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We present the analysis and the semiclassical quantization of the van der Waals states of ozone in
the ground electronic stateX 1A1 . Progressions of these states dominate the spectrum of O3 at
threshold. Periodic orbits are used to perform assignment and quantization of the vibrational states.
Semiclassical quantization is numerically accurate despite the fact that the classical phase space is
chaotic while the nodal patterns of the quantum mechanical wave functions are regular. The
lifetimes of recombination of the van der Waals states into the ‘‘normal’’ ozone are also discussed.
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I. INTRODUCTION

Molecular eigenstates near dissociation threshold are the
subject of intensive investigations in the field of chemical
dynamics~see Refs. 1–3, and references therein!. Nonlinear
anharmonic coupling between the internal degrees of free-
dom, whose influence grows with increasing deviations from
the equilibrium and thus with energy, substantially changes
the properties of highly energized polyatomic molecules. As
a result of progress in computational quantum chemistry,4

accurate potential energy surfaces~PESs! can now be con-
structed for small polyatomics even far away from equilib-
rium and reliable predictions of unusual properties of the
weakly bound threshold states can be made.1 New dynamical
features near dissociation can be grouped into two broad cat-
egories. First, assignment of the eigenstates becomes intri-
cate. For example, the normal mode assignment, appropriate
near the ground vibrational state, often loses its meaning at
high excitation energies.5 At best, new quantum numbers can
be introduced which still uniquely characterize eigenstates
@the well studied normal- to local mode transition in triatom-
ics ~Refs. 6 and 7, and references therein! serves as an ex-
ample#. More generic is a gradual transition from an assign-
able spectrum to an ensemble of irregular eigenstates
characterized only by an exact symmetry of the system, the
energy, and the total angular momentum. This transition is
thoroughly documented by Jostet al. in the experimental
spectroscopic studies of the bound states of nitrogen
dioxide.8–10The other distinctive characteristic of the thresh-
old region is that new groups of vibrational eigenstates ap-
pear in the spectrum. Typically, they are the result of ‘‘bifur-
cations’’ in the existing progressions triggered by sudden
changes in the classical phase space.3 Such ‘‘bifurcations’’
were studied for many triatomic molecules including HCP,2

HOCl,11 H3
1 ,12 and HOBr.13 Alternatively, new progressions

of molecular states can form in those regions of the intramo-

lecular potential, which become accessible only at threshold.
A striking example is furnished by ozone in the ground elec-
tronic state. Recently, we investigated the bound states of
this molecule on a new high-qualityab initio global PES.14

The main feature of the PES in the dissociation O¯O2 chan-
nel is a van der Waals~vdW! minimum situated approxi-
mately 200 cm21 below the asymptote. Using accurate quan-
tum mechanical calculations, it was shown14 that the shallow
vdW well supports progressions of vibrational states. For all
vdW states, the average distance between the O atom and the
O2 fragment exceeds 5 bohr. These states exist in the same
energy range as the vibrational states of ‘‘normal’’ ozone.
However, they retain a large degree of independence of the
latter: Mixings between the two types of eigenstates are
rather weak. Appearing only 150 cm21 below the quantum
mechanical threshold (D0), vdW states become the domi-
nant species atD0 and increase the spectral density in a
nonrotating molecule to 0.8 per cm21. The role of vdW states
in reactions above dissociation threshold, in particular the
ozone formation and the oxygen exchange, are currently un-
der extensive scrutiny.

In the present article the vdW states in ozone are ana-
lyzed from a semiclassical viewpoint. Isotopomer16O¯

18O2

is chosen as an example. Quantum mechanical calculations
showed that the vibrational assignment is straightforward for
most of the eigenstates. However, new types of eigenstates
are observed near dissociation threshold and we apply the
semiclassical approximation in order to clarify the nature of
the strange vibrational states and to trace the origin of the
quantum ‘‘bifurcations.’’ To this end, a detailed study of the
classical phase space and the quantum/classical correspon-
dence is undertaken. Semiclassical calculations are signifi-
cantly alleviated by the fact that the molecular motion in the
vdW well is two dimensional. It is confined to the two inter-
nal degrees of freedom, the ŌO2 stretch,R, and the bend-
ing ~or hindered rotation! coordinate,g.14 As will be shown
below, the O2 fragment in the ground vibrational state is not
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involved in the dynamics and can be effectively decoupled
from R andg.

We investigate the correspondence between the mor-
phology of the wave functions and the periodic orbits~POs!,
i.e. closed classical trajectories on which the molecule re-
mains trapped. It is well known,3,15,16 that in the systems,
which are ‘‘not too chaotic,’’ the building blocks of the phase
space are the fundamental families of the POs. One usually
distinguishes between the stable and unstable POs. Loosely
speaking, each stable PO lies at the center of a certain region
in the phase space while unstable POs separate different re-
gions. Recent studies of HCP~Ref. 2! and DCP,17 HOCl
~Ref. 18! and HOBr~Ref. 13! confirm that the quantum me-
chanical spectrum of these molecules, in the entire energy
range extending from the bottom of the potential well up to
very high energies reflects the deformations of the stable
POs. In this paper we present an example of a system with
clearly assignable eigenstates but apparently chaotic classical
mechanics and unstable periodic orbits. It is shown that a
quantization, usually applicable for integrable systems, can
be performed along unstable POs and gives reasonable esti-
mation of quantum eigenenergies.

Semiclassical analysis of the vdW dynamics also pro-
vides information on the accuracy of trajectory calculations
at the dissociation threshold of ozone. An effort was made
recently to understand the anomalous ‘‘mass-independent’’
isotope effect in ozone formation and exchange
reactions19–21 using classical mechanics.22–24 While indis-
pensable in treatment of the reaction complex in high total
angular momentum states, the classical approach ignores the
existence of the quantum mechanical thresholdD0 . This
well-known drawback obscures the results of trajectory cal-
culations, especially if—as in ozone—low excess energies
up to 200 cm21 aboveD0 are of interest.24 Direct compari-
son of the phase space structures with the vdW wave func-
tions enables one to point out those features which classical
mechanics describes properly and to indicate discrepancies.
To this end, the lifetimes of the vdW states with respect to
recombination into the main ozone wells are studied. It is
shown that the chaotic classical mechanics, being adequate
for the description of the average recombination times, can-
not reproduce the fluctuations of the lifetimes of the regular
quantum mechanical eigenstates.

