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Vibrational energy localization and/or redistribution in hydrogen peroxide H2O2 is studied at about
4000 cm−1 above the quantum mechanical ground state using theab initio potential energy surface
of Koput, Carter, and HandyfJ. Phys. Chem. A102, 6325s1998dg. In this work, the recently derived
canonical perturbation procedure for floppy molecules serves two purposes. First, from the quantum
mechanical point of view, it is shown that the energies of the lowest 130 states are reproduced with
an average error smaller than 1.5 cm−1 by a two-dimensional Hamiltonian, which is a function of the
torsion and OO-stretch coordinates and momenta, while the other four degrees of freedom
contribute only through powers of good quantum numbers. Moreover, the canonical perturbation
procedure is also used in classical mechanics calculations, in order to define meaningful local
modes, for which the ingoing and outgoing energy flows are monitored. Almost all the individual
trajectories launched on theab initio surface display the same behavior, that is, the superposition of
sad rapid sfew hundreds of femtosecondsd and quasiperiodic energy exchanges between the two OH
stretches and between the torsion and OO-stretch, andsbd slowersfew to several picosecondsd but
erratic-looking energy flows between all degrees of freedom. When averaging over large numbers
of trajectories with the same local mode energies at timet=0, one observes instead a smooth and
irreversible energy flow between all degrees of freedom, which usually thermalize in the range of
several tens of picoseconds, that is, on time scales larger than the 5 ps period associated with the
quantum density of states. ©2005 American Institute of Physics. fDOI: 10.1063/1.1850894g

I. INTRODUCTION

Intramolecular vibrational energy redistributionsIVRd
studies are aimed at understanding the time evolution of the
energy transiting in each vibrational degree of freedom of
polyatomic molecules.1–5 Thanks to refined laboratory tech-
niques and increasing computational capabilities,
experimental6–12 as well as theoretical13–21 description of
IVR in molecular systems is becoming more precise and bet-
ter documented. The present paper contributes to this effort
by presenting a study of IVR in hydrogen peroxide H2O2 at
about 4000 cm−1 above the quantum mechanical ground
state. Hydrogen peroxide has recently received much atten-
tion from the theoretical point of view, with the construction
of two ab initio potential energy surfacessPESsd,22,23 which
have both been shown to give accurate vibrational energy
levels,24–26 including correct estimates of the tunneling split-
tings through the torsionaltrans saddle. The two PESs are
therefore more or less equivalent in the energy range inves-
tigated here, and the surface of Koput, Carter, and Handy22,24

was chosen for its simplicity. Moreover, several theoretical
studies have already dealt with IVR in H2O2 ssee, for ex-
ample, Refs. 13–16d. They were essentially concerned with
the dynamics at high energies, close to or above the disso-
ciation threshold, and relied on simple, sometimes quasisepa-
rable, model Hamiltonians. In contrast, the present study fo-

cuses on the dynamics at much lower energies on a realistic
PES. Emphasis will be laid on two points.

First, most discussions dealing with IVR are based on
plots showing the time evolution of the energies in so-called
“local modes.” Instead of energy, closely related quantities,
such as classical action integrals or quantum numbers, are
sometimes plotted. The important point, however, is that lo-
cal modes are usually defined from the Hamiltonian of the
system by fixing all coordinates, except for one, to some
equilibrium value, and all momenta, except for the conjugate
one, to zero. The definition of local modes is thus coordinate
dependent, and different results must be expected when dif-
ferent sets of coordinates and conjugate momenta are used. A
reasonable requirement for a coordinate system to be suitable
for IVR studies is that the sum of local mode energies is not
too different from the exact energy of the classical trajectory.
It turns out that this requirement is very far from being ful-
filled in H2O2 when using the “natural” set of valence coor-
dinates, even in the rather low energy range investigated
here. It will be shown that a solution to this problem consists
in defining local modes after the recently derived canonical
perturbation procedure for floppy molecules27–29 has been
applied to the exact Hamiltonian of the system.

