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An effective model for the X ?A;—A 2B, conical intersection in NO
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We propose an efficient method for calculating the eigenstates and adjusting the parameters of an
effective Hamiltonian, which reproduces the experimentally observed energy levels,ofiiN®©

11800 cm ! above the quantum mechanical ground state, that is a few thousands bébave the

X 2A;—A 2B, conical intersection, with a rms error less than 4 énThis method principally relies

on the determination, through first-order perturbation theory, of an optimal basis for each surface,
which takes into account the nonresonant energy shifts experienced by the states of this surface. As
a result, the size of the matrix, which one has to build and diagonalize to converge the spectrum up
to 11800 cm?, is of the order of 500—1000 instead of several tens of thousands. Thank to this
Hamiltonian, the analysis of the experimental spectrum up to 11 800 could be completed. A
detailed description of all states located above 9500'dmproposed, those lying below 9500 ch

being already known and tabulated. ZD03 American Institute of Physics.

[DOI: 10.1063/1.1601602

I. INTRODUCTION few X 2A; states, but induces a significant mixing of these
states with one (or few) energetically close A2B,
The Born—Oppenheimer separation of electronic andstatds).'®°
nuclear motions is a widely used approximation for interpret-  The results obtained in this first work are perfectible in
ing molecular processes. Nonetheless, transitions betweesgveral ways. First, no effective Hamiltonian could be de-
different electronic surfacesnon-Born—Oppenheimer, or rived for the A2B, excited electronic surface, because we
nonadiabatic, dynamigsepresent a field of growing interest did not calculate the energy shifts experienced by the states
in chemical physics, because they appear to govern a larg¥ this surface following the nonresonant couplings with the
variety of fundamental processes, such as internal conveptates of the ground electronic surface. Therefore, the excited
sion, intersystem crossing, electron transfer and photoinelectronic surface was rather described as a list of discrete
duced reactions. In this context, the conical intersection beenergies. Moreover, the calculation procedure was rather ap-
tween the two lowest electronic surfaces of NOX2A, and ~ Proximate, since only very small matrices, corresponding to
A2B,, has already attracted much attention from both théhe res_onantl)_/ coupled states of both eIe_ctronic surfaces,
experimentalsee Refs. 1-4, and references theraimd the-  Were d|.agonaI|zed. At last, thg overlap matrix elements used
oretical (see Refs. 5-13, and references thergiaints of in this first work were not precise enough, becaugg of the loss
view. However, there still exists no model that satisfactorily©f @n unexpectedly large number of accuracy digsesveral

reproduces the vibronic spectrum of B the region of the Eens of themfollowing near cancellation of very large num-
conical intersection, i.e., around 10000 timWe recently ersTh . ¢ the present article is o report on th
made an attempt in this direction, by adjusting the param-, . € purpose ot the present articie 1S 1o report 0 €
) . . L . ._derivation of a complete effective Hamiltonian based on nu-
eters of a diabatic effective Hamiltonian against the energies

: . . merically exact quantum calculations. In this model, two
of the lowest 283 vibronic states, which have now all beerb y 9 . .
: ) . : unham expansions are used to describe, respectively, the
observed experimentall§. The associated vibronic states,

hich d 11400 o ab h uncoupled ground and excited diabatic electronic surfaces.
which extend up to cm above the quantum me- po etfactive Hamiltonian for the ground electronic surface

chanical ground state, consist of 276 states with predomlnaréfdditionally includes a weak vibrational resonance. The third

X?A; ground electronic character and 7 states with predomizomponent of the effective Hamiltonian, i.e., the diabatic
nant A 2B, excited electronic character. These calculation§:0up“ng surface, is taken as the usNg interaction, where
were based on the observation, that the net effect of thg, is the antisymmetric stretch normal coordinate for the
diabatic coupling between the two surfaces can be divideg|ectronic ground surface. When adjusting the parameters of
into two contributions, namelyi) a nonresonant coupling, sych a model against experimental data, the main concern
which affects all of thex >A; vibrational states but is asso- deals with CPU time, that is, in other terms, the size of the
ciated to very weak mixing coefficients ari) a resonant  Hamiltonian matrix one has to build and diagonalize. Sikce
coupling, which is significantbelow 11400 cm”) for only  is of the order of several hundreds of ch the diabatic
coupling between states separated by several tens of thou-
_1 . .
3Author to whom correspondence should be addressed. Electronic maif@nds of cm= still has a 5|Za_b|e effect on the energy of each
Marc.JOYEUX@ujf-grenoble. fr state. Moreover, each state is coupled to several tens of thou-

0021-9606/2003/119(12)/5923/10/$20.00 5923 © 2003 American Institute of Physics

Downloaded 04 Sep 2003 to 152.77.252.195. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



5924 J. Chem. Phys., Vol. 119, No. 12, 22 September 2003 Joyeux, Jost, and Lombardi

sands of states belonging to the other surface and the resuttited surface being much sparser than for the groundldpe,
ing (nonresonantenergy shifts are cumulative. This explains is taken to be just the energy difference between the bottoms
why, when working with harmonic oscillator bases, the sizeof the two electronic surfaces plus a fourth order Dunham
of the Hamiltonian matrix, which is necessary to convergeexpansion,

the spectrum up to 11 000 or 12 000 chabove the ground b b

state, is as large as several tens of thousands of vectorfsv.l’v2’03“_""'01’02’”3>

These dimensions being not compatible with the large num- 3

ber of iterations required by an adjustment procedure, the =E6+2 wi’ni’+z xinin/, (2.9
work reported in this article principally relies on the choice =1 1=l

of a different basis, which is obtained from first-order pertur-wheren/ =v{ +1/2 (i=1,2,3). At last, the diabatic coupling
bation theory. It is however emphasized, that perturbatiorH, is taken to be the only first-order term authorized by
theory is used only to build the working basis, while the symmetry, that is

construction and diagonalization of the Hamiltonian matrix H o= 2.5

are numerically exact. = M- '

This point is explained in some detail in Sec. Ill. The  Calculation of the{vy,v5,v5|H¢|v1,v0,03) integrals is
effective Hamiltonian itself is described in Sec. Il, while cal- the numerically difficult step in the process of building the
culations and results are discussed in Sec. IV. full Hamiltonian matrix in the|vq,v,,v3) and|vy,v5,03)
bases. In addition to the parameierthese integrals depend
only on the relationship between thej;(q,,q;) and
(91.95,93) sets of normal coordinates, which, as in Ref. 14,

