precise enough, because of the
of an unexpectedly large number of accuracy digits~several
tens of them! following near cancellation of very large num
bers.

The purpose of the present article is to report on
derivation of a complete effective Hamiltonian based on n
merically exact quantum calculations. In this model, tw
Dunham expansions are used to describe, respectively
uncoupled ground and excited diabatic electronic surfac
The effective Hamiltonian for the ground electronic surfa
additionally includes a weak vibrational resonance. The th
component of the effective Hamiltonian, i.e., the diaba
coupling surface, is taken as the usuallq3 interaction, where
q3 is the antisymmetric stretch normal coordinate for t
electronic ground surface. When adjusting the parameter
such a model against experimental data, the main con
deals with CPU time, that is, in other terms, the size of
Hamiltonian matrix one has to build and diagonalize. Sincl
is of the order of several hundreds of cm21, the diabatic
coupling between states separated by several tens of t
sands of cm21 still has a sizable effect on the energy of ea
state. Moreover, each state is coupled to several tens of t
il:
3 © 2003 American Institute of Physics
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sands of states belonging to the other surface and the re
ing ~nonresonant! energy shifts are cumulative. This explain
why, when working with harmonic oscillator bases, the s
of the Hamiltonian matrix, which is necessary to conve
the spectrum up to 11 000 or 12 000 cm21 above the ground
state, is as large as several tens of thousands of vec
These dimensions being not compatible with the large nu
ber of iterations required by an adjustment procedure,
work reported in this article principally relies on the choi
of a different basis, which is obtained from first-order pert
bation theory. It is however emphasized, that perturba
theory is used only to build the working basis, while t
construction and diagonalization of the Hamiltonian mat
are numerically exact.

This point is explained in some detail in Sec. III. Th
effective Hamiltonian itself is described in Sec. II, while ca
culations and results are discussed in Sec. IV.

II. THE EFFECTIVE HAMILTONIAN

The effective diabatic HamiltonianH is taken in the
form,

H5S He Hc

Hc Hg
D , ~2.1!

whereHg , He , andHc describe the diabatic ground, excite
and coupling surfaces, respectively. Let us note (p1 ,q1),
(p2 ,q2), and (p3 ,q3) the sets of conjugate coordinates fo
respectively, the symmetric stretching, the bending, and
antisymmetric stretching modes of vibration around
minimum of the X 2A1 ground electronic surface, an
uv1 ,v2 ,v3& the direct product basis for these three harmo
oscillators. In this basis,Hg is taken as the sum of the eigh
order Dunham expansion,

^v1 ,v2 ,v3uHguv1 ,v2 ,v3&

5(
i 51

3

v ini1(
i< j

xi j ninj

1 (
i< j <k

yi jkninjnk1 (
i< j <k<m

zi jkmninjnknm , ~2.2!

whereni5v i11/2 (i 51,2,3), plus the 3v1'v212v3 vi-
brational resonance,

^v1 ,v2 ,v3uHguv123,v211,v312&

5S k1(
i 51

3

kini D
3Av1~v121!~v122!~v211!~v311!~v312!,

~2.3!

wheren15v121, n25v211, andn35v313/2. Let us simi-
larly note (p18 ,q18), (p28 ,q28), and (p38 ,q38) the sets of conju-
gate coordinates for, respectively, the symmetric stretch
the bending and the antisymmetric stretching modes of
bration around the minimum of theA 2B2 excited electronic
surface, anduv18 ,v28 ,v38& the direct product basis for thes
three harmonic oscillators. The experimental data for the
Downloaded 04 Sep 2003 to 152.77.252.195. Redistribution subject to A
lt-

e
e

rs.
-
e

-
n

e
e

c

g,
i-

x-

cited surface being much sparser than for the ground oneHe

is taken to be just the energy difference between the bott
of the two electronic surfaces plus a fourth order Dunh
expansion,

^v18 ,v28 ,v38uHeuv18 ,v28 ,v38&

5E081(
i 51

3

v i8ni81(
i< j

xi j8 ni8nj8 , ~2.4!

whereni85v i811/2 (i 51,2,3). At last, the diabatic coupling
Hc is taken to be the only first-order term authorized
symmetry, that is

Hc5lq3 . ~2.5!

Calculation of thê v18 ,v28 ,v38uHcuv1 ,v2 ,v3& integrals is
the numerically difficult step in the process of building th
full Hamiltonian matrix in theuv1 ,v2 ,v3& and uv18 ,v28 ,v38&
bases. In addition to the parameterl, these integrals depen
only on the relationship between the (q1 ,q2 ,q3) and
(q18 ,q28 ,q38) sets of normal coordinates, which, as in Ref. 1
is taken in the form,

S q18

q28

q38
D 5AS q1

q2

q3

D 1B

5S 0.899 20.532 0

0.301 0.906 0

0 0 0.693
D S q1

q2

q3

D 1S 1.100
25.730

0
D .

~2.6!

This relationship was kept fixed in all of our calculation
although the fundamental frequencies were allowed to v
slightly around the values, which were used to obtain E
~2.6!. This is of little practical consequence, because
equilibrium geometry of the excited surface is anyway s
rather poorly known.4 Since the numerical calculation o
these integrals is one of the fundamental issues for this st
the procedure we used to calculate them is sketched in
Appendix.

As already noted in the Introduction, the principal pro
lem, which arises when using Eqs.~2.1!–~2.6! to build and
diagonalize the Hamiltonian matrix, is the size of the to
harmonic basis. Indeed, this basis must contain several
of thousands of vectors if the spectrum is to be converged
to 11 000 or 12 000 cm21 above the quantum mechanic
ground state. This size being not compatible with the la
number of iterations required by an adjustment procedu
we had to work with a more suitable basis, obtained fro
first order perturbation theory. The procedure for determin
this basis, as well as the calculation of the matrix element
H in the new basis, are described in some detail in the
lowing section.