The rest of the paper is organized as follows: In Sec. II
the adiabatic two-dimensional~2D! model Hamiltonian for
vdW states in16O¯

18O2 is presented. The eigenstates of this
operator are described and the quality of the 2D approxima-
tion is assessed. Efficient semiclassical quantization of the
2D model using selected periodic orbits is described in Sec.
III and in the Appendix. The phase space is further analyzed
in Sec. IV by means of the Poincare´ surface of section, while
the recombination lifetimes of the vdW states and the
quantum/classical correspondence are discussed in Sec. V.
Section VI concludes.

II. ADIABATIC MODEL

A nonrotating ozone molecule in the vdW region in one
dissociation channel16O¯

18O2 is described in Jacobi coor-
dinates:R is the distance between the18O2 moiety and the

third oxygen atom,r is the18O2 stretching coordinate, andg
is the angle betweenR andr . The shallow double-well vdW
minimum in the asymptotic channel is located atR0

55.3a0 , r 052.28a0 , andg0553.7° and 126.3°. The vdW
region is separated from the main ozone well by a low~;80
cm21! barrier atRb54.5a0 . This barrier marks the symbolic
border between the asymptotic region and the main ozone
well. The vibrational spectrum in the vdW region was previ-
ously calculated in three dimensions~3D! and discussed in
Ref. 14. The fundamental frequencies associated with the
dissociation coordinateR and the bendingg are vR

'40 cm21 and vg'60 cm21, respectively. They are more
than one order of magnitude smaller than the vibrational fre-
quency of the nearly free18O2 diatom,v r'1465 cm21. Near
the first dissociation threshold, the wave functions of vdW
states are entirely two-dimensional, with excitations solely in
R andg ~see Fig. 2 in Ref. 14!. Thus, it is legitimate to apply
an adiabatic approximation to the vdW region, separate the
high frequencyr vibration from the other two, and consider
the vdW dynamics for the resulting 2D Hamiltonian. Of
course, the adiabatic approximation is valid only in the
asymptotic region, forR>Rb .

Adiabatic separation proceeds along a familiar line.25

The full 3D Hamiltonian in Jacobi coordinates,

H3D52
1

2mR

]2

]R2
2

1

2m r

]2

]r 2
1B~R,r ! j 21V~R,r ,g!

~1!

is averaged over the vibrational state of the18O2 oscillator.
HeremR,r are the reduced masses forR and r, respectively;
B(R,r ) is the coordinate dependent rotational constant;j is
the angular momentum operator for the diatom;V(R,r ,g) is
theab initio PES of ozone in the ground electronic state, and
we set\[1. ForR>Rb , the total 3D wave function can be
written as

C3D5cn~r uR,g!F~R,g!, ~2!

wherecn(r uR,g) is thenth eigenfunction of the18O2 diatom
which solves the one-dimensional Schro¨dinger equation

F2
1

2m r

]2

]r 2
1V~r uR,g!Gcn~r uR,g!

5en~R,g!cn~r uR,g! ~3!

for fixed R andg. The eigenenergyen(R,g) plays the role of
a potential for the 2D motion in the (R,g) plane. In this
paper, we are interested in the ground vibrational state of
18O2 , n50, so that the effective 2D Hamilton operator forR
andg acting ontoF(R,g) can be written as

H2D52
1

2mR

]2

]R2
1B~R,^r &! j 21e0~R,g!, ~4!

where^r & is an average bond length of18O2 in the ground
state andR>Rb . Eigenvalues of this operator approximate
the vdW states withn50 of the full 3D Hamiltonian, Eq.
~1!.

In practice, we first solve the one-dimensional Schro¨-
dinger equation~3! on a dense grid of fixed values ofR
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P@4.4,15.0#a0 and gP@0,p# to obtain the 2D ‘‘potential’’
e0(R,g). The energies on the grid are subsequently interpo-
lated using cubic splines. The resulting adiabatic potential is
depicted in Fig. 1. It has two minima alongg separated by a
barrier ridge with the saddle point atg590° andR56.3a0 .
Just like the original ‘‘bare’’ potential, the minima ofe0 are
symmetric: The diatom18O2 is homonuclear. There are two
minima and five saddle points on the surface. The lowest,
with respect to the minima, are the saddle points atR5Rb

and g552°; 128°; their height is 80 cm21. The minimum
energy path~MEP! through each of them leads into the main
ozone well. The saddle separating the two vdW minima lies
125 cm21 above the minima. The highest are the saddle
points at linearity~g50°; 180° andR57.4a0); their energy
is 155 cm21. On this scale, dissociation threshold is found at
D05205 cm21. Only energies belowD0 are considered.

One clearly sees that as the potential energy approaches
dissociation threshold, the 2D PES loses smoothness: Wavy
structures, first visible atE'120 cm21, become pronounced

at D0 . In fact, these structures are also present in the original
ab initio potential, and are transferred intact into the adia-
batic PES. As was shown previously,26 as many as 9 elec-
tronic states of ozone asymptotically converge to the lowest
dissociation threshold. This limits the accuracy of theab
initio calculations which include only the ground electronic
state.27 The nonmonotonic behavior of the potential energy
in the asymptotic channel and the corresponding wavy struc-
tures in Fig. 1 serve as a reminder of the limited accuracy of
the ozone interaction potential at dissociation threshold.

The 2D adiabatic potentiale0(R,g) is used in the clas-
sical and quantum mechanical calculations presented in this
paper. In quantum mechanics, the 2D Hamilton operator, Eq.
~4!, is diagonalized numerically using filter diagonal-
ization.28,29The potential optimized30 sinclike31 DVR grid in
R, consisting of 200 points, ranges from 4.4a0 to 16.0a0 . In
g, a Gauss–Legendre DVR grid with 200 points was used.
About 70 000 Chebyshev iterations were necessary to obtain
a fully converged spectrum of bound states.

The quality of the adiabatic model can be assessed by
comparing the 2D vdW spectrum with that of the ‘‘re-
stricted’’ 3D calculations of Ref. 14. We remind the reader
that the restricted calculations were performed14 in a single
dissociation channel of ozone in Jacobi coordinates; the full
Hamiltonian was set on a 3D grid which, inR andg, had the
same extensions as described in the preceding paragraph.
Thus, the numerical solution to the ‘‘restricted’’ problem
serves as a benchmark for the 2D adiabatic approximation.

State-to-state comparison demonstrates that the adiabatic
model is excellent in the vdW region of the potential. The
number of eigenstates in the 2D calculations~22! coincides
with that in the restricted 3D calculations. The two funda-
mental frequencies are also accurately reproduced. Assign-
ment of the wave functions and the energetic order of states
are the same in 2D and in 3D. Adiabatic separation of the O2

vibration introduces an error smaller than 0.5 cm21. This
uncertainty is much less than eithervR or vg .

