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Vibrational energy localization and/or redistribution in hydrogen peroxigl®,His studied at about

4000 cm? above the quantum mechanical ground state usingihieitio potential energy surface

of Koput, Carter, and Handy. Phys. Chem. AL02, 6325(1998]. In this work, the recently derived
canonical perturbation procedure for floppy molecules serves two purposes. First, from the quantum
mechanical point of view, it is shown that the energies of the lowest 130 states are reproduced with
an average error smaller than 1.5 ¢y a two-dimensional Hamiltonian, which is a function of the
torsion and OO-stretch coordinates and momenta, while the other four degrees of freedom
contribute only through powers of good quantum numbers. Moreover, the canonical perturbation
procedure is also used in classical mechanics calculations, in order to define meaningful local
modes, for which the ingoing and outgoing energy flows are monitored. Almost all the individual
trajectories launched on tla initio surface display the same behavior, that is, the superposition of
(a) rapid (few hundreds of femtosecondsnd quasiperiodic energy exchanges between the two OH
stretches and between the torsion and OO-stretch(@rslower (few to several picosecondbut
erratic-looking energy flows between all degrees of freedom. When averaging over large numbers
of trajectories with the same local mode energies at tim@, one observes instead a smooth and
irreversible energy flow between all degrees of freedom, which usually thermalize in the range of
several tens of picoseconds, that is, on time scales larger than the 5 ps period associated with the
guantum density of states. 005 American Institute of PhysidDOI: 10.1063/1.1850894

I. INTRODUCTION cuses on the dynamics at much lower energies on a realistic
PES. Emphasis will be laid on two points.
Intramolecular vibrational energy redistributidifivR) First, most discussions dealing with IVR are based on

studies are aimed at understanding the time evolution of th9|OtS showing the time evolution of the energies in so-called
energy transiting in each vibrational degree of freedom of|ocal modes.” Instead of energy, closely related quantities,
polyatomic molecule$:® Thanks to refined laboratory tech- such as classical action integrals or quantum numbers, are
nigues and increasing computational  capabilitiessometimes plotted. The important point, however, is that lo-
experimentd™? as well as theoreticd ** description of  cal modes are usually defined from the Hamiltonian of the
IVR in molecular systems is becoming more precise and betsystem by fixing all coordinates, except for one, to some
ter documented. The present paper contributes to this effodquilibrium value, and all momenta, except for the conjugate
by presenting a study of IVR in hydrogen peroxideQ4 at  one, to zero. The definition of local modes is thus coordinate
about 4000 cm" above the quantum mechanical grounddependent, and different results must be expected when dif-
state. Hydrogen peroxide has recently received much attefierent sets of coordinates and conjugate momenta are used. A
tion from the theoretical point of view, with the construction reasonable requirement for a coordinate system to be suitable
of two ab initio potential energy surfacd®ES3,”***which  for [VR studies is that the sum of local mode energies is not
have both been shown to give accurate vibrational energyno different from the exact energy of the classical trajectory.
levels?*~*including correct estimates of the tunneling split- |t turns out that this requirement is very far from being ful-
tings through the torsiondfans saddle. The two PESs are fijled in H,O, when using the “natural” set of valence coor-
therefore more or less equivalent in the energy range invesginates, even in the rather low energy range investigated
tigated here, and the surface of Koput, Carter, and H&rfdy here. It will be shown that a solution to this problem consists
was chosen for its simplicity. Moreover, several theoreticalin defining local modes after the recently derived canonical
studies have already dealt with IVR in 6, (see, for ex-  perturbation procedure for floppy molecti€® has been
ample, Refs. 13-16 They were essentially concerned with applied to the exact Hamiltonian of the system.

