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Semiclassical dynamics of the van der Waals states in O 3(XA;)
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We present the analysis and the semiclassical quantization of the van der Waals states of ozone in
the ground electronic staté'A;. Progressions of these states dominate the spectrum @t O
threshold. Periodic orbits are used to perform assignment and quantization of the vibrational states.
Semiclassical quantization is numerically accurate despite the fact that the classical phase space is
chaotic while the nodal patterns of the quantum mechanical wave functions are regular. The
lifetimes of recombination of the van der Waals states into the “normal” ozone are also discussed.
© 2004 American Institute of Physic§DOI: 10.1063/1.1687671

I. INTRODUCTION lecular potential, which become accessible only at threshold.
_ _ o A striking example is furnished by ozone in the ground elec-
Molecular eigenstates near dissociation threshold are thggnic state. Recently, we investigated the bound states of
subject of intensive investigations in the field of chemicalihis molecule on a new high-qualigb initio global PESH

dynamics(see Refs. 1-3, and references thereNonlinear The main feature of the PES in the dissociation-O, chan-

anharmonic coupling between the internal degrees of freer—]eI is a van der WaalévdW) minimum situated approxi-

dom, whose influence grows with increasing deviations frommately 200 cri* below the asymptote. Using accurate quan-

the equilibrium and thus with energy, substantially change . ) g
the properties of highly energized polyatomic molecules. AS?um mechanical calculations, it was shd@that the shallow

a result of progress in computational quantum chemi‘stry,VdW well supports progres_sions of vibrational states. For all
accurate potential energy surfad®ES$ can now be con- vdW states, the average distance between the O qtom and the
structed for small polyatomics even far away from equilib- Oz fragment exceeds 5 bohr. These states exist in the same
rium and reliable predictions of unusual properties of theenergy range as the vibrational states of “normal” ozone.
weakly bound threshold states can be mabew dynamical However, they retain a large degree of independence of the
features near dissociation can be grouped into two broad calatter: Mixings between the two types of eigenstates are
egories. First, assignment of the eigenstates becomes intriather weak. Appearing only 150 crhbelow the quantum
cate. For example, the normal mode assignment, appropriateechanical thresholdY,), vdW states become the domi-
near the ground vibrational state, often loses its meaning atant species aD, and increase the spectral density in a
high excitation energie3At best, new quantum numbers can nonrotating molecule to 0.8 per cth The role of vdW states

be introduced which still uniquely characterize eigenstates, reactions above dissociation threshold, in particular the

_[the well studied normal- to local mode transition in triatom- 5;0ne formation and the oxygen exchange, are currently un-
ics (Refs. 6 and 7, and references theyeserves as an ex- der extensive scrutiny.

amplg. More generic is a gradual transition from an assign-

able spectrum to an ensemble of irregular eigenstate zed from a semiclassical viewpoint. Isotopor® - -180,

characterized only by an exact symmetry of the system, thls chosen as an example. Quantum mechanical calculations

energy, and the total angular momentum. This transition is o . . .
thor(?lj)/ghly documented gby Jost al. in the experimental showed that the vibrational assignment is straightforward for

spectroscopic studies of the bound states of nitrogeﬁnOSt of the eigenstates. However, new types of eigenstates

dioxide®~19The other distinctive characteristic of the thresh-2r€ observed near dissociation threshold and we apply the

old region is that new groups of vibrational eigenstates ap,%emiclassical approximation in order to clarify the nature of
pear in the spectrum. Typically, they are the result of “bifur- the strange vibrational states and to trace the origin of the
cations” in the existing progressions triggered by sudderfluantum “bifurcations.” To this end, a detailed study of the
changes in the classical phase spa&uich “bifurcations”  classical phase space and the quantum/classical correspon-
were studied for many triatomic molecules including HCP, dence is undertaken. Semiclassical calculations are signifi-
HOCI* H; ,*? and HOBr*® Alternatively, new progressions cantly alleviated by the fact that the molecular motion in the
of molecular states can form in those regions of the intramovdW well is two dimensional. It is confined to the two inter-
nal degrees of freedom, the (O, stretch,R, and the bend-
dAuthor to whom correspondence should be addressed. Electronic maii.ng (or hindered rotatiohcoordinate,y.l“ As will be shown
sgreben@gwdg.de below, the Q fragment in the ground vibrational state is not

In the present article the vdW states in ozone are ana-
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involved in the dynamics and can be effectively decoupledhird oxygen atomy is the80, stretching coordinate, ang

from R and y. is the angle betweeR andr. The shallow double-well vdW
We investigate the correspondence between the mominimum in the asymptotic channel is located B
phology of the wave functions and the periodic ori§R©s, =5.33y, rp=2.28, and y,=53.7° and 126.3°. The vdW

i.e. closed classical trajectories on which the molecule reregion is separated from the main ozone well by a (ev80
mains trapped. It is well knowh>®that in the systems, cm™?) barrier atR,=4.5a,. This barrier marks the symbolic
which are “not too chaotic,” the building blocks of the phase border between the asymptotic region and the main ozone
space are the fundamental families of the POs. One usuallyell. The vibrational spectrum in the vdW region was previ-
distinguishes between the stable and unstable POs. Loosetysly calculated in three dimensiof8D) and discussed in
speaking, each stable PO lies at the center of a certain regidRef. 14. The fundamental frequencies associated with the
in the phase space while unstable POs separate different rdissociation coordinateR and the bendingy are wg
gions. Recent studies of HCfRef. 2 and DCP.’ HOCI ~40cm ! and ,~60 cm !, respectively. They are more
(Ref. 18 and HOBr(Ref. 13 confirm that the quantum me- than one order of magnitude smaller than the vibrational fre-
chanical spectrum of these molecules, in the entire energguency of the nearly fre€0, diatom,w,~ 1465 cm *. Near
range extending from the bottom of the potential well up tothe first dissociation threshold, the wave functions of vdW
very high energies reflects the deformations of the stablstates are entirely two-dimensional, with excitations solely in
POs. In this paper we present an example of a system witR andy (see Fig. 2 in Ref. 14 Thus, it is legitimate to apply
clearly assignable eigenstates but apparently chaotic classicah adiabatic approximation to the vdW region, separate the
mechanics and unstable periodic orbits. It is shown that &igh frequencyr vibration from the other two, and consider
guantization, usually applicable for integrable systems, cathe vdW dynamics for the resulting 2D Hamiltonian. Of
be performed along unstable POs and gives reasonable estiburse, the adiabatic approximation is valid only in the
mation of quantum eigenenergies. asymptotic region, foR=R,,.