Examples of 2D wave functions in the three main vdW
progressions are presented in Fig. 2. Their 3D counterparts

FIG. 1. Adiabatic two-dimensional potentiale0(R,g) for the ozone mol-
ecule16O¯

18O2 . The lowest shown contour lies atE510 cm21, and the
spacing between contours isDE510 cm21. Also presented are the ex-
amples of periodic orbits belonging to the six families described in the text.

FIG. 2. Examples of the wave func-
tions of vdW states in three progres-
sions. Additionally, the periodic orbits
are shown, which are used in the semi-
classical quantization.
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can be found in Fig. 2 of Ref. 14. The vdW states possess a
clear nodal structure so that the two main progressions, the
stretch and the bend, can be easily identified. Incidentally, we
note that 16 out of 22 states are pure overtones, and only six
states are combinations of the bending and stretching excita-
tions. The eigenstates are delocalized between the two vdW
wells along the angular coordinate. Those which have a
nodal line at the saddleg590° are antisymmetric with re-
spect to the transformationg→180°2g and are denoted with
an additional index ‘‘2.’’ The symmetric states have the in-
dex ‘‘1.’’ Figure 2 shows that close to dissociation threshold,
another progression appears in addition to the stretching and
bending ones. The same states are found in three dimensions,
both in the restricted and global calculations of ozone.14 The
nature of these states will be analyzed using the semiclassical
analysis presented below.

III. PERIODIC ORBIT QUANTIZATION

We build the semiclassical approximation to the quan-
tum mechanical spectrum using the POs with the shortest
periods. The POs were located using two-point boundary
value solvers, as described in Sec. II of Ref. 32. Recombina-
tion of the vdW species into the main ozone, energetically
allowed for E>80 cm21, adds complexity to the search of
the POs: Already the initial guess for a given PO should be
sufficiently precise. This is achieved by using an accurate
continuation in energy.

At very low energies~a few cm21 above the bottom of
the well!, there exist two fundamental families of stable POs,
one corresponding to the pure bending~@g#! and the other to
the pure stretching oscillations~@R#!. Evolution of these POs
with energy is illustrated using the continuation/bifurcation
diagram16 in Fig. 3. The diagram shows how the classical
frequencies change from the bottom of the vdW well to the
dissociation threshold. The orbits in the fundamental@R#
family @Fig. 3~a!# can be followed up to relatively high en-
ergies although they are for the most part unstable. Above
E5154 cm21 they cease to exist and are replaced by another
family of POs called@D#, which appears atE5139 cm21

@Fig. 3~a!#. Such crossovers were previously analyzed in the
vibrational spectra of HCP~Ref. 2! and HOCl ~Ref. 11! in
terms of saddle-node bifurcations. The@D# family is possibly
also born in a saddle-node bifurcation, but the structure of
the phase space, discussed in the next section, rendered the
detailed bifurcation analysis impossible. Geometrically, the
@D# orbits resemble greatly those belonging to the@R# family
~cf. Fig. 1!. They disappear at 177 cm21 and a third family of
stretching POs,@DD#, takes their place at 172 cm21. This
family exists only in a short energy interval near dissociation
threshold. The stretching mode plays the role of the dissocia-
tion coordinate for the vdW molecule and therefore it is
strongly anharmonic: As the energy increases fromE50 to
E5200 cm21, the frequency of@R# ~and, then,@D# and
@DD#) drops by about a factor of 7.

Evolution of the bending POs is illustrated in Fig. 3~b!.
The fundamental family@g# is stable and easy to locate up to
E5177 cm21. It is the only short-period bending PO below
the isomerization barrier atg590° ~see Fig. 1!. Above this
barrier (E.125 cm21), the bending motion is delocalized

between the two symmetric vdW wells. The corresponding
family of orbits, called@gg#, is born atE5145 cm21. This
family replaces the@g# POs and survives up to dissociation
threshold. The anharmonicity of the@g# family matches that
of the dissociation mode@R#. This is the consequence of the
double-well shape of the angular potential: The anharmonic-
ity increases as the energy approaches the top of the isomer-
ization barrier. In contrast, the frequency of the@gg# family
above this barrier is nearly constant.

In addition to the bending and stretching POs, one ob-
serves at high energies a different family of orbits with short
periods@Fig. 3~c!#. These orbits are born at the saddle points
at linearity. In the (R,g) plane, they have a shape similar to
that of a quarter of a circle~Fig. 1!. For this reason we call
them @C# ~for ‘‘circular’’ !. The energy of the saddles at lin-
earity is 155 cm21, and the@C# family is observed in the
rangeEP@165,192# cm21.

The six families of orbits described above are the rel-
evant objects for a semiclassical analysis. There are several
indications that these POs make the major contribution to the
quantum mechanical eigenstates. A corroborating evidence
comes, for example, from the comparison of the classical
bifurcation diagram with its quantum mechanical counterpart
~Fig. 3!. The quantum diagram is constructed from the en-
ergy differences between the successive states belonging to
the same progression. The states are either symmetric or an-
tisymmetric with respect tog590°, and the energy differ-
ences in Fig. 3 are taken between the states from the same

FIG. 3. Frequencies of the periodic orbits~solid lines! as functions of en-
ergy: ~a! stretching families;~b! bending families;~c! circular family. Dots
correspond to the energy differences between neighboring quantum me-
chanical states in the three pure progressions.
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symmetry block. The only exception is the energy difference
between the two bending states (0,2)1 and (0,2,)2 @the
rightmost point in Fig. 3~b!# which lie above the barrier be-
tween the two vdW wells and are localized around the PO
@gg#. Each difference is plotted at the arithmetic average
energy of the two states. The bending, stretching, and circu-
lar progressions are shown in Fig. 3. The agreement between
the quantum mechanical energy differences and the frequen-
cies of the corresponding POs is very good, especially for the
stretching progression@Fig. 3~a!#, which is only slightly per-
turbed by tunneling between the symmetric vdW wells.

Furthermore, the quantum mechanical eigenfunctions are
localized near these short-period POs, as illustrated in Fig. 2.
For the pure states in the bending and stretching progres-
sions, the respective orbits pass exactly through the nodes of
the probability density in the vdW wells. For the circular
progression, which does not have analogs at low energies,
the correspondence is equally good.