the dynamics at high energies, close to or above the disso- The second point, which this study will insist on, con-
ciation threshold, and relied on simple, sometimes quasisepgerns the quantum-classical correspondence during the IVR
rable, model Hamiltonians. In contrast, the present study fomechanism. Quantum mechanically,®4 looks like an in-
tegrable system up to at least 4000 ¢érabove the quantum
dElectronic mail: Marc.JOYEUX@Uuijf-grenoble.fr mechanical ground state. Indeed, variational calculations on
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the ab initio PES lead to regular wave functions and assign-  H =T(p, ,p. Pr.Pa,:Ps, P 1.72:R. 61, 02, )
able quantum staté& Moreover, it will be shown in Sec. Il
that the energies of the first 130 vibrational states are repro-
duced to within 3.7 cmt with a completely separable Hamil-
tonian. The classical system looks instead more complexwhereV is the potential energy surface of Koput, Carter, and
More precisely, the variations of local mode energies alongHandy?? which is expressed as a function of the two OH
classical trajectories launched on e initio PES(Ref. 22 bond lengthsr; and r,, the corresponding OOH bending
clearly result from the superposition of two components,anglesé, and 6,, the OO bond lengtiR, and the torsion
namely, (i) rapid (few hundreds of femtosecondsnd quasi- angle¢. The expression of the kinetic energyin terms of
periodic energy oscillations between selected pairs of moddfese coordinates and their conjugate momenta can be found,

(the two OH stretches on one side, the OO stretch and thfo" €xample, in Ref. 35. Owing to the torsional dynamics of
torsion on the other sideand (i) slower (several picosec- H,0,, ¢ is called the reactive coordinate, while the five other

ond9 and erratic-looking flows between all the mooles_coordlnates are described as spectator, or perpendicular,

. . o ones.
While the rapid oscillations are due to a few low-order non-

. . . The reaction pathway, or minimum ener GHEP),
linear resonances, the slower and erratic flows are a SIgNature yofined. for eac% valueyof the torsion angal;e?ays rf[)he set)of

of the chaotic nature of the vibrational dynam_|cs, becausgq five perpendicular coordinates, which minimizes the po-
they result from a large number of weaker couplings betweegyniial energy surfacy. The reaction-path Hamiltonidhs”
all the modes. It will be shown that classical and quantums obtained by first rewriting the Hamiltonian of E.1) in
mechanical results can be brought in better agreement byrms of the deviations of the perpendicular coordinates from
representing quantum states as an ensemble of classical ttaeir values on the MEP and then converting these deviations
jectories with identical local mode energies at titwed, but  to normal mode coordinates thanks to Wilson’s GF matrix
otherwise randomly chosen initial conditions. When averagiprocedure?.8 One thus obtains a reaction-path Hamiltonian of
ing over large numbers of trajectories, local mode energiethe form
are seen to thermalize irreversibly in the time scale of several
tens of picoseconds, which is substantially longer than the
5 ps period associated with the quantum density of states. H =T(P1,P2,P3,pa, Ps,P6, Q1. Q2 Q. P, Qs, Qo)

The remainder of this paper is organized as follows: the +V(Q1,Q5,Q3,P,0Q5,Q5), (2.2
different canonical transformations, which are applied to the

ab initio HamlLton}anl, are |b”ef£,y Qes((j:r;bed in Sect; II.. The Ivvhere(bzqs denotes the torsion anglp, its conjugate mo-
quantum mechanical results obtained from perturbative caly oy mnote thatpy # p,, See, for example, Eq2.3) of