III. THE PERTURBATIVE BASIS

Let us noteEn
g andEn

e the eigenvalues of the uncouple
Hamiltonians Hg and He and wn

g and wn
e the associated

eigenvectors,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Hgwn
g5En

gwn
g ,

~3.1!
Hewn

e5En
ewn

e .

The eigenvectors of the full HamiltonianH of Eq. ~2.1! are
obtained, at first order of perturbation theory, in the form

S (
k

^wk
euHcuwn

g&

En
g2Ek

e wk
e

wn
g

D , ~3.2!

for the eigenvectors ofH built on the eigenvectors ofHg ,
and

S wn
e

(
k

^wn
euHcuwk

g&

En
e2Ek

g wk
gD ~3.3!

for those built on the eigenvectors ofHe . It is well-known,
that the vectors in Eqs.~3.2!–~3.3! are good approximation
of the eigenvectors ofH if ~and only if! the ratios which
appear in these equations remain small, that is, if the z
order energiesEn

g of the ground electronic surface are n
accidentally close to the zero-order energiesEn

e of the ex-
cited electronic surface. If this condition is not fulfilled, th
is, if there exist accidental resonances between specific p
of states belonging to different electronic surfaces, then
approximation breaks down. It is therefore interesting
build new bases of vectorscn

g andcn
e , such that

cn
g5S (

k
ankwk

e

wn
g

D , cn
e5S wn

e

(
k

bnkwk
gD , ~3.4!

where the coefficientsank andbnk are defined as follows:

if U^wk
euHcuwn

g&

En
g2Ek

e U<«,

then ank5
^wk

euHcuwn
g&

En
g2Ek

e else ank50,

if U^wn
euHcuwk

g&

En
e2Ek

g U<«,

then bnk5
^wn

euHcuwk
g&

En
e2Ek

g else bnk50.

~3.5!

In Eq. ~3.5!, « is a threshold parameter, which separates re
nantly ~large ratios! from nonresonantly~small ratios!
coupled pairs of zero-order eigenstates. We used«50.05 in
the calculations reported in this article but, of course,
final result does not depend on the precise value of«. The
matrix elements ofH in the new basis are next obtained
the form,
Downloaded 04 Sep 2003 to 152.77.252.195. Redistribution subject to A
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^cm
g uHucn

g&5dmnEn
g1(

k
~amkankEk

e1amk̂ wk
euHcuwn

g&

1ank^wk
euHcuwm

g &!,

^cm
e uHucn

e&5dmnEn
e1(

k
~bmkbnkEk

g1bmk̂ wn
euHcuwk

g&

1bnk^wm
e uHcuwk

g&!, ~3.6!

^cm
e uHucn

g&5^wm
e uHcuwn

g&1anmEm
e 1bmnEn

g

1(
k

(
j

an jbmk̂ w j
euHcuwk

g&,

wheredmn is Kronecker’s symbol. The last equation in E
~3.6! shows that, in the new basis of vectorscn

g andcn
e , the

nonadiabatic couplinĝcm
e uHucn

g& between two vectors be
longing to different surfaces is small, except when the ze
order energies of these vectors are accidentally resonan
this later case, the off-diagonal matrix element is close to
unperturbed one, that is tôwm

e uHcuwn
g&. Consequently, the

size of the matrix one has to build to obtain a spectr
converged up to a given energy is of much smaller dim
sions than the size required with the harmonic basis.
example, this size is typically of the order of 500–1000
converge the spectrum up to 11 800 cm21.

Before concluding this section, it is perhaps not co
pletely useless to emphasize that the basis defined by
~3.4!–~3.5! is neither orthogonal nor normalized, so that t
energy levels and the quantum states ofH arenot obtained as
the eigenvalues and eigenvectors of the Hamiltonian ma
computed in this basis. In the perturbative basis, one
instead to solve the slightly more complex generalized eig
problem,

Hc5ENc, ~3.7!

where N is the matrix of the overlapŝcm
g ucn

g&, ^cm
e ucn

e&,
and^cm

e ucn
g& ~N is equal to the identity matrix in the case o

an orthonormalized basis!. A numerically efficient method
for solving Eq.~3.7! consists in finding the matricesV andL
of, respectively, the eigenvectors and eigenvalues ofN,

NV5VL ~3.8!

and in calculating the matrixM ,

M5VL21/2 tV ~3.9!

~M is also equal to the identity matrix in the case of
orthonormalized basis!. Simple calculations then show tha
the quantized energies of Eq.~3.7! are the eigenvalues o
M H M , while the matrix of the generalized eigenvectors
Eq. ~3.7! is equal to the matrix of the eigenvectors ofM H M
multiplied, on the left-hand side, byM .

IV. CALCULATIONS, RESULTS, AND DISCUSSION

To summarize, actual calculations are performed as
lows. The initial basis is first determined by retaining all t
vectorsuv1 ,v2 ,v3& and uv18 ,v28 ,v38&, such that
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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1337v11758v211672v3<Emax
g ,

~4.1!
970011310v181745v281800v38<Emax

e .

For the purpose of calculating the spectrum up to 11 8
cm21 above the quantum mechanical ground state, suita
values for the upper limits areEmax

g 530 000 cm21 and
Emax

e 550 000 cm21, which leads to basis sizes of 3182 a
15 504 for, respectively, the ground and excited surfaces

The eigenstates of the uncoupled HamiltoniansHg and
He are then evaluated for each new set of parameters o
effective Hamiltonian. The eigenvectorswn

e of He are obvi-
ously just theuv18 ,v28 ,v38& vectors, while the correspondin
eigenvaluesEn

e are calculated according to Eq.~2.4!. In con-
trast, calculation of the functionswn

g and the energiesEn
g for

the ground electronic surface requires some more eff
since these quantities are obtained from the diagonaliza
of small matrices ofuv1 ,v2 ,v3& vectors coupled by the
3v1'v212v3 resonance of Eq.~2.3!.