The arguments presented above suggest that one can use
these POs for semiclassical quantization. The quantization
scheme, which is an alternative to the well-known Einstein–
Brillouin–Keller prescription for integrable systems and re-
lies exclusively on POs belonging to the fundamental fami-
lies, is described in the Appendix. Loosely speaking, the
quantization rule, Eq.~A9!, for a state (nR ,ng) amounts to
putting nR quanta of excitation in a stretching PO, andng

quanta of excitation in a bending PO followed by the aver-
aging over the different ways in which the energy partition-
ing can be achieved. The results of the semiclassical quanti-
zation are compared with the quantum mechanical vdW
eigenenergies in Table I. The semiclassical approximation is
rather accurate, especially for the pure progressions. This
validates the assumed correspondence between the PO fami-
lies and the quantum progressions. As the energy increases,
the stretching states are sequentially quantized by the@R#,

@D#, and@DD# families. Similarly, the quantization of bend-
ing states switches from the@g# to the @gg# family. The cir-
cular state (4,0)C is accurately quantized with the@C# orbit.
For most states, the accuracy of the semiclassical results is
limited by tunneling effects, which are not taken into account
in the quantization condition.

IV. CLASSICAL PHASE SPACE OF THE VDW WELLS

Above considerations suggest that the phase space in the
vdW region should be regular. Indeed, the eigenenergies are
reasonably well reproduced with a simple PO quantization,
and each eigenfunction is localized around a single orbit. The
analysis of the stability of the quantizing POs indicates, how-
ever, that the classical vdW dynamics in ozone is more com-
plicated. Stability in two dimensions is characterized by the
stability parametersl1,2, which are the eigenvalues of the
monodromy matrix.33 If the l1,2 are complex and lie on a
unit circle in the complex plane, the PO is said to be stable.
If the stability parameters are real, the orbit is unstable. In
what follows, we consider the stabilitytime of the PO de-
fined through its largest real eigenvalue and periodT(E),

tst~E!5
T~E!

ln~max@l1,2# !
. ~5!

If the orbit is stable,tst is infinite. The stability times for the
POs discussed in the previous section are depicted in Fig. 4.

TABLE I. Semiclassical quantization of the vdW spectrum of16O¯

18O2 .

Assignment
Esc,

cm21a
Esc,

cm21b
Eqm,
cm21c

Dqm,
cm21d Stability of POse

(0,0)1/2 75 73 72.8 0.2 s/s
(1,0)1/2 114 115 114.5 0.5 u/s
(0,1)1/2 138 134 133.9 7.1 u/s
(2,0)1/2 150 150 147.5 1.5 u/u
(1,1)1/2 ¯ 161 162.0 5.1 u/u
(0,2)1 170 166 170.1 u/u
(3,0)1/2 172 174 172.4 2.0 s/u
(2,1)1 ¯ 181 182.1 u/u
(4,0)C 176 182 184.9 u/u
(4,0)1/2 194 193 188.8 0.9 u/u
(1,2)1 ¯ 184 191.9 u/u
(0,2)2 193 193 194.4 u/u
(3,1)1/2 ¯ 203 202.6 9.3 u/s
(5,0)1/2 209 209 200.7 1.9 u/s

aSemiclassical energy from Eq.~A5!.
bSemiclassical energy from Eq.~A9!.
cFor the states split by tunneling, the center of the tunneling doublet is
given.

dTunneling splitting between the states with the same assignment but differ-
ent parities.

eQuantizing POs~stretching/bending families! are marked as stable~s! or
unstable~u!.

FIG. 4. Energy dependencies of the stability times of the periodic orbits in
~a! stretching families;~b! bending families;~c! @C# family. The~infinite! tst

for stable POs is set to 104 fs. Black dots mark the energies of the quantum
mechanical states quantized with the respective orbits. Positions of the dots
along the vertical axis are arbitrary.
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For stable POs,tst5104 fs is set for plotting purposes. Orbits
in each family change their stability as energy increases. The
most dramatic variations intst are observed in the stretching
families @Fig. 4~a!#. The fundamental family@R# loses stabil-
ity 15 cm21 above the bottom of the vdW well, withtst

quickly dropping down to 300 fs~for comparison, the period
at this energy is about 600 fs!. The@R# family becomes stable
in a short energy window and then its stability degrades
again until the orbit can no longer be located. Two high-
energy stretching families,@D# and @DD# are for the most
part unstable, althoughtst strongly oscillates withE. Possi-
bly, these oscillations indicate a cascade of bifurcations
which these orbits undergo. The bending motion in the vdW
wells @Fig. 4~b!# is much more stable than the stretch, at least
up to two thirds of the dissociation energy. The family@g# is
stable~with one minor fluctuation! almost until it disappears,
while the @gg# family remains slightly unstable up to disso-
ciation threshold. Finally, the family@C# @Fig. 4~c!#, existing
only near threshold, is unstable. It gains stability only at the
highest energy at which it can be located.

The global phase space dynamics of the vdW ozone is
analyzed next using the Poincare´ surfaces of section~PSOSs!
(R,pR) and (g, j ) ~herepR and j are the momenta conjugate
to R and g, respectively!. The PSOS (R,pR) for a given
energyE is computed at a plane in the phase space defined
by g*554.2°. As the classical particle moves in the vdW
region, one collects the coordinatesR and momentapR of the
successive intersections with the plane. Only those intersec-
tions are considered, for whichj .0. The PSOS (g, j ) is
defined in a similar way, by setting the plane atR*
55.29a0 and selecting the intersections withpR.0. Both
R* andg* are chosen close to the equilibrium in one of the
vdW wells.

PSOS enables one to locate the phase space regions with
regular and chaotic dynamics. The easiest way to obtain the
image of the phase space is to launch many randomly se-
lected trajectories at a given energy, and to analyze the traces
they leave in the PSOSs. For a regular trajectory, the inter-
sections with the fixed plane lie on a smooth curve. This
smooth curve becomes an irregular scatter of points if the
trajectory is chaotic. Surfaces of section, presented in Fig. 5,
are recorded atE570 cm21, i.e., 10 cm21 below the top of
the barrier separating the vdW region from the main ozone
wells. The PSOS (g, j ) @Fig. 5~a!# consists of two separate
regions corresponding to two symmetric and—at this
energy—disconnected vdW wells in the asymptotic channel.
Each PSOS in Fig. 5 is composed of three trajectories, dem-
onstrating different types of motion. Two trajectories in the
PSOS (g, j ) in Fig. 5~a! are irregular, and their intersections
with the fixed plane sample the phase space in either of two
vdW wells without any apparent systematics. The third tra-
jectory, confined to a narrow strip close to the energy enve-
lope of the PSOS in the left vdW well, is not chaotic: The
points are regularly organized. This trajectory belongs to an
island of regularity around the stable PO of the@g# family.
The size of this island is illustrated with the PSOS (R,pR) in
Fig. 5~b!. Again, only three trajectories are shown. While the
irregular one erratically wanders through the phase space, the

other two outline the approximate border of the regular phase
space.