culations are next discussed in Sec. Ill, while Sec. IV isgef 29, and(P,,Q,) the dimensionless normal coordinates
devoted to the classical analysis of IVR on #iginitio PES,  gnd momenta for symmetric OH stret¢k=1), symmetric
with local modes however defined thanks to the perturbativgyoH bend (k=2), OO stretch(k=3), antisymmetric OH
Hamiltonian. stretch(k=5), and antisymmetric OOH bend=6). Up to
this point, no approximation is made, except that the MEP
Il. FROM THE AB INITIO PES TO THE PERTURBATIVE  transformation is applied to the classical Hamiltonian, not
HAMILTONIANS the quantum mechanical one, for the sake of simplicity.
After expanding the MEP Hamiltonian of E@2.2) in
The canonical perturbation procedure for floppy mol-Fourier series with respect to the torsion andleand in
ecules has already been described previdiisfy Therefore, Taylor series with respect to the five perpendicular coordi-
it will only be summarized very briefly her@ee the Appen- nates, the canonical transformations described in Refs. 28
dix for few technical details The basic idea is to apply a and 29 are applied in order to rewrite the Hamiltonian in
series of canonical transformations to the initial coordinatederms of as complete as possible a set of good quantum num-
and momenta, in order to rewrite the Hamiltonian of thePers for the perpendicular degrees of freedom. Strictly speak-
system in terms of as complete as possible a set of actioff9, the transformations of Refs. 28 and 29 are based on the
integrals or, equivalently, good quantum numbers. It wadu@ntum mechanical procedure pioneered by Van Vietk _
shown, for example, that the vibrational degrees of freedon"imd are t_hus used for the quantum mechanlcal calculations
of HCN ® 03'31 and LICN (Ref. 32 remain nearly separable reported in Sec. Ill. The completely equivalent procedure

B the e | ion thresholds. A icased on Lie algebra and promoted by Dragt and ‘Eiftris
up 1o Ieir respective 1somerization thresholds. AS Was alS4,qiead used for the classical mechanics calculations reported
the case for the semirigid molecule G& the integrable

in Sec. IV. Note that the classical procedure is trivially ob-

approximations obtained from canonical perturbation theoryainad from the quantum mechanical one by replacing quan-
(CPT) furthermore proved to be a keypoint for the investiga-iym commutators with Poisson brackets in all formulas. The

tion of monodromy in the floppy molecules HCN and transformed torsion angle and perpendicular dimensionless

+V(ry,ryR, 04,65, 9), (2.2

LICN.%% normal coordinates are denoted bwandq, (k=1,2,3,5,9,
The starting point of CPT calculations is tlad initio  and their conjugate momenta klyand p,. Moreover, the
Hamiltonian ladder operator$ay,ay) are defined according to
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1 ) The classical perturbative Hamiltonians obtained from
= E(Qk’“ iPW, the procedure based on Lie algefa®which is used in the
classical mechanics study of Sec. IV, are of the same form as
1 23 Egs. (2.5—2.7), except that(a) there are no commutation
a; = —=(qc— ipW, problems, so that the terms indo not appeafP=0), and
/2 (b) the expressions involve powers of the action integkals
rPther than the good quantum numbegs These quantities

the quantum numbers for the five perpendicular degrees o . . LK 48
freedom according to,=a;a,, and the classical action-angle are related through the Einstein—Brillouin—Keffs#*® (EBK)

. K semiclassical quantization rules,
coordinateqly, ¢,) according to q

— PEFEES 2.8
Ok = V2l cosey, k=P 2 8
. (2.9
Pk=~ V2l singy. 1. QUANTUM MECHANICAL ANALYSIS

The expression of the transformgdr perturbative
Hamiltonian depends on the coupling terms, which are take';he
into account. When neglecting all couplings, one obtains, for
the quantum mechanical Hamiltonian,

This section is devoted to a discussion of the quantum
chanical results obtained from perturbative calculations.
The numerical values for the fundamental frequencies of
the perpendicular degrees of freedom, which are obtained
H= S dkMPNV§1V;2V§3V§5V26(COST)MO_PJZN, (2.5) from Wils_on’s GF matrix procedur?_, are w1:38.10 cm?
KM.PN (symmetric OH stretoh w,=1408 cm?! (symmetric OOH
bend, w3=910 cnT! (OO stretch, ws=3807 cm* (antisym-
metric OH stretch andwg=1363 cm? (antisymmetric OOH
o bend. Since the two OH stretch frequencies are so close, the
vector (ky, k;, ks, ks, kg), anddvpy are real coefficients. The 5.5 regonance between these two degrees of freedom neces-
Hamiltonian of Eq.(2.5 is formally a one-dimensional gayjly has to be taken into account in the course of perturba-
Hamiltonian in the torsion degree of freedom parametrized; e ‘calculations, in order for the asymptotic series not to
by the values of the good quantum numbegsfor the five  gierge immediately, despite the fact that the two stretches
perpendicular degrees of freedom. If the_ 2;2 resonance bg;ve no atom in common and the direct coupling is conse-
tween the two OH stretchémodes 1 and Bis instead taken  qently very small. When doing so, the perturbative Hamil-