The effective diabatic Hamiltoniai is taken in the IS taken in the form,
form,

Il. THE EFFECTIVE HAMILTONIAN

a1 a1
He He dz | =A| 02 | +B
H_(Hc Hg)’ @D g ds
whereHg, H, andH describe the diabatic ground, excited 0.899 —-0.532 0 0, 1.100
and coupling surfaces, respectively. Let us nopg,(;), —| 0301 0.906 0 9, | +| —5.730
(p2,d,), and (p3,03) the sets of conjugate coordinates for, 0 0 0.69 Us 0 .

respectively, the symmetric stretching, the bending, and the
antisymmetric stretching modes of vibration around the (2.6)

minimum of thg X?A, ground 'electronlc surface, and' This relationship was kept fixed in all of our calculations,
|U1-_UZ1US> the q|rect prodL_Jct basis for these three har_monICaIthough the fundamental frequencies were allowed to vary
oscillators. In this baS|s_}-,|gI is taken as the sum of the eighth slightly around the values, which were used to obtain Eq.
order Dunham expansion, (2.6). This is of little practical consequence, because the
<U11021U3|Hg|vlaUZvU3> equilibrium geometry of the excited surface is anyway still

3 rather poorly knowrf. Since the numerical calculation of

_ 2 S 2 N these integrals is one of the fundamental issues for this ;tudy,
= R o= B the procedure we used to calculate them is sketched in the
Appendix.

> ZijkmNiNN N, (2.2 As qlready noted in the_ Introduction, the princ_ipal prob-
j<k=m lem, which arises when using Eq2.1)—(2.6) to build and
diagonalize the Hamiltonian matrix, is the size of the total
harmonic basis. Indeed, this basis must contain several tens
of thousands of vectors if the spectrum is to be converged up

+2 yijkninjnk‘i‘_
isj<k i<

wheren;=v;+1/2 (i=1,2,3), plus the @,~w,+ 2w Vi-
brational resonance,

(v1,02,03/Hglv1— 3w, +1pv3+2) to 11000 or 12000 cm above the quantum mechanical
3 ground state. This size being not compatible with the large
_ k+2 kini) number of iterations required by an adjustment procedure,

i=1 we had to work with a more suitable basis, obtained from

first order perturbation theory. The procedure for determining

this basis, as well as the calculation of the matrix elements of
(2.3  H in the new basis, are described in some detail in the fol-
lowing section.

X\v1(v1—1)(v1—2)(v2+1)(v3+1)(v3+2),

wheren;=v,—1,n,=v,+1, andnz=v3+3/2. Let us simi-
larly note (p1,91), (P2.93), and (p5,93) the sets of conju-
gate coordinates for, respectively, the symmetric stretchinq"_ THE PERTURBATIVE BASIS

the bending and the antisymmetric stretching modes of vi-

bration around the minimum of th& 2B, excited electronic Let us noteE? andE; the eigenvalues of the uncoupled
surface, andv,v;,v3) the direct product basis for these HamiltoniansHy and H, and ¢) and ¢y the associated
three harmonic oscillators. The experimental data for the exeigenvectors,
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Hg‘Pn En‘Pn )
(3.1

Heen=Enep.

The eigenvectors of the full Hamiltonia#d of Eq. (2.1) are
obtained, at first order of perturbation theory, in the form

> <<P§|HCI<P%>¢
< El-Ep T, 3.2
ep

for the eigenvectors ofi built on the eigenvectors dfi,,
and

en
5 <¢§|HCI¢E>QD
T re_ =g %Yk
x Ep—E}

(3.3

for those built on the eigenvectors Hif,. It is well-known,

that the vectors in Eq$3.2)—(3.3) are good approximations

of the eigenvectors oH if (and only if the ratios which

The X 2A;—A 2B? conical intersection in NO, 5925

<¢gw| H| ¢g> = 5mnE%+ % (amkankEE'i' amk<‘P§| Hc| (Pg>
+andeHelem),
<¢§1| H| ¢ﬁ> = 5mnEﬁ+ zk: (BmkﬂnkEg—i_ Bmk(‘Pﬁ' Hc| ‘PE>

+,8nk<(P§1|Hc|§DE>)- (3.6

<¢?n| H| ¢g> = <(P$n| Hcl QD%>+ anmE§1+IanEg
+ ; ; andBmk<€D]e| Hcl (Pg>v

where 6,,, is Kronecker’s symbol. The last equation in Eq.
(3.6) shows that, in the new basis of vectar$ and 45, the
nonadiabatic coupling$|H|#3) between two vectors be-
longing to different surfaces is small, except when the zero-
order energies of these vectors are accidentally resonant. In
this later case, the off-diagonal matrix element is close to the
unperturbed one, that is tap;|H¢ ¢2). Consequently, the
size of the matrix one has to build to obtain a spectrum
converged up to a given energy is of much smaller dimen-

appear in these equations remain small, that is, if the zerasions than the size required with the harmonic basis. For
order energie€] of the ground electronic surface are not example, this size is typically of the order of 500-1000 to
accidentally close to the zero-order energigsof the ex-  converge the spectrum up to 11800 ¢m

cited electronic surface. If this condition is not fulfilled, that Before concluding this section, it is perhaps not com-
is, if there exist accidental resonances between specific paifsietely useless to emphasize that the basis defined by Egs.
of states belonging to different electronic surfaces, then th¢3.4)—(3.5) is neither orthogonal nor normalized, so that the
approximation breaks down. It is therefore interesting toenergy levels and the quantum statesiairenot obtained as

build new bases of vectorg? and ¢, such that

e
¢
ae| T ) el (3.4
" o | " 2 Bl '
o K

where the coefficients, and 3, are defined as follows:

(erlHeclen)

if TE9_EE

= y

(@il Hclon)
then a, =————=s—¢lse

E9—ES en=0,

(enlHcleR)
—_ =

if <
En—EX

(enlHcleR)

N Bnk= Eﬁ Eg else Bn=0.