The energy of the PSOS in Fig. 5,E570 cm21, is very
close to the energy of the lowest vibrational vdW state (E0

'73 cm21). Thus, the classical phase space corresponding
to the ground state is to a large extent chaotic, the exception
being a region around the stable bending periodic orbit. Ad-
ditional calculations show that the phase space is fully regu-
lar only near the vdW minimum and already 20 cm21 above
it the irregular trajectories dominate.

Let us now consider the vdW phase space at higher en-
ergies. One problem stands in the way of applying the PSOS
technique above the saddle point on the path leading to the
main ozone well: The vdW dynamics is no longer bounded
and classical trajectories can escape from the vdW region to
form ‘‘normal’’ ozone. Finite—and often short—lifetime ob-
scures the representation of the phase space with the surfaces
of section. The distinction between regular and chaotic dy-
namics becomes less clear, because many trajectories leave
only a few traces on the PSOS. In order to demonstrate that
the vdW dynamics is irregular also above the saddle, we
consider the PSOS as a map and follow the subsequent itera-
tions on this map. The idea behind this is to construct an
analog of Arnold’s ‘‘cat map’’ often used to illustrate the
concept of the ‘‘translation and stretching’’ mixing in Hamil-
tonian systems.33 The results of this procedure for the PSOS
at E590 cm21 are summarized in Fig. 6. In the upper frame,
Fig. 6~a!, all the points are collected at which trajectories
cross the PSOSfor the last timebefore they escape into the
main ozone well. At moderately high energies above the
saddle, these points form a compact area. It provides a visu-
alization of the ‘‘exit gate’’ or ‘‘dynamical bottleneck’’ pre-
viously studied in the photodissociation dynamics and reac-
tive scattering.34,35 One can relate this ‘‘bottleneck’’ to the

FIG. 5. Poincare´ surfaces of section (g, j ) @a# and (R,pR) @b# for several
trajectories atE570 cm21. In each frame, three trajectories are shown.
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bundle of trajectories surrounding the path connecting the
vdW minimum with the saddle.35

We now follow the evolution of the area in Fig. 6~a!
back in time and study its transformations as the map is
back-iterated. Shown in Fig. 6~b! is the same ensemble of
trajectories at the next to the last intersection with the PSOS.
The compact area of the ‘‘exit gate’’ is strongly deformed
after a single back iteration. If the trajectories were regular,
the shape of the ‘‘exit gate’’ would remain largely un-
changed: In a regular region, the time evolution of the tra-
jectories amounts to a mere rotation around the periodic or-
bit. In contrast, the ‘‘exit gate’’ in Fig. 6~b! is transformed

into a long and thin filament. This implies that the ensemble
of trajectories passes through chaotic regions and is subject
to contractions and expansions. The effect of these transfor-
mations becomes even more clear in the back iterations
shown in Figs. 6~c! and 6~d! ~third and fourth back iterations,
respectively!. The initial compact area quickly transforms
into a set of long threads which fill almost randomly a large
portion of the surface of section. The same picture holds
qualitatively true for all energies above the saddle, although
with increasing energy the ‘‘exit gate’’ gradually becomes
less compact than in Fig. 6~a!.

Comparison of different frames in Fig. 6 suggests that
the successive back iterated images of the ‘‘exit gate’’
densely wrap around each other. This means that two neigh-
boring points recombine into O3 in different times: The life-
time depends strongly on the initial conditions. Extreme sen-
sitivity of the dynamics to the initial conditions is known to
be one of the hallmarks of chaos. This conclusion is further
illustrated in Fig. 7. In Fig. 7~a!, a composite PSOS (g, j ),
produced by 10 000 trajectories, is shown. All trajectories
were launched from the same point in the configuration
space (R* 55.29a0 , g*554.2°! with randomly chosen mag-
nitude and direction of the angular momentumj, so that the
initial conditions are uniformly distributed along the dashed
line in Fig. 7~a!. In the middle frame, Fig. 7~b!, the recom-
bination lifetime of these trajectories is shown as function
of the initial momentum j. Except for the interval
j P@25,0# a.u., the lifetime strongly fluctuates over two or-
ders of magnitude even for neighboring initial conditions.
These fluctuations are fingerprints of the filaments, discussed
above, which densely intertwine in the phase space. The near
fractal structure of the lifetime distribution is revealed in Fig.
7~c!, which shows a portion of the same distribution for a
smaller interval ofj. The distribution is self-repeating: Nei-
ther the appearance of the curve nor the range of fluctuations
change as observation scale is diminished.

The results in Fig. 7~b! show that at least one region
remains less chaotic than the rest of the phase space: The
lifetime dependence onj is smooth forj P@25,0# a.u. Com-
parison between the frames~a! and ~b! in Fig. 7 shows that
trajectories with these initial momenta do not cross the PSOS
(g, j ) calculated with the additional requirementpR.0.
Their lifetime is about 1.5 ps, i.e., it is of the order of one
vibrational period in the vdW well. These trajectories are
thus purely ballistic: They start from the vicinity of the vdW
minimum with the initial momentumpR,0 pointing in the
direction of the saddle and quickly recombine into the main

FIG. 6. Back-iterations of the Poincare´ map (R,pR) at E590 cm21. See
text for details.

FIG. 7. ~a! Composite surface of sec-
tion (g, j ) obtained by integration of
10 000 trajectories atE580 cm21.
Initial conditions of all trajectories are
uniformly distributed along the verti-
cal dashed line.~b! The lifetimes of
these trajectories versus the initial mo-
mentumj. ~c! Zoom-in of the lifetime
dependence onj for the interval j P
@28.0,27.0# a.u. Logarithmic scale is
used for the lifetimes in~b! and ~c!.
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ozone. We argue in the next section that such short-living
trajectories have no quantum mechanical counterpart.

V. QUANTUMÕCLASSICAL CORRESPONDENCE
IN VDW OZONE

In this section, we compare the properties of the classical
and quantum dynamics of the vdW ozone. The present semi-
classical study provides yet another indication that the
quantum/classical correspondence is a subtle notion which
depends on the level of details one is willing to compare and
on the objects selected for such comparison.