into account, then the perturbative Hamiltonian is of theignian'is of the form shown in E@2.6). However, as already

where the operatos=(sin 7)d/ dr arises from the noncom-
mutativity of cog7r) andJ? (P is equal to 0 or }, k is the

form stressed in Sec. Il, all states reported in Ref. 24 satigfy
H= f ko Ka, Ke( qtyme +vg< 2. There_fore, these states cannot bg coupled by the 2:2

k,m,n,EM,P,N P23 (1) Darling—Dennison resonance and, in this energy rafige

e M PN <4000 cm?), the perturbative Hamiltonian is formally one-
Xay(ag)™ag*(cosT) o I, (2.6 dimensional in the torsion degree of freedom. The average

wherem, +ms=n, +ns. This Hamiltonian has only four good absolute error between the energies of the first 130 states of

quantum numbers, namely, + vs (total OH stretch excita- 202 reported in Ref. 24 and those Obtain?‘f from the per-
tion), vy, vs and v However, states which have less than turbative Hamlltoman_of Eq(2.6) is 5.53 cm™ at se:cond
two quanta in the OH stretche+vg<2) cannot be order of CPT, 3.71 ciit at fourth order, and 4.52 cthat

coupled by the Darling—Dennison resonance between moda&ixth order. It is therefore concluded that the various degrees
1 and 5, so that, for these stateg,and vs both remain good of freedom of hydrogen peroxide remain almost decoupled

quantum numbers. Since the 130 states, which will be inved! the whole energy range under investigation.

tigated in Sec. Ill, satisfy precisely,+vs<2, the Hamil- anetheless, |F is possible from the p'lot of the errors to
tonian of Eq.(2.6) reduces, for these states, to the terms in>!"M!S€ the_rlnost important coupling, which takes place be-
Eqg. (2.5 and is again formally one dimensional. At last, if IO_W 4000 cm™. Examination of the top plot of Fig. 1’_ which
the interactions between the OO strefchode 3 and the displays the errors at fourth order of CPT as a function of the
torsion (mode 4 are also taken into account, then the quan-€N€ray of each state, indeed shows that the largest errors

tum mechanical perturbative Hamiltonian is of the form  Systematically occur in pairs of one positive and one nega-
tive values with approximately the same norm. Since, in ad-

H= gkmnMPNygzy'ge(aI)mlagl dition, this always happens for states which differ by one
k,m,n,M,P,N guantum in the OO stretch and four quanta in the torsion,
X (a})™a(as) ™ags(cos )M g IN (2.7) one might easily infer that these errors are due to the cou-

pling between the OO stretch and the torsion degrees of free-
where, againm; +ms=n;+ns. For states with less than two dom. Interestingly, Guo and co-work&t€® have shown that
quanta of excitation in the OH stretches, the Hamiltonian othis resonance is also observed in #ie initio surface of
Eq. (2.7) is formally a two-dimensional Hamiltonian in the Kuhn et alZ®When taking all such couplings into account in
OO stretch and torsion degrees of freedom parametrized b@PT calculations, one obtains the two-dimensional perturba-
the good quantum numbeis, v,, vs, and vg for the other tive Hamiltonian of Eq.(2.7). For this Hamiltonian, the av-
degrees of freedom. erage absolute error for the first 130 states ofOK is
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FIG. 1. Plot, as a function of energy of the errors between variational angg 2. piot of the pseudopotential curitick line) and probability densi-
perturbative eigenvalues for the first 130 states gDfreported in Ref. 24. i (thinner lines for the pure torsion state€;=v,=vs=vs=1,=0) of

These states have UF{ltO 16 quanta of excitation in the torsion degree @f o, vs torsion angler. These results were obtained by applying fourth
freedom and=4000 cm* of vibrational excitation above the quantum me- order CPT to theab initio surface of Koput and co-workef&efs. 22 and

chanical ground state. The top plot shows the errors for the one-dimensi0n§I4)' The vertical scale is the same for all probability plots, while the base-

perturbative Hamiltonian of Eq2.6) at fourth order of the theory, while the line for each plot coincides with the energy of the state. The origin of the
bottom plot shows the errors for the two-dimensional Hamiltonian of Eq.energy axis is taken at the quantum mechanical ground state.