Semiclassical analysis of the vdw dynamics also pro- Adiabatic separation proceeds along a familiar fine.
vides information on the accuracy of trajectory calculationsThe full 3D Hamiltonian in Jacobi coordinates,
at the dissociation threshold of ozone. An effort was made

« r : 1 9 1 &
_recently to unders_tand the anomalou_s mass-independent Hap= — = 7 LBRNZ+V(RI,y)
isotope effect in ozone formation and exchange 2R 9R? 2 9r?
reaction$® 2! using classical mechanié$:2* While indis- )

pensable in treatment of the reaction complex in high total

angular momentum states, the classical approach ignores tl—Fere,uR " are the reduced masses Rrandr, respectively:

existence of the quantum mechanical threshDigl This B(R,r) is the coordinate dependent rotational constpig;

well-known dravv'back. obscu.res the results of trajectory cf';ll—the angular momentum operator for the diatofR.r, y) is
culations, especially if—as in ozone—low excess energie

Al . . . ?ne ab initio PES of ozone in the ground electronic state, and
up to 200 cm* aboveD, are of interest* Direct compari- 9

= = i
son of the phase space structures with the vdW wave funcvyﬁttseer:ﬁasl' FOrR=R, , the total 3D wave function can be

tions enables one to point out those features which classical
mechanics describes properly and to indicate discrepancies. W¥3p= i, (r|R,y)®(R,7), 2

To this .end., th? lifetimes O.f the vdW states with respect t.owherezﬁn(r|R,y) is thenth eigenfunction of thé®0, diatom
recombination into the main ozone wells are studied. It is , . . : " .
hich solves the one-dimensional Sctiirgger equation

shown that the chaotic classical mechanics, being adequa\f\é
for the description of the average recombination times, can{ 1 g2

s averaged over the vibrational state of i€, oscillator.

not reproduce the fluctuations of the lifetimes of the regulag — LR —2+V(r|R, ) [ ¥a(r|R,y)

guantum mechanical eigenstates. e or
Th_e res_t of the paper_is organized as follo_ws:_ln Sec. |l =e,(R,7) 4 (r|R,y) 3

the adiabatic two-dimension&2D) model Hamiltonian for

vdW states int®0- - -180, is presented. The eigenstates of thisfor fixed Randy. The eigenenergy,(R, y) plays the role of

operator are described and the quality of the 2D approxima@ Potential for the 2D motion in theR;y) plane. In this

tion is assessed. Efficient semiclassical quantization of thB@per, we are interested in the ground vibrational state of

2D model using selected periodic orbits is described in Sec. Oz, N=0, so that the effective 2D Hamilton operator fr

Il and in the Appendix. The phase space is further analyze@nd ¥ acting onto®(R, y) can be written as

in Sec. IV by means of the Poincasarface of section, while 1 2

the recombma_\tlon lifetimes of the vdW states gnd the H,p=- 5 —2+B(R,(r>)j2+ (R, ), (4)

guantum/classical correspondence are discussed in Sec. V. MR IR

Section VI concludes. where(r) is an average bond length 810, in the ground

state andR=Ry,. Eigenvalues of this operator approximate

the vdW states witm=0 of the full 3D Hamiltonian, Eq.
A nonrotating ozone molecule in the vdW region in one (1).

dissociation channéfo---180, is described in Jacobi coor- In practice, we first solve the one-dimensional Sehro

dinates:R is the distance between tH&0, moiety and the dinger equation(3) on a dense grid of fixed values &%

II. ADIABATIC MODEL
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10F ' ' ' ' ' ] atDy. In fact, these structures are also present in the original

[ \__[DD] ab initio potential, and are transferred intact into the adia-

: 1 batic PES. As was shown previoudfyas many as 9 elec-
tronic states of ozone asymptotically converge to the lowest

dissociation threshold. This limits the accuracy of the

/QW initio calculations which include only the ground electronic
-/ \/\/\'/ state?’ The nonmonotonic behavior of the potential energy

"){

K] \\‘ /\/-/ : ) )

« ’ (AN in the asymptotic channel and the corresponding wavy struc-
(F/\\\ ) (//jtﬁ tures in Fig. 1 serve as a reminder of the limited accuracy of

6 MR (/ | the ozone interaction potential at dissociation threshold.

“ @ The 2D adiabatic potentiady(R,y) is used in the clas-
5f N4 Y T sical and quantum mechanical calculations presented in this
. X . b . paper. In quantum mechanics, the 2D Hamilton operator, Eq.
0 30 €0 8 120 150 180 (4), is diagonalized numerically using filter diagonal-
v [deg] ization?®?°The potential optimizet! sinclike® DVR grid in

FIG. 1. Adiabatic two-dimensional potentiah(R,y) for the ozone mol- R consisting of 200 points, ranges from &40 16.G,. In

ecule®0---180,. The lowest shown contour lies B=10cn !, and the 7, & Gauss—Legendre DVR grid with 200 points was used.
spacing between contours SE=10cm *. Also presented are the ex- About 70 000 Chebyshev iterations were necessary to obtain
amples of periodic orbits belonging to the six families described in the text.a fuIIy Converged spectrum of bound states

The quality of the adiabatic model can be assessed by
e[4.4,15.0a, and ye[0,7] to obtain the 2D “potential” ~Ccomparing the 2D vdW spectrum with that of the ‘re-
eo(R, 7). The energies on the grid are subsequently interpost“Cted 3D (?alculatlons of Ref. 14. We remmd the_ reader
lated using cubic splines. The resulting adiabatic potential i§hat the restricted calculations were perforifeid a single
depicted in Fig. 1. It has two minima alongseparated by a dissociation channel of ozone in Jacobi coordinates; the full
barrier ridge with the saddle point #=90° andR=6.3a,.  Hamiltonian was set on a 3D grid which, andy, had the
Just like the original “bare” potential, the minima ef, are ~ Same extensions as described in the preceding paragraph.
symmetric: The diatont®0, is homonuclear. There are two Thus, the numerical solution to the “restricted” problem

minima and five saddle points on the surface. The lowestserves as a benchmark for the 2D adiabatic approximation.
with respect to the minima, are the saddle pointRatR, State-to-state comparison demonstrates that the adiabatic

and y=52°; 128°; their height is 80 cht. The minimum  model is excellent in the vdW region of the potential. The
energy patiMEP) through each of them leads into the main number of eigenstates in the 2D calculatid@g) coincides
ozone well. The saddle separating the two vdW minima liegvith that in the restricted 3D calculations. The two funda-
125 cm'! above the minima. The highest are the saddlenental frequencies are also accurately reproduced. Assign-
points at linearity(y=0°; 180° andR=7.4a,); their energy ment of the wave functions and the energetic order of states
is 155 cm L. On this scale, dissociation threshold is found atare the same in 2D and in 3D. Adiabatic separation of the O
Do=205cm 1. Only energies belowd, are considered. vibration introduces an error smaller than 0.5 ¢mThis
One clearly sees that as the potential energy approachegcertainty is much less than eitheg or ., .