The second point, which this study will insist on, con-
cerns the quantum-classical correspondence during the IVR
mechanism. Quantum mechanically, H2O2 looks like an in-
tegrable system up to at least 4000 cm−1 above the quantum
mechanical ground state. Indeed, variational calculations onadElectronic mail: Marc.JOYEUX@ujf-grenoble.fr
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the ab initio PES lead to regular wave functions and assign-
able quantum states.24 Moreover, it will be shown in Sec. III,
that the energies of the first 130 vibrational states are repro-
duced to within 3.7 cm−1 with a completely separable Hamil-
tonian. The classical system looks instead more complex.
More precisely, the variations of local mode energies along
classical trajectories launched on theab initio PESsRef. 22d
clearly result from the superposition of two components,
namely,sid rapid sfew hundreds of femtosecondsd and quasi-
periodic energy oscillations between selected pairs of modes
sthe two OH stretches on one side, the O–O stretch and the
torsion on the other sided and sii d slower sseveral picosec-
ondsd and erratic-looking flows between all the modes.
While the rapid oscillations are due to a few low-order non-
linear resonances, the slower and erratic flows are a signature
of the chaotic nature of the vibrational dynamics, because
they result from a large number of weaker couplings between
all the modes. It will be shown that classical and quantum
mechanical results can be brought in better agreement by
representing quantum states as an ensemble of classical tra-
jectories with identical local mode energies at timet=0, but
otherwise randomly chosen initial conditions. When averag-
ing over large numbers of trajectories, local mode energies
are seen to thermalize irreversibly in the time scale of several
tens of picoseconds, which is substantially longer than the
5 ps period associated with the quantum density of states.

The remainder of this paper is organized as follows: the
different canonical transformations, which are applied to the
ab initio Hamiltonian, are briefly described in Sec. II. The
quantum mechanical results obtained from perturbative cal-
culations are next discussed in Sec. III, while Sec. IV is
devoted to the classical analysis of IVR on theab initio PES,
with local modes however defined thanks to the perturbative
Hamiltonian.

II. FROM THE AB INITIO PES TO THE PERTURBATIVE
HAMILTONIANS

The canonical perturbation procedure for floppy mol-
ecules has already been described previously.27–29Therefore,
it will only be summarized very briefly heressee the Appen-
dix for few technical detailsd. The basic idea is to apply a
series of canonical transformations to the initial coordinates
and momenta, in order to rewrite the Hamiltonian of the
system in terms of as complete as possible a set of action
integrals or, equivalently, good quantum numbers. It was
shown, for example, that the vibrational degrees of freedom
of HCN,30 C3,

31 and LiCN sRef. 32d remain nearly separable
up to their respective isomerization thresholds. As was also
the case for the semirigid molecule CO2,

33 the integrable
approximations obtained from canonical perturbation theory
sCPTd furthermore proved to be a keypoint for the investiga-
tion of monodromy in the floppy molecules HCN and
LiCN.32,34

The starting point of CPT calculations is theab initio
Hamiltonian

H = Tspr1
,pr2

,pR,pu1
,pu2

,pf,r1,r2,R,u1,u2,fd

+ Vsr1,r2,R,u1,u2,fd, s2.1d

whereV is the potential energy surface of Koput, Carter, and
Handy,22 which is expressed as a function of the two OH
bond lengthsr1 and r2, the corresponding OOH bending
anglesu1 and u2, the OO bond lengthR, and the torsion
anglef. The expression of the kinetic energyT in terms of
these coordinates and their conjugate momenta can be found,
for example, in Ref. 35. Owing to the torsional dynamics of
H2O2, f is called the reactive coordinate, while the five other
coordinates are described as spectator, or perpendicular,
ones.