The perturbative basis, which consists of the vectorscn
g

andcn
e of Eqs.~3.4!–~3.5!, is next evaluated. One retains

this basis all the vectorscn
g and cn

e , which are built on
vectorswn

g and wn
e with associated zero-order energiesEn

g

and En
e smaller than a given thresholdEmax ~relative to the

minimum of the ground electronic surface!. In order to check
the convergence of the calculations, the results obtained
two different values ofEmax are compared, namely,Emax

516 000 cm21 ~about 500 vectors for the ground surface a
40 vectors for the excited surface! and Emax520 000 cm21

~about 1200 vectors for the ground surface and 200 vec
for the excited surface!. Note that, according to Eqs.~3.4!–
~3.5!, each vectorcn

g depends, in addition town
g , on the

15 504 vectorsuv18 ,v28 ,v38&, while each vectorcn
e depends, in

addition town
e , on the 3182 vectorsuv1 ,v2 ,v3&.

At last, the Hamiltonian matrix is built according to E
~3.6! and the quantized states ofH are obtained from the
procedure sketched at the end of Sec. III. Eventually,
eigenvectors ofH are expressed back in terms of the vect
uv1 ,v2 ,v3& and uv18 ,v28 ,v38&. After comparison of the calcu
lated and experimental spectra, the standard gradient me
is used to minimize the computed root-mean-square~rms!
error.

The experimental spectrum up to 11 800 cm21 above the
quantum mechanical ground state~against 11 400 cm21 in
Ref. 14! was used to adjust the parameters of the effec
Hamiltonian. This energy window contains 298 states w
predominantX 2A1 ground electronic character and nin
states with predominantA 2B2 excited electronic characte
of which only 1 state with predominantA 2B2 excited elec-
tronic character~@1,0,1#! has not been observed experime
tally. In addition to energy, the experimental spectrum a
provides a clear-cut determination of the totalvibronic sym-
metry (A1 or B2) of the recorded states.1–4 The vibrational
terms ~i.e., the rotationless band origins! of states withA1

vibronic symmetry are directly obtained from the record
laser induced dispersed fluorescence~LIDFS! spectra. In
contrast, the lowest rotational level of states withB2 vibronic
symmetry observed in LIDFS spectra isN5K51. For the
purpose of comparison with calculated energies, these
Downloaded 04 Sep 2003 to 152.77.252.195. Redistribution subject to A
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served energies are extrapolated down toN5K50 by sub-
tracting from the observed energies the rotational cons
A1B̄, whereA and B̄ are estimated according to Eqs.~1!
and ~2! of Ref. 3.

A set of 30 converged parameters~22 parameters for
Hg , 7 parameters forHe , and 1 parameter forHc) is shown
in Table I. The rms and maximum errors between the m
sured energies and the calculated ones are 3.8 cm21 and 19.7
cm21, respectively, for the 306 experimentally observ
states. Fit residuals are plotted in Fig. 1~a! as a function of
energy. Note that the small uncertainties reported in Tab
for the parameters ofHe , as well as the small errors for th
calculated energies of the eight states with predomin
A 2B2 excited electronic character, are largely meaningl
since, for this surface, the number of parameters~7! is very
close to the number of experimental data taken into acco
~8!.

One of the most interesting information of Table I is th
value for the coupling parameterl'332719 cm21. The
main reason, why this estimation is substantially smaller th
the estimation of Ref. 14 (l'600 cm21) is, as already stated
in the Introduction, that the overlap matrix elements used
this first work were not precise enough, because of the
of an unexpectedly large number of accuracy digits~several
tens of them! following near cancellation of very large num
bers. The overlap integrals were calculated to, roughly, o
one half of their actual values, which resulted in an estim

TABLE I. Adjusted values~second column! and standard deviations~third
column! for the parameters of the effective Hamiltonian of Eqs.~2.1!–~2.6!.
All values are expressed in cm21.

Value Uncertainty

v1 1357.4090 3.2911
v2 756.8245 0.8396
v3 1670.3878 0.9327
x11 211.9870 1.5479
x12 25.0272 0.4345
x13 228.9949 0.2445
x22 0.0763 0.1547
x23 210.4319 0.2975
x33 214.7341 0.1949
y111 1.4238 0.2577
y112 0.3033 0.1512
y122 20.2087 0.0226
y222 20.0363 0.0075
y233 20.1933 0.0477
z1111 20.0892 0.0137
z1112 20.0558 0.0148
z1113 20.2460 0.0071
z1123 20.1306 0.0230
z1223 20.0590 0.0162
z2233 0.0186 0.0026
k 0.8360 0.1815
k1 20.1710 0.0561

E08 10 209.0874 20.2592
v18 1315.0927 9.5659
v28 766.2419 12.0323
v38 753.1696 17.9987
x128 236.9088 6.3631
x238 243.3650 8.2839
x338 27.9314 4.6044

l 331.7647 18.8067
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tion for l too large by a factor of about 2. It is stressed, on
more, that the determination ofl does not rely on the tota
energy shifts caused byHc5lq3 , but only on a small part of
these quantities, i.e., the resonant shifts. This point is cle
visualized in Figs. 1~b! and 1~c!, which show, respectively
the total and resonant energy shifts caused byHc . The total
energy shifts of Fig. 1~b! are obtained by subtracting th
energies calculated withl50 from the energies calculate
with the parameters of Table I. Although this figure is som
what obscured by the fact that the shifts for all of the sta
are displayed on the same plot, it is nevertheless clear