dissociation threshold, the 2D PES loses smoothness: Wavy Examples of 2D wave functions in the three main vdW
structures, first visible @~ 120 cm !, become pronounced progressions are presented in Fig. 2. Their 3D counterparts

stretch progression bend progression C states

[ 00) o 1 [oo. 1 [weoc. ]

I@:@_

[ 0,1). ]

Rla.u]

FIG. 2. Examples of the wave func-

;:' B b tions of vdW states in three progres-
S, [ ] ] sions. Additionally, the periodic orbits
x ((';:_\ :Q@\ :’;D) are shown, which are used in the semi-
u v'.\U ] classical quantization.
(02 ]
5 [ hgd i
g,
‘ ALY ]
0 45 90 135 0 45 90 135 180 O 45 90 135 180 O 45 90 135 180
v [deg] v [deg] y [deg] vy [deg]
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can be found in Fig. 2 of Ref. 14. The vdW states possess a
clear nodal structure so that the two main progressions, the
stretch and the bend, can be easily identified. Incidentally, we
note that 16 out of 22 states are pure overtones, and only six
states are combinations of the bending and stretching excita-
tions. The eigenstates are delocalized between the two vdW
wells along the angular coordinate. Those which have a
nodal line at the saddle=90° are antisymmetric with re-
spect to the transformatiop—180°—y and are denoted with

an additional index “-.” The symmetric states have the in-
dex “+.” Figure 2 shows that close to dissociation threshold,
another progression appears in addition to the stretching and
bending ones. The same states are found in three dimensions,
both in the restricted and global calculations of ozbhehe
nature of these states will be analyzed using the semiclassical
analysis presented below.

IIl. PERIODIC ORBIT QUANTIZATION

We build the semiclassical approximation to the quan-
tum mechanical spectrum using the POs with the shortest
periods. The POs were located using two-point boundary
value solvers, as described in Sec. Il of Ref. 32. Recombina-
tion of the vdW species into the main ozone, energetically
allowed forE=80cm !, adds complexity to the search of
the POs: Already the initial guess for a given PO should be

AE [em™] AE [em™]

AE [em™"]

80

20

80

60

40

20
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{(b) bending states
| . |

(c) C states

0 50 100

E [em™]

150

200

sufficiently precise. This is achieved by using an accurate _ o o )
continuation in energy. FIG. 3. Frequencies of the periodic orbimolid line9 as functions of en-

AL very low energied( few cm above the botiom of - £5-(% SUELhng fariesty bendrg famlesto crouarfamiy ote |
the wel)), there exist two fundamental families of stable POs,chanical states in the three pure progressions.
one corresponding to the pure bendifg]) and the other to
the pure stretching oscillatiorffR]). Evolution of these POs
with energy is illustrated using the continuation/bifurcationbetween the two symmetric vdW wells. The corresponding
diagrant® in Fig. 3. The diagram shows how the classicalfamily of orbits, called[yy], is born atE=145cm . This
frequencies change from the bottom of the vdW well to thefamily replaces th¢ y] POs and survives up to dissociation
dissociation threshold. The orbits in the fundamenf] threshold. The anharmonicity of the] family matches that
family [Fig. 3(@)] can be followed up to relatively high en- of the dissociation modgR]. This is the consequence of the
ergies although they are for the most part unstable. Aboveouble-well shape of the angular potential: The anharmonic-
E=154cm ! they cease to exist and are replaced by anotheity increases as the energy approaches the top of the isomer-
family of POs called[D], which appears aE=139cm ! ization barrier. In contrast, the frequency of fhey] family
[Fig. 3(@]. Such crossovers were previously analyzed in theabove this barrier is nearly constant.
vibrational spectra of HCPRef. 2 and HOCI(Ref. 1) in In addition to the bending and stretching POs, one ob-
terms of saddle-node bifurcations. THg| family is possibly  serves at high energies a different family of orbits with short
also born in a saddle-node bifurcation, but the structure operiods[Fig. 3(c)]. These orbits are born at the saddle points
the phase space, discussed in the next section, rendered tielinearity. In the R,vy) plane, they have a shape similar to
detailed bifurcation analysis impossible. Geometrically, thethat of a quarter of a circléFig. 1). For this reason we call
[D] orbits resemble greatly those belonging to fR&family ~ them[C] (for “circular” ). The energy of the saddles at lin-
(cf. Fig. 1). They disappear at 177 crhand a third family of  earity is 155 cm?, and the[C] family is observed in the
stretching POs[DD], takes their place at 172 ¢th This  rangeE e[165,192 cm™ 2.
family exists only in a short energy interval near dissociation ~ The six families of orbits described above are the rel-
threshold. The stretching mode plays the role of the dissociaevant objects for a semiclassical analysis. There are several
tion coordinate for the vdW molecule and therefore it isindications that these POs make the major contribution to the
strongly anharmonic: As the energy increases fi&m0 to  quantum mechanical eigenstates. A corroborating evidence
E=200cm !, the frequency offR] (and, then,[D] and comes, for example, from the comparison of the classical
[DD]) drops by about a factor of 7. bifurcation diagram with its quantum mechanical counterpart
Evolution of the bending POs is illustrated in FighB (Fig. 3). The quantum diagram is constructed from the en-
The fundamental familyy] is stable and easy to locate up to ergy differences between the successive states belonging to
E=177cm L. It is the only short-period bending PO below the same progression. The states are either symmetric or an-
the isomerization barrier ag=90° (see Fig. 1 Above this tisymmetric with respect toy=90°, and the energy differ-
barrier E>125cm ), the bending motion is delocalized ences in Fig. 3 are taken between the states from the same

Downloaded 10 Apr 2004 to 152.77.252.195. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