The reaction pathway, or minimum energy pathsMEPd,
is defined, for each value of the torsion anglef, as the set of
the five perpendicular coordinates, which minimizes the po-
tential energy surfaceV. The reaction-path Hamiltonian36,37

is obtained by first rewriting the Hamiltonian of Eq.s2.1d in
terms of the deviations of the perpendicular coordinates from
their values on the MEP and then converting these deviations
to normal mode coordinates thanks to Wilson’s GF matrix
procedure.38 One thus obtains a reaction-path Hamiltonian of
the form

H = TsP1,P2,P3,pF,P5,P6,Q1,Q2,Q3,F,Q5,Q6d

+ VsQ1,Q2,Q3,F,Q5,Q6d, s2.2d

whereF=f denotes the torsion angle,pF its conjugate mo-
mentum fnote thatpFÞpf, see, for example, Eq.s2.3d of
Ref. 29g, andsPk,Qkd the dimensionless normal coordinates
and momenta for symmetric OH stretchsk=1d, symmetric
OOH bend sk=2d, OO stretchsk=3d, antisymmetric OH
stretchsk=5d, and antisymmetric OOH bendsk=6d. Up to
this point, no approximation is made, except that the MEP
transformation is applied to the classical Hamiltonian, not
the quantum mechanical one, for the sake of simplicity.

After expanding the MEP Hamiltonian of Eq.s2.2d in
Fourier series with respect to the torsion angleF and in
Taylor series with respect to the five perpendicular coordi-
nates, the canonical transformations described in Refs. 28
and 29 are applied in order to rewrite the Hamiltonian in
terms of as complete as possible a set of good quantum num-
bers for the perpendicular degrees of freedom. Strictly speak-
ing, the transformations of Refs. 28 and 29 are based on the
quantum mechanical procedure pioneered by Van Vleck39–41

and are thus used for the quantum mechanical calculations
reported in Sec. III. The completely equivalent procedure
based on Lie algebra and promoted by Dragt and Finn42–45is
instead used for the classical mechanics calculations reported
in Sec. IV. Note that the classical procedure is trivially ob-
tained from the quantum mechanical one by replacing quan-
tum commutators with Poisson brackets in all formulas. The
transformed torsion angle and perpendicular dimensionless
normal coordinates are denoted byt andqk sk=1,2,3,5,6d,
and their conjugate momenta byJ and pk. Moreover, the
ladder operatorssak,ak

+d are defined according to
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ak =
1
Î2

sqk + ipkd,

s2.3d

ak
+ =

1
Î2

sqk − ipkd,

the quantum numbers for the five perpendicular degrees of
freedom according tonk=ak

+ak, and the classical action-angle
coordinatessIk,wkd according to

qk = Î2Ik coswk,

s2.4d
pk = − Î2Ik sinwk.

The expression of the transformedsor perturbatived
Hamiltonian depends on the coupling terms, which are taken
into account. When neglecting all couplings, one obtains, for
the quantum mechanical Hamiltonian,

H = o
k,M,P,N

dkMPNn1
k1n2

k2n3
k3n5

k5n6
k6scostdMsPJ2N, s2.5d

where the operators=ssintd] /]t arises from the noncom-
mutativity of cosstd and J2 sP is equal to 0 or 1d, k is the
vectorsk1,k2,k3,k5,k6d, anddkMPN are real coefficients. The
Hamiltonian of Eq. s2.5d is formally a one-dimensional
Hamiltonian in the torsion degree of freedom parametrized
by the values of the good quantum numbersnk for the five
perpendicular degrees of freedom. If the 2:2 resonance be-
tween the two OH stretchessmodes 1 and 5d is instead taken
into account, then the perturbative Hamiltonian is of the
form