The wave functions of vdW ozone have a very simple
nodal structure which allows relatively straightforward as-
signment in terms of stretching and bending quantum num-
bers. The eigenstates preserve this simplicity throughout the
spectrum, from the bottom of the vdW well to the dissocia-
tion threshold. In accord with this observation, semiclassical
quantization with the periodic orbits with the shortest periods
is successful. At this level of description, the agreement be-
tween quantum and classical mechanics is satisfactory.

At the same time, the quantizing POs are very often
unstable. This is stressed in Fig. 4, in which the black dots on
the stability curves for different families of POs mark ener-
gies of the eigenstates quantized by this family. No less than
2/3 of the quantum states are quantized by unstable orbits.
However, no influence of the stability on the accuracy of the
quantization was found~see Table I!. The analysis of the
phase space in the previous section demonstrates that insta-
bility of the selected short-period POs reflects a general
property of the classical vdW motion. Namely, the classical
motion is not integrable, but chaotic. This finding contradicts
both the assignability of the quantum wave functions and the
assumptions of the semiclassical quantization rule. Note that
a similar observation was made in the study of the quantum/
classical correspondence in HOCl close to the dissociation
threshold.36

This discrepancy might be considered as a purely aca-
demic issue, as long as the semiclassical quantization works.
Remember, however, that the vdW dynamics is metastable—
with respect to the main ozone well—at all energies above
the ground vibrational state. One can surmise that the regular
quantum mechanical states and the chaotic classical trajecto-
ries recombine into normal ozone in different fashions. In
what follows, we compare the quantum and classical recom-
bination lifetimes of the vdW states.

In quantum mechanics, the lifetimetqm is estimated
from the width of a resonance state,G, using the relation

tqm5\/G. ~6!

The widths of the vdW states with respect to recombination
into ozone are calculated using absorbing boundary
conditions37,38 in the inner part of the global ozone potential.
The primary purpose of our calculations is to illustrate the
quantum/classical correspondence in the vdW region of the
potential. Usually, absorbing potentials are used in the
asymptotic part of the PES in order to imitate the outgoing
boundary conditions for an irreversibly decaying molecule.
vdW states are only metastable if one vdW region is consid-
ered, as in the present paper. In the full calculations on the

global PES these states are truly bound.14 The decay from the
portion of the potential restricted to one dissociation channel
can be approximately considered irreversible because the
main ozone well, acting as a ‘‘sink’’ for the states localized in
the asymptotic region, is almost 9000 cm21 deep, much
deeper than the vdW well~;200 cm21!.

The effective Hamilton operator in these calculations has
the form Ĥeff5Ĥ3D2 iW. The complex absorbing potential
2 iW vanishes in the vdW regionRP@4.3,16.0#a0 and in-
creases smoothly from zero atR54.3a0 to a maximum value
at R53.5a0 . The full 3D Hamiltonian, Eq.~1!, is used be-
cause the adiabatic 2D Hamiltonian@Eq. ~4!# was not calcu-
lated forR,4.2a0 . However, since both 2D and 3D spectra
practically coincide, the resulting widths can be considered
as a reasonable estimation for both operators. Complex
eigenstates,E02 iG/2, of the effective Hamiltonian are found
using filter diagonalization, in which the propagator is ex-
panded in modified Chebyshev polynomials.39 Parameters of
the propagation are similar to those described in Sec. II. The
influence of the absorbing potential on thereal parts of the
eigenenergies is negligible: The energy shift due to2 iW
does not exceed 0.1 cm21. Imaginary parts of the complex
eigenenergies are transformed into lifetimes by use of Eq.
~6!.

Classical metastable dynamics of the vdW ozone is in-
vestigated by running trajectories on the 2D PESe0(R,g)
@cf. Eq. ~4!# at seven energies ranging fromE590 cm21

~i.e., 10 cm21 above the saddle to the main well! to E
5190 cm21 ~i.e., 15 cm21 below dissociation threshold!. At
each energy, 10 000 trajectories are propagated for the maxi-
mum time of 220 ps. The trajectory is stopped after it had
crossed the saddle in the direction of the main ozone well
~the critical distance isR54.2a0). The timetk of the cross-
ing is the lifetime of thekth trajectory. The distribution of
lifetimes in the ensemble is represented in the form of a
normalized ‘‘survival probability’’P(t),40

P~ t !51024 (
k51

10 000

Q~tk2t !, ~7!

whereQ(x) is a Heaviside step function. The classical life-
time, tcl(E), for a given energyE is defined as the time, at
which P(tcl)51/e.

Three types of the initial ensembles of trajectories are
considered at each energy. The first is the microcanonical
ensemble: The initial conditions for trajectories uniformly fill
the phase space classically available at energyE. The second
is the ‘‘stretching’’ ensemble: The initial conditions are cho-
sen in a close vicinity of the stretching PO families. These
trajectories start from the PSOS (g, j ), and their initial con-
ditions are selected from a tiny square of the sizedg5d j
50.05 a.u. centered on the stretching PO. The third is the
‘‘bending’’ ensemble, in which the initial conditions cluster
around the POs from the bending families. The ‘‘bending’’
ensemble starts from the PSOS (R,pR), and the deviations
from the bending PO are limited bydR5dpR50.05 a.u.

The quantum mechanical and the classical lifetimes, ob-
tained in these calculations, are depicted in Fig. 8. The quan-
tum recombination lifetimes fluctuate over several orders of
magnitude, especially at low energies. These state- or mode-
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specific fluctuations were thoroughly analyzed in unimolecu-
lar dissociation reactions41 and, therefore, are not surprising.
The quantum recombination rate is sensitive to the exact
shape of the wave function in the vdW wells and, in particu-
lar, to the probability density at the saddle~i.e., at the tran-
sition state!. Since this density differs noticeably from pro-
gression to progression, and even from state to state within
one progression, the lifetimes fluctuate. Only the first two
~degenerate! states are located below the saddle and their
lifetimes are due to tunneling through the potential barrier.
The lifetimes of the states above the saddle can nevertheless
be very long, reaching the range of microseconds. This is the
effect of the adiabatic trapping previously discussed in Ref.
14: The zero-point energy of the bending mode at the tran-
sition state effectively increases the height of the dynamical
barrier for the quantum particles passing into the main well.
The largest are the lifetimes of the states belonging to the
pure bending progression~Fig. 8!; the lifetimes of the
stretching states are shorter by four orders of magnitude. All
quantum lifetimes exceed 10 ps, i.e., the states live for 4–5
vibrational periods before recombination.