FIG. 1. ~a! Plot of the fit residuals as a function of the experimenta
determined energies up to 11 800 cm21 above the quantum mechanica
ground state. The fit residuals are defined as the difference betwee
experimentally determined energies and the eigenvalues of the effe
Hamiltonian of Eqs.~2.1!–~2.6! and Table I.~b! Plot of the calculated total
energy shifts caused by the diabatic couplingHc as a function of the experi-
mentally determined energies. The total energy shifts are defined a
difference between the eigenvalues of the effective Hamiltonian of E
~2.1!–~2.6! and Table I and the eigenvalues obtained when settingl50. ~c!
Plot of the calculated resonant energy shifts caused by the diabatic cou
Hc as a function of the experimentally determined energies. The reso
energy shifts are defined as the difference between the eigenvalues o
effective Hamiltonian of Eqs.~2.1!–~2.6! and Table I and the eigenvalue
obtained when setting all̂cm

e uHucn
g& elements to zero in the Hamiltonia

matrix expressed in the perturbative basis@a value«50.05 is assumed in the
definitions of Eq.~3.5!#. In all plots, open circles denote states with pr
dominantX 2A1 ground electronic character, while crosses~3! denote states
with predominantA 2B2 excited electronic character. The vertical lines i
dicate the energy of the vibrational ground state of the excited electr
surface. Note also that both the coordinate and abscissa scales are ide
for the three plots.
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the largest part of these shifts increases regularly with qu
tum numbers and energy. We actually showed in Refs.
and 16 that the regular part of the energy shifts is due to
nonresonant couplings, that is, to the interactions betw
states of different surfaces, which are well separated in
ergy. We also showed that these nonresonant shifts cann
distinguished from the anharmonicities inside each surf
~hence the above remark that they are of no use for the
termination of the coupling parameterl!. The principal rea-
son, why the number of vectors required to converge
spectrum is much smaller with the perturbative basis of S
III than with the harmonic basis, is precisely that the pert
bative basis for each surface takes into account, by const
tion, the nonresonant shifts experienced by the states of
surface. Therefore, the resonant shifts~i.e., the shifts result-
ing from the interaction between states of different surfa
which are almost degenerate in energy! can be obtained as
the difference between the eigenvalues of the effec
Hamiltonian of Eqs.~2.1!–~2.6! and the eigenvalues ob
tained when setting all̂cm

e uHucn
g& elements to zero in the

Hamiltonian matrix expressed in the perturbative basis. T
result obtained with«50.05 is plotted in Fig. 1~c!. It is seen
that, in contrast with nonresonant ones, resonant shifts
significant only for a limited number of states. The prese
determination ofl actually relies on these~relatively few!
resonant shifts and the resulting increase of precision in
calculated energies. It is therefore not excluded that this
timation for l might still vary to some extent if the working
data set is extended to higher energies. It turns out that
present estimationl'332719 cm21 is of the same order o
magnitude as the first experimental determination of De
and Jost (l'280750) cm21,1 which was obtained from ap
proximate calculations performed on a much more limit
data set. In contrast, this value is much smaller than
estimations derived from recentab initio calculations, which
range from 700 cm21 ~Ref. 8! to more than 2400 cm21.10 As
stated in Ref. 8, the reason for such an uncertainty in
determination ofl is ‘‘not clear at that point.’’

This work and the previous one in Ref. 14 enable
better understanding of the experimental spectrum of NO2 up
to 11 800 cm21 above the quantum mechanical ground sta
Indeed, several states which were left unassigned in Tabl
of Ref. 3 could be safely assigned in the course of this wo
while some additional states could be retrieved in the
corded spectra thank to their calculated energies~this proce-
dure eventually led to the reassignment of a few states!. This
is the first reason, why the energies of the states obse
above 9500 cm21 are reported in Table II together with the
calculated decomposition on the harmonic oscillator bas
The description of states with lower energy can be found
Refs. 1 and 3. The second reason for reporting the comp
eigenvectors in Table II is that, within the approximation
the effective Hamiltonian of Eqs.~2.1!–~2.6!, the only im-
portant coupling observed below 9500 cm21 is due to the
approximate 3v1'v212v3 vibrational resonance of Eq
~2.3!, while additional couplings due toHc appear above
9500 cm21. Among these new couplings, the most importa
one is of course the resonant vibronic coupling betwe
states of different surfaces, which gives rise to the reson
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TABLE II. NO2 vibronic states located between 9500 and 11 800 cm21 above the quantum mechanical ground state. The first column indicates the ra
the state in a given electronic surface~the quantum mechanical ground state of each surface is #1!. The second column shows, for states withB2 vibronic
symmetry, the energy~in cm21 above the quantum mechanical ground state! of the N5K51 rotational component obtained from LIDFS experiments. T
rotationless band origins are shown in the third column. For most states withB2 vibronic symmetry, the band origin is obtained by subtracting the rotatio

constantA1B̄ @estimated according to Eqs.~1! and ~2! Ref. 3# from the N5K51 energy reported in the second column. For states withA1 vibronic
symmetry, the energy of the band origin is directly obtained from LIDFS experiments. The fourth column indicates the difference between the ‘‘expemental’’
energy of column 3 and the energy obtained from the effective Hamiltonian of Eqs.~2.1!–~2.6! and the parameters of Table I. The fifth column shows
calculated probability~in percents! for finding the state in the diabatic excited electronic surfaceA 2B2 . A more precise description of the wave function
provided in the last column, which indicates its decomposition on the harmonic bases of theX 2A1 ~normal brackets! andA 2B2 ~square brackets! diabatic
electronic surfaces. All calculated contributions larger than 0.1 are shown.

No.

Energy
~cm21!

K5N51

Energy
~cm21!