7430 J. Chem. Phys., Vol. 120, No. 16, 22 April 2004 Joyeux, Schinke, and Grebenshchikov

TABLE I. Semiclassical quantization of the vdW spectrumt: - -1€0, . S U EE R —

10* 2 )] E
Esc’ Escr Eqmv Aqm ) s
Assignment cm *®  cm® cm® cm '  Stability of POS§ [
(0,0), 75 73 728 02 sls 2 13k .
(1,0),,— 114 115 114.5 05 uls F 3
(0,1),,- 138 134 1339 7.1 uls i [oD] 1
(2,0),,- 150 150 147.5 15 u/u [ (a) stretching states 1
(1,1),, - 161  162.0 5.1 ulu jpr bt .
(0,2), 170 166  170.1 ulu —
(3,0), /- 172 174 1724 2.0 slu 10*E
(2,1), - 181 182.1 u/u F
(4,0)c 176 182  184.9 ulu »
(4,0),,- 194 193 188.8 0.9 u/u =
(1,2), - 184 191.9 ulu = 403
(0,2)_ 193 193 194.4 u/u R F
(3,1),/,- 203 2026 9.3 uls [
(5,0)4,- 209 209 200.7 1.9 uls - (b) benlding statels | |
5 . . .
#Semiclassical energy from EGAS5). 10
bSemiclassical energy from EGA9). 10tF ' L
‘For the states split by tunneling, the center of the tunneling doublet is F ]
iven. - ]
dgll'unneling splitting between the states with the same assignment but differ- _ [ €l 1]
ent parities. 2 Ll |
®Quantizing POgstretching/bending familigsare marked as stable) or - 10°F 3
unstable(u). © Z ]
- (c) C states 1
102 P T MR R
symmetry block. The only exception is the energy difference 0 50 100 150 200
between the two bending states (0,2and (0,2,). [the E [em™]

rlghtmost point in Fig. 3))] which lie abo_ve the barrier be- FIG. 4. Energy dependencies of the stability times of the periodic orbits in
tween the tWQ vdW We.”S and are Iocallzeq arou_nd the PQa) stretching families(b) bending families{c) [C] family. The (infinite) 7,
[vy]- Each difference is plotted at the arithmetic averageor stable POs is set to 1@s. Black dots mark the energies of the quantum
energy of the two states. The bending, stretching, and circunechanical states quantized with the respective orbits. Positions of the dots
lar progressions are shown in Fig. 3. The agreement betwedlPnd the vertical axis are arbitrary.

the quantum mechanical energy differences and the frequen-

cies of the corresponding POs is very good, especially for th?D]' and[DD] families. Similarly, the quantization of bend-

stretching progressioifrig. 3(a)], which is only slightly per- g states switches from tHe/] to the[yy] family. The cir-

turbed by tunneling between the symmetric vdW wells.  ¢jar state (4,Q) is accurately quantized with tHE] orbit.
Furthermore, the quantum mechanical eigenfunctions argqor most states, the accuracy of the semiclassical results is

localized near these short-period POs, as illustrated in Fig. Zimited by tunneling effects, which are not taken into account
For the pure states in the bending and stretching progress the quantization condition.

sions, the respective orbits pass exactly through the nodes of
the probgblllty d_en5|ty in the vdW wells. For the C|rcula_r IV. CLASSICAL PHASE SPACE OF THE VDW WELLS
progression, which does not have analogs at low energies,
the correspondence is equally good. Above considerations suggest that the phase space in the
The arguments presented above suggest that one can U4/ region should be regular. Indeed, the eigenenergies are
these POs for semiclassical quantization. The quantizatioreasonably well reproduced with a simple PO quantization,
scheme, which is an alternative to the well-known Einstein-and each eigenfunction is localized around a single orbit. The
Brillouin—Keller prescription for integrable systems and re-analysis of the stability of the quantizing POs indicates, how-
lies exclusively on POs belonging to the fundamental fami-ever, that the classical vdW dynamics in ozone is more com-
lies, is described in the Appendix. Loosely speaking, theplicated. Stability in two dimensions is characterized by the
quantization rule, Eq(A9), for a state (ir,n,) amounts to  stability parameters, ,, which are the eigenvalues of the
putting ng quanta of excitation in a stretching PO, angl  monodromy matrixX® If the X, , are complex and lie on a
quanta of excitation in a bending PO followed by the aver-unit circle in the complex plane, the PO is said to be stable.
aging over the different ways in which the energy partition-If the stability paramet_ers are real, _t_h_e orbit is unstable. In
ing can be achieved. The results of the semiclassical quantivhat follows, we consider the stabilityme of the PO de-
zation are compared with the quantum mechanical vdwined through its largest real eigenvalue and pefi¢g),

eigenenergies in Table I. The semiclassical approximation is T(E)
rather accurate, especially for the pure progressions. This 7((E)= n(maihig]) 5)
validates the assumed correspondence between the PO fami- (max{ Al

lies and the quantum progressions. As the energy increasd$the orbit is stabler; is infinite. The stability times for the
the stretching states are sequentially quantized by{Rle POs discussed in the previous section are depicted in Fig. 4.
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For stable POsg=10*fs is set for plotting purposes. Orbits

in each family change their stability as energy increases. The
most dramatic variations ifng are observed in the stretching
families[Fig. 4@)]. The fundamental familyR] loses stabil-

ity 15 cm ! above the bottom of the vdW well, with,
quickly dropping down to 300 f&for comparison, the period

at this energy is about 600)fsThe[R] family becomes stable

in a short energy window and then its stability degrades
again until the orbit can no longer be located. Two high-
energy stretching familiegD] and[DD] are for the most
part unstable, although, strongly oscillates witte. Possi-

bly, these oscillations indicate a cascade of bifurcations
which these orbits undergo. The bending motion in the vdwW
wells[Fig. 4(b)] is much more stable than the stretch, at least ?
up to two thirds of the dissociation energy. The fanjily is 2
stable(with one minor fluctuationalmost until it disappears, a

40 90 140
7 [deg]

while the[yy] family remains slightly unstable up to disso- -2 i
ciation threshold. Finally, the familyC] [Fig. 4(c)], existing 4

only near threshold, is unstable. It gains stability only at the 4.5 55 6.5
highest energy at which it can be located. R [a.u.]

The global phase space dynamics of the vdW ozone is o o
analyzed next using the PoinCamerfaces of sectiofPSOSg G 5 Poincaresurfaces of secﬁofnx'” [aﬂ and R,pr) [b] for Sf]"era'
(R,DR) and (%j) (herepR andj are the momenta conjugate trajectories aE=70cm -. In each frame, three trajectories are shown.
to R and v, respectively. The PSOS R,pgr) for a given
energyE is computed at a plane in the phase space defined ) .
by v*=54.2°. As the classical particle moves in the vdw other two outline the approximate border of the regular phase
region, one collects the coordina®@nd momentag of the ~ SPace:

. . _ 71 .
successive intersections with the plane. Only those intersec- The energy of the PSOS in F'g'. E,—_70 cm . IS very
tions are considered, for which>0. The PSOS 4.j) is close to the energy of the lowest vibrational vdW stéig (

= 1 . .
defined in a similar way, by setting the plane Bt :Zﬁ cmr )'nc-jrhltjst’ tihetclas;chal p;ai(:-[: Srf)act? ct(?]rres)p()ontilingrjl
=5.2%, and selecting the intersections wigx>0. Both 0 the ground state Is fo a farge extent chaotic, the exceptio