It is clear from Fig. 8 that classical trajectories provide a
reasonable estimation of the average recombination lifetime
at high energies. This can be considered as another justifica-
tion of the choice of the absorbing boundary conditions in
the inner part of the potential for the quantum mechanical
calculations. Consider the microcanonical ensemble first. At
low energies (E<150 cm21) the microcanonical lifetime is
smaller than the quantum mechanical one by factors of 5–10.
Apparently, the adiabatic barrier which hinders recombina-
tion of the quantum mechanical states does not affect the
classical trajectories. As the energy increases, the microca-
nonical ensemble describes the average quantum lifetime
better, with the best agreement achieved at dissociation
threshold. Note, however, that the nonchaotic ballistic trajec-
tories, described at the end of Sec. IV~see also Fig. 7!, have
no counterpart among the quantum states: The ‘‘ballistic’’
lifetimes, ;1.5 ps, are one order of magnitude smaller than
the smallest quantum lifetime.

Figure 8 shows that, being quite accurate ‘‘on average,’’

classical trajectories do not reflect the state specificity of the
quantum mechanical lifetimes. Consider the lifetimes of the
‘‘stretching’’ and the ‘‘bending’’ ensembles. The classical
lifetime depends on the size of the island of stability around
the PO in question. At low energies, the two ensembles give
different sets of lifetimes~Fig. 8, E<140 cm21). The island
of stability around the@g# PO is larger than the size of the
square, from which the initial conditions for the ensemble
are selected. As a result, the lifetime for these trajectories is
infinite. In Fig. 8, it is artificially set to 83106 ps. In con-
trast, POs of the@R# family are unstable at these energies,
and their lifetimes are finite. Above 140 cm21, the island of
stability around the POs from the@g# family disappears~cf.
Fig. 4!, and their lifetime becomes finite, too. At these ener-
gies, there is virtually no difference between the two en-
sembles: Their lifetimes are almost equal to that of the mi-
crocanonical ensemble. This is another indication that the
classical vdW dynamics is chaotic and the recombination
lifetimes do not depend much on the initial conditions. Be-
cause of the chaotic behavior, the classical trajectories are
insensitive to the quantum fluctuations: neither in the stretch-
ing nor in the bending progressions.

VI. CONCLUSIONS

This paper presents the analysis of the recently discov-
ered vdW states of ozone from classical, semiclassical, and
quantum mechanical viewpoints. All 22 quantum vdW states
lie in the energy range in which classical chaos is fully de-
veloped and spreads over almost all available phase space.
Nevertheless, the quantum system is not expected to display
the properties inherent to the chaotic systems, such as the
GOE statistics of the level spacings or irregular nodal pat-
terns. Indeed, level statistics is meaningless for a spectrum
consisting of only 22 lines. The longest series of states con-
tains only five quanta of excitation~the pure stretching pro-
gression! which by necessity keeps the nodal patterns simple.

It is challenging to study the quantum/classical corre-
sponding for such a system. The main finding of this work is
that the quantum mechanical spectrum is built on three fami-
lies of periodic orbits. The results clearly show that among
all varieties of POs existing in the system, only the orbits
with the shortest periods are important for the quantum me-
chanics. They act as backbones of the wave functions even in
the presence of the bifurcations and can be used to quantize
the eigenstates with reasonable accuracy. These POs are un-
stable at most energies, with the associated stability times
being of the order of or shorter than the periods of the POs.
Several previous studies showed that ‘‘stability during one
period’’ might be sufficient for the orbit to become important
in the semiclassical description~see Ref. 42, in which a cha-
otic 2D quartic oscillator is quantized, or Ref. 36 devoted to
the analysis of the dynamics of HOCl!.

The discrepancy between the fully chaotic classical dy-
namics and the regular quantum mechanical wave functions
suggests that classical calculations should be used with care
for retrieving intrinsically quantum properties of the vdW
states, such as, for example, the recombination lifetimes.

FIG. 8. Quantum mechanical~dots! and classical~lines! recombination life-
times of vdW states of ozone. Classical lifetimes are shown for three en-
sembles of the initial conditions: microcanonical~solid line!; ‘‘stretching’’
~dashed!; and ‘‘bending’’ ~dashed–dotted!. See text for details. Vertical dot-
ted line marks the position of the potential barrier between the vdW and the
main ozone wells.
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APPENDIX: PERIODIC ORBIT QUANTIZATION
OF THE vdW STATES

In this Appendix, we outline the grounds on which the
semiclassical quantization rules used in Sec. III for unstable
POs are based. Our arguments are far from being exhaustive,
but they provide an insight into the details of the quantiza-
tion procedure and also indicate the direction of future work.

It is convenient to start with the local Hamiltonian near a
certain periodic orbit. Throughout the Appendix we use units
\5m51. Let the coordinate along the orbit beS, with the
conjugate momentumPS , and letj andpj describe the co-
ordinate and momentum for the transverse direction. Then,
the classical Hamiltonian near the orbit assumes the form,43

H loc5
1
2PS

21U~S!1 1
2~pj

21vj
2j2!, ~A1!

whereU(S) is the potential energy along the PO, andvj is
the frequency in the transverse direction. Note that this fre-
quency can, in general, be a function ofS.

The energy of a state with quantum numbers (nS ,nj

50) can be found from the quantization conditions of the
local Hamiltonian ~A1!, if the quantum mechanical wave
function is strongly localized around the orbit (S,j50). One
might further identify the frequencyvj with the stability
frequency of the orbit,43,44

vj'vst. ~A2!

If the orbit is stable, so that its stability frequency,vst, is
real, one immediately obtains from Eqs.~A1! and ~A2! the
semiclassical energy levels~see, for example, Ref. 45!,

Esc~nS ,nj50!5ES~J5nS1 1
2!1 1

2vst~ES!. ~A3!

HereJ is the action along the orbit, and the functionJS(E)
and its inverse,ES(J) are assumed to exist. The stability
frequency in Eq.~A3! is estimated at the energy of the orbit
ES .

The quantization rule~A3! breaks down for unstable
orbits.46 Indeed, the stability frequency for them is imagi-
nary, and the transverse oscillator in Eq.~A1! supports no
bound states. As a result, the semiclassical energy becomes
complex and loses its meaning: The local approximation, Eq.
~A1!, is incompatible with the condition~A2!. Possible solu-
tions might consist of refining the local approximation and
considering higher-order terms in Eq.~A1! or in abandoning
the local form altogether.