H = o
k,m,n,M,P,N

fkmnMPNn2
k2n3

k3n6
k6sa1

+dm1

3a1
n1sa5

+dm5a5
n5scostdMsPJ2N, s2.6d

wherem1+m5=n1+n5. This Hamiltonian has only four good
quantum numbers, namely,n1+n5 stotal OH stretch excita-
tiond, n2, n3, and n6. However, states which have less than
two quanta in the OH stretchessn1+n5,2d cannot be
coupled by the Darling–Dennison resonance between modes
1 and 5, so that, for these states,n1 andn5 both remain good
quantum numbers. Since the 130 states, which will be inves-
tigated in Sec. III, satisfy preciselyn1+n5,2, the Hamil-
tonian of Eq.s2.6d reduces, for these states, to the terms in
Eq. s2.5d and is again formally one dimensional. At last, if
the interactions between the OO stretchsmode 3d and the
torsion smode 4d are also taken into account, then the quan-
tum mechanical perturbative Hamiltonian is of the form

H = o
k,m,n,M,P,N

gkmnMPNn2
k2n6

k6sa1
+dm1a1

n1

3sa3
+dm3a3

n3sa5
+dm5a5

n5scostdMsPJ2N, s2.7d

where, again,m1+m5=n1+n5. For states with less than two
quanta of excitation in the OH stretches, the Hamiltonian of
Eq. s2.7d is formally a two-dimensional Hamiltonian in the
OO stretch and torsion degrees of freedom parametrized by
the good quantum numbersn1, n2, n5, and n6 for the other
degrees of freedom.

The classical perturbative Hamiltonians obtained from
the procedure based on Lie algebra,42–45which is used in the
classical mechanics study of Sec. IV, are of the same form as
Eqs. s2.5d–s2.7d, except thatsad there are no commutation
problems, so that the terms ins do not appearsP=0d, and
sbd the expressions involve powers of the action integralsIk

rather than the good quantum numbersnk. These quantities
are related through the Einstein–Brillouin–Keller46–48sEBKd
semiclassical quantization rules,

Ik = nk + 1
2 . s2.8d

III. QUANTUM MECHANICAL ANALYSIS

This section is devoted to a discussion of the quantum
mechanical results obtained from perturbative calculations.

The numerical values for the fundamental frequencies of
the perpendicular degrees of freedom, which are obtained
from Wilson’s GF matrix procedure,38 are v1=3810 cm−1

ssymmetric OH stretchd, v2=1408 cm−1 ssymmetric OOH
bendd, v3=910 cm−1 sOO stretchd, v5=3807 cm−1 santisym-
metric OH stretchd, andv6=1363 cm−1 santisymmetric OOH
bendd. Since the two OH stretch frequencies are so close, the
2:2 resonance between these two degrees of freedom neces-
sarily has to be taken into account in the course of perturba-
tive calculations, in order for the asymptotic series not to
diverge immediately, despite the fact that the two stretches
have no atom in common and the direct coupling is conse-
quently very small. When doing so, the perturbative Hamil-
tonian is of the form shown in Eq.s2.6d. However, as already
stressed in Sec. II, all states reported in Ref. 24 satisfyn1

+n5,2. Therefore, these states cannot be coupled by the 2:2
Darling–Dennison resonance and, in this energy rangesE
ø4000 cm−1d, the perturbative Hamiltonian is formally one-
dimensional in the torsion degree of freedom. The average
absolute error between the energies of the first 130 states of
H2O2 reported in Ref. 24 and those obtained from the per-
turbative Hamiltonian of Eq.s2.6d is 5.53 cm−1 at second
order of CPT, 3.71 cm−1 at fourth order, and 4.52 cm−1 at
sixth order. It is therefore concluded that the various degrees
of freedom of hydrogen peroxide remain almost decoupled
in the whole energy range under investigation.