(3.9

the eigenvalues and eigenvectors of the Hamiltonian matrix
computed in this basis. In the perturbative basis, one has
instead to solve the slightly more complex generalized eigen-
problem,

Hy=ENy, (3.7

where N is the matrix of the overlap$y? |49, (& |vs),
and(y5| 2y (N is equal to the identity matrix in the case of
an orthonormalized bagisA numerically efficient method
for solving Eq.(3.7) consists in finding the matricd&éand A

of, respectively, the eigenvectors and eigenvalueN,of

NV=VA (3.9
and in calculating the matri,
M=VA~ 12ty (3.9

(M is also equal to the identity matrix in the case of an
orthonormalized basjs Simple calculations then show that
the quantized energies of E(B.7) are the eigenvalues of
M H M, while the matrix of the generalized eigenvectors of
Eq.(3.7) is equal to the matrix of the eigenvectorshéiH M
multiplied, on the left-hand side, byl.

In Eq.(3.5), ¢ is a threshold parameter, which separates reso-

nantly (large ratioy from nonresonantly(small ratio$
coupled pairs of zero-order eigenstates. We used.05 in

IV. CALCULATIONS, RESULTS, AND DISCUSSION

the calculations reported in this article but, of course, the

final result does not depend on the precise value.dfhe

To summarize, actual calculations are performed as fol-

matrix elements oH in the new basis are next obtained in lows. The initial basis is first determined by retaining all the

the form,

vectors|v,v,,v3) and|vy,v,,v34), such that
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133 +75 +167 <EY , TABLE I. Adjusted valuegsecond columnand standard deviatior{¢hird
by &2 23 max column for the parameters of the effective Hamiltonian of E@s1)—(2.6).
(4.1) All values are expressed in cth
9700+ 131Q | + 7455+ 80 3<E} -
Value Uncertainty
For the purpose of calculating the spectrum up to 11800 1357.4090 3.2911
cm ! above the quantum mechanical ground state, suitable «, 756.8245 0.8396
values for the upper limits ar&€g_~=30000cm® and w3 1670.3878 0.9327
ES.,=50000cm !, which leads to basis sizes of 3182 and X1 ~11.9870 1.5479
. ; X1z —5.0272 0.4345
15504 for, respectively, the ground and excited surfaces. B
k e X13 28.9949 0.2445
The eigenstates of the uncoupled Hamiltonighsand Xop 0.0763 0.1547
H. are then evaluated for each new set of parameters of the x,, —-10.4319 0.2975
effective Hamiltonian. The eigenvectogs of H, are obvi- X33 —14.7341 0.1949
ously just thelv},v5,v4) vectors, while the corresponding Y 1.4238 0.2577
. o . Vit 0.3033 0.1512
eigenvalues; are calculated according to E@.4). In con- Vizr 0.2087 00226
trast, calculation of the functions? and the energieg? for Va2 —0.0363 0.0075
the ground electronic surface requires some more effort, yss —0.1933 0.0477
since these quantities are obtained from the diagonalization Zin —0.0892 0.0137
of small matrices of|v;,v,,v3) vectors coupled by the — Zu ~0.0558 0.0148
3.~ ot 2 fEq2.3 Z1113 —0.2460 0.0071
w1~ w;+2w; resonance o o( 3. . 21170 —0.1306 0.0230
The perturbative basis, which consists of the vecttfs Z1993 —0.0590 0.0162
and 7 of Egs.(3.4—(3.5), is next evaluated. One retains in = zys3 0.0186 0.0026
this basis all the vectorg) and ¢, which are built on k 0.8360 0.1815
vectors ¢? and ¢ with associated zero-order energig$ ke ~0.1710 0.0561
andE; smaller than a given threshofgl,,, (relative to the E) 10 209.0874 20.2592
minimum of the ground electronic surfacén order to check w; 1315.0927 9.5659
the convergence of the calculations, the results obtained with ©2 ;gg-ig;g i?-ggg?
two different values ofE,,,, are compared, namel¥ .« )‘:’,3 36,9068 6.3631.
=16 000 cm ! (about 500 vectors for the ground surface and | /° 43.3650 8.2839

40 vectors for the excited surfacand E,,,=20 000 cm * ijj 27.9314 4.6044
(about 1200 vectors for the ground surface and 200 vectors
for the excited surfage Note that, according to Eq§3.4)—
(3.5, each vectory¥ depends, in addition t@?, on the
15504 vector$v; ,v5,v5), while each vector® depends, in ~ served energies are extrapolated dowNte K=0 by sub-
addition toe¢, on the 3182 vectorl;,v,,v3). trac@g from the ol:Eerved energies the rotational constant
At last, the Hamiltonian matrix is built according to Eq. A+ B, where A and B are estimated according to Eq4)
(3.6) and the quantized states bf are obtained from the and(2) of Ref. 3.
procedure sketched at the end of Sec. Ill. Eventually, the A set of 30 converged parametef@2 parameters for
eigenvectors oH are expressed back in terms of the vectorsH,, 7 parameters fo, and 1 parameter fdf ;) is shown
|vy,v0,v3) and|vy,v5,vg). After comparison of the calcu- in Table I. The rms and maximum errors between the mea-
lated and experimental spectra, the standard gradient methedred energies and the calculated ones are 3.8 emd 19.7
is used to minimize the computed root-mean-squanes) cm 1, respectively, for the 306 experimentally observed
error. states. Fit residuals are plotted in Figajlas a function of
The experimental spectrum up to 11 800 ¢rabove the  energy. Note that the small uncertainties reported in Table |
quantum mechanical ground statgainst 11400 cmt in  for the parameters dfl,, as well as the small errors for the
Ref. 14 was used to adjust the parameters of the effectivealculated energies of the eight states with predominant
Hamiltonian. This energy window contains 298 states withA 2B, excited electronic character, are largely meaningless
predominantX 2A; ground electronic character and nine since, for this surface, the number of paramet@jss very
states with predominar 2B, excited electronic character, close to the number of experimental data taken into account
of which only 1 state with predominat?B, excited elec-  (8).
tronic charactef[1,0,1]) has not been observed experimen-  One of the most interesting information of Table | is the
tally. In addition to energy, the experimental spectrum alsovalue for the coupling parametev~332=19 cm 1. The
provides a clear-cut determination of the totddronic sym-  main reason, why this estimation is substantially smaller than
metry (A; or B,) of the recorded statés? The vibrational the estimation of Ref. 14\(~ 600 cm 1) is, as already stated
terms(i.e., the rotationless band originef states withA; in the Introduction, that the overlap matrix elements used in
vibronic symmetry are directly obtained from the recordedthis first work were not precise enough, because of the loss
laser induced dispersed fluorescent#DFS) spectra. In  of an unexpectedly large number of accuracy digseveral
contrast, the lowest rotational level of states viBthvibronic ~ tens of them following near cancellation of very large num-
symmetry observed in LIDFS spectraNs=K=1. For the bers. The overlap integrals were calculated to, roughly, only
purpose of comparison with calculated energies, these olwne half of their actual values, which resulted in an estima-