R* andy* are chosen close to the equilibrium in one of thebe.mg aregion ?’“"“”d the stable bending perlod_|c orbit. Ad-
vdW wells ditional calculations show that the phase space is fully regu-
' lar only near the vdW minimum and already 20 chabove

PSOS enables one to locate the phase space regions with o irregular trajectories dominate.

regular and chaotic dynamics. The easiest way to obtain the Let us now consider the vdW phase space at higher en-
image of the phase space is to launch many randomly S&rgies. One problem stands in the way of applying the PSOS

lected trajectories at a given energy, and to analyze the trac‘?échnique above the saddle point on the path leading to the

they leave in the PSOSs. For a regular trajectory, the inters oio 5-one well: The vdw dynamics is no longer bounded

sections with the fixed plane lie on a smooth curve. This,nq classical trajectories can escape from the vdW region to
smooth curve becomes an irregular scatter of points if they ., “normal” 0zone. Finite—and often short—lifetime ob-
trajectory is chaotic. Surfaces of section, presented in Fig. cyres the representation of the phase space with the surfaces
are recorded a =70 cm?, ie., 10 cm* below the top of  of section. The distinction between regular and chaotic dy-
the barrier separating the vdW region from the main 0zongamics becomes less clear, because many trajectories leave
wells. The PSOS %,j) [Fig. S@] consists of two separate only a few traces on the PSOS. In order to demonstrate that
regions corresponding to two symmetric and—at thisthe vdw dynamics is irregular also above the saddle, we
energy—disconnected vdW wells in the asymptotic channelgonsider the PSOS as a map and follow the subsequent itera-
Each PSOS in Fig. 5 is composed of three trajectories, demions on this map. The idea behind this is to construct an
onstrating different types of motion. Two trajectories in theanalog of Arnold’s “cat map” often used to illustrate the
PSOS ,j) in Fig. %@ are irregular, and their intersections concept of the “translation and stretching” mixing in Hamil-
with the fixed plane sample the phase space in either of tweonian systems® The results of this procedure for the PSOS
vdW wells without any apparent systematics. The third traatE=90cm ! are summarized in Fig. 6. In the upper frame,
jectory, confined to a narrow strip close to the energy enverig. 6(a), all the points are collected at which trajectories
lope of the PSOS in the left vdW well, is not chaotic: The cross the PSO®r the last timebefore they escape into the
points are regularly organized. This trajectory belongs to amain ozone well. At moderately high energies above the
island of regularity around the stable PO of {hg family.  saddle, these points form a compact area. It provides a visu-
The size of this island is illustrated with the PS§ ) in alization of the “exit gate” or “dynamical bottleneck” pre-

Fig. 5(b). Again, only three trajectories are shown. While theviously studied in the photodissociation dynamics and reac-
irregular one erratically wanders through the phase space, thive scattering**® One can relate this “bottleneck” to the
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into a long and thin filament. This implies that the ensemble
of trajectories passes through chaotic regions and is subject
to contractions and expansions. The effect of these transfor-
mations becomes even more clear in the back iterations
shown in Figs. ) and &d) (third and fourth back iterations,
respectively. The initial compact area quickly transforms
into a set of long threads which fill almost randomly a large
portion of the surface of section. The same picture holds
qualitatively true for all energies above the saddle, although
with increasing energy the “exit gate” gradually becomes
less compact than in Fig(#®.

Comparison of different frames in Fig. 6 suggests that
the successive back iterated images of the “exit gate”
densely wrap around each other. This means that two neigh-
boring points recombine into On different times: The life-
time depends strongly on the initial conditions. Extreme sen-
sitivity of the dynamics to the initial conditions is known to
be one of the hallmarks of chaos. This conclusion is further
illustrated in Fig. 7. In Fig. #®), a composite PSOSy(j),
produced by 10000 trajectories, is shown. All trajectories
were launched from the same point in the configuration
space R* =5.2%,, y* =54.29 with randomly chosen mag-
nitude and direction of the angular momentjinso that the
initial conditions are uniformly distributed along the dashed
line in Fig. 7@). In the middle frame, Fig. (b), the recom-
bination lifetime of these trajectories is shown as function
of the initial momentumj. Except for the interval
j e[ —5,0] a.u., the lifetime strongly fluctuates over two or-
ders of magnitude even for neighboring initial conditions.
These fluctuations are fingerprints of the filaments, discussed

v [deg] above, which densely intertwine in the phase space. The near
fractal structure of the lifetime distribution is revealed in Fig.
FIG. 6. Back-iterations of the Poincareap R,pg) at E=90cm™. See  7(¢) which shows a portion of the same distribution for a
text for details. . L . . . .
smaller interval ofl. The distribution is self-repeating: Nei-
ther the appearance of the curve nor the range of fluctuations
bundle of trajectories surrounding the path connecting th&@nge as observation scale is diminished. _
vdW minimum with the saddI&® The results in Fig. (b) show that at least one region
We now follow the evolution of the area in Fig( remains less chaotic than the rest of the phase space: The

back in time and study its transformations as the map idifétime dependence opis smooth forj e[ —5,0] a.u. Com-
back-iterated Shown in Fig. €b) is the same ensemble of Parison between the framéa) and (b) in Fig. 7 shows that
trajectories at the next to the last intersection with the PSOgrajectories with these initial momenta do not cross the PSOS
The compact area of the “exit gate” is strongly deformed (7v.j) calculated with the additional requiremepi>0.
after a single back iteration. If the trajectories were regularTheir lifetime is about 1.5 ps, i.e., it is of the order of one
the shape of the “exit gate” would remain largely un- vibrational period in the vdW well. These trajectories are
changed: In a regular region, the time evolution of the trathus purely ballistic: They start from the vicinity of the vdW
jectories amounts to a mere rotation around the periodic ominimum with the initial momentunpg<<O pointing in the

bit. In contrast, the “exit gate” in Fig. @) is transformed direction of the saddle and quickly recombine into the main

jlau]

[e<]
—
[ | |

j[au]

jlau]

i lau]

10F ®) ] -7.0 © FIG. 7. (a) Composite surface of sec-
tion (vy,j) obtained by integration of
5r 1 10000 trajectories atE=80 cm *.
0 75 Initial conditions of all trajectories are
’ uniformly distributed along the verti-
5l ] cal dashed line(b) The lifetimes of
these trajectories versus the initial mo-
; f -10} ——l_-s.o mentum;j. (c) Zoom-in of the lifetime
30 55 80 1 10 100 1 10 100 dependence on for the intervalj e
v [deg] LIFETIME [ps] [—8.0,—7.0] a.u. Logarithmic scale is