Nonetheless, it is possible from the plot of the errors to
surmise the most important coupling, which takes place be-
low 4000 cm−1. Examination of the top plot of Fig. 1, which
displays the errors at fourth order of CPT as a function of the
energy of each state, indeed shows that the largest errors
systematically occur in pairs of one positive and one nega-
tive values with approximately the same norm. Since, in ad-
dition, this always happens for states which differ by one
quantum in the OO stretch and four quanta in the torsion,
one might easily infer that these errors are due to the cou-
pling between the OO stretch and the torsion degrees of free-
dom. Interestingly, Guo and co-workers25,26 have shown that
this resonance is also observed in theab initio surface of
Kuhn et al.23 When taking all such couplings into account in
CPT calculations, one obtains the two-dimensional perturba-
tive Hamiltonian of Eq.s2.7d. For this Hamiltonian, the av-
erage absolute error for the first 130 states of H2O2 is
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6.69 cm−1 at second order of CPT, 1.41 cm−1 at fourth order,
and 1.71 cm−1 at sixth order. The plot of the errors at fourth
order of CPT as a function of the energies is shown in the
bottom plot of Fig. 1. It was tried to improve further this
excellent agreement by considering the couplings to the
other degrees of freedom, but this proved to be unsuccessful.
Therefore, the errors in the bottom plot of Fig. 1, the largest
of which are observed for states with lots of quanta in the
torsion degree of freedom, are very likely due to the approxi-
mations in getting the reaction-path Hamiltonian, that is, to
the classical canonical transformation leading from Eq.s2.1d
to Eq.s2.2d and the subsequent approximate symmetrization.

In order to help visualize more clearly what happens in
hydrogen peroxide, one can plot the pseudopotential energy
curves, obtained by settingP=N=0 in Eq.s2.5d, for each set
of quantum numberssn1,n2,n3,n5,n6d, as well as the corre-
sponding one-dimensional wave functions. Such a plot is
given in Fig. 2 for the pure torsion statesn1=n2=n3=n5

=n6=0. In this figure, the thick line is the pseudopotential
energy curve, while the thinner lines are the one-dimensional
s1Dd perturbative wave functions for the first 17 pure torsion
states reported in Ref. 24. The pseudopotential energy curve
displays two saddles, thetrans saddle located only a few
hundreds of cm−1 above the quantum mechanical ground
state, and the highercis saddle located about 2500 cm−1

above the quantum mechanical ground state. Consequently,
the torsion states display a very peculiar energy pattern: the
ground state, which is located below thetrans saddle, ap-
pears as a doublet; there are then roughly ten nearly equally
spaced vibrational-like states, which are located between the
energies of the two saddles; finally, rotationlike doublets are

observed above the energy of thecis saddle. Since the same
pattern is repeated for each setsn1,n2,n3,n5,n6d of perpen-
dicular quantum numbers, one can convince himself of the
validity of the separable model for H2O2 by plotting, for
each setsn1,n2,n3,n5,n6d, the ground state splitting obtained
from variational calculations24 as a function of the height of
the trans saddle obtained from CPT calculations. Figure 3
indeed shows that there is, as expected, an exponential rela-
tion between these two quantities.

Finally, Fig. 4 shows a set of five wave functions for the
two-dimensional perturbative Hamiltonian of Eq.s2.7d,
which are coupled by the 1:4 resonance between the OO
stretch and the torsion degrees of freedom. As usual, the
resonance is responsible for the wavy structure of the wave
functions, which is observed in these plots.

IV. CLASSICAL ANALYSIS

This section presents the classical analysis of IVR in
H2O2 at about 4000 cm−1 above the quantum mechanical
ground state, according to theab initio PES of Koput, Carter,
and Hardy,22 with local modes however defined thanks to the
perturbative Hamiltonian. Indeed, vibrational energy redistri-
bution is usually investigated by monitoring the amount of
energy that flows in and out so-called local modes, which are
defined from the Hamiltonian of the system by fixing all
coordinates, except for one, to some equilibrium value, and
all momenta, except for the conjugate one, to zero. The defi-
nition of local modes is thus strongly coordinate dependent.
A reasonable requirement for a set of local modes to be suit-
able for IVR studies is that the sum of local mode energies is
not too different from the exact energy of the classical tra-

FIG. 1. Plot, as a function of energy of the errors between variational and
perturbative eigenvalues for the first 130 states of H2O2 reported in Ref. 24.
These states have up to 16 quanta of excitation in the torsion degree of
freedom and<4000 cm−1 of vibrational excitation above the quantum me-
chanical ground state. The top plot shows the errors for the one-dimensional
perturbative Hamiltonian of Eq.s2.6d at fourth order of the theory, while the
bottom plot shows the errors for the two-dimensional Hamiltonian of Eq.
s2.7d, also at fourth order of CPT theory.