331.7647 18.8067
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the largest part of these shifts increases regularly with quan-

~ ar tum numbers and energy. We actually showed in Refs. 15
F'E 0 fe--oo®d and 16 that the regular part of the energy shifts is due to the
% 20 [ ' nonresonant couplings, that is, to the interactions between
E] - states of different surfaces, which are well separated in en-
2 4or : ] ergy. We also showed that these nonresonant shifts cannot be
_E 60 [ o 7 distinguished from the anharmonicities inside each surface
T ek ® fit residuals ] (hence the above remark that they are of no use for the de-

termination of the coupling parametg). The principal rea-
son, why the number of vectors required to converge the
spectrum is much smaller with the perturbative basis of Sec.
‘ Il than with the harmonic basis, is precisely that the pertur-
-20 ) : bative basis for each surface takes into account, by construc-
[ tion, the nonresonant shifts experienced by the states of this
surface. Therefore, the resonant shifts., the shifts result-
ing from the interaction between states of different surfaces
%] which are almost degenerate in engrggan be obtained as
the difference between the eigenvalues of the effective
Hamiltonian of Egs.(2.1)—(2.6) and the eigenvalues ob-

energy shifts (cm ™)
w8y

b 24

N

o

s |
PPRN | R

- 1 tained when setting al{y|H|¢2) elements to zero in the
§ opT® !o:dég_ Hamiltonian matrix expressed in the perturbative basis. The
£-20 ; 3% x| result obtained witle =0.05 is plotted in Fig. (c). It is seen
B 40| . that, in contrast with nonresonant ones, resonant shifts are
3 [ o2 significant only for a limited number of states. The present
s 60 [ . : d I ; :
5 (c) resonant energy shifts : 1 etermination of\ actually relies on thesé&elatively few

80 I : ]

resonant shifts and the resulting increase of precision in the
calculated energies. It is therefore not excluded that this es-
timation for A might still vary to some extent if the working
data set is extended to higher energies. It turns out that the
FIG. 1. (a8 Plot of the fit residuals as a function of the experimentally present estimation~332+ 19 cm * is of the same order of
determined energies up to 11 800 Thmabove the guantum mechanical magnitude as the first experimental determination of Delon

ground state. The fit residuals are defined as the difference between thgnhd JOStL%ZSW 50) Cm_l,l which was obtained from ap-
experimentally determined energies and the eigenvalues of the effectiv . . s
Hamiltonian of Eqs(2.1)—(2.6) and Table 1.(b) Plot of the calculated total 5rOX|mate calculations performed on a much more limited

energy shifts caused by the diabatic couplihgas a function of the experi- dat? Se_t- In co_ntrast, this Value. 'S much Sma”er th‘?’m the
mentally determined energies. The total energy shifts are defined as thestimations derived from receab initio calculations, which

difference between the eigenvalues of the effective Hamiltonian of Eqsrange from 700 cmt (Ref. 8 to more than 2400 cm0As
(2.)—(2.6) and Table | and the eigenvalues obtained when seitia@. (c)

Plot of the calculated resonant energy shifts caused by the diabatic COUD“Frlétated .m R.ef' 8, the reason for such a.n u,,ncertamty in the
H. as a function of the experimentally determined energies. The resonaf€termination ofx is “not clear at that point.
energy shifts are defined as the difference between the eigenvalues of the This work and the previous one in Ref. 14 enable a
effective Hamiltonian of Egs(2.1)—(2.6) and Table | and the eigenvalues petter understanding of the experimental spectrum of N©
_ _ AN _ - _

obtained when setting aflyr,|H| /i) elements to zero in the Hamiltonian 4 11 g cmt above the quantum mechanical ground state.
matrix expressed in the perturbative bdsivaluee = 0.05 is assumed in the . . .
definitions of Eq.(3.5]. In all plots, open circles denote states with pre- Indeed, several states which were left unassigned in Table VI
dominantX 2A, ground electronic character, while croses denote states  Of Ref. 3 could be safely assigned in the course of this work,
with predominantA 252 excited electronic character. The vertical lines in- while some additional states could be retrieved in the re-
dicate the energy of the vibrational ground state of the excited electroni : ; ~
surface. Note also that both the coordinate and abscissa scales are ident%agrded spectra thank to their Ca_‘ICU|a‘ted energieis proc_e
for the three plots. ure eventually led to the reassignment of a few sjafess

is the first reason, why the energies of the states observed

above 9500 cmt are reported in Table Il together with their
tion for \ too large by a factor of about 2. It is stressed, oncecalculated decomposition on the harmonic oscillator bases.
more, that the determination af does not rely on the total The description of states with lower energy can be found in
energy shifts caused by.=\q;, but only on a small part of Refs. 1 and 3. The second reason for reporting the computed
these quantities, i.e., the resonant shifts. This point is clearlgigenvectors in Table Il is that, within the approximation of
visualized in Figs. (b) and Xc), which show, respectively, the effective Hamiltonian of Eqg2.1)—(2.6), the only im-
the total and resonant energy shifts causeddpy The total  portant coupling observed below 9500 chis due to the
energy shifts of Fig. (b) are obtained by subtracting the approximate &~ w,+2w3 Vvibrational resonance of EQq.
energies calculated with=0 from the energies calculated (2.3), while additional couplings due tél, appear above
with the parameters of Table I. Although this figure is some-9500 cni . Among these new couplings, the most important
what obscured by the fact that the shifts for all of the state®ne is of course the resonant vibronic coupling between

are displayed on the same plot, it is nevertheless clear thatates of different surfaces, which gives rise to the resonant