LIFETIME
[ps] used for the lifetimes irfb) and (c).
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ozone. We argue in the next section that such short-livingjlobal PES these states are truly bodfiihe decay from the

trajectories have no quantum mechanical counterpart. portion of the potential restricted to one dissociation channel

can be approximately considered irreversible because the
V. QUANTUM/CLASSICAL CORRESPONDENCE main ozone well, acting as a “sink” for the states localized in
IN VDW OZONE the asymptotic region, is almost 9000 chdeep, much

. . . i fJeeper than the vdW we(l~200 cm Y.
In this section, we compare the properties of the classical : . . .
and quantum dynamics of the vdW ozone. The present semi- The effective Hamilton operator in these calculations has
classical study provides yet another indication that thethgv\florm'._'erflf:H?D_h'W' dwe cqm£lex4%bigrblng p%tgntlal
guantum/classical correspondence is a subtle notion which 'W vanishes in the v regioR=[4.3,16.0a, and in-

depends on the level of details one is willing to compare an¢'€ases smoothly from zero Bt.: 4'36‘0 toa max_imum value

on the objects selected for such comparison. atR=3.5ap. The full 3D Ham"to_r“a”' Eq(1), is used be-
The wave functions of vdW ozone have a very simpleCause the adiabatic 2D Hamllt_onlélﬁq. (4)] was not calcu-

nodal structure which allows relatively straightforward as-lated forR<4.2a,. However, since both 2D and 3D spectra

signment in terms of stretching and bending quantum numpractically coincide, the resulting widths can be considered

bers. The eigenstates preserve this simplicity throughout th@> @ reasonable estimation for both operators. Complex

spectrum, from the bottom of the vdW well to the dissocia_eigenstatesEo—iF/Z, of the effective Hamiltonian are found

tion threshold. In accord with this observation, semiclassicaiJSing fiI'Fer diaggnalization, in which thg propagator is ex-
ded in modified Chebyshev polynomiéi®arameters of

quantization with the periodic orbits with the shortest period{han i imilar to th d ived in Sec. II. Th
is successful. At this level of description, the agreement be: € propagation are similar to those described in Sec. 1. The
tween quantum and classical mechanics is satisfactory. influence of the absorhing potential on theal parts of the

At the same time, the quantizing POs are very Ofteneigenenergies is negligible: The energy shift due—toN

unstable. This is stressed in Fig. 4, in which the black dots orqpes not e>.(ceed 0.1 Cﬂ} Ima%in_ary ’I)_?rt,s of tge compl;axE
the stability curves for different families of POs mark ener_eégenenergles are transiormed into lifetimes by use of Eq.
gies of the eigenstates quantized by this family. No less thafﬁ )-

2/3 of the quantum states are quantized by unstable orbits. Qlassc;cil metagtable Qynamlcs of tEe \Z/gWPozane IS 1n-
However, no influence of the stability on the accuracy of th vestigated by running trajec'gorles on.t € &% ’2/)1
e[cf. Eqg. (4)] at seven energies ranging froB=90cm

guantization was foundsee Table )l The analysis of the ' 1 .
hase space in the previous section demonstrates that insféi—e" 10 cm above the saddle_ to t_he_ main weto E
P P P =190cm ! (i.e., 15 cm* below dissociation thresholdAt

bility of the selected short-period POs reflects a general” . . .
property of the classical vdW motion. Namely, the classicaleaCh energy, 10000 trajectoru_as are propagated for ”“? maxi-
motion is not integrable, but chaotic. This finding contradicts™um time of 220 ps. The trajectory is stopped after it had

both the assignability of the quantum wave functions and thjfsse.d. thle d_saddle '.th_hi g;rect_lrohn O.f the m]:aur;] ozone well
assumptions of the semiclassical quantization rule. Note th f e.cr|t|ca_ |§tance 5= 0).' € t'mequ t.e Cross-
a similar observation was made in the study of the quantum/ 915 the. lifetime of thekth.trajectory. The .dlstnbuuon of
classical correspondence in HOCI close to the dissociatio fetimes in the ensemble is represented in the form of a

threshold® normalized “survival probability”P(t),*°
This discrepancy might be considered as a purely aca- 10000
demic issue, as long as the semiclassical quantization works. P(t)=10"* kZl O(n—1), (7)

Remember, however, that the vdW dynamics is metastable—

with respect to the main ozone well—at all energies abovevhere®(x) is a Heaviside step function. The classical life-
the ground vibrational state. One can surmise that the reguldime, 7, (E), for a given energi is defined as the time, at
guantum mechanical states and the chaotic classical trajectahich P(7) = 1/e.

ries recombine into normal ozone in different fashions. In  Three types of the initial ensembles of trajectories are
what follows, we compare the quantum and classical recomeonsidered at each energy. The first is the microcanonical

bination lifetimes of the vdW states. ensemble: The initial conditions for trajectories uniformly fill
In quantum mechanics, the lifetime,, is estimated the phase space classically available at en&rghhe second
from the width of a resonance stailg, using the relation is the “stretching” ensemble: The initial conditions are cho-

. _FIT ©) sen in a close vicinity of the stretching PO families. These
qm ' trajectories start from the PSO%,(), and their initial con-
The widths of the vdW states with respect to recombinatiorditions are selected from a tiny square of the shize= Jj
into ozone are calculated using absorbing boundary=0.05a.u. centered on the stretching PO. The third is the
condition$’8in theinner part of the global ozone potential. “bending” ensemble, in which the initial conditions cluster
The primary purpose of our calculations is to illustrate thearound the POs from the bending families. The “bending”
guantum/classical correspondence in the vdW region of thensemble starts from the PSOR, fg), and the deviations
potential. Usually, absorbing potentials are used in thdrom the bending PO are limited bjR= Spg=0.05a.u.
asymptotic part of the PES in order to imitate the outgoing  The quantum mechanical and the classical lifetimes, ob-
boundary conditions for an irreversibly decaying moleculetained in these calculations, are depicted in Fig. 8. The quan-
vdW states are only metastable if one vdW region is considtum recombination lifetimes fluctuate over several orders of
ered, as in the present paper. In the full calculations on thenagnitude, especially at low energies. These state- or mode-
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18— - (0.2) classical trajectories do not reflect the state specificity of the
i quantum mechanical lifetimes. Consider the lifetimes of the
“stretching” and the “bending” ensembles. The classical

4 104} - lifetime depends on the size of the island of stability around
W (0,1), . the PO in question. At low energies, the two ensembles give
= . different sets of lifetimegFig. 8, E<140cm 1). The island

E 102} of stability around thd y] PO is larger than the size of the

square, from which the initial conditions for the ensemble
are selected. As a result, the lifetime for these trajectories is
10 : infinite. In Fig. 8, it is artificially set to & 1P ps. In con-