K5N50

obs.2calc.
error

~cm21! %A 2B2 Eigenvector decomposition

165 9510.20 9499.98 20.08 0.16 0.715(1,5,3)20.697(4,4,1)
166 9512.15 0.26 0.02 0.979(4,2,2)20.199(1,3,4)
167 9529.28 9518.12 1.00 0.18 0.716(4,4,1)10.695(1,5,3)
168 9524.46 1.33 0.03 0.994(4,6,0)10.103(1,7,2)
169 9539.85 9531.82 23.34 0.00 0.996~4,0,3!
170 9561.57 1.51 0.20 0.978(1,3,4)10.199(4,2,2)
171 9631.80 9624.27 2.85 0.04 0.995~1,1,5!
172 9640.77 2.13 0.22 0.998~0,13,0!
173 9667.96 9653.79 1.10 17.31 0.902(0,11,1)10.408@0,0,0#
174 9672.77 0.98 0.00 0.999~7,1,0!
175 9697.32 0.13 0.75 0.968(0,9,2)20.225(3,8,0)
176 9725.87 9714.10 1.45 2.82 0.941(3,6,1)20.273(0,7,3)10.163@0,0,0#
177 9717.28 21.19 0.13 0.974(3,8,0)10.223(0,9,2)
178 9732.21 3.69 0.10 0.983(3,4,2)20.173(0,5,4)

1 9738.20 9733.50 4.28 59.92 0.773@0,0,0#10.482(0,7,3)20.383(0,11,1)
179 9747.29 9735.76 25.73 18.18 0.826(0,7,3)20.420@0,0,0#10.331(3,6,1)10.145(0,11,1)
180 9762.81 9753.87 23.63 0.04 0.992(3,2,3)20.118(0,3,5)
181 9781.28 21.00 0.45 0.981(0,5,4)10.173(3,4,2)
182 9806.85 9796.43 0.19 0.00 0.999~6,1,1!
183 9796.99 23.81 0.00 0.997~3,0,4!
184 9845.21 9836.87 0.36 0.33 0.989(0,3,5)10.118(3,2,3)
185 9856.44 2.00 0.00 1.000~6,3,0!
186 9905.43 21.05 0.09 0.995~0,1,6!
187 9920.66 0.38 0.25 0.998~2,10,0!
188 9941.20 9928.51 20.47 1.21 0.993~2,8,1!
189 9950.91 2.18 0.32 0.996~2,6,2!
190 9985.29 9975.53 24.05 0.18 0.966(2,4,3)20.249(5,3,1)
191 9984.01 0.14 0.00 0.989(5,1,2)20.139(2,2,4)
192 10 017.80 10 006.31 3.20 0.03 0.968(5,3,1)10.248(2,4,3)
193 10 025.87 0.47 0.08 0.988(2,2,4)10.139(5,1,2)
194 10 043.60 2.68 0.02 0.999~5,5,0!
195 10 089.66 10 082.40 0.32 0.00 0.998~2,0,5!
196 10 132.64 20.25 1.19 0.988~1,12,0!
197 10 159.36 10 145.36 21.82 3.58 0.979(1,10,1)20.161@0,1,0#
198 10 174.63 3.75 1.49 0.979(1,8,2)20.110(1,12,0)
199 10 185.29 1.81 0.00 0.999~8,0,0!
200 10 209.84 10 198.93 0.70 0.30 0.736(1,6,3)20.672(4,5,1)
201 10 203.93 2.02 0.06 0.972(4,3,2)20.226(1,4,4)
202 10 222.40 10 213.62 22.60 0.01 0.981(4,1,3)20.114(1,2,5)10.112(7,0,1)
203 10 228.12 10 216.13 20.43 0.39 0.736(4,5,1)10.664(1,6,3)20.101(4,1,3)
204 10 232.65 0.50 0.13 0.995~4,7,0!
205 10 252.54 1.79 0.33 0.970(1,4,4)10.226(4,3,2)
206 10 280.32 10 270.61 25.37 0.00 0.993(7,0,1)20.109(4,1,3)
207 10 312.69 10 304.70 2.39 0.13 0.990(1,2,5)10.119(4,1,3)
208 10 352.46 24.33 8.58 0.919(0,14,0)10.285@0,0,1#10.235(0,10,2)
209 10 377.37 10 361.78 23.95 20.26 0.870(0,12,1)20.440@0,1,0#20.105(1,10,1)10.102(0,8,3)
210 10 371.74 3.56 0.00 0.999~7,2,0!
211 10 375.49 5.50 0.01 0.998~1,0,6!
212 10 403.19 8.16 12.35 0.854(0,10,2)20.347(0,14,0)10.335@0,0,1#
213 10 424.80 10 412.23 21.97 1.65 0.953(3,7,1)20.242(0,8,3)20.114(0,12,1)20.112@0,1,0#
214 10 415.65 26.51 0.64 0.947(3,5,2)10.246(3,9,0)20.166(0,6,4)
215 10 435.48 8.77 2.55 0.945(3,9,0)20.254(3,5,2)10.157@0,0,1#
216 10 449.22 10 436.67 21.35 7.30 0.901(0,8,3)20.268(0,12,1)20.253@0,1,0#10.164(3,7,1)
217 10 451.92 10 442.40 20.95 0.10 0.989(3,3,3)20.134(0,4,5)
218 10 446.07 3.59 0.00 0.999~6,0,2!
219 10 477.36 20.82 0.02 0.994~3,1,4!
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TABLE II. ~Continued.!

No.

Energy
~cm21!

K5N51

Energy
~cm21!

K5N50

obs.2calc.
error

~cm21! %A 2B2 Eigenvector decomposition

220 10 478.83 1.89 9.79 0.894(0,6,4)10.303@0,0,1#20.228(0,10,2)10.141(3,5,2)2
0.106~3,9,0!