[
0 2000 4000 6000 8000 10000
energy E (cm™)
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TABLE Il. NO, vibronic states located between 9500 and 11 800%cabove the quantum mechanical ground state. The first column indicates the rank of
the state in a given electronic surfathe quantum mechanical ground state of each surface)isTH& second column shows, for states vBth vibronic
symmetry, the energgin cm™* above the quantum mechanical ground $tafehe N=K =1 rotational component obtained from LIDFS experiments. The
rotationless band origins are shown in the third column. For most stateBwitfbronic symmetry, the band origin is obtained by subtracting the rotational
constantA+B [estimated according to Eqél) and (2) Ref. 3] from the N=K=1 energy reported in the second column. For states Withvibronic
symmetry, the energy of the band origin is directly obtained from LIDFS experiments. The fourth column indicates the difference between theriedperi
energy of column 3 and the energy obtained from the effective Hamiltonian of(Eqs—(2.6) and the parameters of Table I. The fifth column shows the
calculated probabilityin percents for finding the state in the diabatic excited electronic surfAé®,. A more precise description of the wave function is
provided in the last column, which indicates its decomposition on the harmonic basesXfAhe(normal bracketsand A 2B, (square bracketdiabatic
electronic surfaces. All calculated contributions larger than 0.1 are shown.

Energy Energy obs— calc.
(cm™Y) (cm™h error
No. K=N=1 K=N=0 (cm™Y) %A ?B, Eigenvector decomposition
165 9510.20 9499.98 —0.08 0.16 0.715(1,5,3)0.697(4,4,1)
166 9512.15 0.26 0.02 0.979(4,2:29.199(1,3,4)
167 9529.28 9518.12 1.00 0.18 0.716(4,4;0)695(1,5,3)
168 9524.46 1.33 0.03 0.994(4,6:99.103(1,7,2)
169 9539.85 9531.82 —-3.34 0.00 0.996,0,3
170 9561.57 1.51 0.20 0.978(1,3:40.199(4,2,2)
171 9631.80 9624.27 2.85 0.04 0.993.,5
172 9640.77 2.13 0.22 0.9@813,0
173 9667.96 9653.79 1.10 17.31 0.902(0,1%,0)4080,0,0]
174 9672.77 0.98 0.00 0.9991,0
175 9697.32 0.13 0.75 0.968(0,9;20.225(3,8,0)
176 9725.87 9714.10 1.45 2.82 0.941(3,6:0)273(0,7,3) 0.1630,0,0]
177 9717.28 -1.19 0.13 0.974(3,8,01)0.223(0,9,2)
178 9732.21 3.69 0.10 0.983(3,4:20.173(0,5,4)

1 9738.20 9733.50 4.28 59.92 0.793,0]+0.482(0,7,3>-0.383(0,11,1)
179 9747.29 9735.76 -5.73 18.18 0.826(0,7,3)0.4230,0,0]+ 0.331(3,6,1) 0.145(0,11,1)
180 9762.81 9753.87 —3.63 0.04 0.992(3,2,3)0.118(0,3,5)

181 9781.28 —-1.00 0.45 0.981(0,5,4)0.173(3,4,2)

182 9806.85 9796.43 0.19 0.00 0.984,1)

183 9796.99 -3.81 0.00 0.998,0,4

184 9845.21 9836.87 0.36 0.33 0.989(0,3;9)118(3,2,3)

185 9856.44 2.00 0.00 1.0083,0

186 9905.43 —1.05 0.09 0.99%,1,6

187 9920.66 0.38 0.25 0.9@810,0

188 9941.20 9928.51 —-0.47 1.21 0.992,8,)

189 9950.91 2.18 0.32 0.9956,2

190 9985.29 9975.53 —4.05 0.18 0.966(2,4,3)0.249(5,3,1)

191 9984.01 0.14 0.00 0.989(5,1:29.139(2,2,4)

192 10017.80 10 006.31 3.20 0.03 0.968(5,3;0)248(2,4,3)

193 10 025.87 0.47 0.08 0.988(2,2:440.139(5,1,2)

194 10 043.60 2.68 0.02 0.9@95,0

195 10 089.66 10 082.40 0.32 0.00 0.688,5

196 10 132.64 —-0.25 1.19 0.98@.,12,0

197 10 159.36 10 145.36 —-1.82 3.58 0.979(1,10,10.1610,1,0]

198 10 174.63 3.75 1.49 0.979(1,8:20.110(1,12,0)

199 10 185.29 1.81 0.00 0.9¢90,0

200 10 209.84 10198.93 0.70 0.30 0.736(1,6,8)672(4,5,1)

201 10 203.93 2.02 0.06 0.972(4,3:20.226(1,4,4)

202 10 222.40 10 213.62 —-2.60 0.01 0.981(4,1,3)0.114(1,2,5)+0.112(7,0,1)
203 10228.12 10216.13 ~0.43 0.39 0.736(4,5,1)0.664(1,6,3)- 0.101(4,1,3)
204 10 232.65 0.50 0.13 0.9857,0

205 10 252.54 1.79 0.33 0.970(1,4440.226(4,3,2)

206 10 280.32 10 270.61 —-5.37 0.00 0.993(7,0,1)0.109(4,1,3)

207 10 312.69 10 304.70 2.39 0.13 0.990(1,2,8)119(4,1,3)

208 10 352.46 —4.33 8.58 0.919(0,14,070.2850,0,1] +0.235(0,10,2)
209 10 377.37 10 361.78 -3.95 20.26 0.870(0,12,1)0.4400,1,0] —0.105(1,10,1) 0.102(0,8,3)
210 10 371.74 3.56 0.00 0.9992,0

211 10 375.49 5.50 0.01 0.9480,6

212 10 403.19 8.16 12.35 0.854(0,10,2).347(0,14,0% 0.3350,0,1]
213 10 424.80 10412.23 -1.97 1.65 0.953(3,7,1)0.242(0,8,3)- 0.114(0,12,1)- 0.1120,1,0]
214 10 415.65 ~6.51 0.64 0.947(3,5,2)0.246(3,9,0)- 0.166(0,6,4)
215 10 435.48 8.77 2.55 0.945(3,9;00.254(3,5,2)0.1570,0,1]
216 10 449.22 10 436.67 -1.35 7.30 0.901(0,8,3)0.268(0,12,1)-0.2530,1,0]+ 0.164(3,7,1)
217 10 451.92 10 442.40 ~0.95 0.10 0.989(3,3,3)0.134(0,4,5)