FIG. 2. Plot of the pseudopotential curvesthick lined and probability densi-
ties sthinner linesd for the pure torsion statessn1=n2=n3=n5=n6=0d of
H2O2 vs torsion anglet. These results were obtained by applying fourth
order CPT to theab initio surface of Koput and co-workerssRefs. 22 and
24d. The vertical scale is the same for all probability plots, while the base-
line for each plot coincides with the energy of the state. The origin of the
energy axis is taken at the quantum mechanical ground state.
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jectory. The top plot in Fig. 5 shows that this is far from
being the case in H2O2 when using the valence coordinates
of Ref. 22, that is, when defining local modes from the
Hamiltonian of Eq.s2.1d. This plot shows the variations,
over a 500 fs time range, of the difference between the en-
ergy of a given trajectory launched on theab initio PESsRef.
22d and the sum of local mode energies defined from Eq.
s2.1d. This trajectory, for which local mode energies at time
t=0 correspond to the quantum states0,2,1,0,0,0d, is located
at about 3600 cm−1 above the quantum mechanical ground
state, that is, at about 9350 cm−1 above the bottom of the
PESsthe ground state is calculated at 5950 cm−1 above the
bottom of the PESd. It is seen in the top plot of Fig. 1 that the
fluctuations are as large as the energy of the trajectory itself,
which indicates that the local modes used here are essentially
meaningless. As shown in the middle plot of Fig. 5, the am-
plitude of the fluctuations is reduced by a factor of about 2
when using the coordinates of the reaction-path Hamiltonian,
that is, when defining local modes from Eq.s2.2d. The fluc-
tuations are however still much too large for the purpose of
trustful conclusions. In contrast, it is seen in the bottom plot
of Fig. 5 that the amplitude of the fluctuations is very
strongly reduced when using the perturbative coordinates ob-
tained from CPT calculations, that is, when defining local
modes from Eq.s2.6d. Since this plot was obtained from

FIG. 3. Plot of the ground state energy splittings as a function of the height
of the trans saddles. The ground state splittings, i.e., the energy gaps be-
tween the two lowest states with the same perpendicular quantum numbers
sn1,n2,n3,n5,n6d, were obtained from variational calculations on theab ini-
tio PES and are reported in Ref. 24. In contrast, the height of thetrans
saddles was obtained from fourth order CPT calculationsssee Fig. 2d. The
straight line is just a guide for the eyes, which is aimed at emphasizing the
exponential relation between the two quantities.

FIG. 4. Density probabilities for five states coupled by the 1:4 resonance
between the OO stretch and torsion degrees of freedom, according to the
two-dimensional Hamiltonian of Eq.s2.7d obtained at fourth order of CPT
theory.t is the torsion angle andq3 the OO stretch dimensionless normal
coordinate. Numbering, energy above the quantum mechanical ground state,
and assignment are indicated for each state.