2 10 483.60 10 478.00 24.02 62.98 0.791@0,1,0#10.378(0,12,1)10.318(0,8,3)10.232(3,7,1)2
0.177(2,9,1)10.120(1,10,1)20.102(1,11,1)

221 10 498.19 10 486.38 1.09 0.04 0.999~6,2,1!
3 10 490.20 0.46 59.47 0.768@0,0,1#20.389(0,6,4)20.361(0,10,2)20.182(3,9,0)2

0.151(0,14,0)10.125(2,11,0)20.114(3,5,2)
222 10 532.80 10 523.43 20.29 0.55 0.985(0,4,5)10.134(3,3,3)
223 10 557.41 2.96 0.01 1.000~6,4,0!
224 10 583.21 1.31 0.25 0.992~0,2,6!
225 10 633.06 25.47 2.03 0.986(2,11,0)20.134@0,0,1#
226 10 649.26 10 635.65 25.56 4.34 0.975(2,9,1)10.185@0,1,0#
227 10 654.47 7.19 1.98 0.986(2,7,2)20.105@0,0,1#
228 10 663.43 10 656.54 23.79 0.02 0.997~0,0,7!
229 10 669.13 10 660.61 22.00 0.00 0.997~5,0,3!
230 10 677.46 10 667.12 22.62 0.37 0.965(2,5,3)20.248(5,4,1)
231 10 670.56 4.17 0.02 0.983(5,2,2)20.169(2,3,4)
232 10 708.54 10 695.97 0.22 0.08 0.968(5,4,1)10.246(2,5,3)
233 10 707.27 20.79 0.17 0.983(2,3,4)10.168(5,2,2)
234 10 746.09 2.20 0.04 0.999~5,6,0!
235 10 761.97 10 754.37 20.99 0.03 0.996~2,1,5!
236 10 849.89 25.27 2.34 0.981(1,13,0)10.116(1,9,2)20.113@0,1,1#
237 10 869.80 10 854.53 214.28 3.57 0.976(1,11,1)10.124@0,1,0#10.102@0,2,0#
238 10 876.61 5.09 0.00 0.998~8,1,0!
239 10 879.00 9.70 5.46 0.949(1,9,2)20.199@0,1,1#20.148(1,13,0)
240 10 901.50 10 889.80 22.69 0.88 0.752(1,7,3)20.627(4,6,1)20.118(4,2,3)20.110(1,11,1)
241 10 890.98 2.76 0.12 0.968(4,4,2)20.241(1,5,4)
242 10 907.11 10 897.58 4.08 0.04 0.971(4,2,3)10.149(7,1,1)20.135(1,3,5)
243 10 916.68 10 903.77 27.24 1.82 0.766(4,6,1)10.624(1,7,3)
244 10 912.02 25.64 0.00 0.996~4,0,4!
245 10 928.51 28.35 0.67 0.862(4,8,0)10.483(1,5,4)10.117(4,4,2)
246 10 944.52 5.85 0.41 0.831(1,5,4)20.498(4,8,0)10.212(4,4,2)
247 10 964.46 10 952.77 24.54 0.00 0.987(7,1,1)20.141(4,2,3)
248 10 990.71 10 981.98 0.62 0.29 0.983(1,3,5)10.147(4,2,3)

4 11 004.86 10 999.42 1.38 82.75 0.907@1,0,0#20.331(0,13,1)10.162(3,8,1)
249 11 041.63 3.55 0.06 0.994~1,1,6!
250 11 063.35 2.72 0.00 0.999~7,3,0!
251 11 070.28 22.84 25.81 0.636(0,11,2)10.502(0,15,0)20.493@0,1,1#20.167(1,9,2)1

0.113~0,7,4!
252 b 11 095.50 214.23 13.89 0.731(0,13,1)10.514(3,8,1)10.253@0,2,0#10.212(0,9,3)1

0.192@1,0,0#10.158@0,0,2#
253 11 096.92 4.91 4.83 0.856(0,15,0)20.426(0,11,2)10.209@0,1,1#20.117(3,6,2)
254 11 115.74 11 102.25 215.83 9.83 0.745(3,8,1)20.533(0,9,3)20.259@1,0,0#20.233(0,13,1)

20.116@0,0,2#
255 11 116.84 5.04 0.60 0.958(3,6,2)20.181(0,7,4)20.163(0,11,2)10.103(3,10,0)
256 11 133.12 11 123.02 22.67 0.35 0.982(3,4,3)20.138(0,5,5)
257 11 126.63 10.08 0.00 0.996~6,1,2!
258 11 137.79 4.20 2.21 0.963(3,10,0)20.153(0,11,2)20.137@0,1,1#20.119(3,6,2)
259 11 156.13 11 142.35 9.75 10.02 0.712(0,9,3)20.500(0,13,1)10.342(3,8,1)20.195@1,0,0#1

0.184@0,2,0#10.120@0,0,2#
260 11 156.13 3.70 0.06 0.991(3,2,4)20.109(0,3,6)
261 11 180.48 11 167.17 22.95 0.02 0.999~6,3,1!
262 11 170.35 1.86 3.03 0.906(0,7,4)20.308(0,11,2)20.143(3,10,0)2

0.137@0,1,1#10.131(3,6,2)
263 11 193.62 11 186.40 27.36 0.00 0.996~3,0,5!
264 11 216.76 11 206.02 23.47 22.33 0.862(0,5,5)20.439@0,2,0#10.147@0,0,2#10.129(3,4,3)

5 11 220.93 20.45 46.44 0.673@0,1,1#10.480(0,11,2)10.308(0,7,4)20.238(2,8,2)1
0.191(3,10,0)20.151(2,12,0)10.141(3,6,2)10.134(1,9,2)2
0.127~1,10,2!

6 11 218.60 11 210.65 5.99 67.44 0.799@0,2,0#10.456(0,5,5)20.239(0,9,3)20.176@0,0,2#2

0.143(3,8,1)10.110(2,10,1)
265 11 251.43 0.89 0.02 1.000~6,5,0!
266 11 259.64 3.18 0.53 0.988~0,3,6!10.109~3,2,4!