70 140 210 trast, POs of théR] family are unstable at these energies,
and their lifetimes are finite. Above 140 ¢ the island of
FIG. 8. Quantum mechanicédots and classicaflines) recombination life-  Stability around the POs from tHe/] family disappearscf.
times of vdW states of ozone. Classical lifetimes are shown for three enFig_ 4), and their lifetime becomes finite, too. At these ener-

bles of the initial conditions: microcanoni id line); “ ing” i ; i ;

?gg;;heat and “bending” (dashed—dotted See te(f(?tf)l;?(Iilgtziyls.sggrtg:larllgdot— gies, thejre IS. VI.I"[U(':Illy no difference between the two en.-
ted line marks the position of the potential barrier between the vdW and théembles' Their lifetimes are almost equal to that of the mi-
main ozone wells. crocanonical ensemble. This is another indication that the
classical vdW dynamics is chaotic and the recombination
lifetimes do not depend much on the initial conditions. Be-
cause of the chaotic behavior, the classical trajectories are
insensitive to the quantum fluctuations: neither in the stretch-
g nor in the bending progressions.

specific fluctuations were thoroughly analyzed in unimolecu-
lar dissociation reactioffSand, therefore, are not surprising.
The quantum recombination rate is sensitive to the exadf1
shape of the wave function in the vdW wells and, in particu-
lar, to the probability density at the saddiee., at the tran-
sition state. Since this density differs noticeably from pro- \/j cONCLUSIONS
gression to progression, and even from state to state within
one progression, the lifetimes fluctuate. Only the first two  This paper presents the analysis of the recently discov-
(degeneratestates are located below the saddle and theiered vdW states of ozone from classical, semiclassical, and
lifetimes are due to tunneling through the potential barrierquantum mechanical viewpoints. All 22 quantum vdW states
The lifetimes of the states above the saddle can nevertheleis in the energy range in which classical chaos is fully de-
be very long, reaching the range of microseconds. This is theeloped and spreads over almost all available phase space.
effect of the adiabatic trapping previously discussed in RefNevertheless, the quantum system is not expected to display
14: The zero-point energy of the bending mode at the tranthe properties inherent to the chaotic systems, such as the
sition state effectively increases the height of the dynamicaGOE statistics of the level spacings or irregular nodal pat-
barrier for the quantum particles passing into the main wellterns. Indeed, level statistics is meaningless for a spectrum
The largest are the lifetimes of the states belonging to theonsisting of only 22 lines. The longest series of states con-
pure bending progressiofFig. 8); the lifetimes of the tains only five quanta of excitatiofthe pure stretching pro-
stretching states are shorter by four orders of magnitude. Aljression which by necessity keeps the nodal patterns simple.
guantum lifetimes exceed 10 ps, i.e., the states live for 4-5 It is challenging to study the quantum/classical corre-
vibrational periods before recombination. sponding for such a system. The main finding of this work is
Itis clear from Fig. 8 that classical trajectories provide athat the quantum mechanical spectrum is built on three fami-
reasonable estimation of the average recombination lifetimées of periodic orbits. The results clearly show that among
at high energies. This can be considered as another justificall varieties of POs existing in the system, only the orbits
tion of the choice of the absorbing boundary conditions inwith the shortest periods are important for the quantum me-
the inner part of the potential for the quantum mechanicathanics. They act as backbones of the wave functions even in
calculations. Consider the microcanonical ensemble first. Athe presence of the bifurcations and can be used to quantize
low energies E<150cm 1) the microcanonical lifetime is the eigenstates with reasonable accuracy. These POs are un-
smaller than the quantum mechanical one by factors of 5-1Gtable at most energies, with the associated stability times
Apparently, the adiabatic barrier which hinders recombinabeing of the order of or shorter than the periods of the POs.
tion of the quantum mechanical states does not affect th8everal previous studies showed that “stability during one
classical trajectories. As the energy increases, the microcgeriod” might be sufficient for the orbit to become important
nonical ensemble describes the average quantum lifetimi@ the semiclassical descriptideee Ref. 42, in which a cha-
better, with the best agreement achieved at dissociatioatic 2D quartic oscillator is quantized, or Ref. 36 devoted to
threshold. Note, however, that the nonchaotic ballistic trajecthe analysis of the dynamics of HOCI
tories, described at the end of Sec.(8ée also Fig. )7 have The discrepancy between the fully chaotic classical dy-
no counterpart among the quantum states: The “ballistic’namics and the regular quantum mechanical wave functions
lifetimes, ~1.5 ps, are one order of magnitude smaller thansuggests that classical calculations should be used with care
the smallest quantum lifetime. for retrieving intrinsically quantum properties of the vdW
Figure 8 shows that, being quite accurate “on average,’states, such as, for example, the recombination lifetimes.
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APPENDIX: PERIODIC ORBIT QUANTIZATION ' . '
OF THE vdW STATES 200 i ]

In this Appendix, we outline the grounds on which the
semiclassical quantization rules used in Sec. Ill for unstable —
POs are based. Our arguments are far from being exhaustive,
but they provide an insight into the details of the quantiza-
tion procedure and also indicate the direction of future work.

It is convenient to start with the local Hamiltonian near a 50
certain periodic orbit. Throughout the Appendix we use units
f=m=1. Let the coordinate along the orbit IS with the 0
conjugate momenturRg, and let andp, describe the co-
ordinate and momentum for the transverse direction. Then,

the classical Hamiltonian near the orbit assumes the fdrm, FIG. 9. Energy-action curves for the stretchiffg) and (d)] and bending
[(b) and(c)] families of POs. The framdg) and(b) are used to estimate the
Hioe= %Pg-i- U(S)+ 3( p§+ wéfz), (A1) semiclassical energy with EGA7); the frames(c) and (d) are used in Eq.
(A8). See text for details.