FIG. 5. Plot, as a function of time, from the difference between the energy
of a given trajectory launched on theab initio PES of Ref. 22 and the sum
of local mode energies. From top to bottom, local modes are defined, re-
spectively, from the valence coordinates of Eq.s2.1d stop plotd, the reaction-
path sor MEPd Hamiltonian coordinates of Eq.s2.2d smiddle plotd, and the
coordinates of Eq.s2.6d obtained after two CPT transformations based on
Lie algebrasbottom plotd. The initial conditions of the trajectory were cho-
sen, such that local mode energies at timet=0 correspond to the quantum
states0,2,1,0,0,0d. This state is located at about 3600 cm−1 above the quan-
tum mechanical ground state, that is, 9350 cm−1 above the bottom of the
PES.
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second order CPT calculationssclassical Lie methodd, it can
furthermore be concluded that third and fourth order off-
diagonal anharmonicities are responsible for the wild oscil-
lations observed in the two upper plots.

In the remainder of this section, local modes are thus
defined from the second order perturbative Hamiltonian of
Eq. s2.6d. The typical time evolution of local mode energies
is shown in Fig. 6 for a single trajectory launched on theab
initio PES. Initial conditions for this trajectory were chosen
such that local mode energies at timet=0 correspond to the
quantum states0,0,1,12,0,0d, which is located at about
3200 cm−1 above the quantum mechanical ground state. Fig-
ure 6 very clearly illustrates that the time series consists of
two components. The first component is a fastsfew hundreds
of femtosecondsd and quasiperiodic energy exchange be-
tween the two OH stretches, on one side, and between the
OO stretch and the torsion, on the other side. Quite interest-
ingly, these are precisely the two interactions, which must be
taken into account in quantum mechanical calculationsssee
Sec. IIId. In addition, one also observes in Fig. 6 slowersfew
to several picosecondsd and erratic-looking energy flows be-
tween all local modes. These erratic flows are the signature
of the chaotic nature of the classical dynamics of H2O2 even
at these moderate energies. The exact extent of the chaotic

portion of the phase space is hard to estimate for systems
with six degrees of freedom. It was checked that islands of
stability do survive at the investigated energies: for example,
if one puts at timet=0 all the energy in one local mode, then
it remains localized there. This implies that, at about
4000 cm−1 above the quantum mechanical ground state, each
local mode is still surrounded by a stable island. Nonethe-
less, time evolutions similar to Fig. 6 were obtained for all
trajectories mimicking a quantum state. As was already ob-
served for HOClsRefs. 49 and 50d and ozone,51,52 this clas-
sically chaotic behavior is in clear contradiction with both
variational quantum mechanical calculations, which lead to
assignable quantum states,24 and the perturbative calcula-
tions of Sec. III, which show that the energies of the first 130
vibrational states are reproduced to within 3.7 cm−1 with a
completely separable Hamiltonian. As for HOCl,49,50this dis-
crepancy might in part be due to the fact that quantum wave
functions, for some not completely clear reason, could be
more sensitive to theseventually smalld stable islands sur-
rounding the local modes than to the rest of the chaotic sea.

However, another reason for this discrepancy is certainly
that a quantum state should not be mimicked by a single
classical trajectory, but instead by the average over many
trajectories with initially the same local modes energies, as
was done, for example, in Refs. 13 and 17. The results of
such calculations are reported in Fig. 7, which shows the
time evolution, averaged over 100 trajectories, of local mode
energies. For each plot, the initial conditions of the 100 tra-
jectories were chosen from a random procedure, which how-
ever ensures that local mode energies at timet=0 correspond
to a given quantum state. From top to bottom, the considered
quantum states are s1,0,0,0,0,0d sE=3624 cm−1d,
s0,2,1,0,0,0d sE=3609 cm−1d, s0,0,4,0,0,0d sE=3394 cm−1d,
ands0,0,1,12,0,0d sE=3230 cm−1d. It is seen that, despite the
rather low total energy, the averaged system thermalizes
smoothly and irreversibly, instead of wandering erratically as
in Fig. 6. Moreover, it usually takes several tens of picosec-
onds for the system to reach thermal equilibrium. This is
substantially longer than the 5 ps period associated with the
quantum density of states at 4000 cm−1 above the quantum
mechanical ground state, so that it is not completely surpris-
ing that the quantum states do not reflect all the complexity
of the corresponding classical dynamics.