7 11 289.51 11 283.15 1.28 73.00 0.848@0,0,2#10.316(2,10,1)20.257(0,9,3)10.165(2,6,3)2
0.113~0,13,1!
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TABLE II. ~Continued.!

No.

Energy
~cm21!

K5N51

Energy
~cm21!

K5N50

obs.2calc.
error

~cm21! %A 2B2 Eigenvector decomposition

267 11 330.12 11 323.62 2.13 0.11 0.994~0,1,7!
268 11 343.61 11 333.99 4.18 0.00 0.976(5,1,3)10.199(8,0,1)
269 11 346.62 1.68 7.35 0.583(2,8,2)20.562(5,3,2)20.559(2,12,0)10.130(2,4,4)
270 11 363.15 11 348.40 21.69 6.57 0.872(2,10,1)20.393(2,6,3)20.197@0,0,2#20.128@0,2,0#
271 11 354.63 9.79 0.47 0.801(5,3,2)10.413(2,8,2)20.398(2,12,0)20.138(2,4,4)
272 11 363.15 3.86 0.00 0.997~9,0,0!
273 11 392.43 11 381.46 21.95 8.50 0.856(2,6,3)10.318(2,10,1)20.264(5,5,1)20.250@0,0,2#

20.109@0,2,0#
274 11 376.48 18.41 0.97 0.707(2,12,0)10.632(2,8,2)10.249@0,1,1#10.100(0,11,2)
275 b 11 379.42 25.62 0.60 0.961(5,5,1)10.262(2,6,3)
276 11 381.20 26.30 0.41 0.977(2,4,4)10.187(5,3,2)
277 11 410.73 11 400.23 212.14 0.00 0.976(8,0,1)20.191(5,1,3)10.106(2,2,5)
278 11 430.99 11 422.84 23.51 0.10 0.988~2,2,5!
279 11 440.67 22.05 0.15 0.998~5,7,0!
280 11 477.76 22.35 0.00 0.997~2,0,6!
281 11 547.93 2.07 0.00 0.970(7,0,2)10.242(4,1,4)
282 b 11 553.37 213.81 0.13 0.969(4,3,3)10.176(7,2,1)20.152(1,4,5)
283 11 557.04 1.70 0.00 0.997~8,2,0!
284 11 570.90 0.98 0.50 0.957(4,5,2)20.257(1,6,4)
285 11 576.34 9.45 2.16 0.917(1,14,0)20.351(1,10,2)20.100@0,2,1#
286 11 593.63 3.85 7.02 0.867(1,10,2)10.362(1,14,0)10.186@0,2,1#20.185(4,9,0)

10.167@0,1,1#
287 11 580.82 11 568.20 213.09 3.26 0.741(1,8,3)20.602(4,7,1)20.210(1,12,1)20.115@0,1,2#
288 11 591.20 11 574.30 21.35 4.89 0.943(1,12,1)20.233(4,7,1)10.127@1,1,0#20.104@0,0,2#
289 11 601.89 15.66 0.01 0.963(4,1,4)20.242(7,0,2)
290 b 11 604.43 4.18 6.86 0.731(4,7,1)10.599(1,8,3)20.161@1,1,0#10.153(1,12,1)

20.146@0,1,2#20.101@0,0,2#
291 11 619.38 20.86 2.26 0.941(1,6,4)10.245(4,5,2)
292 11 638.61 11 624.79 29.21 0.01 0.981(7,2,1)20.161(4,3,3)10.104(1,4,5)
293 11 635.86 21.77 2.75 0.961(4,9,0)10.171(1,10,2)10.149@1,0,1#
294 11 664.04 11 654.32 23.21 0.63 0.973(1,4,5)10.167(4,3,3)

8 11 694.41 0.97 71.40 0.841@1,1,0#10.319(0,14,1)20.274(3,9,1)10.197(4,7,1)
10.126~0,10,3!

295 11 704.48 20.20 0.21 0.990(1,2,6)10.101(4,1,4)
9 11 720.41 a 60.6 0.771@1,0,1#20.349(0,12,2)20.292(0,16,0)10.243(3,7,2)

10.180(3,11,0)20.180(4,9,0)
296 11 742.84 26.09 0.01 0.999~7,4,0!
297 11 768.58 11 759.14 8.15 0.00 0.999~6,0,3!
298 11 783.85 11 776.96 7.96 0.01 0.997~1,0,7!

aCalculated frequency.
bK5N50 limit deduced fromK50, N51,3,5,... LIF, ICLAS or CRDS experimental energies.
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shifts discussed in the paragraph above. Interestingly,
however also observes a certain number of interactions
tween two states of the ground electronic surface, which
coupled by non-negligiblêcm

g uHucn
g& matrix elements@see

Eq. ~3.6!#. Nonetheless, due the much smaller value fol
~332 cm21 against more than 2400 cm21!, the mixing coef-
ficients reported in the two last columns of Table II rema
much smaller than those obtained by Leonardi a
Petrongolo.11

V. CONCLUSION

We have derived an efficient method for adjusting t
parameters of an effective Hamiltonian against experime
data. This model accurately reproduces the observed
quencies up to a few thousands of cm21 above the conica
intersection. Continuation of this work is expected in tw
Downloaded 04 Sep 2003 to 152.77.252.195. Redistribution subject to A
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directions. First, we plan to use the effective Hamiltoni
derived in this article to reproduce the absorption spec
which have been recorded by the ICLAS and FTS techniq
in the range 11 200–16 150 cm21.2,17 While the goal would,
of course, no longer be to calculate all transition energ
with an error of the order of a few cm21, a visual or statis-
tical comparison of the observed and calculated spe
should be able to indicate up to what energies such a m
remains valid, and eventually what corrections are need
Moreover, we plan to analyze the classical phase space o
vibronically coupled system along the lines proposed
Refs. 18 and 19. The underlying idea is to use the class
periodic orbits of the system to study the nonadiabatic qu
tum dynamics, as was done recently for several triatom
molecules in the context of the Born–Oppenheimer appro
mation ~see, for example, Refs. 20 and 21, and referen
therein!.
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APPENDIX: CALCULATION
OF THE Šv 18 ,v 28 ,v 38zq 3

n zv 1 ,v 2 ,v 3‹ INTEGRALS

Since, for symmetry reasons, the matrixA5$Ajk% is
block diagonal@cf. Eq. ~2.6!#, the integrals to compute spl
in the more manageable form,

^v18 ,v28 ,v38uq3
nuv1 ,v2 ,v3&5^v18 ,v28uv1 ,v2&^v38uq3

nuv3&.
~A1!