218 10 446.07 3.59 0.00 0.9@00,2

219 10 477.36 —-0.82 0.02 0.994,1,4
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TABLE Il. (Continued)

The X 2A;—A 2B? conical intersection in NO, 5929

Energy Energy obs—calc.
(cm™h (cm™h error
No. K=N=1 K=N=0 (cm™h %A ?B, Eigenvector decomposition
220 10478.83 1.89 9.79 0.894(0,6#0.3030,0,1]—0.228(0,10,2% 0.141(3,5,2)
0.1063,9,0
2 10 483.60 10 478.00 ~4.02 62.98 0.79D,1,0]+0.378(0,12,1) 0.318(0,8,3) 0.232(3,7,1}-
0.177(2,9,1)0.120(1,10,1) 0.102(1,11,1)
221 10 498.19 10 486.38 1.09 0.04 0.682,1)
3 10 490.20 0.46 59.47 0.7B80,1] — 0.389(0,6,4)- 0.361(0,10,2)- 0.182(3,9,0
0.151(0,14,0¥ 0.125(2,11,0)- 0.114(3,5,2)
222 10 532.80 10 523.43 -0.29 0.55 0.985(0,4,5)0.134(3,3,3)
223 10557.41 2.96 0.01 1.0@4,0
224 10583.21 1.31 0.25 0.9@12,6
225 10 633.06 —-5.47 2.03 0.986(2,11,6)0.1340,0,1]
226 10 649.26 10 635.65 ~5.56 4.34 0.975(2,9,1)0.1850,1,0]
227 10 654.47 7.19 1.98 0.986(2,7:20.1050,0,1]
228 10 663.43 10 656.54 —-3.79 0.02 0.99(0,0,7
229 10 669.13 10 660.61 —2.00 0.00 0.99,0,3
230 10677.46 10 667.12 —2.62 0.37 0.965(2,5,3)0.248(5,4,1)
231 10 670.56 4.17 0.02 0.983(5,2;:20.169(2,3,4)
232 10 708.54 10 695.97 0.22 0.08 0.968(5,4,0)246(2,5,3)
233 10707.27 ~0.79 0.17 0.983(2,3,4)0.168(5,2,2)
234 10 746.09 2.20 0.04 0.9@96,0
235 10761.97 10 754.37 —-0.99 0.03 0.99@,1,5
236 10 849.89 -5.27 2.34 0.981(1,13,090.116(1,9,2)-0.1130,1,1]
237 10 869.80 10 854.53 —14.28 3.57 0.976(1,11,%)0.1240,1,0]+0.1020,2,0]
238 10 876.61 5.09 0.00 0.9831,0
239 10 879.00 9.70 5.46 0.949(1,9:20.1990,1,1] — 0.148(1,13,0)
240 10 901.50 10 889.80 ~2.69 0.88 0.752(1,7,3)0.627(4,6,1)- 0.118(4,2,3)- 0.110(1,11,1)
241 10 890.98 2.76 0.12 0.968(4,4:20.241(1,5,4)
242 10907.11 10 897.58 4.08 0.04 0.971(4,2:8)149(7,1,1)- 0.135(1,3,5)
243 10916.68 10 903.77 —7.24 1.82 0.766(4,6,1)0.624(1,7,3)
244 10912.02 —-5.64 0.00 0.99€4,0,9
245 10 928.51 -8.35 0.67 0.862(4,8,000.483(1,5,4) 0.117(4,4,2)
246 10 944.52 5.85 0.41 0.831(1,5:40.498(4,8,0) 0.212(4,4,2)
247 10 964.46 10 952.77 —4.54 0.00 0.987(7,1,50.141(4,2,3)
248 10990.71 10 981.98 0.62 0.29 0.983(1,3;9)147(4,2,3)
4 11 004.86 10 999.42 1.38 82.75 0.90,0,0]-0.331(0,13,1% 0.162(3,8,1)
249 11 041.63 3.55 0.06 0.9941,6
250 11 063.35 2.72 0.00 0.9993,0
251 11 070.28 —2.84 25.81 0.636(0,11,2)0.502(0,15,0)- 0.4930,1,1] — 0.167(1,9,2)
0.1130,7,4
252 b 11 095.50 ~14.23 13.89 0.731(0,13,1)0.514(3,8,1) 0.2530,2,0] + 0.212(0,9,3)
0.1921,0,0]+0.15§0,0,2]
253 11 096.92 4.91 4.83 0.856(0,15:00.426(0,11,2} 0.2090,1,1]— 0.117(3,6,2)
254 11115.74 11102.25 ~15.83 9.83 0.745(3,8,1)0.533(0,9,3)- 0.259 1,0,0]— 0.233(0,13,1)
~0.1160,0,2]
255 11116.84 5.04 0.60 0.958(3,6:20.181(0,7,4)- 0.163(0,11,2) 0.103(3,10,0)
256 11 133.12 11 123.02 —2.67 0.35 0.982(3,4,3)0.138(0,5,5)
257 11 126.63 10.08 0.00 0.9961,2
258 11137.79 4.20 2.21 0.963(3,10:60.153(0,11,2) 0.1370,1,1]— 0.119(3,6,2)
259 11 156.13 11 142.35 9.75 10.02 0.712(0,9,8)500(0,13,1% 0.342(3,8,1)-0.1951,0,0] +
0.1840,2,0]1+0.1240,0,2]
260 11 156.13 3.70 0.06 0.991(3,2740.109(0,3,6)
261 11 180.48 11 167.17 —-2.95 0.02 0.99%,3,1)
262 11170.35 1.86 3.03 0.906(0,7-40.308(0,11,2)- 0.143(3,10,0)
0.1370,1,1]+0.131(3,6,2)
263 11 193.62 11 186.40 —7.36 0.00 0.99@,0,5
264 11 216.76 11 206.02 —3.47 22.33 0.862(0,5,5)0.4390,2,0]+0.1470,0,2] + 0.129(3,4,3)
5 11 220.93 ~0.45 46.44 0.67®,1,1]+0.480(0,11,2) 0.308(0,7,4) 0.238(2,8,2 -
0.191(3,10,0) 0.151(2,12,0% 0.141(3,6,2)- 0.134(1,9,2)
0.1271,10,2
6 11 218.60 11 210.65 5.99 67.44 0.792,0]+0.456(0,5,5)- 0.239(0,9,3)- 0.1760,0,2] —
0.143(3,8,1)0.110(2,10,1)
265 11 251.43 0.89 0.02 1.0@35,0
266 11 259.64 3.18 0.53 0.9883,0+0.1093,2,4
7 11 289.51 11283.15 1.28 73.00 0.88®,2] +0.316(2,10,1) 0.257(0,9,3) 0.165(2,6,3)