V. CONCLUSIONS

We have reported a combined quantum and classical
study of IVR and localization in hydrogen peroxide at ener-
gies of about 4000 cm−1 above the ground state. Theab ini-
tio PES of Koput, Carter, and Handy22,24 is used. In the first
part of the paper, the canonical perturbation theory for floppy
molecules28,29 is employed, in order to derive 1D and 2D
approximations of the 6Dab initio Hamiltonian. Comparison
with the variational results of Koput, Carter, and Hardy24

shows that the lowest 130 states of H2O2 are reproduced with
respective average errors of 3.7 and 1.4 cm−1 by the 1D and
2D perturbative Hamiltonians. In the energy range consid-
ered, the vibrational modes of H2O2 are therefore essentially
decoupled. The second part of the paper presents the results

FIG. 6. Plot, as a function of time, of the local mode energies for a single
trajectory launched on theab initio PESsRef. 22d. Local modes are defined
from the second order perturbative Hamiltonian of Eq.s2.6d. The initial
conditions of the trajectory were chosen, such that local mode energies at
time t=0 correspond to the quantum states0,0,1,12,0,0d. This state is located
at about 3200 cm−1 above the quantum mechanical ground state, that is,
8950 cm−1 above the bottom of the PES. From top to bottom, the plots show
the local mode energies in the two OH stretches, the OO stretch and the
torsion, the symmetric OOH bend, the antisymmetric OOH bend, and finally
the difference between the exact energy of the trajectory and the sum of
local mode energies.
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of a complementary study of the classical IVR in the same
energy range. A classical version of canonical perturbation
theory is used to define meaningful local modes. Classically
chaotic dynamical behavior is found, in contradiction to the
assignable quantum eigenstates. Averaging the classical re-
sults over 100 trajectories for each quantum state reduces
greatly the fluctuations and reveals decay times of the order
of several tens of picoseconds, which might explain part of
the distinction between quantum and classical results.

It is now planned to investigate whether CPT can also be
used to study more complex floppy systems, such as for ex-
ample molecules where, due to symmetry, several equivalent
minimum energy paths existse.g., H3

+d, or molecules with
several floppy modes, for which minimum energysurfaces
must be consideredse.g., C2H2d.

APPENDIX: DETAILS OF CPT CALCULATIONS

The principal difference between the torsion anglet of
the bent molecule H2O2 and the bending angleg of linear
molecules such as HCN or LiCN is thatg is doubly degen-
erate, whilet is not. Therefore, in the case of H2O2, the

operatorJ is taken to be just −i"] /]t, so that the commuta-
tion relations in Eq.s4.5d of Ref. 28 must be slightly modi-
fied, according to

J2scostdM = scostdMJ2 + 2MscostdM−1s + M2scostdM

− MsM − 1dscostdM−2,

J2scostdMs = scostdMsJ2 + 2sM + 1dscostdM+1J2

− 2MscostdM−1J2 + sM + 1d2scostdMs

− MsM − 1dscostdM−2s, sA1d

sscostdM = scostdMs + MscostdM+1 − MscostdM−1,

sscostdMs = scostdM+2J2 − scostdMJ2 + sM + 1d

3scostdM+1s − MscostdM−1s,

while the Hermitian conjugate ofs writes

s+ = − s − cost. sA2d

Note that for a nondegenerate torsion anglet one can use the
operators exps7iMtd instead of the operatorsscostdM, but
the commutation relations are then completely different. At
last, it is emphasized that a computer code for the classical
canonical perturbation procedure based on Lie algebra42–45is
very simply obtained from the quantum mechanical proce-
dure by canceling all reordering subroutines and implement-
ing the relations

ihsa+dman,sa+dMaNj = smN− nMdsa+dm+M−1an+N−1,

sA3d
iheiktJn,eiKtJNj = skN− nKdeisk+KdtJn+N−1.
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