After some straightforward algebra, the second integ
in the right-hand side of Eq.~A1! is rewritten as

^v38uq3
nuv3&5C3~n,v3 ,v38!

3E
2`

1`

P3~n,v3 ,v38ux3!e2x3
2
dx3 , ~A2!

where

a35A 2

11A33
2 ,

C3~n,v3 ,v38!5a3
11nA A33

pv3!v38!2
v31v38

,

~A3!
q35a3x3 ,

P3~n,v3 ,v38ux3!5x3
nHv3

~a3x3!Hv38
~A33a3x3!,

and theHm’s are the Hermite polynomials of orderm. The
polynomialP3(n,v3 ,v38ux3) is next projected on the orthogo
nal basis of the Hermite polynomials, leading to

P3~n,v3 ,v38ux3!5 (
k50

n1v31v38

a3~n,v3 ,v38uk!Hk~x3!. ~A4!

Remembering that the term ofHk(x) with highest order is
2k xk, the real coefficientsa3(n,v3 ,v38uk) are easily obtained
downwards, starting witha3(n,v3 ,v38un1v31v38) and end-
ing with a3(n,v3 ,v38u0). The second integral in the righ
hand side of Eq.~A1! is then just

^v38uq3
nuv3&5ApC3~n,v3 ,v38!a3~n,v3 ,v38u0!. ~A5!

Calculation of the first integral in the right-hand side
Eq. ~A1! is somewhat more tedious, but this can again
performed without ever integrating a function numerica
which is of fundamental importance for the sake of accura
Proceeding along the same lines as in Refs. 4 and 22,
first obtains, by inverting Eq.~2.6!, the matricesT and D,
such that

S q1

q2
D5TS q18

q28
D 1D. ~A6!

One then calculates the orthogonal matrixW and the diago-
nal matrixG of, respectively, the eigenvectors and eigenv
ues oftT T ,

tT T W 5W G. ~A7!

The matrixU and the vectorsd and s are defined fromW
andG according to

U5T W ,
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e
,
y.
ne

-

d5G1/2U21D, ~A8!

s5S s1

s2
D5W21S q18

q2
D .

One finally notes

a j5A 2

11Gj j
,

b j5
djAGj j

11Gj j
,

~A9!

g j5
dj

2

2~11Gj j !
,

sj5a j xj2b j

( j 51,2). After some straightforward algebra, whose fi
steps are sketched in Refs. 4 and 22, the first integral in
right-hand side of Eq.~A1! is recast in the form,

^v18 ,v28uv1 ,v2&5C~v1 ,v2 ,v18 ,v28!

3 (
i 150

v1

(
i 250

v2

(
i 1850

v18

(
i 2850

v28 S v1

i 1
D S v2

i 2
D S v18

i 18
D S v28

i 28
D

3E
2`

1`

P1~ i 1 ,i 2 ,i 18 ,i 28ux1!e2x1
2
dx1

3E
2`

1`

P2~v12 i 1 ,v22 i 2 ,v182 i 18 ,v28

2 i 28ux2!e2x2
2
dx2 , ~A10!

where

C~v1 ,v2 ,v18 ,v28!

5
a1a2e2g12g2 det~W!

p2v11v21v181v28
A det~T!

v1!v2!v18!v28!
,

P1~ i 1 ,i 2 ,i 18 ,i 28ux1!5Hi 1
~&~U11s11D1!!Hi 2

~&U21s1!

3Hi
18
~&W11s1!Hi

28
~&W21s1!,

~A11!

P2~ i 1 ,i 2 ,i 18 ,i 28ux2!5Hi 1
~&U12s2!Hi 2

~&~U22s21D2!!

3Hi
18
~&W12s2!Hi

28
~&W22s2!,

and thesj ’s must be replaced with their expressions in ter
of thexj ’s in Eq. ~A9!. As for the integral dealing with mode
3, each polynomialPj ( i 1 ,i 2 ,i 18 ,i 28uxj ) ( j 51,2) is next pro-
jected on the orthogonal basis of the Hermite polynomia
according to

Pj~ i 1 ,i 2 ,i 18 ,i 28uxj !5 (
k50

i 11 i 21 i 181 i 28

aj~ i 1 ,i 2 ,i 18 ,i 28uk!Hk~xj !,

~A12!

so that the corresponding integrals are equal to

E
2`

1`

Pj~ i 1 ,i 2 ,i 18 ,i 28uxj !e
2xj

2
dxj5Apaj~ i 1 ,i 2 ,i 18 ,i 28u0!

~A13!
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( j 51,2). It is stressed, that the number of accuracy dig
which are lost when computing the real coefficientsaj and
the quadruple sum in Eq.~A10!, is sometimes larger than 5
for the ^v18 ,v28 ,v38uq3

nuv1 ,v2 ,v3& integrals used in this work
Therefore, one has to evaluate these integrals with packa
which allow for arbitrarily large numbers of working digits
and to check that the number of significant digits at the e
of the calculations is still large enough.
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