150

100

E [cm”

ng+1/2
L
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action integral action integral

whereU(S) is the potential energy along the PO, andis

the frequency in the transverse direction. Note that this fre-

guency can, in general, be a function®f gressions are strongly localized around the orbits, irrespec-
The energy of a state with quantum numbens,;  tive of whether the POs are stable or not. Moreover, these

=0) can be found from the quantization conditions of thewave functions in the direction transverse to the PO are

local Hamiltonian(Al), if the quantum mechanical wave simple bell-shaped Gaussian-type profiles. These observa-

function is strongly localized around the orb&,¢=0). One tions suggest that one can keep the Hamiltonian near the PO

might further identify the frequencw, with the stability in the form(Al), but redefine the transverse frequency in it.

frequency of the orbit®#4 Consider the progressiomg,n,=0) and the orbitS The
following definition of the transverse frequency appears ap-
0~ 0. (A2) ! g_ q y app p
propriate:
If the orbit is stable, so that its stability frequenayy, is
y q @'st w§~ | poO- (A4)

real, one immediately obtains from Eq#1) and (A2) the
semiclassical energy leve(see, for example, Ref. 45 Here w, po denotes the frequency ainotherorbit, selected
—0)— _ 1y, 1 by the condition that it quantizes the states in the other pure
Eednsn:=0)=Es(J=nst32) +205(Es). (A3) progression is=0,n,). In some sense, this orbit, when
HereJ is the action along the orbit, and the functidg(E) properly chosen, plays the role of the “transverse” coordi-
and its inverseEg(J) are assumed to exist. The stability nate in the expansiofAl). At the same time, Eq(/Al) can
frequency in Eq(A3) is estimated at the energy of the orbit no longer be considered as a local expansion: This is a model
Es. global Hamiltonian, which mimics the main features of the
The quantization rulgA3) breaks down for unstable quantum wave functiongi.e., the Gaussian localization
orbits*® Indeed, the stability frequency for them is imagi- around the orbitS) but ignores the local details of the dy-
nary, and the transverse oscillator in E&1) supports no namics of this PQi.e., its instability. The quantization rule
bound states. As a result, the semiclassical energy becomgsen becomes
complex and loses its meaning: The local approximation, Eq. noa
(A1), is incompatible with the conditiofA2). Possible solu- Esdns,ng=0)=Es(J=nst3)+ 20, pdEs)- (AS)
tions might consist of refining the local approximation andThis equation can be directly applied to the vdW spectrum of
considering higher-order terms in A1) or in abandoning ozone. The bifurcation diagram, Fig. 3, unambiguously iden-
the local form altogether. tifies the POs of the stretching families as being transverse to
The shape of the quantum mechanical wave functions ithose of the bending families. Using the dependenti€g)
Fig. 2 suggests an alternative approach to the quantizatiofsee Fig. 9, we calculate the semiclassical energies for the
along the unstable POs. All wave functions in the pure propure progressionsng,n,=0) and (ig=0,n,). The results

Downloaded 10 Apr 2004 to 152.77.252.195. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



7436 J. Chem. Phys., Vol. 120, No. 16, 22 April 2004 Joyeux, Schinke, and Grebenshchikov

are summarized in Table |. The accuracy of &p) is rather  ample, wher{R] family ceases to exist, the action along the

high: For many states, the error is of the order of the tunnelfD] orbits is used adg(E). Similarly, the[yy] orbits are

ing splitting between the levelgote that tunneling effects substituted for th¢y] when the latter disappeafsf. Fig. 9.

are completely neglected in the above quantizationrlite  The circular state is quantized with th€] family. The re-

adequately described are only the highest stretching excitaults are summarized in Table | and discussed in Sec. Ill. For

tions (5,0),,_ and the circular state (4,9) Incidentally, we  many states, EqA9) is numerically superior to its nonsym-

note that for the circular state, a PO from fl&d family was  metric linearized counterpart, EGA5). The accuracy is,

taken as the “longitudinal” orbitS and a PO from théyy] however, still poor for the levels (5,Q)_ . In general, the

family served as a “transverse” orbit. performance of the quantization is impair&) if the anhar-
The above formula allows an extension to the combinamonicity in the progressiohi.e., the curvature of th&(J)

tion states. Simultaneously, this extension somewhat imeurve is large, and/otb) if a bifurcation creates a gap in the

proves the overall quality of the quantization, especially forJ(E) dependence. The first circumstance is probably respon-

the low lying levels. To be specific, let us assume for a mo-ssible for the discrepancies observed at higher excitations in

ment that the orbi§ belongs to the familyR]. We denote its R. The gap in the action between thg] and[yy] families

energyEg(J=ng+ 1/2) asEg. The transverse PO belongs to leads to underestimation of the energies for (0,2nd

the family[y]. Equation(A5) can now be rewritten through (1,2), (see Table )l In the future, we plan to investigate

E% and the functiond ,(E) and its inverseE,(J), more closely the effect of bifurcations and switching be-
tween different families of POs on the quantization condition
_ 0
Es=ERr+ 7, OAJy, A6)  (A9).
JV IMolecular Quantum States at Dissociatjadited by R. Prosmiti, J. Ten-

; nyson, and D. C. ClaryCollaborative Computational Project on Heavy
where the frequency of thiey] PO, (QE/O?‘]V’ is evaluated at Particle Dynamic§CCP@, Daresbury Laboratory, UK, 1998

0_ 0 - > =
J,=J,(ER) " according to Eq(A5). If the action mgrement, 2H. Ishikawa, R. W. Field, S. C. Farantos, M. Joyeux, J. Koput, C. Beck,
AJ,/=JY—J7, equals 1/2, one recovers the quantization con- and R. Schinke, Annu. Rev. Phys. Ches, 443 (1999.

.. . . N 3 H
dition (A5). One can view Eq(A6) as the first two terms in  °M. Joyeux, S. C. Farantos, and R. Schinke, J. Phys. Cheb@A5407

. . . (2002.
the Taylor expansmn of energy ne_ar the actllﬁj] G?'”g “T. Helgaker, P. Jorgensen, and J. Olsktolecular Electronic-Structure
beyond the linear terms and summing up, one obtains Theory(Wiley, Chichester, 2000
0 5M. E. Kellman, inMolecular Dynamics and Spectroscopy by Stimulated
Esc= E7(3y+ AJy)- (A7) Emission Pumpingedited by H.-L. Dai and R. W. Fiel@World Scientific,

) . Singapore, 1995
The incrementAJ, equals 1/2, ifn,=0. Forn,>0, one has  ¢w. s. child, Semiclassical Mechanics with Molecular Applicatid@ar-
AJ,=n,+1/2. Equation(A7) can be illustrated graphically _endon, Oxford, 1991

7 .
see Figs. and 9b)]. Suppose a stateng,n.) is to be M. S. Child and L. Halonen, Adv. Chem. Phy&z, 1 (1984).
[ 9 @ 1 )] bp (? 7) 8A. Delon and R. Jost, J. Chem. Phs, 5686(1991).

qléantized. Using the _fun_ctioER(J) in Fig. 9@), one finds 95" pejon, p. Dupre, and R. Jost, J. Chem. Pl9g.9482(1991.
Er=ERgr(nNg+ 1/2). Switching next to the dependenie(J) 10A. Delon, R. Georges, and R. Jost, J. Chem. Pthg8 7740(1995.
in Fig. 9b), one determines](;(E%). Finally, an increment *'J. Weiss, J. Hauschildt, S. Yu. Grebenshchikov, Rreby R. Schinke, J.

; 0 ; ; ; Koput, S. Stamatiadis, and S. C. Farantos, J. Chem. Rf&2s77 (2000.
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