(2.7), also at fourth order of CPT theory.

observed above the energy of ttis saddle. Since the same

6.69 cm! at second order of CPT, 1.41 chat fourth order, pattern is repeated for each set, v,, v3, 5, v5) Of perpen-
and 1.71 cit* at sixth order. The plot of the errors at fourth dicular quantum numbers, one can convince himself of the
order of CPT as a function of the energies is shown in theyalidity of the separable model for @, by plotting, for
bottom plot of Fig. 1. It was tried to improve further this each setvy, v,,v3, 15, vg), the ground state splitting obtained
excellent agreement by considering the couplings to thérom variational calculatiorfé as a function of the height of
other degrees of freedom, but this proved to be unsuccessfithe trans saddle obtained from CPT calculations. Figure 3
Therefore, the errors in the bottom plot of Fig. 1, the largesindeed shows that there is, as expected, an exponential rela-
of which are observed for states with lots of quanta in thetion between these two quantities.
torsion degree of freedom, are very likely due to the approxi-  Finally, Fig. 4 shows a set of five wave functions for the
mations in getting the reaction-path Hamiltonian, that is, totwo-dimensional perturbative Hamiltonian of Eq2.7),
the classical canonical transformation leading from @ql)  which are coupled by the 1:4 resonance between the OO
to Eq.(2.2) and the subsequent approximate symmetrizationstretch and the torsion degrees of freedom. As usual, the

In order to help visualize more clearly what happens inresonance is responsible for the wavy structure of the wave
hydrogen peroxide, one can plot the pseudopotential energynctions, which is observed in these plots.
curves, obtained by settifg=N=0 in Eq.(2.5), for each set
of quaptum numbersu%,vz,vg,VS,ve), as_well as the corre- V. CLASSICAL ANALYSIS
sponding one-dimensional wave functions. Such a plot is
given in Fig. 2 for the pure torsion stateg=v,=v3=vg This section presents the classical analysis of IVR in
=15=0. In this figure, the thick line is the pseudopotential H,0, at about 4000 cit above the quantum mechanical
energy curve, while the thinner lines are the one-dimensionajround state, according to tlaé initio PES of Koput, Carter,
(1D) perturbative wave functions for the first 17 pure torsionand Hardy?* with local modes however defined thanks to the
states reported in Ref. 24. The pseudopotential energy cunygerturbative Hamiltonian. Indeed, vibrational energy redistri-
displays two saddles, th&ans saddle located only a few bution is usually investigated by monitoring the amount of
hundreds of cmt above the quantum mechanical groundenergy that flows in and out so-called local modes, which are
state, and the highecis saddle located about 2500 ¢ defined from the Hamiltonian of the system by fixing all
above the gquantum mechanical ground state. Consequentlypordinates, except for one, to some equilibrium value, and
the torsion states display a very peculiar energy pattern: thall momenta, except for the conjugate one, to zero. The defi-
ground state, which is located below th@ns saddle, ap- nition of local modes is thus strongly coordinate dependent.
pears as a doublet; there are then roughly ten nearly equally reasonable requirement for a set of local modes to be suit-
spaced vibrational-like states, which are located between thable for IVR studies is that the sum of local mode energies is
energies of the two saddles; finally, rotationlike doublets aranot too different from the exact energy of the classical tra-
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FIG. 3. Plot of the ground state energy splittings as a function of the height -4000 d
of the trans saddles. The ground state splittings, i.e., the energy gaps be- 2nd order CPT coordinates
tween the two lowest states with the same perpendicular quantum numbers -6000 1 L L L
(v1, v, 3,5, V), Were obtained from variational calculations on #ieini- 0 100 200 300 400 500
tio PES and are reported in Ref. 24. In contrast, the height oftrtes time t (fs)