0.1130,13,1
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TABLE Il. (Continued)

Energy Energy obs—calc.
(cm™h (cm™h error

No. K=N=1 K=N=0 (cm™b %A °B, Eigenvector decomposition

267 11 330.12 11 323.62 2.13 0.11 0.684,7

268 11 343.61 11 333.99 4.18 0.00 0.976(5,%8)199(8,0,1)

269 11 346.62 1.68 7.35 0.583(2,8:20.562(5,3,2)- 0.559(2,12,0) 0.130(2,4,4)

270 11 363.15 11 348.40 ~1.69 6.57 0.872(2,10,1)0.393(2,6,3)- 0.1970,0,2] — 0.12§ 0,2,0]

271 11 354.63 9.79 0.47 0.801(5,3:20.413(2,8,2)- 0.398(2,12,0)- 0.138(2,4,4)

272 11 363.15 3.86 0.00 0.9®70,0

273 1139243 11381.46 21.95 8.50 0.856(2,6,0)318(2,10,1) 0.264(5,5,1)- 0.2500,0,2]
—0.1090,2,q

274 11 376.48 18.41 0.97 0.707(2,1240).632(2,8,2) 0.2490,1,1] +0.100(0,11,2)

275 b 11 379.42 —5.62 0.60 0.961(5,5,1)0.262(2,6,3)

276 11 381.20 —6.30 0.41 0.977(2,4,4)0.187(5,3,2)

277 11 410.73 11 400.23 ~12.14 0.00 0.976(8,0,1)0.191(5,1,3)- 0.106(2,2,5)

278 11 430.99 11 422.84 —-3.51 0.10 0.98&,2,5

279 11 440.67 —2.05 0.15 0.99%,7,0

280 11 477.76 —-2.35 0.00 0.992,0,6

281 11 547.93 2.07 0.00 0.970(7,0520.242(4,1,4)

282 b 11 553.37 -13.81 0.13 0.969(4,3,3)0.176(7,2,1)- 0.152(1,4,5)

283 11 557.04 1.70 0.00 0.9%72,0

284 11 570.90 0.98 0.50 0.957(4,5:20.257(1,6,4)

285 11 576.34 9.45 2.16 0.917(1,14:60.351(1,10,2) 0.1000,2,1]

286 11593.63 3.85 7.02 0.867(1,10:20.362(1,14,0% 0.186 0,2,1]— 0.185(4,9,0)
+0.1670,1,1]

287 11 580.82 11 568.20 —13.09 3.26 0.741(1,8,3)0.602(4,7,1»0.210(1,12,1)-0.1150,1,2]

288 11591.20 11 574.30 -1.35 4.89 0.943(1,12,1)0.233(4,7,1} 0.1271,1,0]— 0.1040,0,2]

289 11 601.89 15.66 0.01 0.963(4,1;40.242(7,0,2)

290 b 11 604.43 4.18 6.86 0.731(4,7410.599(1,8,3}- 0.161 1,1,0]+ 0.153(1,12,1)
~0.1460,1,2]- 0.1010,0,2]

291 11619.38 ~0.86 2.26 0.941(1,6,4)0.245(4,5,2)

292 11 638.61 11 624.79 -9.21 0.01 0.981(7,2,10.161(4,3,3)-0.104(1,4,5)

293 11 635.86 -1.77 2.75 0.961(4,9,0§0.171(1,10,2) 0.1491,0,1]

294 11 664.04 11 654.32 —-3.21 0.63 0.973(1,4,5)0.167(4,3,3)

8 11 694.41 0.97 71.40 0.8¢11,1,0]+0.319(0,14,1) 0.274(3,9,1) 0.197(4,7,1)

+0.1260,10,3

295 11 704.48 —-0.20 0.21 0.990(1,2,610.101(4,1,4)

9 11720.41 a 60.6 0.771,0,1]—0.349(0,12,2) 0.292(0,16,0} 0.243(3,7,2)

+0.180(3,11,0) 0.180(4,9,0)

296 11 742.84 —6.09 0.01 0.999,4,0

297 11 768.58 11 759.14 8.15 0.00 0.689,3

298 11 783.85 11 776.96 7.96 0.01 0.6B0,7

&Calculated frequency.
PK=N=0 limit deduced fronK=0, N=1,3,5,... LIF, ICLAS or CRDS experimental energies.

shifts discussed in the paragraph above. Interestingly, ongirections. First, we plan to use the effective Hamiltonian
however also observes a certain number of interactions belerived in this article to reproduce the absorption spectra,
tween two states of the ground electronic surface, which arevhich have been recorded by the ICLAS and FTS techniques
coupled by non-negligiblé 3 |H| %) matrix element§see  in the range 11 200—16 150 c¢th®*” While the goal would,
Eqg. (3.6)]. Nonetheless, due the much smaller value Xor of course, no longer be to calculate all transition energies
(332 cm ! against more than 2400 ¢, the mixing coef-  with an error of the order of a few cm, a visual or statis-
ficients reported in the two last columns of Table Il remaintical comparison of the observed and calculated spectra
much smaller than those obtained by Leonardi andshould be able to indicate up to what energies such a model
Petrongold! remains valid, and eventually what corrections are needed.
Moreover, we plan to analyze the classical phase space of the
vibronically coupled system along the lines proposed in
Refs. 18 and 19. The underlying idea is to use the classical
We have derived an efficient method for adjusting theperiodic orbits of the system to study the nonadiabatic quan-
parameters of an effective Hamiltonian against experimentaum dynamics, as was done recently for several triatomic
data. This model accurately reproduces the observed franolecules in the context of the Born—Oppenheimer approxi-
quencies up to a few thousands of chabove the conical mation (see, for example, Refs. 20 and 21, and references
intersection. Continuation of this work is expected in twothereir).