The shape of the quantum mechanical wave functions in
Fig. 2 suggests an alternative approach to the quantization
along the unstable POs. All wave functions in the pure pro-

gressions are strongly localized around the orbits, irrespec-
tive of whether the POs are stable or not. Moreover, these
wave functions in the direction transverse to the PO are
simple bell-shaped Gaussian-type profiles. These observa-
tions suggest that one can keep the Hamiltonian near the PO
in the form~A1!, but redefine the transverse frequency in it.
Consider the progression (nS ,nj50) and the orbitS. The
following definition of the transverse frequency appears ap-
propriate:

vj'v'PO. ~A4!

Herev'PO denotes the frequency ofanotherorbit, selected
by the condition that it quantizes the states in the other pure
progression (nS50,nj). In some sense, this orbit, when
properly chosen, plays the role of the ‘‘transverse’’ coordi-
nate in the expansion~A1!. At the same time, Eq.~A1! can
no longer be considered as a local expansion: This is a model
global Hamiltonian, which mimics the main features of the
quantum wave functions~i.e., the Gaussian localization
around the orbitS! but ignores the local details of the dy-
namics of this PO~i.e., its instability!. The quantization rule
then becomes

Esc~nS ,nj50!5ES~J5nS1 1
2!1 1

2v'PO~ES!. ~A5!

This equation can be directly applied to the vdW spectrum of
ozone. The bifurcation diagram, Fig. 3, unambiguously iden-
tifies the POs of the stretching families as being transverse to
those of the bending families. Using the dependenciesJS(E)
~see Fig. 9!, we calculate the semiclassical energies for the
pure progressions (nR ,ng50) and (nR50,ng). The results

FIG. 9. Energy-action curves for the stretching@~a! and ~d!# and bending
@~b! and~c!# families of POs. The frames~a! and~b! are used to estimate the
semiclassical energy with Eq.~A7!; the frames~c! and ~d! are used in Eq.
~A8!. See text for details.

7435J. Chem. Phys., Vol. 120, No. 16, 22 April 2004 van der Waals states in O3(X 1A1)

Downloaded 10 Apr 2004 to 152.77.252.195. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



are summarized in Table I. The accuracy of Eq.~A5! is rather
high: For many states, the error is of the order of the tunnel-
ing splitting between the levels~note that tunneling effects
are completely neglected in the above quantization rule!. In-
adequately described are only the highest stretching excita-
tions (5,0)1/2 and the circular state (4,0)C . Incidentally, we
note that for the circular state, a PO from the@C# family was
taken as the ‘‘longitudinal’’ orbitS and a PO from the@gg#
family served as a ‘‘transverse’’ orbit.

The above formula allows an extension to the combina-
tion states. Simultaneously, this extension somewhat im-
proves the overall quality of the quantization, especially for
the low lying levels. To be specific, let us assume for a mo-
ment that the orbitSbelongs to the family@R#. We denote its
energyES(J5nS11/2) asER

0. The transverse PO belongs to
the family @g#. Equation~A5! can now be rewritten through
ER

0 and the functionsJg(E) and its inverse,Eg(J),

Esc5ER
01F ]E

]Jg
G

J
g
0
DJg , ~A6!

where the frequency of the@g# PO, ]E/]Jg , is evaluated at
Jg

05Jg(ER
0), according to Eq.~A5!. If the action increment,

DJg5Jg2Jg
0, equals 1/2, one recovers the quantization con-

dition ~A5!. One can view Eq.~A6! as the first two terms in
the Taylor expansion of energy near the actionJg

0. Going
beyond the linear terms and summing up, one obtains

Esc5Eg~Jg
01DJg!. ~A7!

The incrementDJg equals 1/2, ifng50. Forng.0, one has
DJg5ng11/2. Equation~A7! can be illustrated graphically
@see Figs. 9~a! and 9~b!#. Suppose a state (nR ,ng) is to be
quantized. Using the functionER(J) in Fig. 9~a!, one finds
ER

05ER(nR11/2). Switching next to the dependenceEg(J)
in Fig. 9~b!, one determinesJg

0(ER
0). Finally, an increment

ng11/2 is added toJg
0 and the semiclassical energy is read

from the vertical axis in Fig. 9~b!.
We are not done yet. Equation~A7! lacks symmetry.

This is especially clear for combination states: For them, it is
difficult to decide which orbit should be considered as ‘‘lon-
gitudinal’’ and which one as ‘‘transverse.’’ One can repeat
the arguments which lead to Eq.~A7!, but interchange the
roles of @R# and @g# POs, thus arriving to another semiclas-
sical expression

Esc5ER~JR
01DJR!, ~A8!

whereJR
0 is evaluated at the energyEg

05Eg(ng11/2) and
DJR5nR11/2. Graphical illustration of Eq.~A8! is given in
Figs. 9~c! and 9~d!. The arithmetic average of the two semi-
classical formulas is symmetric with respect to interchange
of the two families of POs. Thus, we obtain the final quan-
tization rule

Esc5
1
2@Eg~Jg

01ng1 1
2!1ER~JR

01nR1 1
2!#. ~A9!

In the case of vdW states of ozone, the difference between
the two predictions~A7! and~A8! is less than 10 cm21, and
the average Eq.~A9! provides an accurate estimation of the
quantum mechanical eigenenergies. The actual quantization
uses different families of orbits at different energies. For ex-

ample, when@R# family ceases to exist, the action along the
@D# orbits is used asJR(E). Similarly, the @gg# orbits are
substituted for the@g# when the latter disappears~cf. Fig. 9!.
The circular state is quantized with the@C# family. The re-
sults are summarized in Table I and discussed in Sec. III. For
many states, Eq.~A9! is numerically superior to its nonsym-
metric linearized counterpart, Eq.~A5!. The accuracy is,
however, still poor for the levels (5,0)1/2 . In general, the
performance of the quantization is impaired~a! if the anhar-
monicity in the progression@i.e., the curvature of theE(J)
curve# is large, and/or~b! if a bifurcation creates a gap in the
J(E) dependence. The first circumstance is probably respon-
sible for the discrepancies observed at higher excitations in
R. The gap in the action between the@g# and @gg# families
leads to underestimation of the energies for (0,2)1 and
(1,2)1 ~see Table I!. In the future, we plan to investigate
more closely the effect of bifurcations and switching be-
tween different families of POs on the quantization condition
~A9!.
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