saddles was obtained from fourth order CPT calculatize® Fig. 2 The

straight line is just a guide for the eyes, which is aimed at emphasizing th&1G. 5. Plot, as a function of time, from the difference between the energy

exponential relation between the two quantities. of a given trajectory launched on tlad initio PES of Ref. 22 and the sum
of local mode energies. From top to bottom, local modes are defined, re-
spectively, from the valence coordinates of E2}1) (top ploY, the reaction-
path (or MEP) Hamiltonian coordinates of Eq2.2) (middle ploy, and the
coordinates of Eq(2.6) obtained after two CPT transformations based on

' 1 Lie algebra(bottom plo}. The initial conditions of the trajectory were cho-

T
aF
f ol @@ @ @@ ] sen, such that local mode energies at tirn@ correspond to the quantum
] o > g foe ) % == 1 state(0,2,1,0,0,0. This state is located at about 3600 ¢rabove the quan-
e L = = — ] ' .
5 tum mechanical ground state, that is, 9350 trabove the bottom of the
o DO & | PES.
s -4 | #88-3133 cm™ - (0,0,3,4,0,0)
T

IS
T

jectory. The top plot in Fig. 5 shows that this is far from
being the case in $0, when using the valence coordinates
of Ref. 22, that is, when defining local modes from the

cousoa
.
c@@@ T
%
Y

47#91-317ﬁcm"-(0,°va3,°,°) = ] Hamiltonian of Eq.(2.1). This plot shows the variations,
& 4l ] over a 500 fs time range, of the difference between the en-
g 2 @Q@@@@@p@ ergy of a given trajectory launched on thle initio PES(Ref.
) @@@QQ @@@@ & 22) and the sum of local mode energies defined from Eq.
g 2 '#93 3230 om - (0.01.12.0.0 ] (2.1). This trajectory, for which local mode energies at time
':7 b - SRR ) | | t=0 correspond to the quantum stéfe2,1,0,0,0, is located

0 - @ @ at about 3600 cit above the quantum mechanical ground
P @ G state, that is, at about 9350 chnabove the bottom of the
0 i Q@@@G@ @O@@QQ b PES (the ground state is calculated at 5950 ¢érabove the
4| #97-3271 em™ - (0,0,0,16,0,0) bottom of the PEE It is seen in the top plot of Fig. 1 that the
‘ — ‘ ‘ fluctuations are as large as the energy of the trajectory itself,

coordinate g,

f : L ] which indicates that the local modes used here are essentially

g o ] meaningless. As shown in the middle plot of Fig. 5, the am-

§ 2 7 plitude of the fluctuations is reduced by a factor of about 2

© 4 #107-3394cm™ - (0,0,4,0,0,0) ] when using the coordinates of the reaction-path Hamiltonian,
0 ) 180 270 36

0 that is, when defining local modes from E@.2). The fluc-
tuations are however still much too large for the purpose of

FIG. 4. Density probabilities for five states coupled by the 1:4 resonancdrustful conclusions. In contrast, it is seen in the bottom plot

between the OO stretch and torsion degrees of freedom, according to thef Fig. 5 that the amplitude of the fluctuations is very

two-dlme_nsmnal Ha_imlltonlan of Ed2.7) obtained at f_ourth _order of CPT strongly reduced when using the perturbative coordinates ob-
theory. 7 is the torsion angle and; the OO stretch dimensionless normal

coordinate. Numbering, energy above the quantum mechanical ground staf@ined from CPT calculgtions, _that is, when de_fining local
and assignment are indicated for each state. modes from Eq.(2.6). Since this plot was obtained from