V. CONCLUSION
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APPENDIX: CALCULATION d=G¥2y-1p, (A8)
OF THE (v1,v3,vglq3lvy, Vs, vs) INTEGRALS )

o

S2 a2/’

One finally notes

S:

Since, for symmetry reasons, the matdx={A;} is
block diagonalcf. Eq. (2.6)], the integrals to compute split
in the more manageable form,

2
(v1,02,03|03V1,02,08) = (v1,v5lv1,02)(v3|A3[V3). 4= \Trg
ii

(A1)
After some straightforward algebra, the second integral :dj VGjj
in the right-hand side of EqA1) is rewritten as I 1+Gyp
' ’ 2 A9
(03]3vs) = Ca(n,v5,0) o A9
o , i 1 2(1+ Gy’
X in P3(n,v3,v3|x3)e X3dX3, (AZ) S]:a]XJ_IBJ
where (j=1,2). After some straightforward algebra, whose first
steps are sketched in Refs. 4 and 22, the first integral in the
[ 2 right-hand side of Eq(Al) is recast in the form,
a3= PN ! ’ ’ !
° 1+A§3 (v1,v3|v1,02)=C(v1,02,01,05)
Cs(n,v v')—a1+n Ass vzt 2 v\ (va|[v1|[ V2
3(N,v3,v3) = a3 T ool it I Il | el |
muglugl2tstls Xi1§=:0i2§=:0ir§:lo iz_:o(ll)(|2)(ll>(l2)
(AS) 1 2
3= a3Xs, o )
, X Pi(iq1,ip,i1,i0%1)e X1dx
P3(n,v3,03|X3)=X'3‘H,}3(a3X3)HUé(A33a3X3), Jfoo (i i21.T2lx0) !
and theH’s are the Hermite polynomials of orden. The % +°°P e IR
polynomialP5(n,v3,v3|X3) is next projected on the orthogo- e 2(01711,02712,01711 02
nal basis of the Hermite polynomials, leading to ,
n+v3+vé _ié|X2)e7X2dX21 (Alo)
P3(n,vs,v3Xg)= ;_:0 as(nvz, 04k H(xg). (A4) ~ Wwhere
C(vl,vz,vi.vé)
Remembering that the term &f,(x) with highest order is ey
2 xX, the real coefficientag(n,v3,v4|k) are easily obtained _aae 2 detW)  / de(T)
downwards, starting witlas(n,vs,v5/n+vs+v3) and end- mv1tUaTUIt U, vilvoluglog!
ing with az(n,v3,v4/0). The second integral in the right- o
hand side of Eq(A1) is then just P1(i,iz,i1,15[X) =Hi (V2(U1s8;+D 1)) H; (V2U2s8y)
(v3la8lvs)=mCs(n,vz,v5)as(Nvz,050). (A5) XHii (V2Wy38) Hi ) (V2Wo3sy),
Calculation of the first integral in the right-hand side of (A11)

Eqg. (Al) is somewhat more tedious, but this can again b o, B
performed without ever integrating a function numerically,ep2('1"2'Il "2|X2)_Hil(‘ﬁU1252)Hiz(‘/2(U2232+DZ))

which is of fundamental importance for the sake of accuracy. X Hi (VAW 58, Hy (VEW,,8,),
Proceeding along the same lines as in Refs. 4 and 22, one 1 2

first obtains, by inverting Eq(2.6), the matricesT andD,  and thes;’s must be replaced with their expressions in terms

such that of thex;’s in Eq. (A9). As for the integral dealing with mode
, 3, each polynomiaP;(iy,i,,i1,is|X;) (j=1,2) is next pro-

1 =T q} +D. (AB) jected on the orthogonal basis of the Hermite polynomials,

d2 P according to
One then calculates the orthogonal maifkand the diago- i +igHig+ih
nal mattrle of, respectively, the eigenvectors and e|genval-pj(i1,i2,ii,ié|xj): Z ay(iy,i,i1, 5K HKX)),
ues of' TT, =0

(A12)
TTW=W G. (A7)

so that the corresponding integrals are equal to
The matrixU and the vectorsl ands are defined fromW +o )
andG according to f Pi(i1,iz,i1,i5/%)e 5 dx=ma(iy,iz,i1,i50)

U=T W, (A13)

—oo
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(j=1,2). It is stressed, that the number of accuracy digits,®S. Mahapatra, H. Kapel, L. S. Cederbaum, P. Stampfuss, and W. Wenzel,

which are lost when computing the real coefficieafsand
the quadruple sum in E§A10), is sometimes larger than 50
for the (v} ,v5,v4/q3/v1,v5,03) integrals used in this work.

Therefore, one has to evaluate these integrals with packages

which allow for arbitrarily large numbers of working digits

Chem. Phys259, 211 (2000.
°R. F. Salzgeber, V. A. Mandelshtam, Ch. Schlier, and H. S. Taylor, J.
Chem. Phys110 3756(1999.
10E. Leonardi, C. Petrongolo, G. Hirsch, and R. J. Buenker, J. Chem. Phys.
105, 9051(1996.
E. Leonardi and C. Petrongolo, J. Chem. P36 10066(1997).

' 2R Brandi, F. Santoro, and C. Petrongolo, Chem. PBgS, 55 (1997).

and to check that the number of significant digits at the endsg, santoro and C. Petrongolo, J. Chem. PHy€, 4419(1999.

of the calculations is still large enough.

!A. Delon and R. Jost, J. Chem. Ph@§, 5686(1997).

2R. Georges, A. Delon, F. Bylicki, R. Jost, A. Campargue, A. Charvat, M.
Chenevier, and F. Stoeckel, Chem. Ph}80, 207 (1995.

3B. Kirmse, A. Delon, and R. Jost, J. Chem. Phi88, 6638(1998.

4A. Delon, R. Jost, and M. Jacon, J. Chem. PHyis} 331 (2001).

SA. Delon, R. Jost, and M. Lombardi, J. Chem. Ph§5, 5701 (1991).

SE. Haller, H. Kgpel, and L. S. Cederbaum, J. Mol. Spectrakkl, 377
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