torsion angle ©
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portion of the phase space is hard to estimate for systems
with six degrees of freedom. It was checked that islands of
stability do survive at the investigated energies: for example,
if one puts at time=0 all the energy in one local mode, then
it remains localized there. This implies that, at about
4000 cm? above the quantum mechanical ground state, each
local mode is still surrounded by a stable island. Nonethe-
less, time evolutions similar to Fig. 6 were obtained for all
trajectories mimicking a quantum state. As was already ob-
served for HOCKRefs. 49 and 50and ozon€:*?this clas-
sically chaotic behavior is in clear contradiction with both
b I : Ak variational quantum mechanical calculations, which lead to
! i a\ Ny W assignable quantum statésand the perturbative calcula-
' tions of Sec. I, which show that the energies of the first 130
vibrational states are reproduced to within 3.7 &with a
completely separable Hamiltonian. As for HOBFCthis dis-
crepancy might in part be due to the fact that quantum wave
functions, for some not completely clear reason, could be
more sensitive to théeventually sma)l stable islands sur-
rounding the local modes than to the rest of the chaotic sea.
However, another reason for this discrepancy is certainly
that a quantum state should not be mimicked by a single
—— e classical trajectory, but instead by the average over many
01 23 45 Gti,:e"(*ps)g 101 1213 trajectories with initially the same local modes energies, as
was done, for example, in Refs. 13 and 17. The results of
FIG. 6. Plot, as a function of time, of the local mode energies for a singlesuch calculations are reported in Fig. 7, which shows the
trajectory launched on theb initio F_>ES(Ref._ 22)._Loca| modes are _dgf_ined time evolution, averaged over 100 trajectories, of local mode
from the second order perturbative Hamiltonian of E2.6). The initial . - "
conditions of the trajectory were chosen, such that local mode energies iﬁnerglles. For each plot, the initial conditions of the ;LOO tra-
timet=0 correspond to the quantum stébe0,1,12,0,@ This state is located  J€Ctories were chosen from a random procedure, which how-
at about 3200 cnt above the quantum mechanical ground state, that is,ever ensures that local mode energies at tim@ correspond

8950 cn1 above the bottom of the PES. From top to bottom, the plots showto a given quantum state. From top to bottom. the considered
the local mode energies in the two OH stretches, the OO stretch and the states are’ (1,0,0,0.0.0 (E—é624 cmd)

torsion, the symmetric OOH bend, the antisymmetric OOH bend, and finallﬂuamum
the difference between the exact energy of the trajectory and the sum d0,2,1,0,0,0 (E=3609 cm?), (0,0,4,0,0,0 (E=3394 cm?),

local mode energies. and(0,0,1,12,0,0(E=3230 cm?Y). It is seen that, despite the
rather low total energy, the averaged system thermalizes

second order CPT calculatiofslassical Lie method it can smoothly and irreversibly, instead of wandering erratically as

furthermore be concluded that third and fourth order off-in Fig. 6. Moreover, it usually takes several tens of picosec-

diagonal anharmonicities are responsible for the wild oscilonds for the system to reach thermal equilibrium. This is
lations observed in the two upper plots. substantially longer than the 5 ps period associated with the

In the remainder of this section, local modes are thufluantum density of states at 400'Ofénabove the quantum
defined from the second order perturbative Hamiltonian off€chanical ground state, so that it is not completely surpris-
Eq. (2.6). The typical time evolution of local mode energies IN9 that the quantum states do not reflect all the complexity
is shown in Fig. 6 for a single trajectory launched on ae O the corresponding classical dynamics.
initio PES. Initial conditions for this trajectory were chosen
such that local mode energies a't timgaO correspond to the V. CONCLUSIONS
guantum state(0,0,1,12,0,0, which is located at about
3200 cm! above the quantum mechanical ground state. Fig- We have reported a combined quantum and classical
ure 6 very clearly illustrates that the time series consists o$tudy of IVR and localization in hydrogen peroxide at ener-
two components. The first component is a fdstv hundreds  gies of about 4000 cm above the ground state. Thad ini-
of femtosecondsand quasiperiodic energy exchange be-tio PES of Koput, Carter, and Hanﬁ?"’is used. In the first
tween the two OH stretches, on one side, and between theart of the paper, the canonical perturbation theory for floppy
0O stretch and the torsion, on the other side. Quite interestnoleculed®?® is employed, in order to derive 1D and 2D
ingly, these are precisely the two interactions, which must bepproximations of the 6@b initio Hamiltonian. Comparison
taken into account in quantum mechanical calculati@e® with the variational results of Koput, Carter, and Hafr‘Hy
Sec. lll). In addition, one also observes in Fig. 6 slowfew  shows that the lowest 130 states gi®j are reproduced with
to several picosecongland erratic-looking energy flows be- respective average errors of 3.7 and 1.4 thy the 1D and
tween all local modes. These erratic flows are the signatur2D perturbative Hamiltonians. In the energy range consid-
of the chaotic nature of the classical dynamics gbsleven  ered, the vibrational modes of,B, are therefore essentially
at these moderate energies. The exact extent of the chaotiecoupled. The second part of the paper presents the results

OH stretches |

energy E (cm™')

error
I . I
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400% ' 2 , | wmmtorson | i operatorJ is taken to be just ihd/ dr, so that the commuta-
onpog-azm= == e e tion relations in Eq(4.5) of Ref. 28 must be slightly modi-
3000 antisym OOH bend | fied, according to
2000 OH stretches ) " o - ) "
B e g ST J%(cosn)™ = (cos7)" I+ 2M(cos7)" o + M“(cosT)
1000 |
. . | . | . -M(M - 1)(cosn)M2,
4000 | I
3000 | s (0.211,0,0,0) - 3609 cm ™ 1 J4(cosMo = (cosDMad? + 2(M + 1)(cos)M*1J2
- s | M-172 2 M
§ =% b./i»‘”f*‘«md“ S ot i) ~2M(cos)™ I+ (M + 1)*(cosn) o
8 1000 7 -M(M - 1)(cos)M 2, (A1)
= ]
S 0 f —t——
g 4000 1 | a(cos™ = (cosMa + M(cos)M** - M(cosn)M,
£ (0,0,4,0,0,0) - 3394 cm ~
§ 3000 [ ’
= e ] a(cosMo = (cosHM*212 - (cosHMIP + (M + 1)
1000 | e X (cosHM*1g - M(cosnM o,
w00 - i while the Hermitian conjugate af writes
o'=—-o0-cosr. (A2)
oo A Sl Note that for a nondegenerate torsion angée can use the
e ,{\:.W”::""M ", gt . .
1000 :} i BRa operators ex@+iM 7) instead of the operatorgosn)M, but
o S S the commutation relations are then completely different. At
0 10 0 %0 40 50 60 last, it is emphasized that a computer code for the classical
time t (ps) canonical perturbation procedure based on Lie aldéBts

FIG. 7. Plots, as a function of time, of local mode energies averaged oveY€lY Simply obtained from the quantum mechanical proce-
100 trajectories launched on thb initio PES(Ref. 22. For each plot, the  dure by canceling all reordering subroutines and implement-
initial conditions of the 100 trajectories were chosen from a random proceing the relations
dure, which however ensures that local mode energies atttifiecorre-
spond to a given quantum state. From top to bottom, the considered quan-  j{(a")™a",(a*)Ma} = (MN- nM)(a")™M-1a™N-1,
tum states aré1,0,0,0,0,9, (0,2,1,0,0,0, (0,0,4,0,0,0, and (0,0,1,12,0,D
respectively. Local modes are defined from the second order perturbative ) ) . (A3)
Hamiltonian of Eq.(2.6). Note that averaging over 100 trajectories cancels i{ek7an &X7IN} = (KN - nK)g (kK 7gmN-1
the greatest part of the 100% energy fluctuations between the two OH
stretcheg(see the top plot of Fig.)6 nevertheless, for the sake of clarity,
each plot does not show the energy in each OH stretch, but rather the meafA. Zewail, in Femtochemistry edited by F. C. de Schryver and G.
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